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On predicting the turbulence-induced secondary flows using nonlinear k-€
models

G. Mompean,® S. Gavrilakis, L. Machiels, and M. O. Deville
IMHEF-DGM, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland

(Received 22 November 1994; accepted 6 March 1996

Low turbulent Reynolds number direct simulation data are used to calculate the invariants of the
Reynolds stress and the turbulent dissipation rate in a square duct. The results show that, depending
on the region where the analysis is carried out, the turbulent flow field comes close to one-, two-,
and three-component states. Modeling such flows—even at higher Reynolds numbers—will require
models that can approach all three states. A number of related noninearodels are tested

priori using the direct simulation data. The numerical simulation using Reynolds averaged Navier—
Stokes equations with these models was performed. Their ability to predict the secondary flows,
with a low-Reynoldk-e model, cannot be gauged from realizability. 96 American Institute

of Physics[S1070-663196)00807-0

I. INTRODUCTION contains terms that are similar to those used for the laminar
stress of a Rivlin—Ericksen fluilA similar set of constitu-

The assessment of turbulence models based on th#e relations has been derived from the invariance and real-
Reynolds-averaged form of the equations of motion presentgability constraints, renormalization group theorysimpli-
many difficulties that derive from the number and C0mp|eX-fying the modeled Reynolds-stress equaﬂoh_discussion
ity of the underlying physical assumptions that are made t@oncerning the assumptions underlying this type of model is
close the equations. The complications are compoundegiven in Gatski and Spezialewho were also able to extend
when the predictions of such models are to be compared witkope’$ earlier work and provide a framework for deriving
low-order flow statistics since, in addition to physical con-explicit algebraic models.
siderations, model predictions contain grid-resolution effects, |n the present study the data from the direct simulation
convergence errors, and most significantly the explicit or imof a low Reynolds number turbulent flow through a straight
plicit consequences of the chosen boundary conditionssquare duct is used to describe the characteristics of the flow
These considerations makeposteriorievaluation of turbu-  field within a quadrant, and to test the ability of several non-
lence models an unreliable process. However, the evaluatidthear eddy viscosity models to reproduce some of them. In
of the assumptions used in the derivation of turbulence clothe work by Huseet al? the terms of the equations for each
sures may bassumedo lead to rational expectations about Reynolds stress components have been calculated, but it is
the applicability of such models. The usefulness of this apthe validity of the models for each of these terms—crucially
proach is also somewhat reduced since, in general, the physhe pressure strain—that are needed in order to gauge the
cal assumptions that are made in the derivation of the variougpplicability of the nonlinear algebraic stress models. In the
turbulence models are intended to make the analysis possibégproach taken herein the predictions of such models are
whereas the models are applied, even unmodified, to flows qésted in two ways. First, the data required by the models for
different statistical properties. Moreover, some models, likeeach Reynolds stress evaluation is supplied from the DNS
those for the pressure strain terms, are inherently very diffiand their predictions are tested against the DNS data. Sec-
cult to test even when direct simulation databases are avaibnd, a set of predictions made by using kae model for the
able. turbulent scales are compared. These results are also com-

One of the most widespread closure assumptions used iflared with predictions from a full Reynolds stress mddel.
turbulence modeling is that of an eddy viscosity linking theThe aim being to not study the full Reynolds stress model
deviatoric Reynolds stresses tensor linearly to the local meafRSM) per sebut to offer an additional set of comparisons.
strain. This type of closure is known to be incapable of preqn Sec. Il the turbulent flow field is described in terms of the
dicting some well-established turbulent phenomena such dgvariants for the Reynolds stress and dissipation anisotropy
the effects of streamline curvature, rotation, and turbulencetensors, the ratio of production to dissipation, and the mean
induced secondary flows near cornkrExtensions of this vorticity equation. The nonlinear formulation for the Rey-
type of model have been sought by including additionalnolds stresses derived by several auttdr$which can pro-
terms that are nonlinear functions of the mean flow strainsguce the turbulence-induced secondary flows, are tested.
Spezialé was able to derive a nonlinear constitutive relationThis is done in Sec. IlI, first, by inserting all the necessary
for the turbulent stresses by imposing form invariance for ajata calculated from the direct simulation data into the pre-
arbitrary frame change in the limit of two-dimensional tur- scription for the Reynolds stresses and comparing the results
bulence. In this model the expression for the Reynolds stresgith those from the direct simulation stresses. This approach
is referred to as priori testing and indicates the compatibil-

@0n leave from Universidade Estadual de Campinas, FEM, DE, 13084-10831 qf the model inferred by constitutive relation with the
Campinas, SP, Brazil. Navier—Stokes equations at the Reynolds number of the
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TABLE |. Numerical and physical parameters of the simulatidg; mean
centerline velocityl ,,, bulk velocity;u ., average friction velocity over the
duct perimeter{k), volume and time-averaged turbulent kinetic energy;
Taylor microscale based on the streamwise velogity

Mean flow direction Re=U_m2h/V 4800
Re"=u,2h/v 320

/ | Domain size inx,y,z 16mhxX2hXx2h
Grid size 768K) X 127(y) X 127(2)

) Resolution iny/u . units 10.5 inx; 0.48-4.6 iny andz
corner bisector
Length of flow sample 4.4/u,
Uo/Up, 1.33
167h Friction factor 0.036

(ky/u? 2.2

- Maximum Re 205
Centerline Rg 32
Maximum Kolmogoroff scale 1.5/u,

2h

wall bisector

in the streamwise direction in order to secure sufficient deco-
- rrelation of the turbulent field. The time marching method is
based on the second-order Adams—Bashforth scheme for all
terms of the equations of motion. This allows the resolution
¥ . of all convective and viscous time scales carried by the simu-
lation and ensures that time stepping errors are negligible.
The Reynolds number based on the mean flow velotlty,

FIG. 1. Geometry and coordinate system. (the overbar will henceforth be used to denote the ensemble
average, which in the case of the simulation is assumed to be
equivalent to streamwise, time, and octant averagiagd

simulation. In Sec. IV, the influence of the corner on thethe duct hydraulic diameter is 4800. Additional data on the
turbulent field is inspected and the use of a wall dampingjmulation are given in Table 1.

function is analyzed and considered for practical numerical  The turbulent flow statistics required for assessing most
computations. A second test is included, Sec. V, where th@gnlinear and algebraic stress models are the mean velocity
predictions based on the numerical solution of the Reynoldstig|g, U, , the Reynolds stress tensmq_uj, and the dissipation
averaged Navier—Stokes equatidRANS) with the differ-  rate ¢ Only the dissipation rate presents some difficulties in
ent nonlinear stress modefissing thek-¢ equations for cal- g extraction from the simulation. An implicit assumption of

culating the turbulent scalpsre compared with the DNS homogeneity ofe is made when it is commonly defined by
data, differential Reynolds stress mod&SM)!° calcula-

tions, and measuremeritsConclusions are drawn in Sec. _ [aui)? @
VI. €=V (9XJ !

in turbulence modelingsummation over recurrent subscripts
Il. THE DIRECT SIMULATION is assumeld Calculations by Antoniat al,'®> and more re-

The basic flow statistics of the turbulent flow through acently by Bradshaw and Pertithave shown that definition
straight duct of square cross section at low Reynolds numbép) differs by a few percent from the exact dissipation rate,
are now available through a number of independent direct 1 Tou  ou.\2
simulations of this bounded flow# 4 There is good qualita- e=— v —+ —
tive agreement in the statistics extracted from these simula- 2 19X 9X
tions, thus enabling the study of the duct flow with some  The dissipation rate is here assumed to be given by the
confidence. The simulation database that will be used in thiform (1) as it is commonly practiced in turbulence modeling.
paper is that obtained by Gauvrilakis in Ref. 14. Briefly, theTo obtaine from the simulation, each component of the dis-
main characteristics of the simulation are as follows. Forcretized momentum equation was multiplied by the appropri-
spatial approximation of the Navier—Stokes equations, ate velocity component and the terms involving viscosity
mixed Fourier and finite difference approximation scheme isvere recast into terms involving stress—strain products of the
used. The flow variables are expanded into discrete Fourigorm (1). This is the dissipation rate cell-averaged velocities,
series along the homogeneous streamwise direciipnHig.  whereas direct differencing of definitiofl) would be an
1, whereas second-order centered difference approximatiompproximation of that rate. Figure 2 shows the near-wall
are used for the inhomogeneous directiong). The dispar-  variation of " (=ve/u?) with z*(=u.z/v), whereu_ is the
ate convergence properties of the two types of numericdriction velocity, along the wall bisectdisee Fig. 1and it is
approximation are partly offset by the unavoidable use of theompared with the plane channel distribution from Kim
largest grid spacing along the streamw(Beuriep direction. et all’ Wall parameters are used to scale the variables from
This arises from the need to employ a relatively long domairboth simulations, but for the square duct data the value of the

2
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(w,) and normal(w,) vorticity components, respectively.
(Note that the implied relation between the vorticity and dis-
sipation fields occurring due to the presence of the corners is
different to that deduced for high Reynolds number flows, as
in Ref. 18. A component of these motions, those correlated
to the fluctuating velocities gradients, contribute to the gen-
eration of mean vorticity, as it is evident from the equation
for the mean streamwise vorticitf) (=dW/dy—dV/dz),
which may be written in the form

|-

V—&Q Waﬂ v20 du au au
— +W ——v =lowy —tw, —|tw,—
ay 9z Yoy %oz X ax
z d )
- a—vwx-f—(?—wa , (3
FIG. 2. Distribution ofe calculated from the DN simulations of a plane y z
channel and the square duct: ---, square duct along the wall bisector; —

where V2 the two-dimensional Laplace operator. Thus, in
principle, a model would have to capture the effects of the
near-wall anisotropy due to a subset of dissipative motions.

friction velocity, from the midwal(0,h,0) has been used. For Since many turbulence closures are tested on predicting
the present flow, estimates of the dissipation based o2Eq. idealized turbulent flows, such as homogeneous shear flows,
were found to differ by at most six percent from the homo-It iS worth checking how well these conditions are met
geneous value, in agreement with previous work. within the flow fields, which most closures ultimately aim to
The distribution ofe over one duct quadrant is shown in predict. Typically, nonlinear Reynolds stress models may be
Fig. 3. The wall values of dissipation are nonzero eV(_:,ry_characterized by their ability to predict the secondary flows
where, with the maximum values occurring at the center ofVithin @ square duct—a relatively weak flow phenomenon
each wall but decreasing monotonically toward zero at th&riven entirely by the turbulent field. Aspects of the state of

corner. The near-wall minimum and maximum seen in Fig. 28uch turbulent field can be summarized by the map of the
nearz" =10 are related to the oscillatory behavior of the second and third invariants of the Reynolds stress and dissi-

contour lines near each wall. For either e 0 or y=2h pation anisqtropy tensof€.The Reynplds stress and dissipa-

wall (similar arguments can be applied to the other two walldiOn rate anisotropy tensors are defined by

by .changingv.to w, y'to z andz to y), the near-wall dissi- ru] 1 6 1

pation rate is dominated by the term&u/dz)? and bj=2r ~3 % dj=5.73 %, 4

(dvldz)? and somewhat away from the wall tifgu/dy)? -

also becomes important. These terms also dominate the neavherek = 3u;u;, €; = 2wU; 4U; ,, and §; is the Kronecker

wall values of the fluctuating spanwise,) and streamwise delta. The secondll,,!14) and third (Il 111 4) invariants
(Ref. 19 are defined by

Il,=—3bjbji, 1g=—3d;dj, 5

and
I”b:%bijbjkbki- I”d:%dijdjkdki- (6)
Figures 4 and 5 show the variation el againstll for
the Reynolds stress and dissipation, respectively. Along the
wall bisector the anisotropy in the Reynolds stress is most
pronounced neazr” =7, whereas the dissipation rate is most
anisotropic neaz”=3, wherez*=zu/v. This is in good
agreement with the findings of Antoné al!® Near the cen-

plane channe{Kim, Moin, and Moset?).

=
o

o ° °
~J -] L)

v b b e b b e deaaa gty i b

o
o

ﬁos
0t ter of the duct the Reynolds stress and the dissipation reach
an approximately isotropic staté =111 =0. Some differ-
03 ence with the plane channel results is found away from the
walls where the duct flow is closer to being axisymmetric as
02 the invariants hug the right-hand side of the bounding tri-
ot /\ angle. Axisymmetry is also evident along the corner bisector.
’\ K—\ In the near-wall region of the wall bisector, the approximate
00 ......—./2 two-dimensional state of the turbulence shows stronger an-
0.0 0.1 0.2 03 04 0.5 0.6 0.7 0.8 09 1.0

" isotropy than the equivalent region in the plane channel. A
Y region closely approximating one-component turbulence is

FIG. 3. Distribution ofe* within a duct quadrant. DNS results—increment: found as the corner is apprqach(edl 1,=0.32, 11 b:_0-071
2.6x1072 aty=z=0.01%), as shown in Fig. 5. The dynamics of the
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FIG. 4. Map of the second and third invariants along the wall bisector forgig 5. Map of the second and third invariants along the corner bisector for
(a) Reynolds stress anisotropy tensth) dissipation rate anisotropy tensor. (g Reynolds stress anisotropy tensds} dissipation rate anisotropy tensor.

near-corner flow is therefore fundamentally different fromand turbulent energy in the flow field, respectively. In Fig. 7
those in the rest of the duct, and although these two types dhe distribution of the ratio of turbulent energy production
turbulent flow are in contact, the structures present withirrate P to the dissipation rate is shown. The local equilib-
each region are uncorrelatéy Thus, square duct flow re- rium condition(P=e) is valid over a small fraction of the
gions approximating one-, two-, and three-component turbuflow cross section only and therefore cannot serve in model-
lence are found within each quadrant and hence any Reyng this flow. In contrast, the distribution of the various local
nolds stress closure that does not depend on the use gfinima and maxima suggests that the turbulent energy im-
artificial boundary conditions must be able to approach albalance may be driving the secondary flows. The local dis-
three states. sipation exceeds the production in the vicinity of the corner
The relationship between the diagonal components obisector over most of its length, except for a relatively thin
the anisotropy tensatj; andb;; along two lines parallel to region near the corner. The local minimumyat=z"~50,
one set of walls is shown in Figs. 6. The relation betweerP/e~0.2, is due to very low values d?. One contributing
these components appears to be approximately linedactor for this minimum inP has been suggested by the
(d11=Dbq3, dyy=b,,, d33=b3s), both along the wall bisector mode analysis of the near-corner turbulent flow
and on lines parallel to it. As the corner is approached théGavrilakis%), which shows that the Reynolds-averaged tur-
points ofb;; andd;; tend to cluster around,;= b,;=3and  bulent production term may contain both positive and nega-
dyo=by,=0d33=b3=—1. tive contributions. This is due to the kinematic constraints on
The terms in which the origin of the secondary flowsthe flow in the near-corner region, and may also help to
may be sought depend on the form of the dynamical equatioaxplain the observed drag reduction in turbulent flows over
that can be studied. The emphasis on the normal stress anblets aligned with the mean flow. On either side of the local
isotropy is due to the relatively simple form of the equationminimum and close to each wall a maximum is found with
for the mean vorticity and to the absence of pressure term$/e>2. The distance of each maximum from the corner ap-
But, Gessnef! and more recently, Huser and Biringén pears to be about the same as the distance of the maximum
have advanced arguments based on the imbalances of meafimean streamwise vorticity, which was found on the corner

Phys. Fluids, Vol. 8, No. 7, July 1996 Mompean et al. 1859



1.0 150.0
] @
o 051
"o -
< 00
'0-5 LI LML A R B B B B |
-05 0.0 0.5 1.0
blh b229 b33
I'G_ LR e e e e N B B B B B B B B B B e s e |
| 0.0 25.0 50.0 750 100.0 125.0 150.0
] ®) y'
= O'Sj FIG. 7. Distribution of the ratio between the turbulent energy production
- ] and dissipation; - -+, P/e<1.0 and —,P/e>1.0. The maximum oP/e is
<] 2.25, and the minimum at™ =z" =50 is P/e=0.2.
Y
. the influence of viscosity cannot be neglected. It is therefore
B very likely that accurate and reliable predictions of the sec-
0.5 0.0 0.5 1.0 ondary flows in the vicinity of the corner cannot be achieved
By, bag, bis without the explicit inclusion of the effects described. Also,

in view of the significance of the viscous terms near the
FIG. 6. Relationship between the anisotropic tensors of the dissipation angorner, the extension of the high Reynolds number models to
Reynolds stress for the diagonal terrte. Wall bisector;(b) parallel line to include viscous effect is essential. Presently, Reynolds stress
the wall bisector close to the corngr/h=0.3); O, dy; vs byy; O, dyy Vs . . .
Byt A ds VS bs. closures consistently underestimate the magnitude of the sec-
ondary flows in square ducts.
There seems to be no satisfactory low Reynolds number

walls (Gavrilaki$3). The proximity of the two extrema in Version for thek-e model and thus comparison between
P/e near the corner, the direction, and magnitude of the meaflifferent algebraic stress models is only possible if the values
secondary velocity in that area imply that the turbulent enfor the mean strairk and e from the direct simulation of the
ergy transport from the wall toward the bisector is dominatecsduare duct flow, are used to calculate the Reynolds stresses
by turbulent convection and pressure diffusion. These twdrescribed by each model. One of the main features of the
processes will become relatively less important away fromfnodel of Spezialé hereafter referred to as tiSemodel, is its
the corner, as the separation between the regioR/ef1 ability to predict the turbulence-induced secondary flows—
near the wall and that dP/e<1 near the wall bisectors be- albeit at high Reynolds numbers—and is one of those tested
come increasingly separated. TRée ratio tends to zero to- Nerein. According to this model the Reynolds stredsu; is
ward the duct centerline. given by
E— k? K3

2
— 2
lll. THE ALGEBRAIC STRESS MODELS ~Uilj= — g kdy e, —2Di;+CoCl,

3

Evaluations of the terms in the equation for the mean
+CgCo —

streamwise vorticity?>!® have shown that three terms are X

1
Dimij_ a2 Dmannéij

2
involved in its generation, namely gradients of the normal 8 €
cross-stream stress difference, gradients in the secondary o 1.
stress, and viscous diffusion of the mean vorticity. Emphasis x| Dij— 3 Dmmdij |+ @)

is usually placed on the normal stress anisotropy, which is - .
somewhat misplaced, since there are other equally importasthereD;; = (U; ;+U; ;)/2 is the mean strain tensd, is the
terms, and the normal stress anisotrgyey sedoes not lead upper-convected derivative &, defined as follows:

to the generation of secondary flows; one has to achieve — —

correct modeling for the gradients of anisotropy. The D:& U.vD. — ‘9_U' D, — ‘7_UJ D.. . )
maxima of these terms occur close to the corner walls, where ~ * ot g N ax M
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TABLE Il. Coefficients for different nonlinear algebraic stress models.

10.0— u]
3 N a
F, F, Fsy c, 75-: Ne @
Demuren and Rodi 0.052 0.092 0.013 0.09 s ." ‘C\|
Rubinstein and Barton 0.104 0.034-0.014 0.0845 " Jafn
Shih, Zhu, and Lumley —4/A  13A —2/A  0.67(1.25+7) A 504 1/ e
Gatski and Speziale 0.0B0 0.09R -—0.03R 0.68R 7 ]
A=1000+ 7° .
R=(1+0.0038/%)/D B
D =3+0.00387+0.0008/7%+0.272 3

The constant€, andCg were estimated by Speziél®o be
1.68, whereas, is normally set to 0.09.
A group of related nonlinear algebraic stress models de-
rived from different types of analysis may be summarized as
2 k3

— 2
_Uin:_§ k5|J+C,U«?2D|]_FlZZ

- 2
X Ui,nUn,j"_Uj,nUn,i__Um,nUn,méij)

3

K [— —
_F2?<Ui,nuj,n_3 n,m n,m5ij>

K/ 1
- F3 ? (Un,iun,j_ Un,mUn’mﬁij>- (9)

These are the models of Shih, Zhu, and Lurfiléyere-
after referred to as SZI Rubinstein and BartGnRB), De-
muren and Rodi(DR), and Gatski and Spezidl¢GS). The
factors for each model are given in Table II.

All constants are presumed to be appropriate for high
Reynolds number flows. In the SZL model the coefficients of
the nonlinear terms are functions of the ratio of turbulent to

LIS I M 0 N R S S O B B B B

50.0 100.0 150.0

0.0

—1gr T T 7T T T T T

50.0 100.0 150.0

0.0

50.0 100.0 150.0

+

z

mean-strain time scales, defined by
k 1/2
7=~ (2D;;Dyj) ™= (10

The GS model contains the parametenamely the ratio
of turbulent to vorticity time scales, defined by

k
= p (wijwij) 2, (11

wherew;; = (U_i,j —U_j,i)/z is the vorticity tensor.
It is also noted that the general form of E§) can be

found in the Speziale model, E(¢), by neglecting the ad-
vection transport ternfU-V) in the Oldroyd derivatives. No

FIG. 8. Turbulent intensities along the wall bisector: ---, DNS square duct;
-, Gatski and Speziale priori test; —, Shih, Zhu, and Lumléya priori
test; (], Spezialé a priori test.

substantial differences are found near the walls. The Speziale
model gives negative cross-flow intensities far-<<30
(where the flow approaches the two-component Jimit
whereas thei> component reaches very high values {20

so that the sum of the three components remains equal to
The negative values are for the greater part due to the Old-
royd derivatives in the model. Although it has been recog-
nized that the Speziale model is not strongly realizable, the
normal intensity components are known to be important in

attempt was made here to optimize the values of the coeffthe generation of the secondary flows and thus realizability
cients for the low Reynolds number flow under study, sincen all the components would be desirable. The negative val-
their wider validity could not be determined. It is expected,ues forv? and w?, not shown, persist all around the duct
however, that improved agreement in the low-order statisticboundaries. Interestingly, when using these negative values
between the models and the direct simulation may bdo estimate the anisotropy source term for the equation of the
achieved by some other choice for the constants. The essemean streamwise vorticity) (not shown, it turns out that

tial characteristics of each model are still discernible, withthis generation term has, at least, the correct sign within each
the set established by the authors of the models. In Fig. 8, actant.

comparison between the model estimates and the direct

The near-wall intensities calculated from the SZL and

simulation results for the three normal intensities along thé5S models are all positive, and remain so throughout the
wall bisector is shown. The results from the models showduct cross section, but they tend to be much more isotropic.
good agreement with the simulation faf >70, whereas The maximum inu? of the SZL and GS models underesti-
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timate the local dissipation rate in order to recover the cor-

7'5: ; @ rect mean flow profile. Closer to the corner, Figbl9 the
. near-wall behavior of the modeledw is similar to that near
T the wall bisector, but the quantitative differences have in-
LR creased. Th& and the GS model never changes sign as the
2 1 o simulation data does in the region<39" <130.
Vas4 4
10
] ?_ IV. CORNER DAMPING FUNCTION
00%- In view of the complexity of the effects of the corner
500 1000 150.0 geometry on the turbulent field, it would be expected that the
30 most used-e two-equation model should be adapted for this
1% () type of boundary influence, even when the model solution is
20 o not carried to the boundaries. This is rather difficult at
<y Jo ':'U present since the small-scdtlissipation physics of the flow
§ 10 ° is not fully captured by any of the current simulations. How-
I oy ever, a number of mean effects on the turbulent field can be
v 00 ***53552.92 observed, and need to be modeled. Those include the varia-
1 T e tion of the boundary values efbetween a finite maximum at
1G: the midwall and the zero at the corner; dissipation rate an-

T '5(;0' T '101)0' T '15:)0 isotrqpy (alsq see Ref. 22 thiz nega.tive energy prpduction
’ , ’ ’ contribution in thek equatlonl, and kinematic blockmﬁ of

turbulence near the corner. It is interesting to know whether

FIG. 9. The Reynolds stres?/v/uf, (a) along the wall bisectot(b) near the the existing algebraic stress models can be modified to ac-

corner bisector(y/h=0.14: -, DNS square duct, *--, Gatski and count for near-wall effects to improve the agreement with the

Spezialé a priori test; [, Spezialé a priori test. simulations and experiments. This is usually attempted in

part, by inserting a functiof, in the definition for the eddy

viscosity to account for the near-wall damping influences,

mates the simulation value by more than 30%, whereas th&us
near-wall cross-stream intensities are overestimated by about K2
a factor of 2, the GS model gives values tdrclose to DNS. m=cuf, —, (12)
The asymptotic behavior of each predicted intensity as the
wall is approachedin the viscous sublaygris 2k/3. This ~ wherec,, is a constant whose value here will be taken to be
term dominates foz" <2, whereu™~z* and the locally 0.09. The point values of, are calculated by inserting the
spanwise component varies a$. This is not surprising Values ofk, ¢ and the strain rate in Eq9). This equation
since these algebraic models were derived for high Reynoldgllows the calculation of the eddy viscosity, and herfige
number flows. However, the most important nonlinear con-using the form(12) in a number of different ways. In order to
tributions to the Reynolds stresses of these models are essgnake the formula for the square duct compatible with the
tially confined to 2z*<50—a region that normally is not calculation of Rodi and Mansotfrfor a plane channel, the
resolved in the modeled flows. Thus, the good agreemeripllowing formulation has been adopted:
between the models and the simulation for0 is only in —, T2
. . 1 (uv)“+(uw)” €

small part due to the extra modeling effort. It is also worth f=—. (13
mentioning that the stresses of the models by Rubinstein and Cu k P
Barton? Demuren and Rodiwere also found to give nega- The exact form of this term depends on the type of model
tive intensities in the near-wall region of the square duct. ysed for the turbulent stresses, but the contribution due to the

Figure 9 compares the model values for the Reynoldserms linear inD
shear stresaw with the results of the simulation along the — —
wall bisector and near the corner bisector. Both models give P~ UvDiatUwDy3,
numerically higher values for this quantity. The GS modelis always present. It should be noted that for the flows with a
differs the least, by a factor of 2, from the simulation, which three-dimensional mean flow field the turbulence production
may seem consistent with its prediction of much higher valterm will contain contribution involving all Reynolds stress
ues for the peakv?, but it also underpredicts the streamwise components. For the present flow the termsPofshown
component of the intensity in the same region. The behavioabove contribute overwhelmingly to the total production. For
of the S model is much harder to interpret, giving a peakthe nonlinear model$ has additional terms arising from the
value foruw of about an order of magnitude larger. Both nonlinear part of the strain rates. Figure 10 shows the varia-
models predict peak values much closer to the duct wall witftion of f,, along the wall and corner bisectors calculated by
implied production rates for the turbulent kinetic energy sub-the linear and SZL model&he f,, due to the other models
stantially higher than the dissipation rates obtained with thdnas not been computed since they give rise to negative nor-
DNS. Thus, a calculation using thee model must overes- mal stresseslt appears that the distribution of values for the

ijo
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grid of the model calculations. This type of computation did
not converge to a steady state. It appears that it may be
unlikely for simple adjustments of the eddy viscosity near
the boundaries to be sufficient.

A second attempt was made to use the models based on
Egs.(7) and(9) and Table Il with thek—e model in which
—————— the effects of the corner were accounted for qualitatively
only through the use of damping wall functions. The numeri-
cal approximation of the RANS equations of motion was
obtained through the standard finite volume techniques on a
e L staggered grid, where the pressure is defined at the center of

00 500 100.0 150.0 every cubical grid and the velocity components at the center
of every face. The normal Reynolds stress are cell centered,
while the off-diagonal terms are located at the mid-edges. A
25 number of different upwind approximation schemes were
f (b) corner bisector tried for representing the nonlinear terms, but no sensitivity
was detected from this part of the algorithm. The solution to
the equation was obtained by advancing explicitly in time the
equations of motions until a steady state was reached, while
enforcing the continuity at each step through the solution of
the discrete Poisson equation for the pressure. Details of the
algorithm are given in Mompean.The computational do-
main in this type of calculation was one quadrant of the full
duct while enforcing symmetry conditions along the symme-
00 P try axes of the flow. Typical grids were &41 points in the
00 50,0 100.0 1500 (quadrank cross section. The results were found to be grid
v+ independent and insensitive to the initial conditions. The first
grid point near the wall was always wat < 1.0, when using
FIG. 10. Distributiqn off, obtained with the linear and Shih, Zhu, and the nonlinear models. Details of the turbulence mdHele)
Lumley* models using DNS data. L. . .
and boundary conditions used can be found in Appendix A.
The code and modeldlinear and nonlinearwere tested
1.against the well-established plane channel results and gave
good agreement.
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former model may be fairly approximated by a constant o

order one fory* or z">60. The nonlinear model of SZL is - . Y
A number of existing suggestions about modifying the

found to lead to nearly constant values foralong the cor- Il eddv vi ity definiti tested. TH
ner bisector but continuously increasing from the boundar)pe."".r'wa eddy viscosity definition were tested. 1hey were

along the wall bisector. Foy™ or z"<50 the values from originally dsveloped fog plane _boundariéShier_w?G Lam and
both models decrease sharply toward zero but for very smaj remhorst, R_eynoldsz,_ and_ Lindberg?), but it was found
distances from the walls the values fby diverge because that the_follow_lng rel_atlt?nshlp fof , produced results closer
the €/P ratio diverges at the boundaries. Near the corner thid® the direct simulation:
function suggests considerable damping of the turbulent field  f, =[1—exp(—0.08/")][1—exp—0.0&")]. (149
up to abouty ™ =z" =40—with a somewnhat larger region for
the nonlinear model. This corresponds closely to the findin
of Gavrilakig® that the turbulent field in the region from the
+_ +_ ; ;
¥;/all oy’ =50,2z"=50 Is only weakly cor.rellat.ed with the dependently used by Nisiziffawhen modeling the square
ow field farther away from the corner. This is in contrast to ;
; duct turbulent flows at high Reynolds numbers.
the standard near-wall turbulent flow where velocity correla-
tions are found to extend from the viscous sublayer to be-
yond the buffer layer. This implies that the flow just beyondV' NONLINEAR AND FULL REYNOLDS STRESS
. . PREDICTIONS

the near corner region cannot be modeled in the way current
for boundary layer-type flows. The elliptic boundary condi- It would be expected that the full Reynolds stress model
tions proposed by Durbfd probably need to be extended to (RSM) give more accurate results, because important physi-
this type of calculation. cal effects like convection and production are directly taken

An attempt was made to use the valuesfgfderived into account in the equations. Presently, the closures of the
from the direct simulation into a modeled simulation of this unknown terms in the RSM for a low Reynolds number are
flow at the same Reynolds number, using in turn each of theot well established. This is the subject of intensive ongoing
constitutive relations shown in Table II, in conjunction with research! A recent paper from Naimi and Gesstfepre-
the RANS equations and tHe—e model of turbulence. A sents a modified form of the Launder, Reece, and ®odi
grid identical to that of the direct simulation was used andpressure—strain model. Theirs is applied for high Reynolds
the values for thef, derived from it were assigned to the numbers in a square duct flo5 000 and 250 000, based on

The relationship provided high damping in the near corner
E%egion, where suppression in the turbulence due to the corner
was observed in the direct simulation. This relation was in-
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FIG. 12. The Reynolds stres?/v/uf from model calculation, DNS, and
1.0 experiment along the wall bisector: —, Shih, Zhu, and Lurfley;, Rubin-
- stein and Bartoni;---, Spezialé --*--, Gatski and Speziale; - -, linear
1 yh=07 model; +, RSM; ---, DNS square duct.
0754 (b
S g5 measurements show a strong distortion on the mean velocity,
A whereas all nonlinear algebraic models are unable to predict
] this distortion onU. The RSM results show a good agree-
0.25 or ment with the DNS and measurements for the mean stream-
] wise velocity. This may be due to the convective effect in-
5 + corporated in the RSM.
0.0 TT T T T T T T T 7T TTT . . .
00 025 05 075 10 Figure 11b) shows the comparison near the wall bisec-
Ui tor, the agreement fdd is good. This is not surprising since

0

the k—e model is known to reproduce accurately the mean
FIG. 11. Mean streamwise velocity profiles along two duct sections fromflow of the infinite parallel channel turbulent flows. This also

tshﬁhR‘;}’]”O'dsjt[essl ‘;OSWE Cb"’."cut'?ti"@é Véhjo?f' (b)s yl h_=&7, — indicates that the present version of this model produces ac-
n, u, an umiley;---, Rupinstein an arton;--, Spezialg; --*--,

Gatski and Spezialt; - -, linear model-+, RSM: -, DNS square duce), ~ Curate results for the low Reynqlds number chanqel flows.
measurements of Cheesewright, McGrath, and Pétty. The Reynolds stresses obtained with the nonlinear mod-

els differ substantially. All models give Reynolds stresses

significantly larger than those found in the direct simulation

(Fig. 12. Very close to the wall the nonlinear algebréic e
the bulk velocity and on the height of the ductheir results models predict a steeper rise of thaaw and much higher
also underpredict the secondary flow in the region where thgalues for the peak than the simulation. The prediction given
flow is fully developed. The prediction of a RSM is included by the RSM is also overestimated feruw, but with the
in this work, and the results are compared with the predicpeak in the same positiofy/h=0.2) as the DNS.
tions of the algebraic nonlinedr—e model. The differential The comparison between the models, DNS data, and
equations for the RSM were solved using the numericameasurements for the spanwise velock4) for two vertical
method described above. The closures proposed by Gibs@ections,y/h=0.3 and 0.7, is presented in Figs.(43and
and Launde® were employed to obtain the unknown terms, 13(b). There is good qualitative agreement among the vari-
viz. pressure—strain, turbulent diffusion, and dissipation. Deous datasets, and in particular, good agreement is found in
tails are given in Appendix B. In this model the assumptionthe position of the zero crossings. This would suggest that
of high Reynolds number was used where the dissipativéhe predicted positions of the secondary vortices within each
motions were assumed to be isotropic. To eliminate the unectant are broadly similafsee Figs. 14 and }5However,
certainty that the boundary conditions can provoke in thehe differences between DNS and model results on the posi-
solution of the RSM equations, all the values for the Rey-tion of the extrema of the vorticity are at most 20%. Differ-
nolds stress components and fowere obtained interpolat- ences in the magnitude of the secondary velocities are
ing DNS data; these values were used over the quadrant dugteater, particularly for the maximum values of the second-
perimeter aty *=10. o ary velocities near the duct walls. These differences can be

The profiles of the mean streamwise velocity)(along  large, depending on the model used. In Fig@l3he differ-

two vertical sectiongy/h=0.3 and 0.7 are shown in Fig. 11. ence between th8 model and the DNS at the extreme \bf
Eight sets of results are compared; four of the nonlinears about 50%. The GS model gives very good agreement
models(SZL, RB, S, G$, the lineark—e model, the RSM, between the predictions and measurements for both sections
the DNS, and the measurements of Cheesewright, McGratlty/h=0.3 and 0.7—the maximum error in the measured sec-
and Pettyt! At the sectiony/h=0.3, the DNS data and the ondary velocity is less than 10%.Among the nonlinear
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FIG. 15. Reynolds stress closure prediction of the secondary velocity in a
quadrant. The constitutive relation is that proposed by Gatski and Spéziale.

models, the GS gives the best overall agreement with the
simulation results. The SZL model that is realizable leads to
very weak secondary flows. This can be attributed to the
greater normal-stress isotropy seen in Sec. Il above. Better
agreement in the horizontal velocity profiles is found closer

to the wall bisectofexcept for the SZL modgl Fig. 13b).

This may not be unexpected since all models comply with

the symmetry requirement &f=0 on the wall bisector.

The RSM predictions for the spanwise velocity show a
weaker secondary flow than the DNS at the secjitin=0.3,

Fig. 13@), the magnitude is of the same order as $hand
RB models predictions. Ay/h=0.7, Fig. 13b), the magni-
tude is correctly predicted, but the position of maximum
negative velocity is misplaced.

Unlike thea priori tests, the intensities of the converged
solution obtained with the above models are positive every-
where. The variations of root-mean-square fluctuating ve-
locities along the wall bisector are shown in Fig. 16. In gen-
eral, all nonlinear algebraic models fail to capture the
anisotropy evident in the DNS results, even at the center of
the duct. Indeed, the models overestimate the cross-stream
intensities. The SZL model is closer to the linear eddy vis-
cosity model, whereas the S, GS, and RB models predict a
somewhat greater anisotropy. All nonlinear models under-
predict the DNS peak dfi,, by at least 30%, whereas they
overpredict the peaks in the cross-stream intensities by at
least 20%. The best agreement with the DNS predictions for
the turbulent intensities is obtained with the RSM.

The near-wall extrema of the,,,s from the RB andS
models are due to their greater sensitivity on the local value
of the dissipation ratéthrough the eddy viscositysee Fig.

2. On the wall bisector the RB, DR, and SZL models may be
written as

Mompean et al. 1865
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evaluate aspects of the turbulent flow that are involved in
modeling near-wall flows. Maps of the second and third in-
variants for the Reynolds stress and dissipation anisotropy
tensors indicate that within a quadrant the turbulent field
comes close to one-, two-, and three-component states. There
are many similarities between the duct flow along the wall
bisector and the plane channel results. However, plane chan-
nel data are not helpful to model the flow close to the cor-
ners. The dynamics of the streamwise intensity enter directly
in the equation for the generation 8f No simple approxi-
mate relationship between the Reynolds stress and dissipa-
tion anisotropy tensors is apparent over the whole of the duct
Cross section.

(U0 S o B e N
0.25 0.5 0.75 1.

(=
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0.0 0.25 0.5 075 10 Several nonlineak-e models for the Reynolds stresses

yih were testeda priori using the direct simulation data. The
flow prediction of the nonlinear algebraice models were
FIG. 16. Turbulence intensity profiles from the calculations using the non-Compared with the results of a full Reynolds stress model,

linear models and DNS along the wall bisector. —, Shih, Zhu, and Lufhley; .
-.-. Rubinstein and Bartoh:-, Spezialé? - Gatski and Speziale: - -, DNS data, and measurements. These models were designed

linear model:+, RSM; - DNS. for high Reynolds numbers. Of all the nonlinear models
tested, the one by Shih, Zhu, and Lunfleyd by Gatski and
o Spezialé are strongly realizable, but in general, they under-
— 2 K3 [gU\? estimate the anisotropy between the three anisotropy compo-
w'=3 k=(F2—2F3) &2 ' (19 nents. The model of Spezidlshows negative cross-stream
) ) intensities near the duct walls. However, this aspect of the
where the value of K,—2F;) determines the difference mqqels cannot be correlated with their ability to predict the
from the isotropic value for each model. Of the three modelg,o5 secondary flows when used with the RANS equations
the SZL yields the smallest value for this factor. and thek-e model. In this type of test the Gatski and
The distribution of() from the DNS in Ref. 13 and the  gne7ia1& model performed best, but its results are in a lim-

GS model are compared in Fig. 17. The DNS results argeq qualitative agreement with the direct simulation data.
shown on the right side of the diagonal, and the GS model

results on the left side. The results based on the GS model
show that intense near-wall vorticity is due to the fact thatACKNOWLEDGMENTS
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APPENDIX A: k-e EQUATIONS represents the pressure—strain interaction, each part modeled

b
The modeled equation for the turbulent kinetic energy is Y

obtained from its exact transport equati@f. Hanjalic and €l— 2
Laundej:34 Port &4 ’ bij1=—Ciy (uiuj_ 3 5i,-k), (B5)

ok — ok 9 (vt ) ok
= —tv|
Oy X

_ 4y —=—
ot UI (9Xi (9Xi

Tp—e (A1) d’ijzz_cz(pij_g 5ijp>v (B6)

wherep is the production of turbulent energy given by € 3
— i =C‘”—(uu N NmSii — = UUingn;
p:_UinDij- (AZ) d)IJWl 1 k kYm! k! Im?ij 2 kYitTk!j
The derivation of the modeleglequation involves many 3— ¢
more closure assumptions than thequation. The modeling ~ 2 Ukl f T, (B7)
of this equation is based on analogies with krequation and
on phenomenological considerations. Its final form is 3 3
P g Dijw2= C‘Q’( Drm2NkNm i — 5 DikoNiNj— 5 Dik2nih; | .
r96+U—(96_ J Vt+ Jde e € c €
at o ax |\a. Y] axg ap P b (B8)

(A3) The last two terms accounting for the effects of the wall,
is the wall-normal unit vector in the direction and
The two modeled transport equations contain five constantg.— g 4%%¢ An, with An the wall-normal distance. The
The values for these coefficients are obtained from experigaiyes of the constants used in this model are
ments for equilibrium turbulent boundary layers and isotro-
pic turbulence. The standard set of constants is Cs=0.22, C;=18, C,=06, C{=05, and

C.a=144, C,=192, o0,=10, and o.,=13. CY¥=0.3. (B9)
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