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Mass And Energy In General Relativity 

Yuri  Bozhkov 1'2 a n d  W a l d y r  A. Rodr igues ,  J r .  1 

Received March ~ ,  199~ 

We consider the Denisov-Solov'ov example which shows that the iner- 
tial mass is not well defined in General Relativity. It is shown that 
the mathematical reason why this is true is a wrong application of the 
Stokes theorem. Then we discuss the role of the order of asymptotically 
flatness in the definition of the mass. In conclusion some comments on 
conservation laws in General Relativity are presented. 

In  any physical  t heo ry  the  not ions  of mass  and energy play an i m p o r t a n t  
role. T h e  re la ted  conservat ion laws are the  corner  s tones of the  theory.  
T h e r e  is a huge amoun t  of l i t e ra tu re  where  au thors  descr ibe  these not ions  
in t he  f ramework  of the  t heo ry  of Genera l  Re la t iv i ty  (OR) (see for ins tance  
Refs. 1-3).  However some pape r s  conta in  a serious cr i t ic ism and doub t s  
whe the r  the  mass  and  energy are  well defined in oR, desp i te  compa t ib l i ty  
a t  f irst  s ight  w i th  t he  t heo ry  of  Special  Relat ivi ty .  T h e  biggest  cr i t ic ism 
comes from Logunov and his co l labora to rs  [4]. The  essential  poin t  of the i r  
a rgumen t  is t he  following. 

T h e  equivalence principle s ta tes  t h a t  the  g rav i t a t iona l  mass  and the  
iner t ia l  mass  are  equal.  I t  is a fundamenta l  law in physics.  Logunov and 
Mestv i r i shvi l i  [4] agree t h a t  t he  g rav i t a t iona l  mass  is well defined in Gm 

However t h e y  po in t  ou t  t h a t  in OR there  is no sa t i s fac tory  definit ion of the  
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inertial mass. The latter usually is defined in the following way (Refs. 5,4; 
in some parts our exposition is close to these works). 

Let T ~ be the energy-momentum tensor and G ~ the Einstein tensor. 
The Einstein equations read 

G ~ = T ~ .  (1) 

Then fix a basis e~ of 1-form fields and let J~ = T~ 'ev  and G ~ = G~'e~, 
be respectively the energy-momentum and Einstein 1-form fields. The 
contracted second Bianchi identities D * G ~ -- 0 and Einstein equations 
(1) imply 

D ,  J~ = d*  J~  + w ~  A*J~  = 0, (2) 

where (w~) is the matr ix  of the connection 1-forms of the Levi-Civita 
connection D and * is the Hodge star  operator. 

Now one looks for a "l-form" T ~ such that  

d �9 T ~ = W~ A *J~. (3) 

From eqs. (2) and (3) we have the following conservation laws: 

d*  (J~ + T  ~) = 0. (4) 

From (4) one concludes tha t  there is an exact 3-form - d  * S ~ such tha t  
(see Ref. 5) 

�9 J ~  + * ~  = - d  * S ~. (5) 

The latter conclusion is not true for arbitrary 4-manifold since its third 
de Rham cohomology group could not be zero. In particular, this invali- 
dates Thirring-Wallner 's  proof [5] that  for a closed universe (with topology 
R x S 3) the total  energy must be zero, since H3(S  3) = R is non-trivial. 
However, we agree with eq. (5) if we are in R 4 where every closed differ- 
ential form is actually exact. 

Further one integrates eq. (5) over a "certain finite three-dimensional 
volume", say a ball B, and then by the Stokes theorem 

/B (  *J~ -I- *'r~) = -- j~oB *S ~. (6) 

If  we express , S "  in eq. (6) in terms of a metric gij, the (inertial) 
mass is given by 

s -- 16---~ B ~ [gng22gs3g'~f~]daa' (7) 
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where OB = $2(2) is a 2-sphere of radius R, ( -1)ha  its outward unit 
normal and dan = -R2n~dA. If the metric gij is asymptotically fiat (see 
below), then eq. (7) is equivalent to 

Logunov and Mestvirishvili claim that  the inertial mass defined above 
depends on the spatial co-ordinates and therefore has no physical meaning. 
Indeed, Denisov and Solov'ov [61 (see also Ref. 4) have found an explicit 
change of variables for the Schwarzschild metric such that  the mass in the 
new co-ordinates has a different value. Namely, consider the Schwarzschild 
metric in its usual form: 

ds2= ( 1 - 2 ? ) d t 2 -  (1-2~mr )-ldr2-r2(d,2+sin82d~o2 ). (9) 

Then introduce Cartesian co-ordinates x~. The Schwarzschild metric be- 
c o m e s  

ds 2 = good~ 2 + ga~ dx~ dx#o, (10) 

where 

[1- 2 ( 4 (11) 
g00= [ l+ (2m/4 r ) ]  2 '  g a # = - 6 a #  1+ 4 r /  " 

Now make another change of the spatial co-ordinates, 

x~ = x~v(1 + / ( r / v )  ), (12) 

where r/v = ( ( x l )  2 + (x~r 2 + (x3)2) 1/2, f is an appropriate function such 
that  f and f~ have good behaviour at infinity and the Jacobian is positive. 
In fact 

f (y)  = a 2 (1 - exp[-y] ), (13) 

where a is a non-zero constant. Clearly 

f (y)  >_ O, lim f(y) = O, lim yf'(y) = 0 
~----* o 0  y ---~ O0 
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and the Jacobian is greater than 1. After this change the metric has the 
form 

goo ---- 1 4rN(l 9- f )  1 9- 4rN(1 9- f )  (14) 

( )'[ 2m e o(1 + y) 2 

9 - x a x #  ( f )  9 - - - / ' ( 1 9 - f )  (15) 
r N  

and the inertial mass m~ in the new spatial co-ordinates X~v is 

= m(1 + a4). 

Therefore the inertial mass changes and depends on the spatial co-ordi- 
nates even in the case of the well known Schwarzschild metric. Of course, 
this is not like the velocity dependence of mass in Special Relativity. 

We have checked the above calculations and confirm their correctness. 
Here we would like to point out the mathematical  reason why they are 
right, which seems to be unclear even to the authors that  proposed this 
example. First let observe that  the definition of T ~ and d * S ~, # = 
0, 1, 2, 3, as can be seen from (3) and (5), depends upon a choice of basis 
{e~, v = 0, 1, 2, 3} of 1-form fields. Hence it follows that  r ~ and d * S ~, 
/z = 0, 1, 2, 3, are not tensors. Above one applies the Stokes (Ostrogradskii- 
Gauss-Green) theorem to each one of the objects d * S ~,/z = 0, 1, 2, 3, in 
order to express fB d * S ~ as fob *S"" But ,the Stokes theorem concerns 
differential forms, which are anti-symmetric tensors. Therefore it cannot 
be applied to non-tensorial quantities like d * S ~, # = 0, 1, 2, 3 and in 
particular to d * S ~ 

The situation can be also viewed in local co-ordinates. Indeed, one has 
a decomposition of the energy-momentum tensor into two non-covariant 
quantities, 

T ~. = O~h ~ + t ~ ,  

where t "~ is the so-called energy-momentum pseudo-tensor of the gravita- 
tional field [1,4]. In our case the corresponding symmetric "object" t ~ is 
called the Landau-Lifshitz pseudo-tensor. In fact, there are many energy- 
momentum pseudo-tensors (see Refs. 1 or 4), which we shall not introduce 
here. Then the inertial mass 

f 
= lim ] h~176 mi 

R---*oo JOB 



Mass And Energy In GR 817 

which is obtained by the Stokes theorem [as in eq. (6) and eq. (7)]. Ac- 
tually, (7) is a consequence of the last formula. It  is again clear that  
"c o = t~ e~ and d * S ~ where 

s0=-  1 1 go~[g(g'~gP~ - gprg~] ,~e~  A ep 
2 2(-g) 

(see Ref. 5), do not transform as tensors. Compare this with a paragraph 
in the Ref. 1, p.465, where a comment correctly notes that all objects 
like T ~ are co-ordinate dependent: "All the quantities H ~ ,  Te~ and t ~ 
depend for their definition and existence on the choice of co-ordinates; they 
have no existence independent of co-ordinates; they are not components of 
tensors or of any other geometric object. Correspondingly, the equations 
(20.14) and (20.19) involving Te~ and t ~ have no geometric, co-ordinate- 
free significance; they are not "covariant tensor equations"." However, the 
comments tha t  follow are wrong, because they claim that the integral given 
by our equation (8) is co-ordinate independent. The Denisov-Solov'ov- 
Logunov-Mestvirishvili example shows the opposite. 

Another purpose of the present paper is to discuss how the definition 
of the mass notion is intimately related with the concept of asymptotically 
flat metric. The definition actually states two things: (i) existence of 
special co-ordinates and (ii) the behaviour of the metric at infinity is of 
the form 

g = + o ( r - k ) .  (16) 

In the earlier paper [7] by Schoen and Yau, k = 2, while in the next 
one [8] k = 1, a weaker condition. Note that  Schoen and Yau consider 
metrics on three-dimensional manifolds. Therefore in (16) by g we mean 
the spatial part  ga~ of a Lorentzian metric, which in the considered ex- 
ample is negative-definite. The latter resulted in the minus sign in the 
definition of mi. 

In all papers on the positive mass conjecture (e.g. Refs. 7,8), the mass 
is defined for asymptotically flat metrics and then it is shown that  it is 
non-negative if the scalar curvature is non-negative. However, Bando et al. 
[9] emphasize that  it is not absolutely certain that  the mass ( --- inertial 
mass, note) is not independent of the co-ordinates. They prove a suffi- 
cient condition for the existence of asymptotically flat co-ordinates. They 
also mention a l~aper by Bartnik [10], where he proves that  the mass is a 
"geometric invariant". In view of the example above this is not true. And 
anyway, we would say, it should be independent only of the asymptotically 
flat co-ordinates, in which it is actually defined. Bartnik himself cites the 
paper by Denisov and Solov'ov [6] saying that they have found an extremal 
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example. In fact, we see that  what happens essentially depends on the or- 
t I der k of asymptotical flatness. If k > �89 then m i = m, if k < �89 then mi 

is infinite. In the new co-ordinates in the example considered k = �89 [see 
(14) and (15)]. Therefore these are not the asymptotically flat co-ordinates 
used by Schoen and Yan, who need co-ordinates in which the metric has 
k -- 1. Hence we are not saying that  Schoen-Yau result is not true. Sim- 
ply, what they call mass is not good for physics since it depends on the 
spatial co-ordinates, and the co-ordinates do not have physical meaning. 
The above problems cannot be overcome also by the global definition of 
asymptotical flatness [2,11]. Indeed, problem 2 of Ref. 2, p.295, reduces 
the definition of asymptotically flatness at spatial infinity to the class of 
metrics which satisfy (16) with k = 1. Then the definition of (inertial) 
mass (Ref. 2, p.293), is the same as that  given by the integral (8), up to 
the sign convention we have already mentioned. It is also worth empha- 
sizing that  LeBrun's counter example to the generalized positive action 
conjecture [12] provides a good metric with negative mass. We think that  
this is quite significant. 

Before concluding this short note, we would like to comment briefly 
on the conservation laws in General Relativity (oR). In his paper [13] 
Dalton arrives at the right conclusion that  in cR we can have only conser- 
vation in infinitesimal regions of the spacetime and that this conservation 
is expressed by the vanishing of the covariant derivative of the energy- 
momentum tensor. What  surprises is that,  according to [13], there is not 
a real problem in GR due to the lack of integral conservation laws for energy- 
momentum and angular momentum in this theory. This point has been em- 
phasized by Vargas and Tort [14]. They use vector-valued differential forms 
and correctly obtain the result that  local conservation of the vector-valued 
differential forms H -- H~e~ is represented by the vanishing of the exterior 
covariant derivative of the form H ~, i.e., DH ~ = dII~ + w~ A H ~ = 0. An- 
other analysis of the possibility for genuine conservation laws in a general 
field theory where gravitation (and possible other fields) are geometrized 
has been proposed by Benn [15]. However, using the words of Ferraris and 
Francaviglia [16], the problems of conserved quantities are "problems still 
to be satisfactorily solved in General Relativity" [16]. In such attempts 
one must always keep in mind that  global conservation laws for energy, 
momentum and angular momentum depend on the existence of appro- 
priate Killing vector fields in the spacetime manifold. Such vector fields 
in general do not exist in an arbitrary Lorentzian (or Riemann-Cartan) 
manifold. 
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