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Almost all presentations of Dirac theory in first or second quantization in physics
~and mathematics! textbooks make use of covariant Dirac spinor fields. An excep-
tion is the presentation of that theory~first quantization! offered originally by
Hestenes and now used by many authors. There, a new concept of spinor field~as
a sum of nonhomogeneous even multivectors fields! is used. However, a careful
analysis~detailed below! shows that the original Hestenes definition cannot be
correct since it conflicts with the meaning of the Fierz identities. In this paper we
start a program dedicated to the examination of the mathematical and physical basis
for a comprehensive definition of the objects used by Hestenes. In order to do that
we give a preliminary definition of algebraic spinor fields~ASF! and Dirac–
Hestenes spinor fields~DHSF! on Minkowski space–time as some equivalence
classes of pairs (Ju ,cJu

), where Ju is a spinorial frame field andcJu
is an

appropriate sum of multivectors fields~to be specified below!. The necessity of our
definitions are shown by a careful analysis of possible formulations of Dirac theory
and the meaning of the set of Fierz identities associated with the bilinear covariants
~on Minkowski space–time! made with ASF or DHSF. We believe that the present
paper clarifies some misunderstandings~past and recent! appearing on the literature
of the subject. It will be followed by a sequel paper where definitive definitions of
ASF and DHSF are given as appropriate sections of a vector bundle called theleft
spin-Clifford bundle. The bundle formulation is essential in order to be possible to
produce a coherent theory for the covariant derivatives of these fields on arbitrary
Riemann–Cartan space–times. The present paper contains also Appendixes A–E
which exhibits a truly useful collection of results concerning the theory of Clifford
algebras~including many tricks of the trade! necessary for the intelligibility of the
text. © 2004 American Institute of Physics.@DOI: 10.1063/1.1757037#

I. INTRODUCTION

Physicists usually make first contact with Dirac spinors and Dirac spinor fields when they
study relativistic quantum theory. At that stage they are supposed to have had contact with a good
introduction to relativity theory and know the importance of the Lorentz and Poincare´ groups. So,
they are told that Dirac spinors are elements of a complex four-dimensional spaceC4, which are
the carrier space of a particular representation of the Lorentz group. They are told that when you
do Lorentz transformations Dirac spinors behave in a certain way, which is different from the way
vectors and tensors behave under the same transformation. Dirac matrices are introduced as certain
matrices onC~4! satisfying certain anticommutation rules and it is said that they close a particular
Clifford algebra, known as Dirac algebra. The next step is to introduce Dirac wave functions.
These are mappings,C:M→C4, from Minkowski space–timeM ~at that stage often introduced
as an affine space! to the spaceC4, which must have the structure of a Hilbert space. After that,
Dirac equation, which is a first order partial differential equation is introduced forC(x). Physics
come into play by interpretingC(x) as the quantum wave function of the electron. Problems with
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this theory are discussed and it is pointed out that the difficulties can only be solved in relativistic
quantum theory, where the Dirac spinor field, gains a new status. It is no more simply a mapping
C:M→C4, but a more complicated object@it becomes an operator valued distribution in a given
Hilbert space~see, e.g., Ref. 162 for a correct characterization of these objects!# whose expecta-
tion values on certain one particle states can be represented by objects likeC. From a pragmatic
point of view, only this knowledge is more than satisfactory. However, that approach, we believe,
is not a satisfactory one to any scientist with an enquiring mind, in particular to one that is worried
with the foundations of quantum theory. For such person the first questions which certainly occur
are what is the geometrical meaning of the Dirac spinor wave function? From where did this
concept come from?

Pure mathematicians, who study the theory of Clifford algebras, e.g., using Chevalley’s clas-
sical books,38,39 learn that spinors are elements of certain minimalideals~do not worry if you did
not know the meaning of this concept, it is not a difficult one and is introduced in Appendix B! in
Clifford algebras. In particular Dirac spinors are the elements of a minimal ideal in a particular
Clifford algebra, the Dirac algebra. Of course, the relation of that approach~algebraic spinors!,
with the one learned by physicists~covariant spinors! is known ~see, e.g., Refs. 14, 67, and 68!,
but is not well known by the great majority of physicists, even for many which specialize in
general relativity and more advanced theories, like string andM -theory.

Now, the fact is that the algebraic spinor concept~algebraic spinor fields on Minkowski
space–time will be studied in details in what follows, and in Ref. 126 where the concept is
introduced using fiber bundle theory on general Lorentzian manifolds! ~as it is the case of the
covariant spinor concept! fail to reveal the true geometrical meaning of spinor in general and
Dirac spinors in particular.

In 1966, Hestenes81 introduced a new definition of spinor field, that he called lateroperator
spinor field. Objects in this class which in this paper, will be called Dirac–Hestenes spinor fields,
have been introduced by Hestenes as mappingsc:M→R1,3

0 , whereR1,3
0 is the even subalgebra of

R1,3, a particular Clifford algebra, technically known as thespace–time algebra.@R1,3 is not the
original Dirac algebra, which is the Clifford algebraR4,1, but is closely related to it, indeedR1,3 is
the even subalgebra of the Dirac algebra~see the Appendix B for details!.# Hestenes in a series of
remarkable papers80,82–85,75applied his new concept of spinor to the study of Dirac theory. He
introduced an equation, now known as the Dirac–Hestenes equation, which doesnot contain
~explicitly! imaginary numbers and obtained a very clever interpretation of that theory through the
study of the geometrical meaning of the so-called bilinear covariants, which are the observables of
the theory. He further developed an interpretation of quantum theory from his formalism,88,89 that
he called theZitterbewegunginterpretation. Also, he showed how his approach suggests a geo-
metrical link between electromagnetism and the weak interactions, different from the original one
of the standard model.87

Hestenes papers and his book with Sobczyk86 have been the inspiration for a series of inter-
national conferences on ‘‘Clifford Algebras and their Applications in Mathematical Physics’’
which in 2002 has had its sixth edition. A consultation of the table of contents of the last two
conferences1,145,2 certainly will show that Clifford algebras and their applications generated a
wider interest among many physicists, mathematicians, and even in engineering and computer
sciences.~In what follows we quote some of the principal papers that we have had opportunity to
study. We apologize to any author who thinks that his work is a worthy one concerning the subject
and is not quoted in the present paper.! Physicists used Clifford algebras concepts and Hestenes
methods, in many different applications. As some examples, we quote some developments in
relativistic quantum theory as, e.g., Refs. 36, 37, 45, 46, 48–52, 56, 58, 74, and 70. The papers by
De Leo and collaborators exhibit a close relationship between Hestenes methods and quaternionic
quantum mechanics, as developed, e.g., by Adler,4 a subject that is finding a renewed interest.
Also, Clifford algebra methods have been used102,135,149,151,152,165–168to give an intuitive and
geometrical clear picture of the dynamics of superparticles.3,11,12,140,143,153,160,163Also, that papers
clarify the meaning of Grassmann variables and their calculus.17 The relation with theZitter-
bewegungmodel of Barut and collaborators8–10 appears in a novel and less speculative way. Even
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more, in Ref. 151 it is shown that the concept of Dirac–Hestenes spinor field is closely related to
the concepts of superfields as introduced by Witten.169 Clifford algebras methods have also been
used in disclosing a surprising connection between the Dirac and Maxwell and Seiberg–Witten159

equations, as studied, e.g., in Refs. 155, 164, and 168, which suggest several physical develop-
ments. Applications of Clifford algebras methods in general relativity appeared also, e.g., in Refs.
35, 90, 54, 55, 57, 58, 62, 103–105, 119, 134, and 154, and suggest new ways for looking to the
gravitational field. Clifford algebras methods, have been applied successfully also in quantum field
theory, as, e.g., in Refs. 60 and 138 and more recently in string andp-brane theories, with
noticeable results25–34,136,137which are worth being more carefully investigated.

Of course, Clifford algebras and Dirac operators are standard topics of research in Mathemat-
ics ~see, e.g., Ref. 20!, but we must say that Hestenes ideas have been an inspiring idea for
mathematicians also. In particular, the concept of Clifford valued functions with domain in a
manifold ~the operator spinor fields are particular functions of this type! developed in a new,
beautiful and powerful branch of mathematics.47 Hestenes ideas, as we said, have found also their
use in engineering and computer sciences, as in the study of neural circuits91,92 and robotics and
perception action systems.18,19,99,100,42,59,101,125,161

Having made all this propaganda, which we hope have awakened the reader’s interest in
studying Clifford algebras, we must remark, that~as often happens for every pioneer work! the
concept of Dirac–Hestenes spinor field, as originally introduced by Hestenes, and used by many
other researchers, is not a concept free of criticisms and objections from the mathematical point of
view.

However, it is an important concept and one of the objectives of this paper and also of Ref.
126 is to give a presentation of the subject free of all previous criticisms, which are discussed in
the next sections. The reader may ask if the enterprising for learning the theory presented below
is worth the time. We think that the answer is yes, whether it be a physicist or mathematician. To
encourage physicists, which may eventually become interested in the subject after reading the
above propaganda, we say that the mathematical tools used, even if they may look complex at first
sight, are indeed nothing more than easy additions to the contents of a linear algebra course. The
main reward to someone that studies what follows is that they will start seeing some subjects that
they thought were well known, under a new and~we believe! illuminating point of view. This
hopefully may help anyone who is searching for new physical theories. For mathematicians, we
say that the point of view developed here is somewhat new in relation to the original Chevalley’s
one and we believe, it is more satisfactory. In particular, the present paper serves as a preliminary
step towards a rigorous theory of algebraic and Dirac–Hestenes spinor fields as sections of some
well-defined fiber bundles, and the theory of the covariant derivatives of these fields. Having said
all that, what is the present paper about?

We give definitions of algebraic spinor fields~ASF! and Dirac–Hestenes spinor fields~DHSF!
living on Minkowski space–time and show how Dirac theory can be formulated in terms of these
objects.@Minkowski space–time is parallelizable and as such admits a spin structure. In general,
a spin structure does not exist for an arbitrary manifold equipped with a metric of signature (p,q).
The conditions for existence of a spin structure in a general manifold are discussed in Refs. 93,
131, and 133. For the case of Lorentzian manifolds, see Ref. 72.# We start our presentation in Sec.
II by studying a not-well-known subject, namely, the geometrical equivalence of representation
modules of simple Clifford algebrasC,(V,g). This concept, together with the concept ofspinorial
framesplay a crucial role in our definition of algebraic spinors~AS! and of ASF. Once we grasp
the definition of AS and particularly of Dirac AS we define Dirac–Hestenes spinors~DHS! in Sec.
IV. Whereas AS may be associated to any real vector space of arbitrary dimensionn5p1q
equipped with a nondegenerated metric of arbitrary signature (p,q), this is not the case for DHS.
„ASF can be defined on more general manifolds called spin manifolds. This will be studied in Ref.
126. There, we show that the concept of Dirac–Hestenes spinor fields which exists for four-
dimensional Lorentzian spin manifolds modeling a relativistic space–time, can be generalized for
the case of generalspin manifold of dimensionn5p1q @equipped with a metric of signature
(p,q), only if the spinor bundle structurePSpin

p,q
e M is trivial#.… However, these objects exist for a
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four-dimensional vector spaceV equipped with a metric of Lorentzian signature and this fact
makes them very much important mathematical objects for physical theories. Indeed, as we shall
show in Sec. V it is possible to express Dirac equation in a consistent way using DHSF living on
Minkowski space–time. Such equation is called the Dirac–Hestenes equation~DHE!. In Sec. VII
we express the Dirac equation using ASF. In Sec. IV we define Clifford fields and then ASF and
DHSF. We observe here that our definitions of ASF and DHSF as some equivalence classes of
pairs (Ju ,cJu

), whereJu is a spinorial coframefield andcJu
is an appropriated Clifford field,

i.e., a sum of multivector~or multiform! fields are not the usual ones that can be found in the
literature. @Take notice that in this paper the term spinorial~co!frame field ~defined below! is
related, but distinct from the concept of a spin~co!frame, which is a section of a particular
principal bundle called the spin~co!frame bundle~see Sec. IV and Ref. 126 for more details!.#
These definitions that, of course, come after the definitions of AS and DHS are essentially differ-
ent from the definition of spinors given originally by Chevalley.38,39 There, spinors are simply
defined as elements of a minimal ideal carrying a modular representation of the Clifford algebra
C,(V,g) associated to a structure (V,g), whereV is a real vector space of dimensionn5p1q and
g is a metric of signature (p,q). And, of course, in that book there is no definition of DHS.
Concerning DHS we mention that our definition of these objects is different also from the origi-
nally given in Refs. 79–81.@The definitions of AS, DHS, ASF, and DHSF given below are an
improvement over preliminary tentative definitions of these objects given in Ref. 150. Unfortu-
nately, that paper contains some equivocated results and errors~besides many misprints!, which
we correct here and in Ref. 126. We take the opportunity to apologize for any incovenience and
misunderstandings that Ref. 150 may have caused. Some other papers where related~but not
equivalent! material to the one presented in the present paper and in Ref. 126 can be found in Refs.
14–41, 44–69, 73–78, 93–109, 121–133, 144, and 146.# In view of these statements a justifica-
tion for our definitions must be given and part of Sec. V and Sec. VI are devoted to such an
enterprise. There it is shown that our definitions are the only ones compatible with the DHE and
the meaning of the Fierz identities.43,66We discuss in Sec. VIII some misunderstandings resulting
from the presentations of the standard Dirac equation when written with covariant Dirac spinors
and also some misunderstandings concerning the DHE. It is important to emphasize here that the
definitions of ASF, DHSF on Minkowski space–time and of the spin–Dirac operator given in Sec.
V although correct are to be considered only as preliminaries. Indeed, these objects can be defined
in a truly satisfactory way on a general Riemann–Cartan space–time only after the introduction of
the concepts of the Clifford and the left~and right! spin–Clifford bundles. Moreover, a compre-
hensive formulation of Dirac equation on these manifolds requires a theory of connections acting
on sections of these bundles. This nontrivial subject is studied in a forthcoming paper.126 Section
IX presents our conclusions. Finally we recall that our notations and some necessary results for the
intelligibility of the paper are presented in Appendixes A–E. Although the appendixes contain
known results, we decided to write them for the benefit of the reader, since the material cannot be
found in a single reference. In particular Appendix A contains some of the ‘‘tricks of the trade’’
necessary to perform quickly calculations with Clifford algebras. If the reader needs more details
concerning the theory of Clifford algebras and their applications than the ones provided by the
Appendixes, the Refs. 14, 63, 64, 78, 86, 109, 141, 142 will certainly help. A final remark is
necessary before we start our enterprise: the theory of the Dirac–Hestenes spinor fields of this
~and the sequel paper126! does not contradict the standard theory of covariant Dirac spinor fields
that is used by physicists and indeed it will be shown that the standard theory is no more than a
matrix representation of theory described below.

Some acronyms are used in the present paper~to avoid long sentences! and they are summa-
rized below for the reader’s convenience:

AS, Algebraic spinor;

ASF, Algebraic spinor field;
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CDS, Covariant Dirac spinor;

DHE, Dirac–Hestenes equation;

DHSF, Dirac–Hestenes spinor field.

II. ALGEBRAIC SPINORS

This section introduces the algebraic ideas that motivated the theory of ASF~which will be
developed with full rigor in Ref. 126!, i.e., we give a precise definition of AS. The algebraic side
of the theory of DHSF, namely the concept of DHS is given in Sec. III. The justification for that
definition will become clear in Secs. V and VI.

A. Geometrical equivalence of representation modules of simple Clifford algebras
Cø„V,g…

We start with the introduction of some notations and clarification of some subtleties.
~i! In what followsV is an-dimensional vector space over the real fieldR. The dual space of

V is denotedV* . Let

g:V3V→R ~1!

be a metric of signature (p,q).
~ii ! Let SO(V,g) be the group of endomorphisms ofV that preservesg and the space orien-

tation. This group is isomorphic to SOp,q ~see Appendix C!, but there is no natural isomorphism.
We write SO(V,g).SOp,q . Also, the connected component to the identity is denoted by
SOe(V,g) and SOe(V,g).SOp,q

e . In the casep51, q53, SOe(V,g) preserves besides orientation
also the time orientation. In this paper we are mainly interested in SOe(V,g).

~iii ! We denote byC,(V,g) the Clifford algebra ofV associated to (V,g) and by Spine(V,g)
(.Spinp,q

e ) the connected component of the spin group Spin(V,g).Spinp,q ~see Appendix C for
the definitions!. @We reserve the notationRp,q for the Clifford algebra of the vector spaceRn

equipped with a metric of signature (p,q), p1q5n. C,(V,g) andRp,q are isomorphic, but there
is no canonical isomorphism. Indeed, an isomorphism can be exhibited only after we fix an
orthonormal basis ofV.] Let L denote 2:1 homomorphismL :Spine(V,g)→SOe(V,g), u°L (u)
[Lu . Spine(V,g) acts onV identified as the space of 1-vectors ofC,(V,g).Rp,q through its
adjoint representation in the Clifford algebraC,(V,g) which is related with the vector represen-
tation of SOe(V,g) as follows@Aut(C,(V,g)) denotes the~inner! automorphisms ofC,(V,g)]:

Spine~V,g!{u°AduPAut~C,~V,g!!

AduuV :V→V,v°uvu215Lu"v. ~2!

In Eq. ~2! Lu"v denotes the standard actionLu on v @see Eq.~5!# and where identified~without
much ado! LuPSOe(V,g) with LuPV^ V* , g(Lu"v,Lu"v)5g(v,v).

~iv! We denote byC,(V,g) the Clifford algebra ofV associated to (V,g) and by Spine(V,g)
(.Spinp,q

e ) the connected component of the spin group Spin(V,g).Spinp,q ~see Appendix C for
the definitions!.

~v! Let B be the set of all oriented and time oriented orthonormal basis@we will call the
elements ofB ~in what follows! simply by orthonormal basis# of V. Choose among the elements
of B a basisb05$E1 , . . . ,Ep,Ep11, . . . ,Ep1q%, hereafter called the fiducial frame ofV. With this
choice, we define a 1–1 mapping

S:SOe~V,g!→B, ~3!

given by

2912 J. Math. Phys., Vol. 45, No. 7, July 2004 W. A. Rodrigues, Jr.
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Lu°S~Lu![SLu
5Lub0 , ~4!

whereSLu
5Lub0 is a short for$e1 , . . . ,ep,ep11, . . . ,ep1q%PB, such that denoting the action of

Lu on EiPb0 by Lu"Ei we have

ei5Lu"Ei[Li
jEj , i , j 51,2,. . . ,n. ~5!

In this way, we can identify a given vector basisb of V with the isometryLu that takes the fiducial
basisb0 to b. The fiducial basisb0 will be also denoted bySL0

, whereL05e, is the identity
element of SOe(V,g).

Since the group SOe(V,g) is not simple connected their elements cannot distinguish between
frames whose spatial axes are rotated in relation to the fiducial vector frameSL0

by multiples of
2p or by multiples of 4p. For what follows it is crucial to make such a distinction. This is done
by introduction of the concept of spinorial frames.

Definition 1: Let b0PB be a fiducial frame and choose an arbitrary u0PSpine(V,g). Fix once
and for all the pair(u0 ,b0) with u051 and call it the fiducial spinorial frame.

Definition 2: The spaceSpine(V,g)3B5$(u,b),ubu215u0b0u0
21% will be called the space

of spinorial frames and denoted byQ.
Remark 3: It is crucial for what follows to observe here that the definition 2 implies that a

given bPB determines two and only two spinorial frames, namely(u,b) and (2u,b), since
6ub(6u21)5u0b0u0

21.
~vi! We now parallel the construction in~v! but replacing SOe(V,g) by its universal covering

group Spine(V,g) andB by Q. Thus, we define the 1–1 mapping

J:Spine~V,g!→Q,

u°J~u![Ju5~u,b!, ~6!

whereubu215b0 .
The fiducial spinorial frame will be denoted in what follows byJ0 . It is obvious from Eq.~6!

that J(2u)5J (2u)5(2u,b)ÞJu .
Definition 4: The natural right action of aPSpine(V,g) denoted by" on Q is given by

a"Ju5a"~u,b!5~ua,Ada21b!5~ua,a21ba!. ~7!

Observe that ifJu85(u8,b8)5u8"J0 andJu5(u,b)5u"J0 then,

Ju85~u21u8!"Ju5~u8,u21ubu21u8!.

Note that there is a natural 2–1 mapping

s:Q→B, J6u°b5~6u21!b0~6u!, ~8!

such that

s~~u21u8!"Ju!)5Ad(u21u8)21~s~Ju!!. ~9!

Indeed, s((u21u8)"Ju))5s((u21u8)"(u,b))5u821ub(u821u)215b85Ad(u21u8)21b
5Ad(u21u8)21(s(Ju)). This means that the natural right actions of Spine(V,g), respectively, onQ
andB, commute. In particular, this implies that the spinorial framesJu ,J2uPQ, which are, of
course distinct, determine the same vector frameSLu

5s(Ju)5s(J2u)5SL2u
. We have

SLu
5SL2u

5Lu21u0
SLu0

, Lu21u0
PSOp,q

e . ~10!

Also, from Eq.~9!, we can write explicitly
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u0SLu0
u0

215uSLu
u21, u0SLu0

u0
215~2u!SL2u

~2u!21, uPSpine~V,g!, ~11!

where the meaning of Eq.~11! of course, is that ifSLu
5SL2u

5b5$e1 , . . . ,ep,ep11, . . . ,eq%PB
andSLu0

5b0PB is the fiducial frame, then

u0Eju0
215~6u!ej~6u21!. ~12!

In resume we can say that the spaceQ of spinorial frames can be thought of as an extension
of the spaceB of vector frames, where even if two vector frames have the same ordered vectors,
they are considered distinct if the spatial axes of one vector frame is rotated by a odd number of
2p rotations relative to the other vector frame and are considered the same if the spatial axes of
one vector frame is rotated by an even number of 2p rotations relative to the other frame. Even if
this construction seems to be impossible at first sight, Aharonov and Susskind6 warrants that it can
be implemented physically.

~vii ! Before we proceed an important digression on our notation used below is necessary. We
recalled in Appendix B how to construct a minimum left~or right! ideal for a given real Clifford
algebra once a vector basisbPB for V�C,(V,g) is given. That construction suggests to label a
given primitive idempotent and its corresponding ideal with the subindexb. However, taking into
account the above discussion of vector and spinorial frames and their relationship we find useful
for what follows @especially in view of the definition 5 and the definitions of algebraic and
Dirac–Hestenes spinors~see definitions 6 and 8 below!# to label a given primitive idempotent and
its corresponding ideal with the subindexJu . Recall after all, that a given idempotent is accord-
ing to definition 6 representative of a particular spinor in a given spinorial frameJu .

~viii ! Next we recall Theorem 49 of Appendix B which says that a minimal left ideal of
C,(V,g) is of the type

I Ju
5C,~V,g!eJu

, ~13!

whereeJu
is a primitive idempotent ofC,(V,g).

It is easy to see that all idealsI Ju
5C,(V,g)eJu

and I Ju8
5C,(V,g)eJu8

such that

eJu8
5~u821u!eJu

~u821u!21, ~14!

u,u8PSpine(V,g) are isomorphic. We have the following.
Definition 5: Any two ideals IJu

5C,(V,g)eJu
and IJu8

5C,(V,g)eJu8
such that their gen-

erator idempotents are related by Eq. (14) are said geometrically equivalent.
But take care, noequivalence relationhas been defined until now. We observe moreover that

we can write

I Ju8
5I Ju

~u821u!21, ~15!

a equation that will play a key role in what follows.

B. Algebraic spinors of type IJu

Let $I Ju
% be the set of all ideals geometrically equivalent to a given minimalI Ju0

as defined

by Eq. ~15!. Let

T5$~Ju ,CJu
!uuPSpine~V,g!,JuPQ,CJu

PI Ju
%. ~16!

Let Ju ,JuPQ, CJu
PI Ju

, CJu8
PI Ju8

. We define an equivalence relationR on T by setting

~Ju ,CJu
!;~Ju8 ,CJu8

! ~17!
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if and only if us(Ju)u215u8s(Ju8)u821 and

CJu8
u8215CJu

u21. ~18!

Definition 6: An equivalence class

CJu
5@~Ju ,CJu

!#PT/R ~19!

is called an algebraic spinor of typeI Ju
for C,(V,g). cJu

PI Ju
is said to be a representative of the

algebraic spinorCJu
in the spinorial frameJu .

We observe that the pairs (Ju ,CJu
) and (J2u ,2CJ2u

) are equivalent, but the pairs
(Ju ,CJu

) and (J2u ,2CJ2u
) are not. This distinction isessentialin order to give a structure of

linear space~over the real field! to the setT. Indeed, a natural linear structure onT is given by

a@~Ju ,CJu
!#1b@~Ju ,CJu

8 !#5@~Ju ,aCJu
!#1@~Ju8 ,bCJu

8 !#,

~a1b!@~Ju ,CJu
!#5a@~Ju ,CJu

!#1b@~Ju ,CJu
!#. ~20!

The definition that we just gave is not a standard one in the literature.38,39 However, the fact
is that the standard definition~licit as it is from the mathematical point of view! is not adequate for
a comprehensive formulation of the Dirac equation using algebraic spinor fields or Dirac–
Hestenes spinor fields as we show in a preliminary way in Sec. V and in a rigorous and definitive
way in a sequel paper.126

As observed on Appendix D a given Clifford algebraRp,q may have minimal ideals that are
not geometrically equivalent since they may be generated by primitive idempotents that are related
by elements of the groupRp,q

! which are not elements of Spine(V,g) ~see Appendix C where
different, nongeometrically equivalent primitive ideals forR1,3 are shown!. These ideals may be
said to be of different types. However, from the point of view of the representation theory of the
real Clifford algebras~Appendix B! all these primitive ideals carry equivalent~i.e., isomorphic!
modular representations of the Clifford algebra and no preference may be given to any one.~The
fact that there are ideals that are algebraically, but not geometrically equivalent seems to contain
the seed for new physics, see Refs. 123, and 124.! In what follows, when no confusion arises and
the idealI Ju

is clear from the context, we use the wording algebraic spinor for any one of the
possible types of ideals.

Remark 7: We observe here that the idea of definition of algebraic spinor fields as equivalent
classes has it seed in a paper by Riez.147 However, Riez used in his definition simply orthonormal
frames instead of the spinorial frames of our approach. As such, Riez defintion generates contra-
dictions, as it is obvious from our discussion above.

C. Algebraic Dirac spinors

These are the algebraic spinors associated with the Clifford algebraC,(M).R1,3 ~the space–
time algebra! of Minkowski space–timeM5(V,h), whereV is a four-dimensional vector space
over R andh is a metric of signature~1,3!.

Some special features of this important case are as follows.
~a! The group Spine(M) is the universal covering ofL1

↑ , the special and orthochronous
Lorentz group that is isomorphic to the group SOe(M) which preserves space–time orientation
and also the time orientation120 ~see also Appendix B!.

~b! Spine(M),C,0(M), where C,0(M).R1,3 is the even subalgebra ofC,(M) and is
called the Pauli algebra~see Appendix C!.

The most important property is a coincidence given by Eq.~21! below. It permits us to define
a new kind of spinors.
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III. DIRAC–HESTENES SPINORS „DHS…

Let JuPQ be a spinorial frame forM such thats(Ju)5$e0 ,e1 ,e2 ,e3%PB. Then, it follows
from Eq. ~D18! of Appendix D that

I Ju
5C,~M!eJu

5C,0~M!eJu
, ~21!

if

eJu
5 1

2 ~11e0!. ~22!

Then, eachCJu
PI Ju

can be written as

CJu
5cJu

eJu
, cJu

PC,0~M!. ~23!

From Eq.~18! we get

cJu8
u821ueJu

5cJu
eJu

, cJu
,cJu8

PC,0~M!. ~24!

A possible solution for Eq.~24! is

cJu8
u8215cJu

u21. ~25!

Let Q3C,(M) and consider an equivalence relationE such that

~Ju ,fJu
!;~Ju8 ,fJu8

! ~mod E! ~26!

if and only if cJu8
andcJu

are related by

fJu8
u8215fJu

u21. ~27!

This suggests the following.
Definition 8: The equivalence classes@(Ju ,fJu

)#P(Q3C,(M))/E are the Hestenes

spinors. Among the Hestenes spinors, an important subset is the one consisted of Dirac–Hestenes
spinors where@(Ju ,cJu

)#P(Q3C,0(M))/E. We say thatfJu
(cJu

) is a representative of a

Hestenes (Dirac–Hestenes) spinor in the spinorial frameJu .
How to justify the above definitions of algebraic and Dirac–Hestenes spinors? The question is

answered in the next section.

IV. CLIFFORD FIELDS, ASF AND DHSF

The objective of this section is to introduce the concepts of Dirac–Hestenes spinor fields
~DHSF! and algebraic spinor fields~ASF! living on Minkowski space–time. A definitive theory of
these objects that can be applied for arbitrary Riemann–Cartan space–times can be given only
after the introduction of the Clifford and left~and right! spin–Clifford bundles and the theory of
connections acting on these bundles. This theory will be presented in Ref. 126 and the presentation
given below~which can be followed by readers that have only a rudimentary knowledge of the
theory of fiber bundles! must be considered as a preliminary one.

Let (M ,h,t,↑,¹) be Minkowski space–time, whereM is diffeomorphic toR4, h is a constant
metric field,¹ is the Levi–Civita connection ofh. M is oriented bytPsecL4M and is also time
oriented by↑ ~Refs. 156–158!.

Let (PSO
1,3
e M is the orthonormal frame bundle, secPSO

1,3
e M means a section of the frame

bundle! $ea%PsecPSO
1,3
e M be an orthonormal~moving! frame, not necessarily a coordinate frame
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and letgaPsecT*M (a50,1,2,3) be such that the set$ga% is dual to the set$ea%, i.e., ga(eb)
5db

a . ~Orthonormal moving frames are not to be confused with the concept of reference frames.
The concepts are related, but distinct.156–158!

The set$ga% will be called also a~moving! frame. Letga5habg
b, a,b50,1,2,3. The set$ga%

will be called the reciprocal frame to the frame$ga%. Recall that@ȟ is the metric of the contangent
space andȟ(ga,gb)5hab5hab5diag(1,21,21,21)] (Tx* M ,ȟ).M. We will denote (Tx* M ,ȟ)
by M* . Now, due to the affine structure of Minkowski space–time we can identify all the
cotangent spaces as usual. Consider then the Clifford algebraC,(M * ) generated by the coframe
$ga%, where now we can takega:x°L1(M* ),C,(M* ). We have

ga~x!gb~x!1gb~x!ga~x!52hab, ;xPM . ~28!

Definition 9 (preliminary): A Clifford field is a mapping

C:M{x°C~x!PC,~M* !. ~29!

In a coframe$ga% the expression of a Clifford field is

C5S1Aaga1
1

2!
Babg

agb1
1

3!
Tabcg

agbgc1Pg5, ~30!

whereS,Aa ,Bab ,Tabc ,P are scalar functions~the ones with two or more indices antisymmetric on
that indices! andg55g0g1g2g3 is the volume element. Saying with other words, a Clifford field
is a sum of nonhomogeneous differential forms.@This result follows once we recall that as a vector
space the Clifford algebraC,(M* ) is isomorphic to the the Grassmann algebraL(V* )
5(p50

4 Lp(V* ), where Lp(V* ) is the space ofp-forms. This is clear from the definition of
Clifford algebra given in the Appendix A. Recall thatM* 5(V* .T* M ,ȟ).]

Here is the point where a minimum knowledge of the theory of fiber bundles is required.
Minkowski space–time is parallelizable and admits a spin structure. See, e.g., Refs. 72, 131–139,
and 126. This means that Minkowski space–time has a spin strucutre, i.e., there exists a principal
bundle called the spin frame bundle and denoted byPSpin

1,3
e M that is the double covering of

PSO
1,3
e M , i.e., there is a 2:1 mappingr:PSpin

1,3
e M→PSO

1,3
e M . The elements ofPSpin

1,3
e M are called

the spin frame fields~when there is no possibility of confusion we abreviate spin frame field
simply as spin frame!, and ifFuPPSpin

1,3
e M thenr(Fu)5$ea%PPSO

1,3
e M ~once we fix a spin frame

and associate it to an arbitrary but fixed element ofuPPSpin
1,3
e M ). This means, that as in Sec. I, we

distinguish frames that differ from a 2p rotation. BesidesPSO
1,3
e M , we introduce alsoPSO

1,3
e8 M , the

coframe orthonormal bundle, such that for$ga%PPSO
1,3
e8 M there exists$ea%PPSO

1,3
e M , such that

ga(eb)5db
a . Note that $ga%PPSO

1,3
e8 M , but, as already observed, keep in mind that each

ga:x°L1(M* ),C,(M* ). To proceed choose a fiducial coframe$Ga%PPSO
1,3
e8 M , dual to a

fiducial framer(Fu0
)[$Ea%PsecPSO

1,3
e M .

Now, let

u:x°u~x!PSpine~M* !,C,0~M* !. ~31!

In complete analogy with Sec. I letQM8 5Spine(M* )3PSO
1,3
e8 M be the space of spinorial coframe

fields. We define also the 1–1 mapping

J:Spine~M* !→QM8 ,
~32!

u°J~u![Ju5~u,$u21Gau%!.
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Note that there is a 2–1 natural mapping

s8:QM8 {Ju°$ga%PPSO
1,3
e8 M ,

~33!
ga5u21Gau.

Also, denoting the action ofa(x)PSpine(M* ) on QM8 by a"Ju5(ua,$ga%) we have

Ju85~u21u8!"Ju , ~34!

s8~~u21u8!"Ju!)5Ad(u21u8)21~s8~Ju!!. ~35!

As in the preceding section we have associated 1PSpine(M* ) to the fiducial spinorial coframe
field, but of course we could associate any other elementu0 ;x°u0(x)PSpine(M* ) to the fidu-
cial spinorial coframe. In this general case, writingJu0

for the fiducial spinorial coframe, we have
s8(Ju0

)5$Ga%.
Note that s8(Ju)5s8(J (2u)) and that any other coframe fields8(Ju) is then related to

s8(Ju0
) by

u0s8~Ju0
!u0

2156us8~Ju!~6u21!56us8~J (2u)!~6u21!, ~36!

where the meaning of this equation is analogous to the one given to Eq.~11!, through Eq.~12!.
Taking into account the results of the preceding sections and of the Appendixes A and B we

are lead to the following definitions.
Let $I Ju

% be the set of all ideals geometrically equivalent to a given minimalI Ju0
as defined

by Eq. ~15! where nowu, u8 are Clifford fields defined by mappings like the one defined in Eq.
~31!.

Let

TM5$~x,~Ju ,CJu
!!uxPM ,u~x!PSpine~M* !,JuPQM8 ,

~37!
CJu

:x°CJu
~x!PI Ju

,CJu8
:x°PCJu

~x!PI Ju8
%.

Consider an equivalence relationRM on TM such that

~x,~Ju ,CJu
!!;~y,~Ju8 ,CJu8

!! ~38!

if and only if x5y,

u~x!s8~Ju(x)!u
21~x!5u8~x!s8~Ju8(x)!u821~x! ~39!

and

CJu8
u8215CJu

u21. ~40!

Definition 10 (preliminary): An algebraic spinor field (ASF) of type IJu
for M* is an equiva-

lence classCJu
5@(x,(Ju ,CJu

))#PTM /RM . We say thatCJu
PI Ju

is a representative of the

ASFCJu
in the spinorial coframe fieldJu.

Consider an equivalence relationEM on the setM3JM3C,(M* ) such that @given
cJu

:x°cJu
(x)PC,(M* ), cJu8

:x°PcJu
(x)PC,(M* )] ((x,(Ju ,cJu

))) and
((y,(Ju8 ,cJu8

))) are equivalent if and only ifx5y,

u~x!s8~Ju(x)!u
21~x!5u8~x!s8~Ju8(x)!u821~x! ~41!
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and

cJu8
u8215cJu

u21. ~42!

Definition 11 (preliminary): An equivalence classc5@(x,(Ju ,cJu
))#PM3JM

3C,(M * )/EM is called a Hestenes spinor field forM* . cJu
PC,(M* ) is said to be a repre-

sentative of the Hestenes spinor fieldfJu
in the spinorial coframe fieldJu . When

cJu
:x°cJu

(x)PC,0(M* ), cJu8
:x°PcJu

(x)PC,0(M* ) we call the equivalence class a

Dirac–Hestenes spinor field (DHSF).

V. THE DIRAC–HESTENES EQUATION „DHE…

In our preliminary presentation of the Dirac equation~on Minkowski space–time! that follows
we shall restrict our exposition to the case where any spinorial coframe field appearing in the
equations that follows, e.g.,s8„Ju)5$ga% is teleparallel and constant. By this we mean that
;x,yPM anda50,1,2,3,

ga~x![ga~y!, ~43!

¹ea
gb50. ~44!

Equation~43! has meaning due to the affine structure of Minkowski space–time which permits the
usual identification of all tangent spaces~and of all cotangent spaces! of the manifold and Eq.~44!,
is the definition of a teleparallel frame. Of course, the unique solution for Eq.~44! is gm5dxm,
where$xm% are the coordinate functions of a global Lorentz chart of Minkowski space–time. Such
a restriction is a necessary one in our elementary presentation, because otherwise we would need
first to study the theory of the covariant derivative of spinor fields, a subject that simply cannot be
appropriately introduced with the present formalism, thus clearly showing its limitation. Thus, to
continue our elementary presentation we need some results of the general theory of the covariant
derivatives of spinor fields studied in details in Ref. 126.

Using the results of the preceding sections and of the Appendixes we can show80,148 that the
usual Dirac equation5,53 ~which, as well known is written in terms of covariant Dirac spinor fields!
for a representative of a DHSF in interaction with an electromagnetic potentialA:x°A(x)
PL1(M* ),C,(M* ) is

DscJu
g2g12mcJu

g01qAcJu
50. ~45!

@Covariant Dirac spinor fields are defined in an obvious way once we take into account the
definition of covariant Dirac spinors given by Eq.~E6! and Eq.~E7! of the Appendix E. See also
Refs. 41, 131–133.#

Remark 12: It is important for what follows to have in mind that although each representative
cJu

:x°cJu
(x)PC,0(M* ) of a DHSF is a sum of nonhomogeneous differential forms, spinor

fields are not a sum of nonhomogeneous differential forms. Thus, they are mathematical objects of
a nature different from that of Clifford fields. ~Not taking this difference into account can lead to
misconceptions, as, e.g., some appearing in Ref. 71. See our comments in Ref. 155 on that paper.!
The crucial difference between a Clifford field, e.g., an electromagnetic potential A and aDHSF
is that A is frame independent whereas aDHSF is frame dependent.

In the DHE the spinor covariant derivativeDs is a first order differential operator, often called
the spin–Dirac operator.@If we use more general frames, that are not Lorentzian coordinate
frames, e.g.,Ju5$ga% thenDscJu

(x)5ga¹ea

s cJu
(x)5ga(ea1 1

2va)cJu
(x), whereva is a two

form field associated with the spinorial connection, which is zero only for teleparallel frame fields,
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if they exist. Details in Ref. 126.# Let ¹ f a

s be the spinor covariant derivative. We have the

following representation forDs in an arbitrary orthonormal frame$ta% dual of the frame$ f a%
PPSO

1,3
e ,

Ds5ta¹ f a

s . ~46!

In a teleparallel spin~co!frames8(Ju)5$gm% the above equation reduces to

Ds5dxm
]

]xm . ~47!

The spin–Dirac operator in an arbitrary orthonormal frame acts on a product (CcJu
) whereC

is a Clifford field andcJu
a representative of a DHSF~or a Hestenes field! as a modular

derivation,20,126 i.e.,

Ds~CcJu
!5ta¹ f a

s ~CcJu
!5ta@~¹f a

C!cJu
1C~¹ f a

s cJu
!#.

Also in Eq. ~45! m and q are real parameters~mass and charge! identifying the elementary
fermion described by that equation.~Note that we used natural unities in which the value of the
velocity of light is c51 and the value of Planck’s constant is\51.)

Now, from Eq.~42! we have

cJu8
5cJu

s21, Ju85s"Ju , ~48!

A°A, ~49!

wheres:x°s(x)PSpine(M* ),C,0(M* ) is to be considered a Clifford field. Consider the case
wheres(x)5s(y)5s, ;x,yPM . Such equation has a precise meaning due to our restriction to
teleparallel frames. We see that the DHE is trivially covariant under this kind of transformation,
which can be called a right gauge transformation.

Returning to the DHE we see also that the equation is covariant under active Lorentz gauge
transformations, or left gauge transformations. Indeed, under an active left Lorentz gauge trans-
formation ~without changing the spinorial coframe field!, we have

cJu
°cJu

8 5scJu
, A°sAs21,

~50!
DscJu

°D8scJu
8 5sDscJu

.

The justification for the active left Lorentz gauge transformation lawDscJu
°D8scJu

8

5sDscJu
is the following. ~A study of active local left Lorentz gauge transformations will be

presented elsewhere, for it needs the concept of gauge covariant derivatives.! The Dirac operator
is a 1-form valued derivative operatorDs5dxm (]/]xm). Then, under an active Lorentz gauge
transformation s it must transform like a vector, i.e.,Ds°D8s5s dxm s21 (]/]xm).

Note thatcJu
8 is a representative~in the spinorial coframe fieldJu) of a new spinor. Then, it

follows, of course, that the representative of the new spinor in the spinorial coframe fieldJu8 is

cJu8
8 5scJu

s21. ~51!

We also recall that the DHE is invariant under simultaneous left and right~constants! gauge
Lorentz transformations. In this case the relevant transformations are
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cJu
°cJu

8 5scJu
s21,

~52!
A°sAs21, D8scJu8

8 5sDscJu
s21.

VI. JUSTIFICATION OF THE TRANSFORMATION LAWS OF DHSF BASED
ON THE FIERSZ IDENTITIES

We now give another justification for the definition of Dirac spinors and DHSF presented in
the preceding sections. We start by recalling that a usual covariant Dirac spinor field determines a
set ofp-form fields, called bilinear covariants, which describe the physical contents of a particular
solution of the Dirac equation described by that field. The same is true also for a DHSF.

In order to present the bilinear covariants using that fields, we introduce first the notion of the
Hodge dual operator of a Clifford fieldC:M]x°C(x)PC,(M* ). We have the following.

Definition 13: The Hodge dual operator is the mapping

!:C→!C5 C̃g5 , ~53!

whereC̃ is the reverse of C [Eq. (A5), Appendix A].
Then, in terms of a representative of a DHSF in the spinorial frame fieldJu the bilinear

covariants of Dirac theory reads~with J5Jmgm, S5 1
2Smngmgn, K5Kmgm)

cJu
c̃Ju

5s1!v, cJu
g0c̃Ju

5J,

cJu
g1g2c̃Ju

5S, cJu
g0g3c̃Ju

5!S, ~54!

cJu
g3c̃Ju

5K, cJu
g0g1g2c̃Ju

5!K.

The so-calledFierz identitiesare

J25s21v2, J•K50, J252K2, J∧K52~v1!K !S, ~55!

SzJ5vK, SzK5vJ,

~!S!zJ52sK, ~!S!zK52sJ, ~56!

S•S5v22s2, ~!S!•S522sv,

JS52~v1!s!K,

SJ52~v2!s!K,

KS52~v1!s!J,
~57!

SK52~v2!s!J,

S25v22s222s~!v!,

S2152S~s2!v!2/J25KSK/J4.

The proof of these identities using the DHSF is almost a triviality and can be done in a few
lines. This is not the case if you use covariant Dirac spinor fields~columns matrix fields!. In this
case you will need to perform several pages of matrix algebra calculations.

2921J. Math. Phys., Vol. 45, No. 7, July 2004 Algebraic and Dirac–Hestenes spinors

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.106.108.134 On: Wed, 03 Jun 2015 16:56:21



The importance of the bilinear covariants is due to the fact that we can recover from them the
associate covariant Dirac spinor field~and thus the DHSF! except for a phase. This can be done
with an algorithm due to Crawford43 and presented in a very pedagogical way in Ref. 109.

Let us consider, e.g., the equationcJu
g0c̃Ju

5J in ~54!. Now, J(x)PL1(M* ),C,(M* ) is
an intrinsic object on Minkowski space–time and according to the accepted first quantization
interpretation theory of the Dirac equation it is proportional to the electromagnetic current gener-
ated by an elementary fermion. The expression ofJ in terms of the representative of a DHSF in
the spinorial coframeJu8 is ~of course!

cJu8
g08c̃Ju8

5J. ~58!

Now, since

g085~u821u!g0~u821u!21, ~59!

we see that we must have

cJu8
5cJu

~u821u!21, ~60!

which justifies the definition of DHSF given above@see Eq.~40!#.
We observe also that ifcJu

c̃Ju
5s1!vÞ0, then we can write

cJu
5r1/2e1/2bg5

R, ~61!

where;xPM ,

r~x!PL0~M* !,C,~M* !,

b~x!PL0~M* !,C,~M* !, ~62!

RPSpin1,3
e ~M* !,C,~M* !.

With this result the currentJ can be written

J5rv ~63!

with v5Rg0R21. Equation~63! discloses the secret geometrical meaning of DHSF. These objects
rotate and dilate vector fields, this being the reason why they are sometimes called operator
spinors.80–86,109

VII. DIRAC EQUATION IN TERMS OF ASF

We recall from Eq.~D2! of Appendix D that

eJu
8 5 1

2 ~11g3g0! ~64!

is also a primitive idempotent field~here understood as a Hestenes spinor field! that is algebra-
ically, but not geometrically equivalent to the idempotent fieldeJu

5 1
2(11g0). Let I Ju

8

5C,(M* )eJu
8 be a minimal left ideal generated byeJu

8 . Now, multiply the DHE@Eq. ~45!# on

the left, first by the primitive idempotenteJu
and then by the primitive idempotenteJu

8 . We get

after some algebra

DsFJu
2mFJu

~!1!1qAFJu
50, ~65!
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where!15g5 is the oriented volume element of Minkowski space–time and

FJu
5cJu

eJu
eJu
8 PI Ju

8 5C,~M* !eJu
8 . ~66!

Equation~65! is one of the many faces of the original equation found by Dirac in terms of
ASF and using teleparallel orthonormal frames.

Of course, Eq.~65!, as it is the case of the DHE@Eq. ~45!# is compatible with the transfor-
mation law of ASF that follows directly from the transformation law of AS given in Sec. II. In
contrast to the DHE, in Eq.~65! there seems to be no explicit reference to elements of a spinorial
coframe field~except for the indicesJu) since!1, the volume element is invariant under~Lor-
entz! gauge transformations. We emphasize also that the transformation law for ASF is compatible
with the presentation of Fierz identities using these objects, as the interested reader can verify
without difficulty.

VIII. MISUNDERSTANDINGS CONCERNING COORDINATE REPRESENTATIONS
OF THE DIRAC AND DIRAC–HESTENES EQUATIONS

We investigate now some subtleties of the Dirac and Dirac–Hestenes equations. We start by
pointing out and clarifying some misunderstandings that often appears in the literature of the
subject of the DHE when that equation is presented in terms of a representative of a DHSF in a
global coordinate chart (M ,w) of the maximal atlas ofM with Lorentz coordinate functionŝxm&
associated to it~see, e.g., Ref. 156!. In that case,s8(Ju)5$gm5dxm%. After that we study the
~usual! matrix representation of Dirac equation and show how it hides many features that are only
visible in the DHE.

Let $em5]/]xm % and$em8 5]/]x8m %. The spinorial coframe fieldsJu andJu8 ~as defined in
the preceding section! are associated to the coordinate bases~dual basis! s8(Ju)5$gm5dxm% and
s8(Ju8)5$g8m5dx8m%, corresponding to the global Lorentz charts (M ,w) and (M ,w8). The
DHE is written in the chartŝxm& and ^x8m& as

gmS ]

]xm CJu
1qAmCJu

g1g2Dg2g12mCJu
g050,

~67!

g8mS ]

]x8m CJu8
8 1qAm8 CJu8

g18g28Dg28g182mCJu8
g0850,

whereDs5gm (]/]xm) 5g8m (]/]x8m) and where (CJu
,Am) and (CJu8

,Am8 ) are the coordinate
representations of (cJu

,A) and (cJu8
,A), i.e., for anyxPM , we have

A5Am8 ~x8m!dx8m5Am~xm!dxm,

Am8 ~x80,x81,x82,x83!5Lm
n An~x0,x1,x2,x3!, ~68!

~CJu8
U821!u(x80(x),x81(x),x82(x),x83(x))5~CJu

U21!u(x0(x),x1(x),x2(x),x3(x)) ,

with U andU8 the coordinate representations ofu andu8 @see Eq.~42!# andLm
n is an appropriate

Lorentz transformation.
Now, taking into account that the complexification of the algebraC,(M* ), i.e., C

^ C,(M* ) is isomorphic to the Dirac algebraR4.1 ~Appendix C!, we can think of all the objects
appearing in Eqs.~67! as having values also inC^ C,(M* ). Multiply then, both sides of each one
of the Eqs. ~67! by the following primitive idempotents fields@considered as complexified
Hestenes spinor fields~see Definition 8!# of C^ C,(M* ) @see Eq.~D14! of Appendix D#
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f Ju
5 1

2 ~11g0! 1
2 ~11 ig1g2!,

~69!
f Ju8

5 1
2 ~11g80! 1

2 ~11 ig81g82!.

Next, look for a matrix representation inC~4! of the resulting equations. We get~using the
notation of Appendix D!

ḡmS i
]

]xmD 1qAm~xm!C~xm!2mC~xm!50, ~70!

gI
mS i

]

]x8mD 1qAm8 ~x8m!C8~x8m!2mC8~x8m!50, ~71!

whereC(xm),C8(x8m) are the matrix representations@Eq. ~D15!, Appendix D# of CJu
andCJu8

.
The matrix representations of the spinors are related by an equation analogous to Eq.~E2! of
Appendix E, except that now, these equations refer to fields. The$gI

m%, m50,1,2,3 is the set of
Dirac matrices given by Eq.~D13! of Appendix D. Of course, we arrived at the usual form of the
Dirac equation, except for the irrelevant fact that in general the Dirac spinor is usually represented
by a column spinor field, and here we end with a 434 matrix field, which however has non-null
elements only in the first column.@The reader can verify without great difficulty that Eq.~65! also
has a matrix representation analogous to Eq.~71! but with a set of gamma matrices differing from
the set$gI

m% by a similarity transformation.#

Equation~70!, that is the usual presentation of Dirac equation in Physics textbooks, hides
several important facts. First, it hides the basic dependence of the spinor fields on the spinorial
frame field, since the spinorial framesJu , Ju8 are such thats8(Ju)5$gm% and s8(Ju8)
5$g8m% are mapped on the same set of matrices, namely$gI

m%. Second, it hides an obvious
geometrical meaning of the theory, as first disclosed by Hestenes.80,81 Third, taking into account
the discussion in a preceding section, we see that the usual presentation of the Dirac equation does
not leave clear at all if we are talking about passive or active Lorentz gauge transformations.
Finally, since diffeomorphisms on the world manifold are in general erroneous associated with
coordinate transformations in many Physics textbooks, Eq.~70! suggests that spinors must change
under diffeomorphisms in a way different from the true one, for indeed Dirac spinor fields~and
also, DHSF! are scalars under diffeomorphisms, an issue that we will discuss in another publica-
tion.

IX. CONCLUSIONS

In this paper we investigated how to define algebraic and Dirac–Hestenes spinor fields on
Minkowskispace–time. We showed first, that in general, algebraic spinors can be defined for any
real vector space of any dimension and equipped with a nondegenerated metric of arbitrary
signature, but that is not the case forDirac–Hestenes spinors. These objects exist for a four-
dimensional real vector space equipped with a metric of Lorentzian signature. It is this fact that
makes them very important objects~and gave us the desire to present a rigorous mathematical
theory for them!, since as shown in Secs. V and VII the Dirac equation can be written in terms of
Dirac–Hestenes spinor fieldsor algebraic spinor fields. We observe that our definitions of alge-
braic and Dirac–Hestenes spinor fields as some equivalence classes in appropriate sets are not the
standard ones and the core of the paper was to give genuine motivations for them. We observe
moreover that the definitions of Dirac–Hestenes spinor fields and of the spin–Dirac operator given
in Sec. V although correct are to be considered only as preliminaries. The reason is that any
rigorous presentation of the theory of the spin–Dirac operator~an in particular, on a general
Riemann–Cartan space–time! can only be given after the introduction of the concepts of Clifford
and spin–Clifford bundles over these space–times. This is studied in a sequel paper.126 In Ref. 155
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we show some nontrivial applications of the concept of Dirac–Hestenes spinor fields by proving
~mathematical! Maxwell–Dirac equivalences of the first and second kinds and showing how these
equivalences can eventually put some light on a possible physical interpretation of the famous
Seiberg–Witten equations for Minkowski space–time.

Noted added:After we finished the writing of the present paper and of Ref. 126, we learned
about the very interesting papers by Marchuck.110–118There, a different point of view concerning
the writing of the Dirac equation using tensor fields is developed.~Reference 110, indeed, uses a
particular case of objects that we called extensors in a recent series of papers.63–65,127–130! We will
discuss Marchuck papers elsewhere.
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APPENDIX A: SOME FEATURES ABOUT REAL AND COMPLEX CLIFFORD ALGEBRAS

In this appendix we fix the notations that we used and introduce the main ideas concerning the
theory of Clifford algebras necessary for the intelligibility of the paper.

1. Definition of the Clifford algebra Cø„V,b…

In this paper we are interested only in Clifford algebras of a vector space~we reserve the
notationV for real vector spaces! V of finite dimensionn over a fieldF5R or C. Let q:V→F be
a nondegenerate quadratic form overV with values inF andb:V3V→F the associated bilinear
form ~which we call a metric in the caseF5R). We use the notation

x•y5b~x,y!5 1
2 ~q~x1y!2q~x!2q~y!. ~A1!

Let LVÄ( i 50
n L iV be the exterior algebra ofV whereL iV is the (i

n) dimensional space of the
i -vectors.L0V is identified withF andL1V is identified withV. The dimension ofLV is 2n. A
general elementXPLV is called a multivector and can be written as

X5(
i 50

n

^X& i , ^X& iPL iV, ~A2!

where

^ & i :LV→L iV ~A3!

is the projector inL iV, also called thei -part of X.
Definition 14: The main involution or grade involution is an automorphism

ˆ :LV{X°X̂PLV ~A4!

such that

X̂5 (
k50

n

~21!k^X&k . ~A5!
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X̂ is called the grade involution of X or simply the involuted of X.
Definition 15: The reversion operator is the anti-automorphism

˜ :LV{X°X̃PLV ~A6!

such that

X̃5 (
k50

n

~21!1/2k(k21)^X&k , ~A7!

X̃ is called the reverse of X.
The composition of the grade evolution with the reversion operator, denote by2 is called by

some authors~e.g., Refs. 109, 141, 142! the conjugation and,X̄ is called the conjugate ofX. We
haveX̄5(X̃)5(X̂).

Since the grade and reversion operators are involutions on the vector space of multivectors,
we have thatX9 5X and X! 5X. both involutions commute with thek-part operator, i.e.,̂ X& k̂

5^X̂&k and ^X& k̃5^X̃&k , for eachk50,1,. . . ,n.
Definition 16: The exterior product of multivectors X and Y is defined by

^X∧Y&k5(
j 50

k

^X& j∧^Y&k2 j , ~A8!

for each k50,1,. . . ,n. Note that on the right-hand side there appears the exterior product of
j -vectors and(k2 j )-vectors with0< j <n. ~We assume that the reader is familiar with the
exterior algebra. We only caution that there are some different definitions of the exterior product
in terms of the tensor product differing by numerical factors. This may lead to some confusions,
if care is not taken. Details can be found in Refs. 63 and 64.!

This exterior product is an internal composition law onLV. It is associative and satisfies the
distributives laws~on the left and on the right!.

Definition 17: The vector spaceLV endowed with this exterior productL is an associative
algebra called the exterior algebra of multivectors.

We recall now some of the most important properties of the exterior algebra of multivectors.
For anya,bPF, XPLV,

a∧b5b∧a5ab ~product of F numbers!,
~A9!

a∧X5X∧a5aX ~multiplication by scalars!.

For anyXjPL jV andYkPLkV

Xj∧Yk5~21! jkYk∧Xj . ~A10!

For anyX,YPLV

X∧Ŷ5X̂∧Ŷ,
~A11!

X∧Ỹ5X̃∧Ỹ.
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2. Scalar product of multivectors

Definition 18: A scalar product between the multivectors X,YPLV is given by

X•Y5(
i 50

n

^X& i•^Y& i , ~A12!

where ^X&0•^Y&05^X&0^Y&0 is the multiplication in the fieldF and ^X& i•^Y& i is given by Eq.
(A2), and writing

^X&k5
1

k!
Xi 1i 2 ••• i kbi 1

∧bi 2
••• bi k

,

~A13!

^Y&k5
1

k!
Yi 1i 2 ••• i kbi 1

∧bi 2
••• bi k

where$bk%,k51,2,. . . ,n is an arbitrary basis ofV we have

^X&k•^Y&k5
1

~k! !2 Xi 1i 2 ••• i kYj 1 j 2 ••• j k~bi 1
∧bi 2

••• bi k
!•~bj 1

∧bj 2
••• bj k

!, ~A14!

with

~bi 1
∧bi 2

••• bi k
!•~bj 1

∧bj 2
••• bj k

!5Ubi 1
•bj 1 ••• ••• bi 1

•bj k

••• ••• ••• •••

••• ••• ••• •••

bi k
•bj 1 ••• ••• bi k

•bj k

U . ~A15!

It is easy to see that for anyX,YPLV,

X̂•Y5X•Ŷ,
~A16!

X̃•Y5X•Ỹ.

Remark 19: Observe that the definition of the scalar product given in this paper by Eq. (A12)
differs by a signal from the scalar product of multivectors defined, e.g., in Ref. 79. Our definition
is a natural one if we start the theory with the euclidean Clifford algebra of multivectors of a real
vector spaceV. The euclidean Clifford algebra is fundamental for the construction of the theory
of extensors and extensor fields.63–65,127–130

3. Interior algebras

Definition 20: We define two differentcontracted productsfor arbitrary multivectors X,Y
PLV by

~X4Y!•Z5Y~X̃∧Z!,
~A17!

~XzY!5X•~Z∧Ỹ!,

whereZPLV. The internal composition rules4 andz will be called, respectively, the left and the
right contracted product.

These contracted products4 andz are internal laws onLV. Both contract products satisfy the
distributive laws~on the left and on the right! but they arenot associative.
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Definition 21: The vector spaceLV endowed with each one of these contracted products
(either4 or z) is a nonassociative algebra. They are called the interior algebras of multivectors.

We present now some of the most important properties of the interior products:

~a! For anya,bPF, andXPLV,
a4b5azb5ab ~product in F!,

a4X5Xza5aX ~multiplication by scalars!. ~A18!

~b! For anyXjPL jV andYkPLkV with j <k,
Xj4Yk5~21!j(k2j)YkzXj . ~A19!

~c! For anyXjPL jV andYkPLkV,
Xj4Yk50, if j .k,

~A20!XjzYk50, if j ,k.
~d! For anyXk ,YkPLkV

Xj4Yk5XjzYk5X̃k•Yk5Xk•Ỹk . ~A21!

~e! For anyvPV andX,YPLV

v4~X∧Y!5~v4X!∧Y1X̂∧~v4Y!. ~A22!

4. Clifford algebra Cø„V,b…

Definition 22: The Clifford product of multivectors X and Y~denoted by juxtaposition) is
given by the following axiomatic:

~i! For all aPF andXPLV:aX5Xa equals multiplication of multivectorX by scalara.
~ii ! For all vPV andXPLV:vX5v4X1v∧X andXv5Xzv1X∧v.
~iii ! For all X,Y,ZPLV:X(YZ)5(XY)Z.

The Clifford product is an internal law onLV. It is associative@by the axiom~iii !# and
satisfies the distributives laws~on the left and on the right!. The distributive laws follow from the
corresponding distributive laws of the contracted and exterior products.

Definition 23: The vector space of multivectors overV endowed with the Clifford product is
an associative algebra with unity calledC,~V,b!.

5. Relation between the exterior and the Clifford algebras and the tensor algebra

Modern algebra books give the
Definition 24: The exterior algebra ofV is the quotient algebraLV5T(V)/I , where T(V) is

the tensor algebra ofV and I,T(V) is the bilateral ideal generated by the elements of the form
x^ x, xPV.

Definition 25: The Clifford algebra of~V,b! is the quotient algebraC,(V,b)5T(V)/I b ,
where Ib is the bilateral ideal generated by the elements of the formx^ x22b(x,x), xPV.

We can show that this definition is equivalent to the one given above.@When the exterior
algebra is defined asLV5T(V)/I and the Clifford algebra asC,(V,b)5T(V)/I b , the ~associa-
tive! exterior product of the multivectors in the terms of the tensor product of these multivectors
is fixed once and for all. We have, e.g., that forx,yPV, x∧y5 1

2(x^ y2y^ x). However, keep in
mind that it is possible to define an~associative! exterior product inLV differing from the above
one by numerical factors, and indeed in Refs. 63–65, 127–130 we used another choice. When
reading a text on the subject it is a good idea to have in mind the definition used by the author, for
otherwise confusion may result.# The spaceV is naturallyembeddedon C,~V,b!, i.e.,

V�

i

T~V!→
j

T~V!/I b5C,~V,b!,

and V[ j + i ~V!,C,~V,b!. ~A23!
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Let C,0(V,b) andC,1(V,b) be, respectively, thej -images of% i 50
` T2i(V) and % i 50

` T2i 11(V) in
C,~V,b!. The elements ofC,0(V,b) form a subalgebra ofC,(V,b) called the even subalgebra of
C,~V,b!. Also, there is a canonical vector isomorphismLV\C,(V,b), which permits to speak of
the embeddingsLpV,C,(V,b), 0<p<n, wheren is the dimension ofV ~Ref. 20!. @The iso-
morphism is compatible with the filtrations of the filtered algebraLV, i.e.,
(L rV)∧(LsV)#L r 1sV.]

6. Some useful properties of the real Clifford algebras Cø„V,g…

We now collect some useful formulas which hold for a real Clifford algebraC,(V,g) and
which has been used in calculations in the text and Appendixes.~As the reader can verify, many
of these properties are also valid for the complex Clifford algebras.!

For anyvPV andXPLV,

v4X5 1
2 ~vX2X̄v ! and X4v5 1

2 ~Xv2vX̄!,

~A24!
v∧X5 1

2 ~vX1X̄v ! and X∧v5 1
2 ~Xv1vX̄!.

For anyX,YPV,

X•Y5^X̃Y&05^XỸ&0 . ~A25!

For anyX,Y,ZPV,

~XY!•Z5Y•~X̃Z!5X•~ZỸ!,
~A26!

X•~YZ!5~ỸX!•Z5~XZ̃!•Y.

For anyX,YPV,

XY5X̄Ȳ,

XỸ5ỸX̃. ~A27!

Let I PLnV then for anyvPV andXPLV,

I ~v∧X!5~21!n21v4~ IX !. ~A28!

Equation~A22! is sometimes called the duality identity and plays an important role in the
applications involving the Hodge dual operator@see Eq.~53!#.

For anyX,Y,ZPV,

X4~Y∧Z!5~X∧Y!4Z,
~A29!

~XzY!zZ5Xz~Y∧Z!.

For anyX,YPV,

X•Y5^X̃Y&0 . ~A30!

For XrPL rV, YsPLsV we have

XrYs5^XrYs& ur 2su1^XrYs& ur 2su121 ¯ 1^XrYs& r 1s . ~A31!
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~We observe also that whenK5R and the quadratic form is Euclidean thenX•Y is positive
definite.!

APPENDIX B: REPRESENTATION THEORY OF THE REAL CLIFFORD ALGEBRAS Rp ,q

The real Clifford algebrasRp,q are associative algebras and they are simple or semisimple
algebras. For the intelligibility of the present paper, it is then necessary to have in mind some
results concerning the presentation theory of associative algebras, which we collect in what fol-
lows, without presenting proofs.

1. Some results from the representation theory of associative algebras

Let V be a set andK a division ring. Give to the setV a structure of finite-dimensional linear
space overK. Suppose that dimKV5n, wherenPZ. We are interested in what follows in the cases
whereK5R, C or H. WhenK5R, C or H, we call V a vector space overK. WhenK5H it is
necessary to distinguish between right or leftH-linear spaces and in this caseV will be called a
right or left H-module. Recall thatH is a division ring~sometimes called a noncommutative field
or a skew field! and sinceH has a natural vector space structure over the real field, thenH is also
a division algebra.

Let dimR V52m5n. In this case it is possible to give the following.
Definition 26: A linear mapping

J:V→V, ~B1!

such that

J252IdV , ~B2!

is called a complex structure mapping.
Definition 27: The pair (V,J) will be called a complex vector space structure and denote by

VC if the following product holds. LetC{z5a1 ib and letvPV. Then

zv5~a1 ib !v5av1bJv. ~B3!

It is obvious that dimC5m/2.
Definition 28: LetV be a vector space overR. A complexificationof V is a complex structure

associated with the real vector spaceV% V. The resulting complex vector space is denoted byVC.
Let v,wPV. Elements ofVC are usually denoted byc5v1 iw, and if C{z5a1 ib we have

zc5av2bw1 i ~aw1bv!. ~B4!

Of course, we have that dimC VC5dimR V.
Definition 29: AH-module is a real vector spaceV carrying three linear transformation, I , J,

and K each one of them satisfying

I25J252IdS,
~B5!

IJ52JI5K , JK52KJ5I , KI 52IK 5J.

Definition 30: Any subset I#A such that

acPI ,;aPA,;cPI ,
~B6!

c1fPI ,;c,fPI

is called a left ideal ofA.
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Remark 31: An analogous definition holds for right ideals where Eq. (B6) readscaPI ,;a
PA, ;cPI , for bilateral ideals where in this case Eq. (B6) reads acbPI ,;a,bPA, ;cPI .

Definition 32: An associativeA algebra on thefield F ~R or C! is simple if the only bilateral
ideals are the zero ideal andA itself.

We give without proofs the following theorems.
Theorem 33:All minimal left (respectively, right) ideals ofA are of the form J5Ae ~respec-

tively, eA), where e is a primitive idempotent ofA.
Theorem 34:Two minimal left ideals ofA, J5Ae and J5Ae8 are isomorphicif and only if

there exist a non-null X8PJ8 such that J85JX8.
We recall that ePA is an idempotentelement if e25e. An idempotent is said to beprimitive

if it cannot be written as the sum of two nonzero annihilating (or orthogonal) idempotent, i.e.,
eÞe11e2 , with e1e25e2e150 and e1

25e1 , e2
25e2 .

Not all algebras are simple and in particular semisimple algebras are important for our con-
siderations. A definition of semisimple algebras requires the introduction of the concepts of nil-
potent ideals and radicals. To define these concepts adequately would lead us to a long incursion
on the theory of associative algebras, so we avoid to do that here. We only quote that semisimple
algebras are the direct sum of simple algebras. Then, the study of semisimple algebras is reduced
to the study of simple algebras.

Now, let A be an associative and simple algebra on the fieldF ~R or C!, and letS be a
finite-dimensional linear space over a division ringK#F.

Definition 35: A representationof A in S is a K algebra homomorphism@we recall that a
K-algebra homomorphism is aK-linear mapr such that;X,YPA, r(XY)5r(X)r(Y)] r:A
→E5EndKS (E5EndKS5HomK(S,S) is the endomorphism algebra ofS! which maps the unit
element ofA to IdE . The dimensionK of S is called thedegreeof the representation.

The addition inS together with the mappingA3S→S, (a,x)°r(a)x turns S in a left
A-module, called the leftrepresentation module. @We recall that there are left and right modules,
so we can also define right modular representations ofA by defining the mappingS3A→S,
(x,a)°xr(a). This turnsS in a right A-module, called the rightrepresentation module.#

Remark 36: It is important to recall that whenK5H the usual recipe forHomH(S,S) to be a
linear space overH fails and in generalHomH(S,S) is considered as a linear space overR, which
is the center ofH.

Remark 37: We also have that ifA is an algebra overF and S is an A-module, thenS can
always be considered as a vector space overF and if ePA, the mappingx:a→xa with xa(s)
5as, sPS, is a homomorphismA→E5EndFS, and so it is a representation ofA in S. The study
of A modules is then equivalent to the study of theF representations ofA.

Definition 38: A representationr is faithful if its kernel is zero, i.e., r(a)x50,;xPS⇒a
50. The kernel ofr is also known as theannihilatorof its module.

Definition 39:r is said to besimpleor irreducible if the only invariant subspaces ofr(a),
;aPA, are S and $0%.

Then, the representation module is also simple. That means that it has no proper submodules.
Definition 40:r is said to be semisimple, if it is the direct sum of simple modules, and in this

caseS is the direct sum of subspaces which are globally invariant underr(a), ;aPA.
When no confusion arisesr(a)x may be denoted bya"x, a* x or ax.
Definition 41: TwoA-modulesS and S8 (with the exterior multiplication being denoted,

respectively, by" and * ) are isomorphicif there exists a bijectionw:S→S8 such that

w~x1y!5w~x!1w~y!, ;x,yPS,

w~a"x!5a* w~x!, ;aPA,

and we say that representationr and r8 of A are equivalent if their modules are isomorphic.
This implies the existence of aK-linear isomorphismw:S→S8 such thatw+r(a)5r8(a)

+w, ;aPA or r8(a)5w+r(a)+w21. If dim S5n, then dimS85n.
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Definition 42: A complex representationof A is simply a real representationr:A
→HomR(S,S) for which

r~X!+J5J+r~X!, ;XPA. ~B7!

This means that the image ofr commutes with the subalgebra generated by$IdS%;C.
Definition 43: A quaternionic representation ofA is a representationr:A→HomR(S,S) such

that

r~X!+I5I +r~X!, r~X!+J5J+r~X!, r~X!+K5K +r~X!, ;XPA. ~B8!

This means that the representationr has a commuting subalgebra isomorphic to the quaternion
ring.

The following theorem61,109 is crucial.
Theorem 44 ~Wedderburn!: If A is simple algebra overF then A is isomorphic toD(m),

whereD(m) is a matrix algebra with entries inD ~a division algebra), and m andD are unique
(modulo isomorphisms).

Now, it is time to specialize our results to the Clifford algebras over the fieldF5R or C. We
are particularly interested in the case of real Clifford algebras. In what follows we take (V,b)
5(Rn,g). We denote byRp,q a real vector space of dimensionn5p1q endowed with a nonde-
generate metricg:Rn3Rn→R. Let $Ei%, (i 51,2,. . . ,n) be an orthonormal basis ofRp,q,

g~Ei ,Ej !5gi j 5gji 5H 11, i 5 j 51,2,. . . ,p

21, i 5 j 5p11, . . . ,p1q5n

0, iÞ j .

~B9!

Definition 45: The Clifford algebraRp,q5C,(Rp,q) is the Clifford algebra overR, generated
by 1 and the$Ei% ( i 51,2,. . . ,n), such that Ei

25q(Ei)5g(Ei ,Ei), EiEj52EjEi ( iÞ j ), and
E1E2 . . . EnÞ61.

Rp,q is obviously of dimension 2n and as a vector space it is the direct sum of vector spaces
LkRn of dimensions (k

n),0<k<n. The canonical basis ofLkRn is given by the elementseA

5Ea1
¯ Eak

, 1<a1, ¯ ,ak<n. The elementeJ5E1¯ EnPLkRn,Rp,q commutes (n odd!
or anticommutes (n even! with all vectorsE1¯ EnPL1Rn[Rn. The centerC,p,q is L0Rn[R if
n is even and it is the direct sumL0Rn

% L0Rn if n is odd.
All Clifford algebras are semisimple. Ifp1q5n is even,Rp,q is simple and ifp1q5n is odd

we have the following possibilities.
~a! Rp,q is simple↔cJ

2521↔p2qÞ1 (mod 4)↔center ofRp,q is isomorphic toC;
~b! Rp,q is not simple~but is a direct sum of two simple algebras)↔cJ

2511↔p2q51
(mod 4)↔center ofRp,q is isomorphic toR% R.

Now, for Rp,q the division algebrasD are the division ringsR, C or H. The explicit isomor-
phism can be discovered with some hard but not difficult work. It is possible to give a general
classification off all real~and also the complex! Clifford algebras and a classification table can be
found, e.g., in Refs. 141 and 142. Table I is reproduced and@n/2# means the integer part ofn/2.

Now, to complete the classification we need the following theorem.141

Theorem 46 ~Periodicity!:

TABLE I. Representation of the Clifford algebrasRp,q as matrix algebras.

p2q
mod 8 0 1 2 3 4 5 6 7

R(2[n/2]) H(2[n/2]21)
Rp,q R(2[n/2]) % R(2[n/2]) C(2[n/2]) H(2[n/2]21) % H(2[n/2]21) C(2[n/2])

R(2[n/2]) H(2[n/2]21)
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Rn185Rn,0^ R8,0, R0,n185R0,n^ R0,8,
~B10!

Rp18,q5Rp,q^ R8,0, Rp,q185Rp,q^ R0,8.

Remark 47: We emphasize here that since the general results concerning the representations
of simple algebras over a fieldF applies to the Clifford algebrasRp,q we can talk about real,
complex or quaternionic representation of a given Clifford algebra, even if the natural matrix
identification is not a matrix algebra over one of these fields. A case that we shall need is that
R1,3.H(2). But it is clear thatR1,3 has a complex representation, for any quaternionic represen-
tation ofRp,q is automaticallycomplex,once we restrictC,H and of course, the complex dimen-
sion of anyH-module must be even. Also, any complex representation ofRp,q extends automati-
cally to a representation ofC^ Rp,q .

Remark 48: Now, C^ Rp,q is an abbreviation for thecomplexClifford algebra C,p1q5C
^ Rp,q , i.e., it is the tensor product of the algebrasC and Rp,q , which are subalgebras of the
finite-dimensional algebraC,p1q over C.

For the purposes of the present paper we must keep in mind that

R0,1.C,

R0,2.H,

R3,0.C~2!,
~B11!

R1,3.H~2!,

R3,1.R~4!,

R4,1.C~4!.

R3,0 is called the Pauli algebra,R1,3 is called thespace–timealgebra,R3,1 is calledMajorana
algebra andR4,1 is called theDirac algebra. Also the following particular results have been used
in the text and below:

R1,3
0 .R3,1

0 5R3,0, R4,1
0 .R1,3,

~B12!
R4,1.C^ R3,1, R4,1.C^ R3,1,

which means that the Dirac algebra is the complexification of both the space–time or the Majorana
algebras.

Equation ~B11! show moreover, in view of Remark 7 that the space–time algebra has a
complexification matrix representation inC~4!. Obtaining such a representation is fundamental for
the present work and it is given in Appendix D.

2. Minimal lateral ideals of Rp ,q

It is important for the objectives of this paper to know some results concerning the minimal
lateral ideals ofRp,q . The identification table of these algebras as matrix algebras helps a lot.
Indeed, we have61 the following theorem.

Theorem 49: The maximum number of pairwise orthogonal idempotents inK(m) (whereK
5R, C or H) is m.

The decomposition ofRp,q into minimal ideals is then characterized by a spectral set$epq, j%
of idempotents elements ofRp,q such that

~a! ( i 51
n epq,i51,

~b! epq, jepq,k5d jkepq, j ,
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~c! the rank ofepq, j is minimal and nonzero, i.e., is primitive.

By rank ofepq, j we mean the rank of theLRp,q morphism,epq, j :f°fepq, j . Conversely, any
fPI pq, j can be characterized by an idempotentepq, j of minimal rankÞ0, with f5fepq, j .

We now need to know the following theorem.109

Theorem 50: A minimal left ideal ofRp,q is of the type

I pq5Rp,qepq ,

where

epq5 1
2 ~11ea1

! ¯ 1
2 ~11eak

! ~B13!

is a primitive idempotent ofRp,q and were ea1
, ¯ ,eak

are commuting elements in the canonical

basis of Rp,q generated in the standard way through the elements of the basis( such that
(ea i

)251, (i 51,2,. . . ,k) generate a group of order2k, k5q2r q2p and ri are the Radon–
Hurwitz numbers, defined by the recurrence formula ri 185r i14 and

i 0 1 2 3 4 5 6 7

r i 0 1 2 2 3 3 3 3

~B14!

Recall thatRp,q is a ring and the minimal lateral ideals are modules over the ringRp,q . They
are representation modulesof Rp,q , and indeed we have~recall the table above! the following
theorem.141

Theorem 51: If p1q is even or odd with p2qÞ1 (mod 4), then

Rp,q5HomK~ I pq!.K~m!, ~B15!

where (as we already know)K5R, C or H. Also,

dimK~ I pq!5m ~B16!

and

K.eK~m!e, ~B17!

where e is the representation ofepq in K(m).
If p1q5n is odd, with p2q51 (mod 4), then

Rp,q5HomK~ I pq!.K~m! % K~m!, ~B18!

with

dimK~ I pq!5m ~B19!

and

eK~m!e.R% R

or ~B20!

eK~m!e.H% H.
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With the above isomorphisms we can immediately identify the minimal left ideals ofRp,q with the
column matrices ofK(m).

Algorithm for finding primitive idempotents ofRp,q : With the ideas introduced above it is now
a simple exercise to find primitive idempotents ofRp,q . First we look at Table I and find the
matrix algebra to which our particular Clifford algebraRp,q is isomorphic. SupposeRp,q is simple.
~Once we know the algorithm for a simple Clifford algebra it is straightfoward to devise an
algorithm for the semisimple Clifford algebras.! Let Rp,q.K(m) for a particularK andm. Next
we take an elementea1

P$eA% from the canonical basis$eA% of Rp,q such that

ea1

2 51, ~B21!

then construct the idempotentepq5(11ea1
)/2 and the idealI pq5Rp,qepq and calculate

dimK(I pq). If dimK(I pq)5m, thenepq is primitive. If dimK(I pq)Þm, we chooseea2P$eA% such
that ea2 commutes withea1

andea2

2 51 @see Theorem 39 and construct the idempotentepq8 5(1

1ea1
)(11ea1

)/4]. If dimK(I pq8 )5m, thenepq8 is primitive. Otherwise we repeat the procedure.
According to the Theorem 39 the procedure is finite.

These results will be used in Appendix D in order to obtain necessary results for our presen-
tation of the theory of algebraic and Dirac–Hestenes spinors~and spinors fields!.

APPENDIX C: Rp ,q
! , CLIFFORD, PINOR AND SPINOR GROUPS

The set of the invertible elements ofRp,q constitutes a non-Abelian group which we denote by
Rp,q

! . It acts naturally onRp,q as an algebra homomorphism through its adjoint representation

Ad:Rp,q
! →Aut~Rp,q!;u°Adu , with Adu~x!5uxu21. ~C1!

Definition 52: TheClifford–Lipschitz group is the set

Gp,q5$uPRp,q
! u;xPRp,q,uxu21PRp,q%. ~C2!

Definition 53: The setGp,q
1 5Gp,qùRp,q is calledspecialClifford–Lipshitz group.

Definition 54: ThePinor group Pinp.q is the subgroup ofGp,q such that

Pinp,q5$uPGp,quN~u!561%,
~C3!

N:Rp,q→Rp,q ,N~x!5^x̄x&0 .

Definition 55: TheSpin group Spinp,q is the set

Spinp,q5$uPGp,quN~u!561%. ~C4!

It is easy to see that Spinp,q is not connected.
Definition 56: The groupSpinp,q

e is the set

Spinp,q
e 5$uPGp,quN~u!511%. ~C5!

The superscripte, means that Spinp,q
e is the connected component to the identity. We can

prove that Spinp,q
e is connected for all pairs (p,q) with the exception of Spine(1,0)

.Spine(0,1).
We recall now some classical results120 associated with the pseudo-orthogonal groups Op,q of

a vector spaceRp,q (n5p1q) and its subgroups.
Let G be a diagonaln3n matrix whose elements are

Gi j 5diag~1,1,. . . ,21,21, . . .21!, ~C6!
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with p positive andq negative numbers.
Definition 57: Op,q is the set of n3n real matricesL such that

LGL T5G, detL251. ~C7!

Equation~C7! shows that Op,q is not connected.
Definition 58: SOp,q , the special (proper) pseudo-orthogonal group is the set of n3n real

matricesL such that

LGL T5G, detL51. ~C8!

When p50 (q50) SOp,q is connected. However, SOp,q is not connected and has two con-
nected components forp,q>1. The group SOp,q

e , the connected component to the identity of
SOp,q will be called the specialorthocronouspseudo-orthogonal group.@This nomenclature comes
from the fact that SOe(1,3)5L1

↑ is the special~proper! orthochronous Lorentz group. In this case
the set is easily defined by the conditionL0

0>11. For the general case see Ref. 120.#
Theorem 59:AduPinp,q

:Pinp,q→Op,q is onto with kernelZ2 . AduSpinp,q
:Spinp,q→SOp,q is onto

with kernelZ2 . AduSpin
p,q
e :Spinp,q

e →SOp,q
e is onto with kernelZ2 . We have

Op,q5
Pinp,q

Z2
, SOp,q5

Spinp,q

Z2
, SOp,q

e 5
Spinp,q

e

Z2
. ~C9!

The group homomorphism between Spinp,q
e and SOe(p,q) will be denoted by

L: Spinp,q
e →SOp,q

e . ~C10!

The following theorem that first appears in Porteous book141 is very important.„In particular,
when Theorem 49 is taken into account together with some of the coincidence between the
complexifications of some low dimensions Clifford algebras it becomes clear that the construction
of Dirac–Hestenes spinors@and its representation as in Eq.~D20!# for Minkowski vector space has
no generalization for vector spaces of arbitrary dimensions and signatures.109

…

Theorem 60 ~Porteous!: For p1q<5, Spine(p,q)5$uPRp,quuũ51%.
Lie algebra ofSpin1,3

e : It can be shown109 that for eachuPSpin1,3
e it holds u56eF, F

PL2R1,3,R1,3 andF can be chosen in such a way to have a positive sign in Eq.~C8!, except in
the particular caseF250 when u52eF. From Eq. ~C8! it follows immediately that the Lie
algebra of Spin1,3

e is generated by the bivectorsFPL2R1,3,R1,3 through the commutator product.
More details on the relations of Clifford algebras and the rotation groups may be found, e.g., in
Refs. 7 and 170.

APPENDIX D: SPINOR REPRESENTATIONS OF R4,1 , R4,1
¿ , AND R1,3

Let b05$E0 ,E1 ,E2 ,E3% be an orthogonal basis ofR1,3,R1,3, such thatEmEy1EyEm

52hmn , with hym5diag(11,21,21,21). Now, with the results of Appendix B we can verify
without difficulties that the elementse, e8, e9PR1,3,

e5 1
2 ~11E0!, ~D1!

e85 1
2 ~11E3E0!, ~D2!

e95 1
2 ~11E1E2E3!, ~D3!
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are primitive idempotents ofR1,3 The minimal left ideals,I 5R1,3e, I 85R1,3e8, I 95R1,3e9 are
right two dimension linear spaces over the quaternion field~e.g.,He5eH5eR1,3e). According to
a definition given originally in Ref. 150 these ideals are algebraically equivalent. For example,
e85ueu21, with u5(11E3)¹G1,3.

Definition 61: The elementsFPR1,3
1
2(11E0) are calledmotherspinors.

The above denomination has been given~with justice! by Lounesto.109 It can be shown67,68

that eachF can be written

F5c1e1c2E3E1e1c3E3E0e1c4E1E0e5(
i

c isi , ~D4!

s15e, s25E3E1e, s35E3E0e, s45E1E0e ~D5!

and where thec i areformally complex numbers, i.e., eachc i5(ai1biE2E1) with ai , biPR and
the set$si ,i 51,2,3,4% is a basis in the mother spinors space.

We recall from the general result of Appendix C that Pin1,3/Z2 .O1,3, Spin1,3/Z2 .SO1,3,
Spin1,3

e /Z2 .SO1,3
e , and Spin1,3

e .Sl(2,C) is the universal covering group ofL1
↑ [SO1,3

e , the spe-
cial ~proper! orthocronousLorentz group.

In order to determine the relation betweenR4,1 and R3,1 we proceed as follows: let
$F0 ,F1 ,F2 ,F3 ,F4% be an orthonormal basis ofR4,1 with

2F0
25F1

25F2
25F3

25F4
251,FAFB52FBFA~AÞB;A,B50,1,2,3,4!.

Define the pseudoscalar

i5F0F1F2F3F4 , i2521, iFA5FAi, A50,1,2,3,4. ~D6!

Define

Em5FmF4 . ~D7!

We can immediately verify thatEmEy1EyEm52hmy . Taking into account thatR1,3.R4,1
0 we can

explicitly exhibit here this isomorphism by considering the mapj:R1,3→R4,1 generated by the
linear extension of the mapj#:R1,3→R4,1, j#(Fm)5Em5FmF4 , where Em (m50,1,2,3) is an
orthogonal basis ofR1,3. Also j(1R1,3

)51R
4,1
1 , where 1R1,3

and 1R
4,1
1 are the identity elements inR1,3

andR4,1
1 . Now consider the primitive idempotent ofR1,3.R4,1

0 ,

e415 j~e!5 1
2 ~11E0! ~D8!

and the minimal left idealI 4,15R4,1e41.
In what follows we use~when convenient! for minimal idempotents and the minimal ideals

generated by them, the labels involving the notion of spinorial frames discussed in Sec. II. Let
then,J0 be a fiducial spinorial frame. The elements@in what follows we use~when convenient!
for minimal idempotents and the minimal ideals generated by them, the labels involving the notion

of spin frames discussed in Sec. II# ZJ0
PI 4,1 can be written analogously toFPR1,3

1
2(11E0) as

ZJ0
5( zi s̄i , ~D9!

where

s̄15e41, s̄25E1E3e41, s̄35E3E0e41, s̄45E1E0e41 ~D10!

and where
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zi5ai1E2E1bi

are formally complex numbers,ai , biPR.
Consider now the elementf J0

PR4,1,

f J0
5e41

1
2 ~11 iE1E2!5 1

2 ~11E0! 1
2 ~11 iE1E2!, ~D11!

with i defined as in Eq.~D6!.
Since f J0

R4,1f J0
5Cf J0

5 f J0
C it follows that f J0

is a primitive idempotent ofR4,1. We can
easily show that eachFJ0

PI J0
5R4,1f J0

can be written

CJ0
5(

i
c i f i , c iPC,

~D12!
f 15 f J0

, f 252E1E3f J0
, f 35E3E0f J0

, f 45E1E0f J0

with the methods described in Refs. 67 and 68 we find the following representation inC~4! for the
generatorsEm of R4,1.R1,3:

E0°gI 05S 12 0

0 212
D↔Ei°gI i5S 0 2s i

s i 0 D , ~D13!

where12 is the unit 232 matrix ands i ( i 51,2,3) are the standard Pauli matrices. We immedi-
ately recognize thegI -matrices in Eq.~D13! as the standard ones appearing, e.g., in Ref. 13.

The matrix representation ofCJ0
PI J0

will be denoted by the same letter without the index,
i.e., CJ0

°CPC(4) f , where

f 5 1
2 ~11 igI 1gI 2! i 5A21. ~D14!

We have

C5S c1 0 0 0

c2 0 0 0

c3 0 0 0

c4 0 0 0

D , c iPC. ~D15!

Equations~D13!, ~D14!, and ~D15! are sufficient to prove that there are bijections between the

elements of the idealsR1,3
1
2(11E0), R4,1

1
2(11E0), andR4,1

1
2(11E0) 1

2(11 iE1E2).
We can easily find that the following relation exist betweenCJ0

PR4,1f J0
and ZJ0

PR4,1
1
2(11E0), J05(u0 ,S0) being a spinorial frame~see Sec. I!

CJ0
5ZJ0

1
2 ~11 iE1E2!. ~D16!

DecomposingZJ0
into even and odd parts relative to theZ2-graduation ofR4,1

0 .R1,3, ZJ0

5ZJ0

0 1ZJ0

1 we obtainZJ0

0 5ZJ0

1 E0 which clearly shows that all information ofZJ0
is contained

in ZJ0

0 . Then,

CJ0
5ZJ0

0 1
2 ~11E0! 1

2 ~11 iE1E2!. ~D17!
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Now, if we take into account150 that R4,1
0 1

2(11E0)5R4,1
00 1

2(11E0) where the symbolR4,1
00

meansR4,1
00.R1,3

0 .R3,0 we see that eachZJ0
PR4,1

1
2(11E0) can be written

ZJ0
5cJ0

1
2 ~11E0!, cJ0

PR4,1
00.R1,3

0 . ~D18!

Then settingZJ0

0 5cJ0
/2, Eq. ~D18! can be written

CJ0
5cJ0

1
2 ~11E0! 1

2 ~11 iE1E2!5ZJ0

0 1
2 ~11 iE1E2!. ~D19!

The matrix representation ofZJ0
and cJ0

in C~4! ~denoted by the same letter in boldface
without index! in the spin basis given by Eq.~D12! are

C5S c1 2c2* c3 c4*

c2 c1* c4 2c3*

c3 c4* c1 2c2*

c4 2c3* c2 c1*
D , Z5S c1 2c2* 0 0

c2 c1* 0 0

c3 c4* 0 0

c4 2c3* 0 0

D . ~D20!

APPENDIX E: WHAT IS A COVARIANT DIRAC SPINOR „CDS…

As we already knowf J0
5 1

2(11E0) 1
2(11 iE1E2) @Eq. ~D12!# is a primitive idempotent of

R4,1.C(4). If uPSpin(1,3),Spin(4,1) then all idealsI Ju
5I J0

u21 are geometrically equivalent

to I J0
. Now, let s(Ju)5$E0 ,E1 ,E2 ,E3% and s(Ju8)5$E08 ,E18 ,E28 ,E38% with s(Ju)

5u21s(J0)u, s(Ju8)5u821s(J0)u8 be two arbitrary basis forR1,3,R4,1. From Eq.~D13! we
can write

I Ju
{CJu

5( c i f i , and I J
u8
{CJu8

5( c i8 f i8 , ~E1!

where

f 15 f Ju
, f 252E1E3f Ju

, f 35E3E0f Ju
, f 45E1E0f Ju

and

f 185 f Ju8
, f 2852E 18E 38 f Ju8

, f 385E 38E 08 f Ju8
, f 45E 18E 08 f Ju8

.

SinceCJu8
5CJu

(u821u)21, we get

CJu8
5(

i
c i~u821u!21f i85(

i ,k
Sik@~u21u8!#c i f k5(

k
ck8 f k .

Then

ck85(
i

Sik~u21u8!c i , ~E2!

whereSik(u21u8) are the matrix components of the representation inC~4! of (u21u8)PSpin1,3
e .

As proved in Refs. 67 and 68 the matricesS(u) correspond to the representationD (1/2,0)

% D (0,1/2) of SL(2,C).Spin1,3
e .
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We remark that all the elements of the set$I Ju
% of the ideals geometrically equivalent toI J0

under the action ofuPSpin1,3
e ,Spin4,1

e have the same imageI 5C(4) f where f is given by Eq.
~D11!, i.e.,

f 5 1
2 ~11gI 0!~11 igI 1gI 2!, i 5A21, ~E3!

wheregI m , m50,1,2,3 are the Dirac matrices given by Eq.~D14!.
Then, if

g:R4,1→C~4![End~C~4! f !,
~E4!

x°g~x!:C~4! f→C~4! f

it follows that

g~Em!5g~Em8 !, g~ f m!5g~ f m8 ! ~E5!

for all $Em%, $Em8 % such thatEm8 5(u821u)Em(u821u)21. Observe thatall informationconcerning
the geometrical images of the spinorial framesJu , Ju8 , . . . , unders disappear in the matrix
representation of the idealsI Ju

, I Ju8
, . . . , in C~4! since all these ideals are mapped in the same

ideal I 5C(4) f .
With the above remark and taking into account the definition of algebraic spinors given in Sec.

II C and Eq.~E2! we are lead to the following.
Definition 62: A covariant Dirac spinor (CDS) forR1,3 is an equivalence class of pairs

(Ju
m ,C), whereJu

m is a matrix spinorial frame associated to the spinorial frameJu through the
S(u21)PD (1/2,0)

% D (0,1/2) representation ofSpin1,3
e , uPSpin1,3

e . We say thatC,C8PC(4) f are
equivalent and write

~Ju
m ,C!;~Ju8

m ,C8! ~E6!

if and only if

C85S~u821u!C, usJuu215u8s~Ju8!u821. ~E7!

Remark 63: The definition of CDS just given agrees with that given in Ref. 40 except for the
irrelevant fact that there, as well as in the majority of Physics textbook’s, authors use as the space
of representatives of a CDS a complex four-dimensional spaceC4 instead of I5C(4) f .
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