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Local and global structure of a thick-domain-wall space-time
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The local and global properties of the Goetz thick plane domain-wall space-time are studied. It is found that
when the surface energy of the wall is greater than a critical value a, , the space-time will be closed by
intermediate singularities at a finite proper distance. A model is presented in which these singularities will give
rise to scalar ones when interacting with null Auids. The maximum extension of the space-time of the wall
whose surface energy is less than o., is presented. It is shown that for a certain choice of the free parameter the
space-time has a black hole structure but plane symmetry.
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The study of topological domain walls is crucial for un-
derstanding the inflationary universe scenario. According to
theory [1],the Universe undertakes an exponential expansion
in the early stages of its evolution, triggered by some phase
transitions associated with spontaneous symmetry breaking
of the Higgs field of some grand unified theory. It was found
that such a kind of expansion is needed in order to solve
some long-standing puzzles in cosmology, such as the hori-
zon, flatness, and monopole problems. The evolution of the
Universe from the exponential expansion to its present
Friedmann-Robertson-Walker form is completed by the
spontaneous nucleation of bubbles of true vacuum. Guth's
original idea has experienced several complementary modi-
fications [2]. It is the general belief that inflation will finally
solve the above-mentioned problems of the standard big-
bang cosmology.

The work of Hill, Schramm, and Fry (HSF) [3], renewed
interest in the cosmological significance of domain walls. In
the HSF model, the phase transition happens after the time of
recombination of matter and radiation. So, domain walls pro-
duced during this phase transition are very light and thick,
and are assumed to provide the gravitational field necessary
for the clustering of dark matter and baryons after the recom-
bination. Those "soft" walls have promising implications for
the Universe [4]. Following this line, an interesting solution
of a thick plane domain wall to the Einstein Geld equations
has been found recently by Goetz [5] and rederived by
Mukherjee [6].

Motivated by the inflationary universe scenario and the
interest of the walls on their own right, in this paper we shall
present a detailed study of the Goetz solution and pay the
main attention to its global properties. It is found that for
some choice of the free parameter q appearing in the solution
the space-time has a black hole structure with plane symme-
try. It has two asymptotically fIat regions separated from the
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catastrophic ones by event horizons. In each of the two
asymptotically flat regions there is a wall. Because of the
high symmetry of the Goetz solution, these walls also can be
interpreted as bubbles, which are collapsing initially and ex-
panding later with a constant acceleration. In this respect, we
can see that the thick domain wall shares the same property
as those with zero thickness [7,8]. Examples of single solu-
tions with several different physical interpretations are not
rare in general relativity [9]. It should be noted that domain
walls with a causal lattice structure similar to the Reissner-
Nordstrom and Kerr black holes have been found in super-
gravity [10], and some interesting features have been ob-
tained [10,11].

The Goetz solution can be written as [5,6]

ds =e (dt dz ) —e (d—x +dy ),

with

fI = 2q In[cosh(pz)], h = 2q ln(cosh(pz)] —2kt,
(2)

~ q+2 I'q+2I
p = — = k ~ (cosh(pz)) (3)

The unity vector g„ is the normal to the wall and given by
g„=e i 8' . As shown in [5,6], the above solution corre-
sponds to a Higgs scalar field with a kinklike shape
@(=arctan[sinh(pz)]), self-interacting through the potential
V(P) =icos P) ' l. An interesting feature of this solution

where p =k/q, and k and q are arbitrary constants subject to
the conditions k&0, and 0&q&1. The coordinates take the
range —~(t,z,x,y(+~. From Eq. (1) we see that the
Goetz wall is plane symmetric with the Killing vectors,
8, 8~, and y OIx

—x8~ . The corresponding energy-
momentum tensor (EMT) is given by [12] T„„=p(g
+ g (,)+ v(„(„,where p denotes the energy density of the
wall, and v the pressure in the direction perpendicular to the
wall; they are given by
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is the existence of coordinate singularities in each of the
three spatial directions. The ones in the x and y directions are
obvious, since the hypersurfaces z=const are the (2+1)-
dimensional de Sitter spaces. Thus, these coordinate singu-
larities are the usual de Sitter horizons. The coordinate sin-
gularities in the z direction can be seen by computing the
proper distance between z=0, the center of the wall, and

!z!=~, which is found finite [5]. Consequently, the hyper-
surfaces

!z! = ~ represent coordinate singularities, too.
Therefore, in general an extension in each of these three
directions is needed. The extension in the x and y directions
is simple and similar to its four-dimensional analogue of the
de Sitter space-time given in [13].Thus, in the following we
shall restrict ourselves only to the extension in the z direc-
tion.

It will be useful to consider first the hypersurfaces
!z!= ~ in more details, specially the timelike geodesics per-
pendicular to the wall. From the first integral, it is found
[5,6] that the timelike geodesic equations yield dt/d r
=Ecosh (pz), dz/d r= cosh (pz) (E cosh ~(pz)

1) 1/2

dx/dr=0, and dy/dr= 0, where E is the energy of the test
particle, and 7. the proper time. Perpendicular to the
timelike vector X(o)(=dx~/dr), w—e have other three
linearly independent spacelike vectors P (~)(a = 1,2,3) de-
fined by )i.(~i)

= (dz/d r) B~+ (dt/d r) 8~, X(~z) = e"t B~, and

k(~3)
——e"t 8~, where h is given by Eq. (2). One can show

that such defined four unity vectors form an orthogonal tet-
rad and have the properties k(~p),',X('0) = 0 = X(~ ),. X('0) .
Thus, the three vectors X.(~) are parallel transported along the
timelike geodesics, and together with ) "0) form a freely-
falling frame. Computing the Riemann tensor in this frame,
we find that it has only four independent components, one of
which is given by

p, v o 8'
R ~ vms~(p) ~(2)~(p) ~(2)

=—[cosh(pz)] t ' (E (1—q)cosh q(pz) —1).

Clearly, as !z!~~, this component becomes unbounded for
q) 1/2. From the geodesic equation we get that as!z!~~,
e ~~'-(r„—r) '. Thus the freely falling observer experi-
ences a tidal force -(r 7) ', w—here r is the
observer proper time needed to reach!z! =~, which is finite.
From the above expression we can see that the tidal forces
experienced by the freely falling test particles are infinitely
large as the hypersurfaces !z =~ are approaching. This
means that these surfaces are real space-time singularities for
q) 1/2, instead of horizons [5].Since in the present case all
the scalar invariants are finite, we conclude that these singu-
larities are intermediate (or nonscalar) singularities [14,15].
On the other hand, the surface energy density of the wall per
surface element is given by [5,6]

I (1—q/2)o.= p(z)e ' dz= ~irk(2+ q)
J —~ I 3/2 —q 2

where I'(x) is the standard gamma function. From this ex-
pression we can see that o. is a monotonically increasing

(Q,h)~(A+a(u)+ b(v), h),

in the metric coefficients of Eq. (1), where a(u) and b(v)
are arbitrary functions of their indicated arguments, with
u= (t+z)//Q2—, and v= (t z)—/Q2—. Then, corresponding to
the new solution, the EMT is given by

T~= p, l~l„+ pzn~n„+ p(8~+(~(,)+ v(~g„

where

pi = —+2k[1 —tanh(pz) ]a ' (u),

pz= —+2k[1+ tanh(pz)]b'(v),

a(u)+ b(U) a(u)+b(v)

g„=e ('+ ) (~, and l„and n are two null vectors de-
fined, respectively, by l„=8u/Bx~=(8' ' + 6')/Q2 and n

=Bv/Bx"=(8 ' —8')/Q2. The function pi represents the
energy density of the null Quid moving along the U =const
hypersurfaces, and p2 represents the energy density of the
null fiuid moving along the u = const hypersurfaces. To have

pi 2 positive, in the following we shall assume that
a '(u), b '(v)(0. Combining this assumption with Eq. (5) we
can see that, because of the back reaction of the null fluids,
the energy density and pressure of the wall become time
dependent, and are always decreasing as the time develops.
On the other hand, Eq. (5) also shows that p, is vanishing
exponentially as one moves away from the center of the wall
to the positive z direction, while p2 is vanishing as one
moves away from the center to the negative z direction.
Thus, the new solution represents a domain wall emitting
massless particles.

Corresponding to the new solution, the Kretschmann sca-
lar can be written as

M—=R~' R p, vX8

2(a+b)(~ + 4 2Q(p)( )p + @(o)p ) + 2 zrip p

where Mp is the Kretschmann scalar of the background
(A, h), and now is given by

M = 12k (1+q )q [cosh(pz)]

C pp and 4 22 are the components of the traceless Ricci ten-
sor [18] and are now given by COO = 4 zz

=k (1—q)/
[2q cosh (pz)]. pi z and A are given, respectively, by Eqs.
(5) and (2). The first term on the right-hand side of Eq. (6)

function of q. Note that the constant k has the meaning of
the energy scale. So, we have that when the surface energy
density of the wall per surface element is greater than
o., (=o.!~ i&z), the space time-will be closed at a finite
proper distance by space tim-e singularities. As King [16]
suggested, the nonscalar singularities might not be stable
against perturbations and give rise to scalar ones. The fol-
lowing analysis is in favor to King's conjecture, and will
show that they are indeed turned into scalar ones when null
fluids are present. In this vein, following [17] we make the
substitution
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represents the backreaction of the null Auids to the back-
ground. The second represents the interaction of the null flu-

ids with the matter components 400 and 4zz, which now is
proportional to cosh ( ~ )(pz). Thus, for q)1/2 this term
will become unbounded as Iz I

~~. That is, because of the
interaction of the null fluids with the background, the inter-
mediate singularities originally appearing at IzI =~ are now
turned into scalar ones. The last term represents the interac-
tion between the two nuH Auids, which now is also propor-
tional to cosh ( ~ ')(pz). Thus, the interaction between
these two fluids also turns those intermediate singularities
into scalar ones.

Note that at the level of the Higgs scalar field, the poten-
tial corresponding to the new solution becomes V=e"+ V.
At the field level the new solution is obtained by formally
introducing a nontrivial dependence of a coupling "con-
stant" on the coordinates u and U, while the scalar field is
kept unchanged. When the functions a(u) =0 and b(v) =0
the coupling "constant" is effectively unity. Note that the
above conclusions regarding the singular behavior of the
space-time at the spacelike infinity zI = ~ hold for any a(u)
and b(v).

On the other hand, considering the covariant derivatives
of the Riemann tensor in the freely falling frame, we find

(l)(j)(k)(l);(k ) (k ) exp([2(2q —1)+ 2nq]plzl]'

( )
—( +2(q —1/2)lq]

where indices inside parentheses denote tetrad components.
Clearly, for any given q the derivatives up to a certain order
will become singular on the hypersurfaces zI =~. In par-
ticular, for q)-, the first-order derivatives will become un-
bounded. This indicates the existence of mild singularities on
these surfaces even for the solution with 0&q~-,'. For ex-
ample, for q) —,

' we have that the "difference" of tidal forces
become infinitely large but the integral on the surface is still
finite. Therefore, one cannot exclude the possibility of an
extension for O~q~-,'. The above argument can be further
justified by the following consideration. As we shall show
below, the Riemann tensor for the extended solution is C'
across IzI =~ with r)0. According to the classifications
given in [14], these hypersurfaces are C" regular surfaces.

Following [19] (see also [10]),we first make the coordi-
nate transformation

—u(f+lzl) (7)

where 0(q~ 1/2. From Eq. (7) we can see that the coordi-
nate transformations are restricted to the regions uU ~0. To
extend the solution into the whole (u, v)-plane, one just sim-

ply forgets the way how to get Eq. (8) and lets u and v be
any values. Regarding to such an extension, there are two
different points of view. The first is due to Cvetic and co-
workers [10],namely, considering it as two coordinate trans-
formations, each of which is independently performed in the

where n = 2k 4 ~. Then, in terms of u and U the solution
of Eqs. (1) and (2) reads

ds =[1+(—n uv)'i't] (2dudv 2k v (dx +dy ))—,
(8)

regions z~0 and z~0. The resulting space-time of the wall
is the gluing of these two extended spaces along the wall.
The second is to consider Eq. (7) as one, and take Eq. (8) as
the complete extension of the space-time of the wall. Physi-
cally, the latter is equivalent to identify the two extended
spaces of the former at the same values of the coordinates. In
the following, we shall adopt the second point of view. From
Eq. (8) we conclude that in order to extend the solution to all
the values of u and U, we must distinguish different cases
depending on the solutions of the algebraic equations

( —I)'t~= —1,1,i. We shall consider

211+1 2'+ 1
(a) q=2 +1, (b) q=

(c) the rest (n, m = 0,1,2, . . . ).

we find that the metric in these regions can be written as

ds =cosh z'i(pz)(dz dt e'(dx—+d—y )) (uv)0),

which is the continuation of the metric (1) across the hyper-
surfaces IzI = ~, and clearly shows that the coordinate t be-
cornes spacelike and z timelike. Therefore, the hypersurfaces
IzI = ~ are acting as Rindler horizons [20]. It should be noted
that the extension in this case is not an analytic extension,
but it is maximal, in the sense that the extended space-time is
geodesically complete [13].Other possibilities exist, for ex-
ample, in the regions uU&0, one can replace the conformal
factor in Eq. (8) by 1.This extension is C' across zI = ~ and
not analytic. The space-time in these regions are Oat and the
scalar field becomes constant.

Case (b). The metric coefficients of Eq. (8) in this case are
well defined for all the values of u and U. It can be shown
that when 1/q is an integer, the extension is the maximal
analytic extension, and the extended space-time is geodesi-
cally complete. When 1/q is not an integer, the extension is
only a maximal extension but not analytic. The space-time in
the extended regions [cf. Fig. 1] is asymptotically fiat.

Case (a). This is the most interesting case, as after the
extension it yields a black hole space-time structure, which is
quite similar to that of the Schwarzschild space. The exten-
sion in this case is the maximal analytic extension when 1/q
is an integer, and only a maximal extension otherwise. To
show that the space-time indeed has a black hole structure,
let us first note that the metric coefficients become singular
on the hypersurfaces uU= n in this case. On the surface
uU = n the Kretschmann scalar

We shall study the last case first.
Case (c). The metric coefficients of Eq. (8) in this case

become complex in the regions uU )0, which indicates that
Eq. (8) cannot be considered as the proper extension beyond
the surfaces uU = 0, and other possibilities must be consid-
ered. One way is to set the conformal factor in Eq. (8) as
[1+(a uv) ~ ] in the regions uv)0. One can show that
such an extension is C in the sense of [13] and the hyper-
surfaces u = 0 and U = 0 are free of any kind of rnatter. In the
regions uU)0, introducing the coordinates t and z via the
relations [cf. Eq. (7)]

—r (~+ lzl)
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2 1/q —2q

ds = 1+ —(R —T)2

X(dT —dR R—(dt's +sin Hdtv )j, (10)

where R =X +Y +Z . From the above expression we can
see that the space-time of the wall has spherical symmetry.
On the other hand, from Eq. (10) we have

R2 —T2= —2&v.

FIG. 1. The projection of the space-time onto the u U-plane. The
hypersurfaces lzl =+~ (uv =0) are event horizons. The center of
the walls is at z=0 (uv = —u ). For Case (a) where q=(2n+1)/
(2m+ 1), the space-time is singular on uv =a, and consequently
regions II and II' represent two catastrophic regions. Regions II, II',
III, and III' are the four extended regions that are missing in the

(t,z) coordinates, where III —={uv(—n z, u) 0), and III'
=—(uv ~ —u, v) 0).

48n (1+q ) (n uu) r'
W=—R~' R ~vk8 2 [1 (

2 )1/q]4(l —q)

T=((u+u)+k u(x +y ))/Q2,

Z=((u u)+k u(x—+y ))/Q2,

X= —+2kux, Y= —+2kuy, (9)

one can bring this part to the standard Minkowski form. If
we further introduce the spherical coordinates (R, 9, y),
which are related to the coordinates (T,Z,X,YJ in the usual

way, we find that Eq. (8) takes the form

becomes unbounded. In other words, a space-time singularity
appears in the extended regions, II and II' [cf. Fig. 1].From
Fig. 1 we can see that this singularity is spacelike. Note that
in the space-time essentially we have two walls, each of
which is located on one of the two branches of the hyperbola
uv = —o. . These walls are causally disconnected one from
the other and behave like the Rindler particles [20]. The
horizons at lzl = ~ (or equivalently uu =0) are event hori-
zons. Thus, it is concluded that the solution given by Eq. (8)
in this case represents a black hole but with plane symmetry.
The plane is defined by the three Killing vectors 8, BY, and

XBY JBX .
However, in [7] (see also [8]) Ipser and Sikivie found that

all the plane domain walls with zero thickness can be also
interpreted as bubbles. The following considerations show
explicitly that this is also the case for a thick domain wall.
Let us first note that the metric inside the curly brackets of
Eq. (8) is fiat. As a matter of fact, by performing the coordi-
nate transformations

Thus, the wall (the center of which is at uv= —n ) is an

accelerated bubble with the constant acceleration given by

u/Q2 in the above Minkowski coordinates. It starts to col-
lapse at the moment T= —fx until the moment T=O, where

the radius of it is R;„=Q2/n. Since the acceleration is
outward, the wall will start to expand afterwards. Note
that the physical radius of the wall is given by
r „=2 qR=2 (2n +T )'/. In [9], Bonnor provided
some examples in which one solution of the Einstein field
equations could have several physical interpretations, when
it is considered in different coordinate systems. The ambigu-

ity actually comes from the high symmetry that the space-
time possesses. As shown above, the Goetz solution is con-
formally Oat. Then, according to Theorem 32.2 and Table
32.1 in [21], it has at least six linearly independent Killing
vectors, which generate a group, say, G, , where r ~ 6. In the
present case, the groups G3IX and G3VIIo defined in [21],
which are generated by the three Killing vectors, respec-
tively, of the spherically symmetric space-times and of plane
symmetric space-times, are the subgroups of G„. When dif-
ferent coordinate systems are used, different symmetries of
G„will be manifested. However, in the present case we ar-

gue that the interpretation of the above solution as represent-

ing a plane domain wall is more favorable than that as rep-
resenting a bubble. This is due to the following
considerations. First, for any given moment of time, say,
T= To, according to Eq. (11) the center of the bubble is
located on the hypersurface R=(To+2n )", and the hy-

persurfaces
l
zl =™is located on R =

l
To l, which is always

inside the wall. That is, the space-time consists of a bubble
that connects two compact spherically symmetric shells,
and each of them is inside the bubble. Second, from Eq.
(11) we can see that the coordinate transformations (9)
map region I (or I') in Fig. 1 to the region where R
e(rrTl, (To+2rz )'/ ], and the part D= (x/" T ~uv)0, —
u )0), of region II (or D ' =(x~:T ~ u u )O, u (0) of region
II') to the region where R e [O,lTl), while the part F.= II

D(or E' —= II' D') to a—region wh—ere the coordinate R
takes complex values. Therefore, in order to have a geodesi-
cally complete spacetime, one is forced to include a region
where R is complex, which is clearly physically meaning-
less.

In summary, we have studied the local and global proper-
ties of the Goetz thick plane domain wall solution. It has
been found that for I/2(q~ 1, intermediate singularities ap-
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pear on the hypersurfaces ~z~=~. When nu11 fluids are
present, these singularities become scalar ones. The solution
with 0(q~1/2 has been extended beyond the horizons

~z~
=~. The extended space-time for some choice of the free

parameter q has a black hole structure with plane symmetry.
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