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Using similarity methods, the Einstein field equations coupled to two oppositely 
directed null fluids for a spherically symmetric space-time are reduced to an au- 
tonomous system of three ordinary differential equations. The space of solutions is 
studied in some detail and solutions are found that represent: (i) the backscattering 
of an initially outgoing thick null fluid shell in a background gravitational field with 
a central naked singularity, (ii) the formation of strong space-time singularities by 
the interaction of thick null fluid shells, (iii) the interaction of a core of null 
radiation with an incoming shell of null fluid, and (iv) cosmological models of 
Kantowski-Sachs type with initial and final singularities clothed by apparent 
horizons. 0 1995 American Institute of Physics. 

I. INTRODUCTION 

Null fluid models are a good representation of a flux of massless particles such as photons of 
different energies and massless neutrinos. We can think of a spherical body, say, a star, that emits 
bursts of massless particles mainly along the radial direction. Since the mass (energy) curves the 
space-time, we have that the space-time curvature acts as a nontrivial index of refraction pro- 
ducing partial reflection of the radiation.’ Then associated with an outgoing flux of radiation we 
will also have an ingoing one. The intensity of this last flux may be small compare with the first, 
but it may produce dramatic effects due to the nonlinearity of the Einstein equations. Also, a flux 
of ultrarelativistic particles can be approximated by a null fluid; even the gravitational radiation 
itself in certain limits has been thought of in the same way. 

There are simple exact solutions of the Einstein equations in which a small amount of back- 
scattered radiation is enough to produce strong singularities of the space-time by mutual focusing 
of the energy. 2*3 Also, the interaction of null fluids is one of the principal ingredients of the mass 
inflation phenomenon.4 In this case the dynamics of a black hole is modeled by a Reissner- 
Nordstrom solution (whose causal structure is similar to that of the Kerr solution) and two inter- 
acting null fluids traveling in opposite radial directions. For simplicity, the interaction of the null 
fluids is studied in a fixed Reissner-Nordstrom geometry. 

The actual solving of the Einstein equation coupled to null fluids traveling in opposite direc- 
tions for a spherically symmetric space-time is not an easy task, amounting to solving a nonlinear 
system of coupled partial differential equations. The search for the general exact solution of this 
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system is hopeless. Even more, meaningful particular exact solutions are not known. An altema- 
tive approach is to look for Lie symmetries that allow its reduction to a system of ordinary 
differential equations. This last approach is the subject of the present article. 

The reduction of the problem to the study of a system of ordinary differential equations allows 
us to find solutions that describe: (a) the backscattering of an initially outgoing null fluid shell in 
a background gravitational field with a central naked singularity, (b) the formation of strong 
space-time singularities by the interaction of null fluid shells, (c) the interaction of a core of null 
radiation with an incoming shell of null fluid, and (d) cosmological models of Kantowski-Sachs 
type’ with initial and final singularities clothed by apparent horizons.6 

In Sec. II, we present the Einstein field equations coupled with ingoing and outgoing null 
fluids for a spherically symmetric space-time, and make use of a Lie point symmetry to reduce 
them to an autonomous system of three ordinary differential equations; in Sec. III we study this 
autonomous system in some detail. In Sec. IV we interpret the different classes of solutions, and 
in Sec. V we conclude by discussing the significance and limitations of the solutions found in this 
article. 

II. FIELD EQUATIONS AND SIMILARITY SOLUTIONS 

Let us consider the metric of a spherically symmetric space-time, written in double-null 
coordinates7 

ds2=2f(u,v)du du-R*(u,u)(dt9*+sin* 6 dq*) 

and the energy-momentum tensor corresponding to ingoing and outgoing null fluids 

(1) 

where I,= SP and np= c$‘~. We usually assume that pl, ~220; more generally, if p1 and p2 are both 
of the same sign, this tensor can also be interpreted as representing an anisotropic fluid with 
pressure along the radial direction only;* the radial pressure equals the density p = 6, and 
the four-velocity is given by 

(3) 

The Einstein equations for the metric (1) and the energy-momentum tensor (2) reduce to 

h,,v+f=O, (4) 

pl=-$ gf +* 
i-i 

,,=-5 gf ,u9 
(-1 

(5) 

(6) 

(7) 

where h = R2. Since Eqs. (4) and (5) do not involve pl and p2, we may solve them for the metric 
functions, and then calculate the densities using Eqs. (6) and (7). 
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It can be shown that the general Lie point symmetry’ of the system (4)-(5) is described by an 
infinitesimal generator of the form 

x=a f-g+h z +77(u) g+m ~-w(u)+5’olf~, i” “1 
where a is an arbitrary constant, and 5; 77 are arbitrary functions of the indicated arguments; the 
prime, as usual, denotes differentiation with respect to the argument. To find Eq. (8), it is conve- 
nient to use a computer algebra program such as symmetries of partial differential equations 
(SPDE).” 

Solutions of Fqs. (4)-(5) which are invariant under the finite transformation generated by Eq. 
(8) are known as similarity solutions.9 These solutions may be expressed as relations between 
similarity variables, which are solutions a( U, u ,f ,h) of the first-order partial differential equation 

Xa=O. 

By solving the preceding equation by the method of characteristics, it can be verified that a set of 
three independent similarity variables for the generator (8) is 

(9) 

where 

This choice of similarity variables is not unique, since any function a=cP(at,~..,aj) is also a 
similarity variable. However, we shall see below that the above choice is especially convenient in 
the study of similarity solutions. 

For a similarity solution, a2 and as are both functions of the single variable gt ; in other 
words, the similarity solutions have the form 

h=er@(w), (13) 

where w=(+r ‘and 4, fi are functions to be determined. Substituting Eqs. (12)-(13) in Eqs. 
(4)-(5), we obtain the pair of ordinary differential equations 

v-x*=4, (14) 

where ()‘=dldw and h = &z’Z-O. It is a remarkable fact that this system is autonomous [that is, 
w does not appear explicitly in Eqs. (14)-(15)] and also that arbitrary functions 5 and q lead 
always to the same system of ordinary differential equations. This is a consequence of our par- 
ticular choice of similarity variables. In general, if we take 
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as similarity variables, with the A j arbitrary functions of it, then Eqs. (4)-(5) will reduce to a 
nonautonomous system which will not be the same for different choices of 5 and ‘17. 

The previous remarks do not imply that different choices of 5 and 77 lead to different families 
of similarity solutions. In fact, it is easy to verify from Eqs. (I), (12), and (13) that if ~7,) &, and 
%, 6 are two possible choices of 7, 5 (which do not change sign), then for a given solution 4, r,!~ 
of Eqs. (14)-(15) the corresponding similarity solutions may be obtained from one another by a 
change of null coordinates of the form U= a(u), V = /3(u). Thus, it is sufficient to study the 
similarity solutions for one particular choice of 7, 5. 

The system (14)-(15) is invariant under the scaling transformation ($,$) + (E&S,@, whose 
infinitesimal generator (extended to first-order derivatives) is 

The order of the system (14)-( 15) may therefore be reduced by one by choosing as new variables 
a set of four first-order differential invariants’ of the Lie group generated by Y, that is, solutions 
Cn(w,+,$,+‘, @‘) of Yfi=O. In the present case, a set of independent invariants is 

w, F=qS/i+b, G=q5’/+, H=@‘l@ (16) 

Differentiating Eq. (16) with respect to w, and using Eqs. (14)-(15), we obtain a system of 
three first-order equations for F, G and H 

F’=F(G-H), (17) 

G’=+(H~-~)-F, 08) 

H’=F-(H2-X). (19) 

Even though the nonlinearity in this first-order system is quadratic, it is not of Riccati type.” Thus, 
it probably cannot be solved by quadratures starting from a particular solution. Apart from the 
symmetry of translation in w, which reflects the fact that the system is autonomous, we have not 
found any other Lie point symmetry. The use of this symmetry to reduce Eqs. (17)-( 19) to a pair 
of first-order equations leads to a nonautonomous system, which is actually no easier to analyze 
than a three-dimensional autonomous system. For this reason, we prefer to discuss the similarity 
solutions in terms of the solutions of Eqs. (17)-(19). Having a solution of this system, we can 
recover the functions C$ and $ by integrating Eq. (16) 

q=exp( 1” H(w)dw), +=Fqk (20) 

The densities of the null fluids corresponding to the similarity solutions can be easily calcu- 
lated using Eqs. (6)-(7), (12)-(15), and (16) 

61(w) 
p'=bIbP' (21) 
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(22) 

&(w)=H G+;H -,_;A+;,, 
( 1 

&(w)=H --F--t A--; G. (24) 

III. STUDY OF THE AUTONOMOUS SYSTEM FOR F, G, AND H 

In this section we shall describe the qualitative behavior of the solutions to Eqs. (17)-( 19) for 
arbitrary initial conditions. We will restrict ourselves to the case h= 1, since for DO the system 
can always be reduced to this case by the resealing of variables 
(F,G,H,w) --+ (hF,fiG,&H,wl&). In the limiting case h=a=O, we have from Eqs. (23)- 
(24) that fir = & . Without loss of generality, we may choose v= 5s - 1, which implies that p, =p2. 
It is easy to verify that the corresponding metric has the form (1) with f and R functions of 
w = u - u only; depending on the sign off, the coordinate w can be either spacelike (in which case 
the metric is static) or timelike (in which case the metric does not have a simple interpretation). 
Therefore, the similarity solutions with X = a = 0 do not describe interesting null fluid interactions, 
and will not be further considered here. 

The system (17)-(19) with A= 1 has critical points at 

F=O, G=go, H=?l, 

where go is an arbitrary constant. Thus, the critical points lie on two parallel lines in (F,G,H) 
space. The planes H = t 1 will play an important role in the interpretation of the similarity 
solutions. Linearizing the system about a generic critical point, we obtain 

F’-(go+ l)F, 

SG’-&SH-F, 

6H’-FF+2SH, 

where 6G=G-go, GH=Htl. Th e 1 inearized system can be easily solved; we find 

F-foeko"b', (25) 

&G- _ .i$ ,+,+l)w- ; hoe32w, 

SH- fo - eko~~)w+~Oe~2w, 
go+1 (27) 

where f. , ho are arbitrary constants. From this we see that the critical points with H = 1 have two 
stable invariant directions for go< 1 and one stable and one unstable invariant direction for go> 1. 
Therefore, solutions approaching the line F= 0, H= 1 for G< 1 will generally tend asymptotically 
to that line as w -+ ~0. On the other hand, for G> 1 most of the solutions initially approaching the 
“critical line” will ultimately get away from it. Analogously, for critical points with H= - 1, there 
are two unstable invariant directions if go> - 1 and one stable and one unstable invariant direction 
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if go< - 1. Solutions approaching this “critical line” for G> - 1 will tend asymptotically to a 
critical point as w + -03; solutions approaching F=O, H= - 1 with G< - 1 behave as in the 
case F=O, H=l, G>l. 

Substituting the asymptotic form of (F,G,H) near the critical points into Eqs. (23)-(24), it 
may be verified that a solution approaching H = 1 asymptotically as w --f a has & --t const and 
& -+ 0 (we assume that a >O). In the same way, solutions approaching H= - 1 asymptotically as 
w -t --co have fit + 0 and & -+ const. Thus, solutions of the above kind represent situations 
where the two null fluids are asymptotically unmixed in some region of space-time. 

Before considering general initial conditions we shall study two particular families of solu- 
tions of Eqs. (17)-(19) which may be found analytically. 

(1) Zero-density solutions. It is clear from Eqs. (21)-(24) that the condition p,=p2=0 is 
equivalent to 

G=O, F= &(H2- 1). (28) 

When these conditions hold, Eq. (18) is automatically satisfied, and Eqs. (17) and (19) become 
consistent with each other. Integrating Eq. (19), which becomes 

H’~.-#2-1) 

we obtain the solution 

H= 1-kc-w 
1 +ke-“” 

where k is an arbitrary constant. The solution for F is then 

(2% 

For k>O, the above solution is defined for all w, and its trajectory connects the two critical points 
lying in the plane G = 0. For k<O, the solution is defined for w # ln( -k); in this case, the 
solution corresponds to two trajectories, one ending at the critical point F = G = 0, H = 1 and the 
other starting at F= G = 0, H= - 1. For all values of k, the trajectories of the solutions of this 
family lie on the parabola (28), which is plotted in Fig. 1. These solutions are trivial, since they are 
flat solutions, i.e., Minkoswki space written in accelerated spherically symmetric null coordinates; 
we will come back to this point later. 

(2) Solutions lying in the plane F=O. It is clear from Eq. (17) that solutions starting at the 
plane F=O will remain always in this plane. For such solutions, Eqs. (18) and (19) reduce to 

H’= -2G’c 1 -Hz, 

which may be integrated as 

H= 1-kep2”’ 
1 +ke-2W’ 

G=-;H+c, 

where k, c are arbitrary constants. Therefore, the trajectories of these solutions lie on a family of 
parallel straight lines in the plane F = 0. Even though these solutions give us a degenerate metric 
(since F = 0 implies f = 0), they can be used to deduce that no solution crosses the plane F = 0. 

We studied numerically the solutions of Eqs. (17)-(19) which cross the plane G =0 for some 
value of w (without loss of generality, we can take this value to be zero). For these solutions, we 
verified that fii and & are always of the same sign. At w = 0, we have fii =&= i(H2- 1) -F. 
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FIG. 1. The plane G= 0 in (F,G,H) space. Trajectories crossing this plane in each of the regions Ia, Ih, IIa, etc., have 
different qualitative behaviors (see text for more detail). The parabola F= ( 1/2)(H2- 1) separates region Ib from Ic, and 
also Ia from IIa and IIIa. The other region boundaries have been determined by integrating Eqs. (17)-(19) numerically with 
different initial conditions on the G = 0 plane. 

Therefore, solutions crossing the plane G=O at a point (F,,N,) will have p,, p2>0(<0) if Fa 
-K $(Hz - 1 )( Fe> i(Hi-- 1)). The solutions which do not cross the plane G = 0 seem to be less 
interesting, since our numerical study indicated that the relation i)rh<O always holds in this case. 

The behavior of the solutions which cross the plane G=O depends on the intersection point 
(F. ,H,) in the following way (Fig. 1): 

(1) If (F, ,N,) is in regions Ia, Jb, or Ic, the solution is defined for all W, and approaches a 
critical solution as w + f-a. The main difference among these solutions is that the ones corre- 
sponding to region Ia cross the planes H = t 1 [Fig. 2(a)], while the ones corresponding to regions 
Ib and Ic do not [Fig. 2(b)]. 

(2) If (Fe ,Ho) is in regions IIa or IIb, the solution is defined in an interval of the form 
wmin< ~(03, and approaches a critical solution with H = I as w -+ 03; the solution becomes 
singular (F, G, and H diverge to infinity) as w --+ wk. Solutions corresponding to region IIa 
have F>O, HZ> 1 for all w [Fig. 2(c)]. Solutions corresponding to region IIb have F<O, H> - 1, 
and cross the plane H= 1 exactly once [Fig. 2(d)]. 

(3) If (Fe. Ho) is in region IIIa or IIIb (which are symmetric to regions Ila and IIb with 
respect to the F axis), we can obtain the behavior of the solution by noting that Eqs. (17)-(19) are 
invariant under the transformation (F,G,H,w) -+ (F, - G, -H, -w) and using the results ob- 
tained for regions IIa and IIb. The solutions are defined in intervals of the form - m < w < w,, 
approaching a critical solution as w --t - ~0 and becoming singular as w + w,, . 

(4) If (Fe ,Ho) is in region IV, the solution will be defined on a finite interval 
W,in<WcM’m~, with singularities at both ends. The solution crosses both planes H= + 1 at 
w=w- and w=w+, respectively [Fig. 2(e)]. 

The behavior of the solutions near a singularity can be determined by the method of dominant 
balance:” the result is 

F-~iS-~‘~+c~($c~lfIc~)S-~‘~+0(1), (31) 

G- rFia-1 ,+qp2 +c2+ O( 8’9, (32) 
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FIG. 2. Sample solutions which cross the plane G = 0 in different regions: (a) Ia, (b) Ic (solutions in region Ib are similar 
to the ones in region Ic), (c) IIa, (d) IIb, (e) IV. Sample solutions for regions IIIa and IIIb may be obtained from (c) and 
(d) by using the symmetry property discussed in the text. The solid, dotted and dashed curves represent the similarity 
variables F, G, and H, respectively. In (c), (d), and (e), dash-dotted vertical lines indicate the values of w where the 
solutions become singular. 
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H-~+-‘+-~cc~-“2?~c,T+0(6”2), (33) 

where S= 2 (IV - wo) --t 0, w. can be either wmin (upper sign) or wmax (lower sign) and c I, c2 are 
arbitrary constants. 

IV. INTERPRETATION OF THE SOLUTIONS 

As discussed in Sec. II, it is sufficient to study the similarity solutions for a particular choice 
of the arbitrary functions 7, c. Here we choose 

ql= El JiTz, 5= E&+7, 

where Ej= t 1; in this case, we have 

w=rzl sinh-’ ~-6~ sir&-’ u, 

r=el sinh-’ u+e2 sinh-’ u. 

The similarity solutions can describe the collision of two thick shells of null fluids traveling along 
opposite radial directions. For instance, if e1=c2= 1 and u -+ - C=J with u bounded, then w --+ 
-03, so that for solutions which are defined in this limit we have fil 4 0, & + const, (cf. Sec. 

III). Therefore, in this limit p2 = $t2-con&( 1 + v2), which represents a thick shell of null fluid 
moving along the u direction. Analogously, a thick shell of null fluid moving along the u direction 
is obtained in the limit u + --03 with u bounded. 

In the interpretation of the similarity solutions, it will be useful to analyze the behavior of the 
invariant built with the Riemann-Christoffel curvature tensor known as the Kretschmann scalar 

K= RaPpvRRaSpv 

and of the “Coulomb” component of the Weyl tensor7 

-qr2’ ; C:;cm(u9u) R3 =&( 1+y), (35) 

which is the only independent component that does not vanish for spherical geometry. In this last 
relation, m is called the mass parameter; for the Schwarschild solution, m is the constant that 
represents the mass of the spherically symmetric center of gravitational attraction. For our simi- 
larity solutions, it can be shown by direct calculation that 

R4K=(4/F2)[(H2- 1 -2F)2+GH(H2- I-2F)+G2(H2- l)] (36) 

and 

(l-H2) :=1+7; (37) 

note that R4K and 2mlR are functions only of the similarity parameter w. From these last two 
relations and Eq. (28) we have that the Kretschmann scalar and the mass function are both zero for 
the zero-density solutions. Then from the uniqueness of the Schwarzschild solutions7 we conclude 
that the zero-density solutions are isometric to Minkowski space. 

A marginally trapped surface is the locus of the points of zero expansion of an affine param- 
eterized geodesic congruence of null rays$ these marginally trapped surfaces are also known as 
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apparent horizons. The null vectors I’* and nP define two different congruences of null rays; since 
lYIP~V=n”nP;,=O, each null ray is an aftine parameterized geodesic. The expansion of each 
geodesic is defined by 

53.” !Y(l)=P,=- 2R.u 
fR ’ 

B(n)=n”;,=fR. 

From Eqs. (35) and (38) we get 

g=l + ;fR28(1)B(n). (39) 

Therefore, from this last equation and Eq. (37) we have that the apparent horizon condition, 
13(l) 0(n) = 0, is equivalent to H2 = 1; any hypersurface w = wT such that H( w T) = ? 1 will be an 
apparent horizon. 

In the rest of this section, we study the space-time and the density distributions corresponding 
to the different types of solutions presented in Sec. III, taking 5 and q as in Eq. (34). As we have 
seen, the solutions for (F,G,H) may be classified according to the region of the plane G = 0 
which their trajectory intercepts (Fig. 1). 

Region la. In this case, we always have pi, p2<0 (see Sec. III), so that we must interpret the 
energy-momentum tensor in terms of an anisotropic fluid (Sec. II). Since F>O, Eqs. (12) and (20) 
imply that f and En have the same sign. Without loss of generality, we choose E,=E~= 1 in Eq. 
(34), which implies that f is positive and w is a spacelike coordinate. Spacelike infinity then 
corresponds to the limit w + ~0 with l? bounded; in this limit, we have verified numerically that 
the constants fa , go, and ho appearing in Eqs. (25)-(27) satisfy the inequalities 

fo>O, goa, ho’0. 

If - 1 <g,<O, we may deduce from Eqs. (37), (25), and (27) that 

goR 
m-2(go+l) + --M 

so that the similarity solution does not have a simple interpretation; if go< - 1, we can likewise 
deduce that 

hoR 

m--2foe 
-(l+go)w + -a 

and again the solutions are not of great interest. 
Region Ib. As in the previous case, we have p,, pz<O, so that we interpret the solution in 

terms of an anisotropic fluid. Since F-CO, in order to have f >O we must choose 780; taking 
et = 1, e2= - 1, w becomes a timelike coordinate. In this case, one may go to spacelike infinity 
through the limit R --t 0~ with w constant. We have verified numerically that for this kind of 
solution the right hand side of Eq. (37) is negative for all w, so that again the solutions have an 
infinite negative mass function. 

Region Ic. The space-time for this case is qualitatively similar to that of the previous case, but 
now pl, p2>0, so that we can interpret the solution in terms of two null fluids. The asymptotic 
behavior of m is given by m-Q w)R for R + 00 at constant w, where k(w) is a positive function 
of w [the positivity of k(w) has been verified numerically]. This corresponds to densities which 
decay as RP2 for large R. The solution (Fig. 3) represents an initially expanding shell of null fluid 
with density p2 which is rapidly backscattered as a contracting null fluid of density p,. Even 
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FIG. 3. Evolution of the null fluid densities for the solution shown in Fig. 2(b) ( corresponding to region Ic). The timelike 
coordinate employed is r= (u + v)/v?. We have an initially expanding (r= - 10) shell of density pz (dotted line) which is 
rapidly backscattered as a contracting shell of density p, (full line). Since the corresponding trajectory in (F,G,H) space 
crosses the plane G = 0 at the line H= G = 0 [see Fig. 2(b)], it follows from the reflection symmetry mentioned in Sec. III 
that the evolution for 00 is just the reverse of the evolution for r<O, with the ingoing and outgoing null fluid densities 
interchanged. For a general trajectory which crosses the G= 0 plane in region Ic of Fig. 1, the evolution is qualitatively 
similar, although not perfectly symmetrical. 

though the null fluid densities vanish at the center (Fig. 3), there is a singularity at R=O, since 
from Eq. (36) the Kretschmann scalar behaves as K= O(RP4> as R --+ 0 with w fixed. We 
observe that this singularity is weaker than the Schwarschild singularity, which has K = O( R -6> ,13 
and that it is present at all times. Thus, in contrast to the self-focusing singularities found in a 
previous study of the collision of cylindrical null fluids,3 the singularity considered here simply 
supplies a background gravitational field in which the expanding null shell is backscattered. For 
this kind of solution H2< 1 and F< 0 for all w, so that R>2m everywhere and we do not have 
apparent horizons. 

Region ZZu. Solutions of this type have p,, p2>0 (Sec. III), and may therefore be interpreted 
in terms of two null fluids. Since F>O, we take ~t=~~=l in order to have f>O; w will be a 
spacelike coordinate. As discussed in Sec. III, there is a singularity at w = wmin ; since here we 
have H> 1 and F>O for all w > we,,, it follows from Eq. (37) that R> 2m everywhere and there 
is no apparent horizon (this is a naked singularity). Since near the singularity H-S-‘, where 
S= w - win, it follows from Eq. (20) that $= 0( 8) as S + 0. Hence, from Eq. (13), R = 0( S”2), 
which vanishes at S=O. Inserting Eqs. (31)-(33) into Eqs. (23)-(24) and (36), we can show that 
near the singularity the densities and the Kretschmann scalar behave as 

The solution (Fig. 4) represents an ingoing null fluid layer which meets an expanding “core” of 
null fluid; at large times, a more detailed asymptotic analysis shows that the densities at any fixed 
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10-Z 10-l loo 10’ 10” 

R R 

FIG. 4. Evolution of the ingoing (solid lines) and outgoing (dashed lines) null fluid densities for the solution shown in Fig. 
2(c) (corresponding to region Ifa). The timelike coordinate employed is r=(u+ v)/v?. The initial configuration has an 
ingoing shell which meets an expanding “core” of null fluid. At later times, the ingoing and outgoing densities at each 
fixed radius R = R. approach constant values, and an equilibrium situation is reached. Even though the densities shown 
here seem to become equal as r -+ m, it can be shown that in the limit of large times the density distributions are such that 
pIIp2 -+ k, where k is a constant whose value depends on the chosen similarity solution. 

radius R = R, approach constant values. At spacelike infinity, which corresponds to w -+ ~0 with 
r constant, we have verified numerically that the arbitrary constants in Eqs. (25)-(27) satisfy 

fo>0, o<go< 1; 
this implies that 

goR m- 2cEzo+ 1) 
so that the mass function is again positive but infinite. 

Region Zlb. Solutions of this type can again be interpreted in terms of two null fluids (Sec. III). 
Since F (0, in order to have f > 0 we take &CO; choosing et = 1, e2= - 1, the coordinate w 
becomes timelike. As discussed in Sec. III, there is a singularity at w = wmin ; as in the preceding 
case, this singularity also corresponds to R = 0. Therefore, we have a cosmological model of the 
Kantowski-Sachs class with a Big Bang at w = wmin and an apparent horizon at a hypersurface 
w=w- such that H(w . ..) = 1 [Fig. 2(d)]. The behavior of the fluid densities for w> wmin is 
qualitatively similar to that of region Ic solutions, with an initially outgoing shell which is even- 
tually backscattered. 

Region Illa. Due to the symmetry between regions IIa and IIIa (Sec. III), the interpretations of 
the corresponding solutions are very similar; the main difference is that pt and pz exchange roles 
and the sense of time is reversed. Thus, initially we have monotonic distributions of both pt and 
p2 which later evolve into a collapsing core and an expanding shell. 

J. Math. Phys., Vol. 36, No. 7, July 1995 
 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  143.106.108.182 On: Mon, 22 Jun 2015 16:58:31



Holvorcem, Letelier, and Wang: Interaction of outgoing and ingoing null fluids 3675 

Region 1116. Again by symmetry, solutions of this type can be interpreted in terms of those 
corresponding to region IIb by exchanging p1 and p2 and reversing the sense of time. We have an 
initially outgoing null fluid shell which is rapidly backscattered. The interaction of the ingoing and 
outgoing null fluids leads to the formation of an apparent horizon at a hypersurface w = w+ such 
that H( w + ) = - 1 and of a singularity at a later time w = w,, , which again corresponds to R = 0; 
for R --+ 0, the Kretschmann scalar and the densities of the null fluids also behave as in region Ic. 
This case may also be interpreted as a Kantowski-Sachs cosmological model that ends in a Big 
Crunch. 

Region IV. Since F<O, we take et = 1, e2= - 1; w will be a timelike coordinate. As we have 
seen in Sec. III, there are two singularities (at w = wti;, and w = w,). Thus, in this case, we have 
also a cosmological model of Kantowski-Sachs type, but which now begins in a Big Bang and 
ends in a Big Crunch. These two singularities are clothed by apparent horizons at w = w- and 
w = w + , respectively, where H(w %) = -C- 1 [Fig. 2(e)]. Between the initial and final singularities, 
the behavior of the null fluid densities is qualitatively similar to that of region Ic solutions. 

V. CONCLUSION 

We have studied in detail the similarity solutions of the Einstein equations representing two 
interacting spherical null fluids. Although some of these solutions may display certain undesirable 
features, such as infinite mass parameters at spacelike infinity and a naked singularity at R=O 
which is present for all time, they constitute simple illustrations of certain physical processes 
which may occur in more realistic situations where two null fluids interact. These processes 
include backscattering (regions Ic and IIIb), the approach to an equilibrium situation (region IIa), 
and the formation of a new singularity as a result of the interaction between the null fluids (regions 
IIIb, IV). This last process has also been observed in an analytical model of the interaction of 
cylindrical null fluids3 and is the basis of the mass inflation phenomenon.4 Also, we have families 
of solutions that can be interpreted as cosmological models of the Kantowski-Sachs class with 
Big Bang, and sometimes also Big Crunch singularities. 

A possible application for the similarity solutions presented here is the testing of numerical 
codes for the solution of Eqs. (4)-(7). 
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