Antonio Mario Sette Elias H. Alves

ON THE EQUIVALENCE BETWEEN SOME SYSTEMS OF NON-CLASSICAL LOGIC

In [1], Loparić and da Costa define three systems of propositional logic, called β_0, β_1 and β_2 .

In β_0 neither the principle of excluded middle $(A \lor \neg A)$, nor the principle of non-contradiction $(\neg (A \land \neg A))$ is valid, in general.

System β_1 is an extension of β_0 , where the principle of non-contradiction is valid, but the principle of excluded-middle is not.

System β_2 is also an extension of β_0 , where the principle of excluded middle is valid, but the principle of non-contradiction is not.

Systems such as β_2 are called *paraconsistent systems*.

Systems such as β_1 are called by Loparić and da Costa *paracomplete systems*.

In [1] it is mentioned that system β_2 is equivalent to system P_1 , introduced by Sette in [3].

On the other hand, in [4], Sette and Carnielli study a system, called I_1 , which is, according to them, *weakly-intuitionistic*, that is, where the law of excluded middle cannot be proved. (This corresponds to the notion of *paracompleteness* of Loparić and da Costa.)

According to Sette and Carnielli, system I_1 is a counterpart of the paraconsistent calculus P_1 .

We will show, here, that system β_2 is, in fact, equivalent to P_1 . (The proof of this fact appears in [2].) In addition, we will show that β_1 is equivalent to I_1 .

The system β_1

The postulates of β_1 are the following:

```
1) A \to (B \to A)
```

2) $(A \rightarrow B) \rightarrow ((A \rightarrow (B \rightarrow C)) \rightarrow (A \rightarrow C))$

$$\begin{array}{l} 3) \quad A, A \to B/B \\ 4) \quad ((A \to B) \to A) \to A \\ 5) \quad (A \land B) \to A \\ 6) \quad (A \land B) \to B \\ 7) \quad A \to (B \to (A \land B)) \\ 8) \quad A \to (A \lor B) \\ 9) \quad B \to (A \lor B) \\ 10) \quad (A \to C) \to ((B \to C) \to ((A \lor B) \to C)) \\ 11) \quad (\neg A \to B) \to ((\neg A \to \neg B) \to A), \text{ where } A \text{ is molecular.} \end{array}$$

THEOREM 1. If A is a classical tautology and we replace its propositional variables by molecular formulas, obtaining the formula A', then A' is provable in β_0 (and, therefore, in β_1 and β_2). (See [1], p. 75.)

The system β_2

The postulates of β_2 are the same, 1 to 10, of β_1 plus the following: 11) $(\neg A \rightarrow B) \rightarrow ((\neg A \rightarrow \neg B) \rightarrow A)$, where B is molecular.

The system P_1

The postulates of P_1 are:

- 1) $A \to (B \to A)$
- 2) $(A \to (B \to C)) \to ((A \to B) \to (A \to C))$
- 3) $(\neg A \rightarrow \neg B) \rightarrow ((\neg A \rightarrow \neg \neg B) \rightarrow A)$
- 4) $(A \to B) \to \neg \neg (A \to B)$
- 5) $A, A \rightarrow B/B$.

THEOREM 2. P_1 is complete relative to the following matrix:

 $\mathcal{M} = \langle \{T_0, T_1, F\}, \{T_0, T_1\}, \rightarrow, \neg \rangle$, where $\{T_0, T_1\}$ are the distinguished values and \rightarrow, \neg are defined by the tables:

\rightarrow	T_0	T_1	F	-	
T_0	T_0	T_0	F	T_0	F
T_1	T_0	T_0	F	T_1	T_0
F	T_0	T_0	T_0	F	T_0

PROOF. See [3], pp. 176–178.

The connectives \land and \lor are introduced by the following definitions:

$$\begin{split} (A \land B) =_{df} (((A \to A) \to A) \to \neg((B \to B) \to B)) \to \neg(A \to \neg B) \\ (A \lor B) =_{df} (A \to \neg \neg A) \to (\neg A \to B) \end{split}$$

THEOREM 3. In P_1 all the theorems and rules of positive classical logic are valid.

PROOF. Using the characteristic matrix of P_1 , defined in theorem 2.

The system I_1

The postulates of I_1 are:

1) $A \rightarrow (B \rightarrow A)$ 2) $(A \rightarrow (B \rightarrow C)) \rightarrow ((A \rightarrow B) \rightarrow (A \rightarrow C))$ 3) $(\neg \neg A \rightarrow \neg B) \rightarrow ((\neg \neg A \rightarrow B) \rightarrow \neg A)$ 4) $\neg \neg (A \rightarrow B) \rightarrow (A \rightarrow B)$ 5) $A, A \rightarrow B/B$

THEOREM 4. (Law of non-contradiction, negative form):

$$\vdash_{I_1} (\neg A \to \neg B) \to ((\neg A \to B) \to \neg \neg A)$$

(see [4], p. 5).

Theorem 5. I_1 is complete relative to the following matrix:

 $\mathcal{M}' = \langle \{T, F_0, F_1\}, \{T\}, \rightarrow, \neg \rangle$, where T is the only distinguished value and \rightarrow, \neg are defined by the tables:

\rightarrow	$\mid T$	F_1	F_0	-	
T	T	F_0	F_0	Т	F_0
F_1	T	T	T	F_1	F_0
F_0	T	T	T	F_0	T

PROOF. See [4], pp. 11–15.

The connectives \land and \lor are introduced by the following definitions:

$$(A \land B) =_{df} \neg (((A \to A) \to A) \to \neg ((B \to B) \to B))$$
$$(A \lor B) =_{df} (\neg (B \to B) \to B) \to ((A \to A) \to A).$$

70

THEOREM 6. In I_1 all the theorems and rules of positive classical logic are valid.

PROOF. Using the characteristic matrix of I_1 , defined in theorem 5.

We now show that β_2 is equivalent to P_1 and β_1 is equivalent to I_1 .

β_2 equivalent to P_1

In view of theorem 3, it is enough to establish the following results:

 $\vdash_{\beta_2} (A \to B) \to \neg \neg (A \to B).$

PROOF. Consequence of theorem 1.

$$\vdash_{\beta_2} (\neg A \to \neg B) \to ((\neg A \to \neg \neg B) \to A)$$

PROOF. By axiom 11 of β_2 .

$$\vdash_{P_1} (\neg A \to B) \to ((\neg A \to \neg B) \to A)$$
, where B is molecular.

Proof.

1) If B is $\neg C$, we have: $\vdash_{P_1} (\neg A \rightarrow \neg C) \rightarrow ((\neg A \rightarrow \neg \neg C) \rightarrow A)$, as a consequence of axiom 3 of P_1 .

2) If B is $(C \rightarrow D)$, we need to prove that:

$$\vdash_{P_1} (\neg A \to (C \to D)) \to ((\neg A \to \neg (C \to D)) \to A).$$

Proof.

1) $\neg A \rightarrow (C \rightarrow D)$ Hyp. 2) $\neg A \rightarrow \neg (C \rightarrow D)$ Hyp. 3) $(C \rightarrow D) \rightarrow \neg \neg (C \rightarrow D)$ Ax. 5. 4) $\neg A \rightarrow \neg \neg (C \rightarrow D)$ By 1 and 3. 5) A By 2 and 4, Ax. 3.

β_1 equivalent to I_1

In view of theorem 6, it is enough to establish the following results:

$$\vdash_{\beta_1} (\neg \neg A \to \neg B) \to ((\neg \neg A \to B) \to \neg A.$$

PROOF. By axiom 11 of β_1 .

 $\vdash_{\beta_1} \neg \neg (A \to B) \to (A \to B).$

PROOF. Consequence of theorem 1.

 $\vdash_{I_1} (\neg A \to B) \to ((\neg A \to \neg B) \to A)$, where A is molecular.

Proof.

1) If A is $\neg C$, we have: $\vdash_{I_1} ((\neg \neg C \to B) \to ((\neg \neg C \to \neg B) \to \neg C))$, as a consequence of axiom 3 of I_1 .

2) If A is $(C \to D)$, we have: $\vdash_{I_1} (\neg (C \to D) \to B) \to ((\neg (C \to D) \to \neg \neg (C \to D)))$, by theorem 4. And, by axiom 4 of I_1 , we obtain: $\vdash_{I_1} (\neg (C \to D) \to B) \to ((\neg (C \to D) \to \neg B(C \to D))).$

References

[1] A. Loparić and C. A. da Costa, *Paraconsistency*, *Paracompleteness* and *Induction*, Logique et Analyse 113 (1986), pp. 73–80.

[2] E. G. Boscaino, Os cálculos paraconsistentes $P_1 \ e \ \beta_2$, Master's Thesis, Pontifícia Católica, São Paulo, Brazil, 1992.

[3] A. M. Sette, On the propositional calculus P_1 , Mathematica Japonicae, vol. 18, no 3 (1973).

[4] A. M. Sette and W. A. Carnielli, *Maximal weakly-intuistionistic logics*, **Studia Logica** 55 (1995), pp. 181–203.

Center for Logic, Epistemology and History of Science CLE/UNICAMP P.O. Box 6133 13081–970 Campinas, S.P. Brazil

72