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On predicting the turbulence-induced secondary flows using nonlinear k -e
models

G. Mompean,a) S. Gavrilakis, L. Machiels, and M. O. Deville
IMHEF-DGM, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland

~Received 22 November 1994; accepted 6 March 1996!

Low turbulent Reynolds number direct simulation data are used to calculate the invariants of the
Reynolds stress and the turbulent dissipation rate in a square duct. The results show that, depending
on the region where the analysis is carried out, the turbulent flow field comes close to one-, two-,
and three-component states. Modeling such flows—even at higher Reynolds numbers—will require
models that can approach all three states. A number of related nonlineark-e models are testeda
priori using the direct simulation data. The numerical simulation using Reynolds averaged Navier–
Stokes equations with these models was performed. Their ability to predict the secondary flows,
with a low-Reynoldsk-e model, cannot be gauged from realizability. ©1996 American Institute
of Physics.@S1070-6631~96!00807-0#

I. INTRODUCTION

The assessment of turbulence models based on the
Reynolds-averaged form of the equations of motion presents
many difficulties that derive from the number and complex-
ity of the underlying physical assumptions that are made to
close the equations. The complications are compounded
when the predictions of such models are to be compared with
low-order flow statistics since, in addition to physical con-
siderations, model predictions contain grid-resolution effects,
convergence errors, and most significantly the explicit or im-
plicit consequences of the chosen boundary conditions.
These considerations makea posteriorievaluation of turbu-
lence models an unreliable process. However, the evaluation
of the assumptions used in the derivation of turbulence clo-
sures may beassumedto lead to rational expectations about
the applicability of such models. The usefulness of this ap-
proach is also somewhat reduced since, in general, the physi-
cal assumptions that are made in the derivation of the various
turbulence models are intended to make the analysis possible
whereas the models are applied, even unmodified, to flows of
different statistical properties. Moreover, some models, like
those for the pressure strain terms, are inherently very diffi-
cult to test even when direct simulation databases are avail-
able.

One of the most widespread closure assumptions used in
turbulence modeling is that of an eddy viscosity linking the
deviatoric Reynolds stresses tensor linearly to the local mean
strain. This type of closure is known to be incapable of pre-
dicting some well-established turbulent phenomena such as
the effects of streamline curvature, rotation, and turbulence-
induced secondary flows near corners.1 Extensions of this
type of model have been sought by including additional
terms that are nonlinear functions of the mean flow strains.
Speziale2 was able to derive a nonlinear constitutive relation
for the turbulent stresses by imposing form invariance for an
arbitrary frame change in the limit of two-dimensional tur-
bulence. In this model the expression for the Reynolds stress

contains terms that are similar to those used for the laminar
stress of a Rivlin–Ericksen fluid.3 A similar set of constitu-
tive relations has been derived from the invariance and real-
izability constraints,4 renormalization group theory,5 simpli-
fying the modeled Reynolds-stress equation.6 A discussion
concerning the assumptions underlying this type of model is
given in Gatski and Speziale,7 who were also able to extend
Pope’s8 earlier work and provide a framework for deriving
explicit algebraic models.

In the present study the data from the direct simulation
of a low Reynolds number turbulent flow through a straight
square duct is used to describe the characteristics of the flow
field within a quadrant, and to test the ability of several non-
linear eddy viscosity models to reproduce some of them. In
the work by Huseret al.9 the terms of the equations for each
Reynolds stress components have been calculated, but it is
the validity of the models for each of these terms—crucially
the pressure strain—that are needed in order to gauge the
applicability of the nonlinear algebraic stress models. In the
approach taken herein the predictions of such models are
tested in two ways. First, the data required by the models for
each Reynolds stress evaluation is supplied from the DNS
and their predictions are tested against the DNS data. Sec-
ond, a set of predictions made by using thek-e model for the
turbulent scales are compared. These results are also com-
pared with predictions from a full Reynolds stress model.10

The aim being to not study the full Reynolds stress model
~RSM! per sebut to offer an additional set of comparisons.
In Sec. II the turbulent flow field is described in terms of the
invariants for the Reynolds stress and dissipation anisotropy
tensors, the ratio of production to dissipation, and the mean
vorticity equation. The nonlinear formulation for the Rey-
nolds stresses derived by several authors,1,4–7which can pro-
duce the turbulence-induced secondary flows, are tested.
This is done in Sec. III, first, by inserting all the necessary
data calculated from the direct simulation data into the pre-
scription for the Reynolds stresses and comparing the results
with those from the direct simulation stresses. This approach
is referred to asa priori testing and indicates the compatibil-
ity of the model inferred by constitutive relation with the
Navier–Stokes equations at the Reynolds number of the

a!On leave from Universidade Estadual de Campinas, FEM, DE, 13084-100
Campinas, SP, Brazil.
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simulation. In Sec. IV, the influence of the corner on the
turbulent field is inspected and the use of a wall damping
function is analyzed and considered for practical numerical
computations. A second test is included, Sec. V, where the
predictions based on the numerical solution of the Reynolds-
averaged Navier–Stokes equations~RANS! with the differ-
ent nonlinear stress models~using thek-e equations for cal-
culating the turbulent scales! are compared with the DNS
data, differential Reynolds stress model~RSM!10 calcula-
tions, and measurements.11 Conclusions are drawn in Sec.
VI.

II. THE DIRECT SIMULATION

The basic flow statistics of the turbulent flow through a
straight duct of square cross section at low Reynolds number
are now available through a number of independent direct
simulations of this bounded flow.12–14There is good qualita-
tive agreement in the statistics extracted from these simula-
tions, thus enabling the study of the duct flow with some
confidence. The simulation database that will be used in this
paper is that obtained by Gavrilakis in Ref. 14. Briefly, the
main characteristics of the simulation are as follows. For
spatial approximation of the Navier–Stokes equations, a
mixed Fourier and finite difference approximation scheme is
used. The flow variables are expanded into discrete Fourier
series along the homogeneous streamwise direction (x), Fig.
1, whereas second-order centered difference approximations
are used for the inhomogeneous directions (y,z). The dispar-
ate convergence properties of the two types of numerical
approximation are partly offset by the unavoidable use of the
largest grid spacing along the streamwise~Fourier! direction.
This arises from the need to employ a relatively long domain

in the streamwise direction in order to secure sufficient deco-
rrelation of the turbulent field. The time marching method is
based on the second-order Adams–Bashforth scheme for all
terms of the equations of motion. This allows the resolution
of all convective and viscous time scales carried by the simu-
lation and ensures that time stepping errors are negligible.
The Reynolds number based on the mean flow velocity,Ūm

~the overbar will henceforth be used to denote the ensemble
average, which in the case of the simulation is assumed to be
equivalent to streamwise, time, and octant averaging!, and
the duct hydraulic diameter is 4800. Additional data on the
simulation are given in Table I.

The turbulent flow statistics required for assessing most
nonlinear and algebraic stress models are the mean velocity
field, Ū i , the Reynolds stress tensoruiuj , and the dissipation
ratee. Only the dissipation rate presents some difficulties in
its extraction from the simulation. An implicit assumption of
homogeneity ofe is made when it is commonly defined by

e5nS ]ui
]xj

D 2, ~1!

in turbulence modeling~summation over recurrent subscripts
is assumed!. Calculations by Antoniaet al.,15 and more re-
cently by Bradshaw and Perot,16 have shown that definition
~1! differs by a few percent from the exact dissipation rate,

e5
1

2
nS ]ui

]xj
1

]uj
]xi

D 2. ~2!

The dissipation rate is here assumed to be given by the
form ~1! as it is commonly practiced in turbulence modeling.
To obtaine from the simulation, each component of the dis-
cretized momentum equation was multiplied by the appropri-
ate velocity component and the terms involving viscosity
were recast into terms involving stress–strain products of the
form ~1!. This is the dissipation rate cell-averaged velocities,
whereas direct differencing of definition~1! would be an
approximation of that rate. Figure 2 shows the near-wall
variation of e1~5ne/ut

4! with z1(5utz/n), whereut is the
friction velocity, along the wall bisector~see Fig. 1! and it is
compared with the plane channel distribution from Kim
et al.17 Wall parameters are used to scale the variables from
both simulations, but for the square duct data the value of the

FIG. 1. Geometry and coordinate system.

TABLE I. Numerical and physical parameters of the simulation:Ū0, mean
centerline velocity;Ūm , bulk velocity;ut , average friction velocity over the
duct perimeter;̂ k&, volume and time-averaged turbulent kinetic energy;l,
Taylor microscale based on the streamwise velocityu.

Re5Ūm2h/n 4800
Re15ut2h/n 320
Domain size inx,y,z 16ph32h32h
Grid size 768(x)3127(y)3127(z)
Resolution inn/ut units 10.5 inx; 0.48–4.6 iny andz
Length of flow sample 4.4h/ut

Ū0/Ūm 1.33
Friction factor 0.036
^k&/ut

2 2.2
Maximum Rel 205
Centerline Rel 32
Maximum Kolmogoroff scale 1.5n/ut
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friction velocity, from the midwall~0,h,0! has been used. For
the present flow, estimates of the dissipation based on Eq.~2!
were found to differ by at most six percent from the homo-
geneous value, in agreement with previous work.

The distribution ofe over one duct quadrant is shown in
Fig. 3. The wall values of dissipation are nonzero every-
where, with the maximum values occurring at the center of
each wall but decreasing monotonically toward zero at the
corner. The near-wall minimum and maximum seen in Fig. 2
near z1510 are related to the oscillatory behavior of the
contour lines near each wall. For either they50 or y52h
wall ~similar arguments can be applied to the other two walls
by changingv to w, y to z andz to y!, the near-wall dissi-
pation rate is dominated by the terms(]u/]z)2 and
(]v/]z)2 and somewhat away from the wall the(]u/]y)2

also becomes important. These terms also dominate the near-
wall values of the fluctuating spanwise~vy! and streamwise

~vx! and normal ~vz! vorticity components, respectively.
~Note that the implied relation between the vorticity and dis-
sipation fields occurring due to the presence of the corners is
different to that deduced for high Reynolds number flows, as
in Ref. 18!. A component of these motions, those correlated
to the fluctuating velocities gradients, contribute to the gen-
eration of mean vorticity, as it is evident from the equation
for the mean streamwise vorticityV ~5]W̄/]y2]V̄/]z!,
which may be written in the form

V̄
]V

]y
1W̄

]V

]z
2n ¹2V5S vy

]u

]y
1vz

]u

]zD 1vx

]u

]x

2S ]

]y
vvx1

]

]z
wvxD , ~3!

where ¹2 the two-dimensional Laplace operator. Thus, in
principle, a model would have to capture the effects of the
near-wall anisotropy due to a subset of dissipative motions.

Since many turbulence closures are tested on predicting
idealized turbulent flows, such as homogeneous shear flows,
it is worth checking how well these conditions are met
within the flow fields, which most closures ultimately aim to
predict. Typically, nonlinear Reynolds stress models may be
characterized by their ability to predict the secondary flows
within a square duct—a relatively weak flow phenomenon
driven entirely by the turbulent field. Aspects of the state of
such turbulent field can be summarized by the map of the
second and third invariants of the Reynolds stress and dissi-
pation anisotropy tensors.19 The Reynolds stress and dissipa-
tion rate anisotropy tensors are defined by

bi j5
uiuj
2k

2
1

3
d i j , di j5

e i j
2e

2
1

3
d i j , ~4!

wherek [ 1
2uiui , e i j 5 2nui ,nuj ,n, anddi j is the Kronecker

delta. The second (II b ,II d) and third (III b ,III d) invariants
~Ref. 19! are defined by

II b52 1
2bi j bji , II d52 1

2di j dji , ~5!

and

III b5
1
3bi j bjkbki , III d5

1
3di j djkdki . ~6!

Figures 4 and 5 show the variation of2II againstIII for
the Reynolds stress and dissipation, respectively. Along the
wall bisector the anisotropy in the Reynolds stress is most
pronounced nearz157, whereas the dissipation rate is most
anisotropic nearz153, wherez15zut/n. This is in good
agreement with the findings of Antoniaet al.15 Near the cen-
ter of the duct the Reynolds stress and the dissipation reach
an approximately isotropic stateII5III 50. Some differ-
ence with the plane channel results is found away from the
walls where the duct flow is closer to being axisymmetric as
the invariants hug the right-hand side of the bounding tri-
angle. Axisymmetry is also evident along the corner bisector.
In the near-wall region of the wall bisector, the approximate
two-dimensional state of the turbulence shows stronger an-
isotropy than the equivalent region in the plane channel. A
region closely approximating one-component turbulence is
found as the corner is approached~2II b50.32, III b50.071
at y5z50.013h!, as shown in Fig. 5. The dynamics of the

FIG. 2. Distribution ofe calculated from the DN simulations of a plane
channel and the square duct: ---, square duct along the wall bisector; —,
plane channel~Kim, Moin, and Moser11!.

FIG. 3. Distribution ofe1 within a duct quadrant. DNS results—increment:
2.631022.
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near-corner flow is therefore fundamentally different from
those in the rest of the duct, and although these two types of
turbulent flow are in contact, the structures present within
each region are uncorrelated.20 Thus, square duct flow re-
gions approximating one-, two-, and three-component turbu-
lence are found within each quadrant and hence any Rey-
nolds stress closure that does not depend on the use of
artificial boundary conditions must be able to approach all
three states.

The relationship between the diagonal components of
the anisotropy tensordi j andbi j along two lines parallel to
one set of walls is shown in Figs. 6. The relation between
these components appears to be approximately linear
~d11.b11, d22.b22, d33.b33!, both along the wall bisector
and on lines parallel to it. As the corner is approached the
points ofbi j anddi j tend to cluster aroundd11.b11.

1
2 and

d22.b22.d33.b33.2 1
4.

The terms in which the origin of the secondary flows
may be sought depend on the form of the dynamical equation
that can be studied. The emphasis on the normal stress an-
isotropy is due to the relatively simple form of the equation
for the mean vorticity and to the absence of pressure terms.
But, Gessner,21 and more recently, Huser and Biringen12

have advanced arguments based on the imbalances of mean

and turbulent energy in the flow field, respectively. In Fig. 7
the distribution of the ratio of turbulent energy production
rateP to the dissipation ratee is shown. The local equilib-
rium condition ~P'e! is valid over a small fraction of the
flow cross section only and therefore cannot serve in model-
ing this flow. In contrast, the distribution of the various local
minima and maxima suggests that the turbulent energy im-
balance may be driving the secondary flows. The local dis-
sipation exceeds the production in the vicinity of the corner
bisector over most of its length, except for a relatively thin
region near the corner. The local minimum aty15z1'50,
P/e'0.2, is due to very low values ofP. One contributing
factor for this minimum inP has been suggested by the
mode analysis of the near-corner turbulent flow
~Gavrilakis14!, which shows that the Reynolds-averaged tur-
bulent production term may contain both positive and nega-
tive contributions. This is due to the kinematic constraints on
the flow in the near-corner region, and may also help to
explain the observed drag reduction in turbulent flows over
riblets aligned with the mean flow. On either side of the local
minimum and close to each wall a maximum is found with
P/e.2. The distance of each maximum from the corner ap-
pears to be about the same as the distance of the maximum
of mean streamwise vorticity, which was found on the corner

FIG. 4. Map of the second and third invariants along the wall bisector for
~a! Reynolds stress anisotropy tensor;~b! dissipation rate anisotropy tensor.

FIG. 5. Map of the second and third invariants along the corner bisector for
~a! Reynolds stress anisotropy tensor;~b! dissipation rate anisotropy tensor.
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walls ~Gavrilakis13!. The proximity of the two extrema in
P/e near the corner, the direction, and magnitude of the mean
secondary velocity in that area imply that the turbulent en-
ergy transport from the wall toward the bisector is dominated
by turbulent convection and pressure diffusion. These two
processes will become relatively less important away from
the corner, as the separation between the region ofP/e.1
near the wall and that ofP/e,1 near the wall bisectors be-
come increasingly separated. TheP/e ratio tends to zero to-
ward the duct centerline.

III. THE ALGEBRAIC STRESS MODELS

Evaluations of the terms in the equation for the mean
streamwise vorticity,12,13 have shown that three terms are
involved in its generation, namely gradients of the normal
cross-stream stress difference, gradients in the secondary
stress, and viscous diffusion of the mean vorticity. Emphasis
is usually placed on the normal stress anisotropy, which is
somewhat misplaced, since there are other equally important
terms, and the normal stress anisotropyper sedoes not lead
to the generation of secondary flows; one has to achieve
correct modeling for the gradients of anisotropy. The
maxima of these terms occur close to the corner walls, where

the influence of viscosity cannot be neglected. It is therefore
very likely that accurate and reliable predictions of the sec-
ondary flows in the vicinity of the corner cannot be achieved
without the explicit inclusion of the effects described. Also,
in view of the significance of the viscous terms near the
corner, the extension of the high Reynolds number models to
include viscous effect is essential. Presently, Reynolds stress
closures consistently underestimate the magnitude of the sec-
ondary flows in square ducts.

There seems to be no satisfactory low Reynolds number
version for thek-e model,4 and thus comparison between
different algebraic stress models is only possible if the values
for the mean strain,k ande from the direct simulation of the
square duct flow, are used to calculate the Reynolds stresses
prescribed by each model. One of the main features of the
model of Speziale,2 hereafter referred to as theSmodel, is its
ability to predict the turbulence-induced secondary flows—
albeit at high Reynolds numbers—and is one of those tested
herein. According to this model the Reynolds stress2uiuj is
given by

2uiuj52
2

3
kd i j1cm

k2

e
2Di j1CDcm

2 k3

e2

3SDimDmj2
1

3
DmnDmnd i j D1CEcm

2 k3

e2

3S D̊ i j2
1

3
D̊mmd i j D , ~7!

whereDi j5(Ū i , j1Ū j ,i!/2 is the mean strain tensor,D̊ is the
upper-convected derivative ofD, defined as follows:

D̊ i j5
]Di j

]t
1Ū–“Di j2

]Ū i

]xk
Dk j2

]Ū j

]xk
Dki . ~8!

FIG. 6. Relationship between the anisotropic tensors of the dissipation and
Reynolds stress for the diagonal terms.~a! Wall bisector;~b! parallel line to
the wall bisector close to the corner~y/h50.3!; s, d11 vs b11; h, d22 vs
b22; n d33 vs b33.

FIG. 7. Distribution of the ratio between the turbulent energy production
and dissipation,••••, P/e,1.0 and —,P/e.1.0. The maximum ofP/e is
2.25, and the minimum aty15z1550 isP/e50.2.
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The constantsCD andCE were estimated by Speziale
2 to be

1.68, whereascm is normally set to 0.09.
A group of related nonlinear algebraic stress models de-

rived from different types of analysis may be summarized as

2uiuj52
2

3
kd i j1cm

k2

e
2Di j2F1

k3

e2

3S Ū i ,nŪn, j1Ū j ,nŪn,i2
2

3
Ūm,nŪn,md i j D

2F2

k3

e2 S Ū i ,nŪ j ,n2
1

3
Ūn,mŪn,md i j D

2F3

k3

e2 S Ūn,i Ūn, j2
1

3
Ūn,mŪn,md i j D . ~9!

These are the models of Shih, Zhu, and Lumley4 ~here-
after referred to as SZL!, Rubinstein and Barton5 ~RB!, De-
muren and Rodi6 ~DR!, and Gatski and Speziale7 ~GS!. The
factors for each model are given in Table II.

All constants are presumed to be appropriate for high
Reynolds number flows. In the SZL model the coefficients of
the nonlinear terms are functions of the ratio of turbulent to
mean-strain time scales, defined by

h5
k

e
~2Di jDi j !

1/2. ~10!

The GS model contains the parameterz, namely the ratio
of turbulent to vorticity time scales, defined by

z5
k

e
~wi jwi j !

1/2, ~11!

wherewi j5(Ū i , j2Ū j ,i)/2 is the vorticity tensor.
It is also noted that the general form of Eq.~9! can be

found in the Speziale model, Eq.~7!, by neglecting the ad-
vection transport term~Ū–“! in the Oldroyd derivatives. No
attempt was made here to optimize the values of the coeffi-
cients for the low Reynolds number flow under study, since
their wider validity could not be determined. It is expected,
however, that improved agreement in the low-order statistics
between the models and the direct simulation may be
achieved by some other choice for the constants. The essen-
tial characteristics of each model are still discernible, with
the set established by the authors of the models. In Fig. 8, a
comparison between the model estimates and the direct
simulation results for the three normal intensities along the
wall bisector is shown. The results from the models show
good agreement with the simulation forz1.70, whereas

substantial differences are found near the walls. The Speziale
model gives negative cross-flow intensities forz1,30
~where the flow approaches the two-component limit!,
whereas theu2 component reaches very high values (40ut

2),
so that the sum of the three components remains equal tok.
The negative values are for the greater part due to the Old-
royd derivatives in the model. Although it has been recog-
nized that the Speziale model is not strongly realizable, the
normal intensity components are known to be important in
the generation of the secondary flows and thus realizability
in all the components would be desirable. The negative val-
ues for v2 andw2, not shown, persist all around the duct
boundaries. Interestingly, when using these negative values
to estimate the anisotropy source term for the equation of the
mean streamwise vorticity,V ~not shown!, it turns out that
this generation term has, at least, the correct sign within each
octant.

The near-wall intensities calculated from the SZL and
GS models are all positive, and remain so throughout the
duct cross section, but they tend to be much more isotropic.
The maximum inu2 of the SZL and GS models underesti-

FIG. 8. Turbulent intensities along the wall bisector: ---, DNS square duct;
-* -, Gatski and Speziale7 a priori test; —, Shih, Zhu, and Lumley4 a priori
test;h, Speziale2 a priori test.

TABLE II. Coefficients for different nonlinear algebraic stress models.

F1 F2 F3 cm

Demuren and Rodi 0.052 0.092 0.013 0.09
Rubinstein and Barton 0.104 0.03420.014 0.0845
Shih, Zhu, and Lumley 24/A 13/A 22/A 0.67/~1.251h!
Gatski and Speziale 0.030R 0.093R 20.034R 0.680R
A510001h3

R5(110.0038h2)/D
D5310.0038h210.0008h2z210.2z2
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mates the simulation value by more than 30%, whereas the
near-wall cross-stream intensities are overestimated by about
a factor of 2, the GS model gives values foru2 close to DNS.
The asymptotic behavior of each predicted intensity as the
wall is approached~in the viscous sublayer! is 2k/3. This
term dominates forz1,2, whereu1;z1 and the locally
spanwise component varies asz1. This is not surprising
since these algebraic models were derived for high Reynolds
number flows. However, the most important nonlinear con-
tributions to the Reynolds stresses of these models are essen-
tially confined to 2,z1,50—a region that normally is not
resolved in the modeled flows. Thus, the good agreement
between the models and the simulation for 50,z1 is only in
small part due to the extra modeling effort. It is also worth
mentioning that the stresses of the models by Rubinstein and
Barton,5 Demuren and Rodi,6 were also found to give nega-
tive intensities in the near-wall region of the square duct.

Figure 9 compares the model values for the Reynolds
shear stressuw with the results of the simulation along the
wall bisector and near the corner bisector. Both models give
numerically higher values for this quantity. The GS model
differs the least, by a factor of 2, from the simulation, which
may seem consistent with its prediction of much higher val-
ues for the peakw2, but it also underpredicts the streamwise
component of the intensity in the same region. The behavior
of the S model is much harder to interpret, giving a peak
value for uw of about an order of magnitude larger. Both
models predict peak values much closer to the duct wall with
implied production rates for the turbulent kinetic energy sub-
stantially higher than the dissipation rates obtained with the
DNS. Thus, a calculation using thek-e model must overes-

timate the local dissipation rate in order to recover the cor-
rect mean flow profile. Closer to the corner, Fig. 9~b!, the
near-wall behavior of the modeleduw is similar to that near
the wall bisector, but the quantitative differences have in-
creased. TheS and the GS model never changes sign as the
simulation data does in the region 30,z1,130.

IV. CORNER DAMPING FUNCTION

In view of the complexity of the effects of the corner
geometry on the turbulent field, it would be expected that the
most usedk-e two-equation model should be adapted for this
type of boundary influence, even when the model solution is
not carried to the boundaries. This is rather difficult at
present since the small-scale~dissipation! physics of the flow
is not fully captured by any of the current simulations. How-
ever, a number of mean effects on the turbulent field can be
observed, and need to be modeled. Those include the varia-
tion of the boundary values ofe between a finite maximum at
the midwall and the zero at the corner; dissipation rate an-
isotropy ~also see Ref. 22!; the negative energy production
contribution in thek equation;14 and kinematic blocking23 of
turbulence near the corner. It is interesting to know whether
the existing algebraic stress models can be modified to ac-
count for near-wall effects to improve the agreement with the
simulations and experiments. This is usually attempted in
part, by inserting a functionf m in the definition for the eddy
viscosity to account for the near-wall damping influences,
thus

n t5cm f m

k2

e
, ~12!

wherecm is a constant whose value here will be taken to be
0.09. The point values off m are calculated by inserting the
values ofk, e, and the strain rate in Eq.~9!. This equation
allows the calculation of the eddy viscosity, and hencefm

using the form~12! in a number of different ways. In order to
make the formula for the square duct compatible with the
calculation of Rodi and Mansour24 for a plane channel, the
following formulation has been adopted:

fm5
1

cm

~uv !21~uw!2

k2
e

P
. ~13!

The exact form of this term depends on the type of model
used for the turbulent stresses, but the contribution due to the
terms linear inDi j ,

P5uvD121uwD13,

is always present. It should be noted that for the flows with a
three-dimensional mean flow field the turbulence production
term will contain contribution involving all Reynolds stress
components. For the present flow the terms ofP shown
above contribute overwhelmingly to the total production. For
the nonlinear models,P has additional terms arising from the
nonlinear part of the strain rates. Figure 10 shows the varia-
tion of fm along the wall and corner bisectors calculated by
the linear and SZL models~the fm due to the other models
has not been computed since they give rise to negative nor-
mal stresses!. It appears that the distribution of values for the

FIG. 9. The Reynolds stressuw/ut
2, ~a! along the wall bisector,~b! near the

corner bisector~y/h50.14!: ---, DNS square duct; --* --, Gatski and
Speziale7 a priori test;h, Speziale2 a priori test.
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former model may be fairly approximated by a constant of
order one fory1 or z1.60. The nonlinear model of SZL is
found to lead to nearly constant values forfm along the cor-
ner bisector but continuously increasing from the boundary
along the wall bisector. Fory1 or z1,50 the values from
both models decrease sharply toward zero but for very small
distances from the walls the values forf m diverge because
thee/P ratio diverges at the boundaries. Near the corner this
function suggests considerable damping of the turbulent field
up to abouty15z1540—with a somewhat larger region for
the nonlinear model. This corresponds closely to the finding
of Gavrilakis20 that the turbulent field in the region from the
wall to y1550, z1550 is only weakly correlated with the
flow field farther away from the corner. This is in contrast to
the standard near-wall turbulent flow where velocity correla-
tions are found to extend from the viscous sublayer to be-
yond the buffer layer. This implies that the flow just beyond
the near corner region cannot be modeled in the way current
for boundary layer-type flows. The elliptic boundary condi-
tions proposed by Durbin23 probably need to be extended to
this type of calculation.

An attempt was made to use the values off m derived
from the direct simulation into a modeled simulation of this
flow at the same Reynolds number, using in turn each of the
constitutive relations shown in Table II, in conjunction with
the RANS equations and thek2e model of turbulence. A
grid identical to that of the direct simulation was used and
the values for thef m derived from it were assigned to the

grid of the model calculations. This type of computation did
not converge to a steady state. It appears that it may be
unlikely for simple adjustments of the eddy viscosity near
the boundaries to be sufficient.

A second attempt was made to use the models based on
Eqs.~7! and ~9! and Table II with thek2e model in which
the effects of the corner were accounted for qualitatively
only through the use of damping wall functions. The numeri-
cal approximation of the RANS equations of motion was
obtained through the standard finite volume techniques on a
staggered grid, where the pressure is defined at the center of
every cubical grid and the velocity components at the center
of every face. The normal Reynolds stress are cell centered,
while the off-diagonal terms are located at the mid-edges. A
number of different upwind approximation schemes were
tried for representing the nonlinear terms, but no sensitivity
was detected from this part of the algorithm. The solution to
the equation was obtained by advancing explicitly in time the
equations of motions until a steady state was reached, while
enforcing the continuity at each step through the solution of
the discrete Poisson equation for the pressure. Details of the
algorithm are given in Mompean.25 The computational do-
main in this type of calculation was one quadrant of the full
duct while enforcing symmetry conditions along the symme-
try axes of the flow. Typical grids were 41341 points in the
~quadrant! cross section. The results were found to be grid
independent and insensitive to the initial conditions. The first
grid point near the wall was always aty1, 1.0, when using
the nonlinear models. Details of the turbulence model~k2e!
and boundary conditions used can be found in Appendix A.
The code and models~linear and nonlinear! were tested
against the well-established plane channel results and gave
good agreement.

A number of existing suggestions about modifying the
near-wall eddy viscosity definition were tested. They were
originally developed for plane boundaries~Chien;26 Lam and
Bremhorst,27 Reynolds,28 and Lindberg29!, but it was found
that the following relationship forf m produced results closer
to the direct simulation:

f m5@12exp~20.08y1!#@12exp~20.08z1!#. ~14!

The relationship provided high damping in the near corner
region, where suppression in the turbulence due to the corner
was observed in the direct simulation. This relation was in-
dependently used by Nisizima30 when modeling the square
duct turbulent flows at high Reynolds numbers.

V. NONLINEAR AND FULL REYNOLDS STRESS
PREDICTIONS

It would be expected that the full Reynolds stress model
~RSM! give more accurate results, because important physi-
cal effects like convection and production are directly taken
into account in the equations. Presently, the closures of the
unknown terms in the RSM for a low Reynolds number are
not well established. This is the subject of intensive ongoing
research.31 A recent paper from Naimi and Gessner32 pre-
sents a modified form of the Launder, Reece, and Rodi33

pressure–strain model. Theirs is applied for high Reynolds
numbers in a square duct flow~65 000 and 250 000, based on

FIG. 10. Distribution of f m obtained with the linear and Shih, Zhu, and
Lumley4 models using DNS data.
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the bulk velocity and on the height of the duct!. Their results
also underpredict the secondary flow in the region where the
flow is fully developed. The prediction of a RSM is included
in this work, and the results are compared with the predic-
tions of the algebraic nonlineark2e model. The differential
equations for the RSM were solved using the numerical
method described above. The closures proposed by Gibson
and Launder10 were employed to obtain the unknown terms,
viz. pressure–strain, turbulent diffusion, and dissipation. De-
tails are given in Appendix B. In this model the assumption
of high Reynolds number was used where the dissipative
motions were assumed to be isotropic. To eliminate the un-
certainty that the boundary conditions can provoke in the
solution of the RSM equations, all the values for the Rey-
nolds stress components and fore were obtained interpolat-
ing DNS data; these values were used over the quadrant duct
perimeter aty1>10.

The profiles of the mean streamwise velocity (Ū) along
two vertical sections~y/h50.3 and 0.7! are shown in Fig. 11.
Eight sets of results are compared; four of the nonlinear
models~SZL, RB, S, GS!, the lineark2e model, the RSM,
the DNS, and the measurements of Cheesewright, McGrath,
and Petty.11 At the sectiony/h50.3, the DNS data and the

measurements show a strong distortion on the mean velocity,
whereas all nonlinear algebraic models are unable to predict
this distortion onŪ. The RSM results show a good agree-
ment with the DNS and measurements for the mean stream-
wise velocity. This may be due to the convective effect in-
corporated in the RSM.

Figure 11~b! shows the comparison near the wall bisec-
tor, the agreement forŪ is good. This is not surprising since
the k2e model is known to reproduce accurately the mean
flow of the infinite parallel channel turbulent flows. This also
indicates that the present version of this model produces ac-
curate results for the low Reynolds number channel flows.

The Reynolds stresses obtained with the nonlinear mod-
els differ substantially. All models give Reynolds stresses
significantly larger than those found in the direct simulation
~Fig. 12!. Very close to the wall the nonlinear algebraick2e
models predict a steeper rise of the2uw and much higher
values for the peak than the simulation. The prediction given
by the RSM is also overestimated for2uw, but with the
peak in the same position~y/h50.2! as the DNS.

The comparison between the models, DNS data, and
measurements for the spanwise velocity (V̄) for two vertical
sections,y/h50.3 and 0.7, is presented in Figs. 13~a! and
13~b!. There is good qualitative agreement among the vari-
ous datasets, and in particular, good agreement is found in
the position of the zero crossings. This would suggest that
the predicted positions of the secondary vortices within each
octant are broadly similar~see Figs. 14 and 15!. However,
the differences between DNS and model results on the posi-
tion of the extrema of the vorticity are at most 20%. Differ-
ences in the magnitude of the secondary velocities are
greater, particularly for the maximum values of the second-
ary velocities near the duct walls. These differences can be
large, depending on the model used. In Fig. 13~a! the differ-
ence between theSmodel and the DNS at the extreme ofV̄
is about 50%. The GS model gives very good agreement
between the predictions and measurements for both sections
~y/h50.3 and 0.7!—the maximum error in the measured sec-
ondary velocity is less than 10%.11 Among the nonlinear

FIG. 11. Mean streamwise velocity profiles along two duct sections from
the Reynolds-stress closure calculations;~a! y/h50.3, ~b! y/h50.7, —,
Shih, Zhu, and Lumley;4 -•-, Rubinstein and Barton;5 ••• , Speziale;2 --* --,
Gatski and Speziale;7 • • •, linear model;1, RSM; ---, DNS square duct;s,
measurements of Cheesewright, McGrath, and Petty.11

FIG. 12. The Reynolds stressuw/ut
2 from model calculation, DNS, and

experiment along the wall bisector: —, Shih, Zhu, and Lumley;4 -•-, Rubin-
stein and Barton;5 ••• , Speziale;2 --* --, Gatski and Speziale;7 • • •, linear
model;1, RSM; ---, DNS square duct.
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models, the GS gives the best overall agreement with the
simulation results. The SZL model that is realizable leads to
very weak secondary flows. This can be attributed to the
greater normal-stress isotropy seen in Sec. III above. Better
agreement in the horizontal velocity profiles is found closer
to the wall bisector~except for the SZL model!, Fig. 13~b!.
This may not be unexpected since all models comply with
the symmetry requirement ofV̄50 on the wall bisector.

The RSM predictions for the spanwise velocity show a
weaker secondary flow than the DNS at the sectiony/h50.3,
Fig. 13~a!, the magnitude is of the same order as theS and
RB models predictions. Aty/h50.7, Fig. 13~b!, the magni-
tude is correctly predicted, but the position of maximum
negative velocity is misplaced.

Unlike thea priori tests, the intensities of the converged
solution obtained with the above models are positive every-
where. The variations of root-mean-square fluctuating ve-
locities along the wall bisector are shown in Fig. 16. In gen-
eral, all nonlinear algebraic models fail to capture the
anisotropy evident in the DNS results, even at the center of
the duct. Indeed, the models overestimate the cross-stream
intensities. The SZL model is closer to the linear eddy vis-
cosity model, whereas the S, GS, and RB models predict a
somewhat greater anisotropy. All nonlinear models under-
predict the DNS peak ofurms by at least 30%, whereas they
overpredict the peaks in the cross-stream intensities by at
least 20%. The best agreement with the DNS predictions for
the turbulent intensities is obtained with the RSM.

The near-wall extrema of thewrms from the RB andS
models are due to their greater sensitivity on the local value
of the dissipation rate~through the eddy viscosity!; see Fig.
2. On the wall bisector the RB, DR, and SZL models may be
written as

FIG. 13. Mean spanwise velocity profiles along two sections:~a! y/h50.3,
y/h50.7, —, Shih, Zhu, and Lumley;4 -•-, Rubinstein and Barton;5 ••• ,
Speziale;2 --* --, Gatski and Speziale;7 • • •, linear model;1, RSM; ---,
DNS; s, measurements of Cheesewright, McGrath, and Petty.11

FIG. 14. Secondary velocity vectors in a quadrant obtained from DNS.

FIG. 15. Reynolds stress closure prediction of the secondary velocity in a
quadrant. The constitutive relation is that proposed by Gatski and Speziale.7
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w25
2

3
k2~F222F3!

k3

e2 S ]Ū

]z D 2, ~15!

where the value of (F222F3) determines the difference
from the isotropic value for each model. Of the three models
the SZL yields the smallest value for this factor.

The distribution ofV from the DNS in Ref. 13 and the
GS model are compared in Fig. 17. The DNS results are
shown on the right side of the diagonal, and the GS model
results on the left side. The results based on the GS model
show that intense near-wall vorticity is due to the fact that
the secondary velocity maximum occurs closer to the wall
than in the DNS. Overall the mean vorticity maxima differ
by about 10%, but the respective distributions are quite dif-
ferent.

VI. CONCLUSIONS

The results from the direct numerical simulation in a
square duct at the Reynolds number of 4800, based on the
hydraulic diameter and bulk velocity, have been used to

evaluate aspects of the turbulent flow that are involved in
modeling near-wall flows. Maps of the second and third in-
variants for the Reynolds stress and dissipation anisotropy
tensors indicate that within a quadrant the turbulent field
comes close to one-, two-, and three-component states. There
are many similarities between the duct flow along the wall
bisector and the plane channel results. However, plane chan-
nel data are not helpful to model the flow close to the cor-
ners. The dynamics of the streamwise intensity enter directly
in the equation for the generation ofV. No simple approxi-
mate relationship between the Reynolds stress and dissipa-
tion anisotropy tensors is apparent over the whole of the duct
cross section.

Several nonlineark-e models for the Reynolds stresses
were testeda priori using the direct simulation data. The
flow prediction of the nonlinear algebraick-e models were
compared with the results of a full Reynolds stress model,
DNS data, and measurements. These models were designed
for high Reynolds numbers. Of all the nonlinear models
tested, the one by Shih, Zhu, and Lumley4 and by Gatski and
Speziale7 are strongly realizable, but in general, they under-
estimate the anisotropy between the three anisotropy compo-
nents. The model of Speziale2 shows negative cross-stream
intensities near the duct walls. However, this aspect of the
models cannot be correlated with their ability to predict the
mean secondary flows when used with the RANS equations
and the k-e model. In this type of test the Gatski and
Speziale7 model performed best, but its results are in a lim-
ited qualitative agreement with the direct simulation data.
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FIG. 16. Turbulence intensity profiles from the calculations using the non-
linear models and DNS along the wall bisector. —, Shih, Zhu, and Lumley;4

-•-, Rubinstein and Barton;5 ••• , Speziale;2 --* -- Gatski and Speziale;7 • • •,
linear model;1, RSM; ---, DNS.

FIG. 17. Mean streamwise vorticityV. Gatski and Speziale7 model results
~left side of the diagonal! and DNS square duct~right side!. Continuous
lines represent positive values; dotted lines negative values. Increment 2.0
(ut/h)

2.
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APPENDIX A: k -e EQUATIONS

The modeled equation for the turbulent kinetic energy is
obtained from its exact transport equation~cf. Hanjalic and
Launder!:34

]k

]t
1Ui

]k

]xi
5

]

]xi
F S n t

sk
1n D ]k

]xi
G1p2e, ~A1!

wherep is the production of turbulent energy given by

p52uiujDi j . ~A2!

The derivation of the modelede equation involves many
more closure assumptions than thek equation. The modeling
of this equation is based on analogies with thek equation and
on phenomenological considerations. Its final form is
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e2

k
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~A3!

The two modeled transport equations contain five constants.
The values for these coefficients are obtained from experi-
ments for equilibrium turbulent boundary layers and isotro-
pic turbulence. The standard set of constants is

Ce151.44, Ce251.92, sk51.0, and se51.3.
~A4!

For thee equation~A3! we do not use the wall damping
functions to change the values of constantsCe1 or Ce2, since
it is at present not possible to devise a set of functions that
mimic the wall variation of the dissipation along the duct
perimeter. Also, due to the use of the staggered grid, the
value ofk is not defined on the wall. Thus, the last two terms
in the modeled dissipation equation remain finite. At the
wall, the boundary condition for the equations ofk and e
were

]k

]y
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~A5!

APPENDIX B: SECOND-MOMENT MODEL

When the full Reynolds stress model~RSM! is used in
the present paper, the transport equations to this model were
obtained from the model proposed by Gibson and Launder:10
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where the term
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models stress diffusion and
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is the exact stress production;

f i j5f i j 11f i j 21f i jw11f i jw2 ~B4!

represents the pressure–strain interaction, each part modeled
by
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~B8!
The last two terms accounting for the effects of the wall,ni
is the wall–normal unit vector in the directioni , and
f50.4k1.5/e Dn, with Dn the wall–normal distance. The
values of the constants used in this model are

Cs50.22, C151.8, C250.6, C1
w50.5, and

C2
w50.3. ~B9!
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