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Almost all presentations of Dirac theory in first or second quantization in physics
(and mathematiggextbooks make use of covariant Dirac spinor fields. An excep-
tion is the presentation of that theoffirst quantization offered originally by
Hestenes and now used by many authors. There, a new concept of sping¢adield

a sum of nonhomogeneous even multivectors fielslsused. However, a careful
analysis(detailed below shows that the original Hestenes definition cannot be
correct since it conflicts with the meaning of the Fierz identities. In this paper we
start a program dedicated to the examination of the mathematical and physical basis
for a comprehensive definition of the objects used by Hestenes. In order to do that
we give apreliminary definition of algebraic spinor fieldéASF) and Dirac—
Hestenes spinor fieldDHSH on Minkowski space—time as some equivalence
classes of pairsX,, ¢z ), whereE, is a spinorial frame field and/z is an
appropriate sum of multivectors field@® be specified beloyw The necessity of our
definitions are shown by a careful analysis of possible formulations of Dirac theory
and the meaning of the set of Fierz identities associated with the bilinear covariants
(on Minkowski space—timemade with ASF or DHSF. We believe that the present
paper clarifies some misunderstandifigast and receptippearing on the literature

of the subject. It will be followed by a sequel paper where definitive definitions of
ASF and DHSF are given as appropriate sections of a vector bundle calletthe
spin-Clifford bundle. The bundle formulation is essential in order to be possible to
produce a coherent theory for the covariant derivatives of these fields on arbitrary
Riemann—Cartan space—times. The present paper contains also Appendixes A—E
which exhibits a truly useful collection of results concerning the theory of Clifford
algebragincluding many tricks of the tradanecessary for the intelligibility of the

text. © 2004 American Institute of Physic§DOI: 10.1063/1.1757037

I. INTRODUCTION

Physicists usually make first contact with Dirac spinors and Dirac spinor fields when they
study relativistic quantum theory. At that stage they are supposed to have had contact with a good
introduction to relativity theory and know the importance of the Lorentz and Poigratps. So,
they are told that Dirac spinors are elements of a complex four-dimensional €haasich are
the carrier space of a particular representation of the Lorentz group. They are told that when you
do Lorentz transformations Dirac spinors behave in a certain way, which is different from the way
vectors and tensors behave under the same transformation. Dirac matrices are introduced as certain
matrices on(4) satisfying certain anticommutation rules and it is said that they close a particular
Clifford algebra, known as Dirac algebra. The next step is to introduce Dirac wave functions.
These are mapping¥: M—C*, from Minkowski space—time\ (at that stage often introduced
as an affine spageo the spacé:*, which must have the structure of a Hilbert space. After that,
Dirac equation, which is a first order partial differential equation is introduce®@fos). Physics
come into play by interpreting’ (x) as the quantum wave function of the electron. Problems with
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this theory are discussed and it is pointed out that the difficulties can only be solved in relativistic
guantum theory, where the Dirac spinor field, gains a new status. It is no more simply a mapping
¥: M—C* but a more complicated objefit becomes an operator valued distribution in a given
Hilbert space(see, e.g., Ref. 162 for a correct characterization of these ofjjedisse expecta-

tion values on certain one particle states can be represented by objecis Ftem a pragmatic

point of view, only this knowledge is more than satisfactory. However, that approach, we believe,
is not a satisfactory one to any scientist with an enquiring mind, in particular to one that is worried
with the foundations of quantum theory. For such person the first questions which certainly occur
are what is the geometrical meaning of the Dirac spinor wave function? From where did this
concept come from?

Pure mathematicians, who study the theory of Clifford algebras, e.g., using Chevalley’s clas-
sical books’®3°learn that spinors are elements of certain miniidehls(do not worry if you did
not know the meaning of this concept, it is not a difficult one and is introduced in Appendix B
Clifford algebras. In particular Dirac spinors are the elements of a minimal ideal in a particular
Clifford algebra, the Dirac algebra. Of course, the relation of that appr@gkbraic spinorg
with the one learned by physicistsovariant spinorsis known (see, e.g., Refs. 14, 67, and)68
but is not well known by the great majority of physicists, even for many which specialize in
general relativity and more advanced theories, like string Mnttheory.

Now, the fact is that the algebraic spinor concépigebraic spinor fields on Minkowski
space—time will be studied in details in what follows, and in Ref. 126 where the concept is
introduced using fiber bundle theory on general Lorentzian manjfdls it is the case of the
covariant spinor concepfail to reveal the true geometrical meaning of spinor in general and
Dirac spinors in particular.

In 1966, HestendS introduced a new definition of spinor field, that he called lateerator
spinor field. Objects in this class which in this paper, will be called Dirac—Hestenes spinor fields,
have been introduced by Hestenes as mapgmg\slﬂl-ﬁ(l’s, WhereJ-K(l’,3 is the even subalgebra of
Ry 5 a particular Clifford algebra, technically known as s@ace-time algebra[ R, 3 is not the
original Dirac algebra, which is the Clifford algebRa ;, but is closely related to it, indedth 3 is
the even subalgebra of the Dirac algetsae the Appendix B for detajl§ Hestenes in a series of
remarkable papet$®2-8%Sapplied his new concept of spinor to the study of Dirac theory. He
introduced an equation, now known as the Dirac—Hestenes equation, whichhaloesntain
(explicitly) imaginary numbers and obtained a very clever interpretation of that theory through the
study of the geometrical meaning of the so-called bilinear covariants, which are the observables of
the theory. He further developed an interpretation of quantum theory from his fornf4ifSthat
he called thezitterbewegungnterpretation. Also, he showed how his approach suggests a geo-
metrical link between electromagnetism and the weak interactions, different from the original one
of the standard modé.

Hestenes papers and his book with Sob&%yiave been the inspiration for a series of inter-
national conferences onClifford Algebras and their Applications in Mathematical Physics
which in 2002 has had its sixth edition. A consultation of the table of contents of the last two
conferences'®2 certainly will show that Clifford algebras and their applications generated a
wider interest among many physicists, mathematicians, and even in engineering and computer
sciences(In what follows we quote some of the principal papers that we have had opportunity to
study. We apologize to any author who thinks that his work is a worthy one concerning the subject
and is not quoted in the present pap@&hysicists used Clifford algebras concepts and Hestenes
methods, in many different applications. As some examples, we quote some developments in
relativistic quantum theory as, e.g., Refs. 36, 37, 45, 46, 48-52, 56, 58, 74, and 70. The papers by
De Leo and collaborators exhibit a close relationship between Hestenes methods and quaternionic
quantum mechanics, as developed, e.g., by Atiersubject that is finding a renewed interest.
Also, Clifford algebra methods have been uU§8¢°149.151.152165-168%; give an intuitive and
geometrical clear picture of the dynamics of superparticléd?140.143.153.160.1%|50 | that papers
clarify the meaning of Grassmann variables and their calcdld$e relation with theZitter-
bewegungnodel of Barut and collaboratds-°appears in a novel and less speculative way. Even
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more, in Ref. 151 it is shown that the concept of Dirac—Hestenes spinor field is closely related to
the concepts of superfields as introduced by Witf8rClifford algebras methods have also been
used in disclosing a surprising connection between the Dirac and Maxwell and SeibergXWitten
equations, as studied, e.g., in Refs. 155, 164, and 168, which suggest several physical develop-
ments. Applications of Clifford algebras methods in general relativity appeared also, e.g., in Refs.
35, 90, 54, 55, 57, 58, 62, 103-105, 119, 134, and 154, and suggest new ways for looking to the
gravitational field. Clifford algebras methods, have been applied successfully also in quantum field
theory, as, e.g., in Refs. 60 and 138 and more recently in stringpalbihne theories, with
noticeable results—34136.134yhich are worth being more carefully investigated.

Of course, Clifford algebras and Dirac operators are standard topics of research in Mathemat-
ics (see, e.g., Ref. 20 but we must say that Hestenes ideas have been an inspiring idea for
mathematicians also. In particular, the concept of Clifford valued functions with domain in a
manifold (the operator spinor fields are particular functions of this rypeveloped in a new,
beautiful and powerful branch of mathematfé$estenes ideas, as we said, have found also their
use in engineering and computer sciences, as in the study of neural étrttisd robotics and
perception action system$19:99:100:42,59,101,125,161

Having made all this propaganda, which we hope have awakened the reader’s interest in
studying Clifford algebras, we must remark, thias often happens for every pioneer wotke
concept of Dirac—Hestenes spinor field, as originally introduced by Hestenes, and used by many
other researchers, is not a concept free of criticisms and objections from the mathematical point of
view.

However, it is an important concept and one of the objectives of this paper and also of Ref.
126 is to give a presentation of the subject free of all previous criticisms, which are discussed in
the next sections. The reader may ask if the enterprising for learning the theory presented below
is worth the time. We think that the answer is yes, whether it be a physicist or mathematician. To
encourage physicists, which may eventually become interested in the subject after reading the
above propaganda, we say that the mathematical tools used, even if they may look complex at first
sight, are indeed nothing more than easy additions to the contents of a linear algebra course. The
main reward to someone that studies what follows is that they will start seeing some subjects that
they thought were well known, under a new afwee believe illuminating point of view. This
hopefully may help anyone who is searching for new physical theories. For mathematicians, we
say that the point of view developed here is somewhat new in relation to the original Chevalley’s
one and we believe, it is more satisfactory. In particular, the present paper serves as a preliminary
step towards a rigorous theory of algebraic and Dirac—Hestenes spinor fields as sections of some
well-defined fiber bundles, and the theory of the covariant derivatives of these fields. Having said
all that, what is the present paper about?

We give definitions of algebraic spinor field&SF) and Dirac—Hestenes spinor field3HSPH
living on Minkowski space—time and show how Dirac theory can be formulated in terms of these
objects.[Minkowski space—time is parallelizable and as such admits a spin structure. In general,
a spin structure does not exist for an arbitrary manifold equipped with a metric of signatgje (

The conditions for existence of a spin structure in a general manifold are discussed in Refs. 93,
131, and 133. For the case of Lorentzian manifolds, see Rg\WE2start our presentation in Sec.

Il by studying a not-well-known subject, namely, the geometrical equivalence of representation
modules of simple Clifford algebra¥ (V,g). This concept, together with the conceptspinorial
framesplay a crucial role in our definition of algebraic spin@ssS) and of ASF. Once we grasp

the definition of AS and particularly of Dirac AS we define Dirac—Hestenes spiB#tS) in Sec.

IV. Whereas AS may be associated to any real vector space of arbitrary dimensiprq
equipped with a nondegenerated metric of arbitrary signate) ( this is not the case for DHS.
(ASF can be defined on more general manifolds called spin manifolds. This will be studied in Ref.
126. There, we show that the concept of Dirac—Hestenes spinor fields which exists for four-
dimensional Lorentzian spin manifolds modeling a relativistic space—time, can be generalized for
the case of generalpin manifold of dimensiomn=p+q [equipped with a metric of signature
(p,q), only if the spinor bundle structunéspi,ﬁ qM is trivial].) However, these objects exist for a
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four-dimensional vector spacé equipped with a metric of Lorentzian signature and this fact
makes them very much important mathematical objects for physical theories. Indeed, as we shall
show in Sec. V it is possible to express Dirac equation in a consistent way using DHSF living on
Minkowski space—time. Such equation is called the Dirac—Hestenes eq(iatii). In Sec. VI
we express the Dirac equation using ASF. In Sec. IV we define Clifford fields and then ASF and
DHSF. We observe here that our definitions of ASF and DHSF as some equivalence classes of
pairs (E,,¥= ), whereE, is aspinorial coframefield andyz is an appropriated Clifford field,
i.e., a sum of multivectofor multiform) fields are not the usual ones that can be found in the
literature.[Take notice that in this paper the term spinofied)frame field (defined below is
related, but distinct from the concept of a sgeo)frame, which is a section of a particular
principal bundle called the spifto)frame bundle(see Sec. IV and Ref. 126 for more detgils
These definitions that, of course, come after the definitions of AS and DHS are essentially differ-
ent from the definition of spinors given originally by Chevalféy® There, spinors are simply
defined as elements of a minimal ideal carrying a modular representation of the Clifford algebra
C¢(V,qg) associated to a structur¥ (g), whereV is a real vector space of dimensins p+q and
g is a metric of signaturepq). And, of course, in that book there is no definition of DHS.
Concerning DHS we mention that our definition of these objects is different also from the origi-
nally given in Refs. 79—81.The definitions of AS, DHS, ASF, and DHSF given below are an
improvement over preliminary tentative definitions of these objects given in Ref. 150. Unfortu-
nately, that paper contains some equivocated results and épesiles many misprintswhich
we correct here and in Ref. 126. We take the opportunity to apologize for any incovenience and
misunderstandings that Ref. 150 may have caused. Some other papers where(belatest
equivalent material to the one presented in the present paper and in Ref. 126 can be found in Refs.
14-41, 44-69, 73-78, 93-109, 121-133, 144, and]1A6iiew of these statements a justifica-
tion for our definitions must be given and part of Sec. V and Sec. VI are devoted to such an
enterprise. There it is shown that our definitions are the only ones compatible with the DHE and
the meaning of the Fierz identitié3%®We discuss in Sec. VIII some misunderstandings resulting
from the presentations of the standard Dirac equation when written with covariant Dirac spinors
and also some misunderstandings concerning the DHE. It is important to emphasize here that the
definitions of ASF, DHSF on Minkowski space—time and of the spin—Dirac operator given in Sec.
V although correct are to be considered only as preliminaries. Indeed, these objects can be defined
in a truly satisfactory way on a general Riemann—Cartan space—time only after the introduction of
the concepts of the Clifford and the lgtind righ} spin—Clifford bundles. Moreover, a compre-
hensive formulation of Dirac equation on these manifolds requires a theory of connections acting
on sections of these bundles. This nontrivial subject is studied in a forthcoming'pagection
IX presents our conclusions. Finally we recall that our notations and some necessary results for the
intelligibility of the paper are presented in Appendixes A—E. Although the appendixes contain
known results, we decided to write them for the benefit of the reader, since the material cannot be
found in a single reference. In particular Appendix A contains some of the “tricks of the trade”
necessary to perform quickly calculations with Clifford algebras. If the reader needs more details
concerning the theory of Clifford algebras and their applications than the ones provided by the
Appendixes, the Refs. 14, 63, 64, 78, 86, 109, 141, 142 will certainly help. A final remark is
necessary before we start our enterprise: the theory of the Dirac—Hestenes spinor fields of this
(and the sequel papéf) does not contradict the standard theory of covariant Dirac spinor fields
that is used by physicists and indeed it will be shown that the standard theory is no more than a
matrix representation of theory described below.

Some acronyms are used in the present pépeavoid long sentencgsnd they are summa-
rized below for the reader’s convenience:

AS, Algebraic spinor;

ASF, Algebraic spinor field;
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CDS, Covariant Dirac spinor;
DHE, Dirac—Hestenes equation;

DHSF, Dirac—Hestenes spinor field.

Il. ALGEBRAIC SPINORS

This section introduces the algebraic ideas that motivated the theory of dEh will be
developed with full rigor in Ref. 126i.e., we give a precise definition of AS. The algebraic side
of the theory of DHSF, namely the concept of DHS is given in Sec. lll. The justification for that
definition will become clear in Secs. V and VI.

A. Geometrical equivalence of representation modules of simple Clifford algebras
ce(Vv,9)

We start with the introduction of some notations and clarification of some subtleties.
(i) In what followsV is an-dimensional vector space over the real fiBldThe dual space of
V is denotedv*. Let

g VXV—R (1)

be a metric of signaturep(q).

(ii) Let SO(V,q) be the group of endomorphisms dfthat preserveg and the space orien-
tation. This group is isomorphic to $Q (see Appendix & but there is no natural isomorphism.
We write SOY,0)=S0, 4. Also, the connected component to the identity is denoted by
SCO*(V,g) and SG(V,9)=SJ . In the casgp=1, =3, ST(V,g) preserves besides orientation
also the time orientation. In this paper we are mainly interested #{(\8@).

(iii ) We denote byCf(V,q) the Clifford algebra ofvV associated to\(,g) and by Spifi(V,qg)
(zSpirﬁ’q) the connected component of the spin group Sgjgf=Spir, 4 (see Appendix C for
the definitiong. [We reserve the notatioRi,,  for the Clifford algebra of the vector spad¥’
equipped with a metric of signatur@,@), p+q=n. C€(V,g) andR, 4 are isomorphic, but there
is no canonical isomorphism. Indeed, an isomorphism can be exhibited only after we fix an
orthonormal basis 0¥/.] Let L denote 2:1 homomorphisin: Spirf(V,g) — SO (V,q), u—L(u)
=L,. Spirf(V,g) acts onV identified as the space of 1-vectors @f(V,g)=R, , through its
adjoint representation in the Clifford algebfé(V,g) which is related with the vector represen-
tation of SG(V,q) as follows[ Aut(C¢(V,q)) denotes théinnen automorphisms of¢(V,q)]:

Spirf(V,g) = u—Ad, € Aut(C¢(V,g))
Adyly:V—=V,visuvu~ =L V. 2

In Eq.(2) L v denotes the standard actibg onv [see Eq(5)] and where identifiedwithout
much ado L ,e SC°(V,g) with L,e Vo V*, g(L,v,L,v)=g(v,v).

(iv) We denote byC¢(V,q) the Clifford algebra ofv associated to\(,g) and by Spifi(V,q)
(:Spirﬁyq) the connected component of the spin group Spjgf=Spin, , (see Appendix C for
the definitions.

(v) Let B be the set of all oriented and time oriented orthonormal blasés will call the
elements of53 (in what follows simply by orthonormal basjof V. Choose among the elements
of Babasishy={E;, ... EpEpi1,...,Epsq}, hereafter called the fiducial frame Wt With this
choice, we define a 1-1 mapping

S:SCR(V,g)— B, 3)

given by
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Ly—=>2(Ly)=% =Lybo, (4)
WhereELu= Lubg is a short for{e,, ... € €11,- - - € +qf € B, such that denoting the action of
L, onE;je by by L -E; we have
e=L,E=LIE;, i,j=12...n (5)

In this way, we can identify a given vector babisf V with the isometryL , that takes the fiducial
basisby to b. The fiducial basi$, will be also denoted b)ELO, whereLy=e¢, is the identity
element of SQV,q).

Since the group S®QV,q) is not simple connected their elements cannot distinguish between
frames whose spatial axes are rotated in relation to the fiducial vector Eamiey multiples of
27 or by multiples of 4r. For what follows it is crucial to make such a distinction. This is done
by introduction of the concept of spinorial frames.

Definition 1: Let b e B be a fiducial frame and choose an arbitrary « Spirf(V,g). Fix once
and for all the pair(ug,bg) with up=1 and call it the fiducial spinorial frame

Definition 2: The spac&pirf(V,g) X B={(u,b),ubu™*=ugbyu, !} will be called the space
of spinorial frames and denoted 6.

Remark 3: It is crucial for what follows to observe here that the definition 2 implies that a
given be B determines two and only two spinorial frames, nam@lyb) and (—u,b), since
+ub(*u"Y)=ugboug .

(vi) We now parallel the construction {w) but replacing S&V,qg) by its universal covering
group Spifi(V,g) and B by 0. Thus, we define the 1—-1 mapping

=:Spirf(V,g)— 0,
u—=2(u)=g,=(u,b), (6)

whereubu 1=bh,.

The fiducial spinorial frame will be denoted in what follows By;. It is obvious from Eq(6)
that E(—u)=E(,u)=(—u,b)¢Eu.

Definition 4: The natural right action of a Spirf(V,g) denoted by on 0 is given by

a-Z,=a-(u,b)=(ua,Ad,-1b)=(ua,a 'ba). (7)
Observe that i, =(u’,b")=u’-E, andE,=(u,b)=u-E, then,

“tu)-E,=(u’,u tubutu’).

Eu,=(u

Note that there is a natural 2—1 mapping

sO—B, E./~b=(xu Hby(*+u), (8)
such that

S((u™tu’)-E ) =Ad- 14 -1(S(E ). 9
Indeed, s((u™tu’)-Ey))=s((u"tu’)-(u,b))=u’"tub(u’ "tu) " t=b’=Ad-1,)-1b

=Ad(,-1,)-1(S(E,)). This means that the natural right actions of Sfhg), respectively, or®

and B, commute. In particular, this implies that the spinorial frarBesE _, e ®, which are, of

course distinct, determine the same vector fraipe=s(2,)=s(E_,)=%_ . We have
ELUZELiu:Lu—iuozLUO, Lu—luoe quq. (10

Also, from Eq.(9), we can write explicitly
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UOELUOUSIZUELuu_l, UOELuoualz(_U)EL,U(_U)_]‘! UESp”’F(V,g), (11)

where the meaning of Eq11) of course, is that i, =%, =b={e;,... 6 &+1....6}€B
andELu =bye B is the fiducial frame, then

UoE;Ug = (*u)e(=u?). (12)

In resume we can say that the sp&ef spinorial frames can be thought of as an extension
of the space3 of vector frames, where even if two vector frames have the same ordered vectors,
they are considered distinct if the spatial axes of one vector frame is rotated by a odd number of
27 rotations relative to the other vector frame and are considered the same if the spatial axes of
one vector frame is rotated by an even number#sf@tations relative to the other frame. Even if
this construction seems to be impossible at first sight, Aharonov and Sussking@nts that it can
be implemented physically.

(vii) Before we proceed an important digression on our notation used below is necessary. We
recalled in Appendix B how to construct a minimum lé&ft right) ideal for a given real Clifford
algebra once a vector basis 5 for V—C€(V,g) is given. That construction suggests to label a
given primitive idempotent and its corresponding ideal with the subitdéXowever, taking into
account the above discussion of vector and spinorial frames and their relationship we find useful
for what follows [especially in view of the definition 5 and the definitions of algebraic and
Dirac—Hestenes spinofsee definitions 6 and 8 belgyo label a given primitive idempotent and
its corresponding ideal with the subindg,. Recall after all, that a given idempotent is accord-
ing to definition 6 representative of a particular spinor in a given spinorial fi@me

(viii) Next we recall Theorem 49 of Appendix B which says that a minimal left ideal of
C¢(V,9) is of the type

Iz =Cl(V,9)ez , (13

whereeEu is a primitive idempotent of€(V,Q).
It is easy to see that all ideaI§u=C€(V,g)eEu andIEu,=C€(V,g)eEu, such that

r—1

e, =(u'"tuez (U’ tu) Y (14

u’

u,u’ e Spirf(V,g) are isomorphic. We have the following.

Definition 5: Any two idealsd =C¢(V,g)ez and Iz ,=CE(V,g)ez , such that their gen-
erator idempotents are related by Eq. (14) are said geometrically equivalent

But take care, nequivalence relatiohas been defined until now. We observe moreover that
we can write

u, (15)
a equation that will play a key role in what follows.

B. Algebraic spinors of type Iz

Let {l= } be the set of all ideals geometrically equivalent to a given minimal as defined
u Uo
by Eqg.(15). Let

‘Z:{(Eu,WEU)|UESpirF(V,g),EuE®,\PEUE|E‘U}. (16)
LetE,,E,e0, ¥z elz, ¥z elg . We define an equivalence relatihon T by setting

(2, ¥z )~(Ey Tz,) (17)



J. Math. Phys., Vol. 45, No. 7, July 2004 Algebraic and Dirac—Hestenes spinors 2915

if and only if usg(E )u~t=u's(E,)u’ ! and

‘I’E U'_lz\I’E U_l. (18)

u’ u
Definition 6: An equivalence class

Ve =[(E,,¥z)]e TR (19)

u

is called an algebraic spinor of type,, for C¢(V,Q). gz €lg, is said to be a representative of the
algebraic spinot'z in the spinorial frames,,.

We observe that the pairsS(,, Wz ) and E_,,— ¥z ) are equivalent, but the pairs
(B ,‘PEU) and E_,, —‘I’E,u) are not. This distinction isssentiain order to give a structure of
linear spacdover the real fielfito the set¥. Indeed, a natural linear structure @nis given by

a[(E,, Wz )] +b[(2y, VL )]=[(Ey.a¥z)]+[(Ey bWEL )],
(a+b)[(Z,. ¥z )]=al(E,, ¥z )]+b[(E, ¥z )] (20

The definition that we just gave is not a standard one in the literdtdredowever, the fact
is that the standard definitidficit as it is from the mathematical point of vigus notadequate for
a comprehensive formulation of the Dirac equation using algebraic spinor fields or Dirac—
Hestenes spinor fields as we show in a preliminary way in Sec. V and in a rigorous and definitive
way in a sequel papéf®

As observed on AppenxiiD a given Clifford algebrai, ; may have minimal ideals that are
not geometrically equivalent since they may be generated by primitive idempotents that are related
by elements of the grouﬁ;]q which are not elements of SfiV,g) (see Appendix C where
different, nongeometrically equivalent primitive ideals 1oy ; are showih These ideals may be
said to be of different types. However, from the point of view of the representation theory of the
real Clifford algebragAppendix B all these primitive ideals carry equivaletite., isomorphig
modular representations of the Clifford algebra and no preference may be given to ayhme.
fact that there are ideals that are algebraically, but not geometrically equivalent seems to contain
the seed for new physics, see Refs. 123, and)184wvhat follows, when no confusion arises and
the ideaIIEu is clear from the context, we use the wording algebraic spinor for any one of the

possible types of ideals.

Remark 7: We observe here that the idea of definition of algebraic spinor fields as equivalent
classes has it seed in a paper by Ri#ZHowever, Riez used in his definition simply orthonormal
frames instead of the spinorial frames of our approach. As such, Riez defintion generates contra-
dictions, as it is obvious from our discussion above

C. Algebraic Dirac spinors

These are the algebraic spinors associated with the Clifford alg€lfrat) =R, ; (the space—
time algebra of Minkowski space—timeM = (V, #), whereV is a four-dimensional vector space
over R and # is a metric of signaturé€l,3).

Some special features of this important case are as follows.

(a) The group Spif(M) is the universal covering of! , the special and orthochronous
Lorentz group that is isomorphic to the group %®1) which preserves space—time orientation
and also the time orientatiof? (see also Appendix B

(b) Spirf(M)CCto(M), whereCeo(M)=R, ; is the even subalgebra @ (M) and is
called the Pauli algebrésee Appendix €

The most important property is a coincidence given by @4d) below. It permits us to define
a new kind of spinors.
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[ll. DIRAC—HESTENES SPINORS (DHS)

Let £, € O be a spinorial frame faM such thas(E,) ={eg,e;,€,,€3} € B. Then, it follows
from Eq.(D18) of Appendix D that

Iz =Ct(M)ez =CoAMez, (1)

e = S(1+ey). (22

u

Then, each¥z elz can be written as
— 0
\I’Eu—l/fgueEu, l//EuEC% (M). (23)
From Eq.(18) we get

Yz U Tlues =iz ez, ¢z,.P= € COM). (24)

u u

A possible solution for Eq(24) is
gz, U =gz Ut (29
Let @ XC¢(M) and consider an equivalence relatisuch that
(Eu ¢z,)~(Bw.¢=,) (mod &) (26)
if and only if Y=, and Yz, are related by

= U= dz U (27
This suggests the following.

Definition 8: The equivalence class¢$= ¢z )1e(OXCL(M))/E are the Hestenes
spinors. Among the Hestenes spinors, an important subset is the one consisted efHestmes
spinors where[(Eu,wgu)]e(@)xC(fO(M))/E. We say that¢5u(¢5u) is a representative of a
Hestenes (DiragHestenes) spinor in the spinorial fran, .

How to justify the above definitions of algebraic and Dirac—Hestenes spinors? The question is
answered in the next section.

IV. CLIFFORD FIELDS, ASF AND DHSF

The objective of this section is to introduce the concepts of Dirac—Hestenes spinor fields
(DHSP and algebraic spinor field®\SF) living on Minkowski space—time. A definitive theory of
these objects that can be applied for arbitrary Riemann—Cartan space—times can be given only
after the introduction of the Clifford and lefand righy spin—Clifford bundles and the theory of
connections acting on these bundles. This theory will be presented in Ref. 126 and the presentation
given below(which can be followed by readers that have only a rudimentary knowledge of the
theory of fiber bundlesmust be considered as a preliminary one.

Let (M, #,7,1,V) be Minkowski space—time, wheM is diffeomorphic toR*, #is a constant
metric field,V is the Levi—Civita connection of. M is oriented byre sec\*M and is also time
oriented by] (Refs. 156—158

Let (PsoiaM is the orthonormal frame bundle, slégjisM means a section of the frame

bundle {e,} evsecPsdle 3M be an orthonormaimoving) frame, not necessarily a coordinate frame
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and lety®*e secT*M (a=0,1,2,3) be such that the sg#®} is dual to the sefe,}, i.e., y?(ep)
= &5 . (Orthonormal moving frames are not to be confused with the concept of reference frames.
The concepts are related, but distift %3

The set{ 2} will be called also dmoving) frame. Lety,= 7,,7°, a,b=0,1,2,3. The sefty.}
will be called the reciprocal frame to the frarig®}. Recall thaf 7 is the metric of the contangent
space andy(y?,7°) = n?°= pp=diag(1~1,— 1,— 1)] (TX M, ) =M. We will denote T} M, 7)
by M*. Now, due to the affine structure of Minkowski space—time we can identify all the
cotangent spaces as usual. Consider then the Clifford algélor&t *) generated by the coframe
{72}, where now we can takg®:x— AY(M*)CCt(M*). We have

Y)Y )+ ()72 () =27, V¥xeM. (28)
Definition 9 (preliminary): A Clifford field is a mapping
C:M > x—C(x) eCl(M*). (29

In a coframe{y?} the expression of a Clifford field is
a 1 C 5
C=S+Aay"+ 57 Baw Y+ 37 Tabe?® YPye+ Py, (30)

whereS,A, ,B,p ,Tabc,P are scalar functionghe ones with two or more indices antisymmetric on
that indice$ and y°= y°y'y?y? is the volume element. Saying with other words, a Clifford field
is a sum of nonhomogeneous differential forfiiis result follows once we recall that as a vector
space the Clifford algebra¢(M*) is isomorphic to the the Grassmann algebx&V*)
ZES:OAF’(V*), where AP(V*) is the space op-forms. This is clear from the definition of
Clifford algebra given in the Appendix A. Recall thatt* = (V*=T*M, 7).]

Here is the point where a minimum knowledge of the theory of fiber bundles is required.
Minkowski space—time is parallelizable and admits a spin structure. See, e.g., Refs. 72, 131-139,
and 126. This means that Minkowski space—time has a spin strucutre, i.e., there exists a principal
bundle called the spin frame bundle and denotedPlgyini M that is the double covering of

Psda M, i.e., there is a 2:1 mapping Psp,,ﬁ M—>Psoe M. The elements oPSp,nr; M are called

the spln frame fieldgwhen there is no possibility of confusion we abreviate spin frame field
simply as spin frame and ifF, e PSpmi M thenp(F,)={e,} e Psoe M (once we fix a spin frame

and associate it to an arbitrary but fixed element eﬂDSplrg M). ThIS means, that as in Sec. I, we
distinguish frames that differ from an2rotation. BeS|de§>So<1e‘3M we introduce als@soiaM the
coframe orthonormal bundle, such that for*} e P'SdisM there existde,} e Psoi,sM’ such that
Y2(ep) = 55. Note that{ya}eP’SoisM, but, as already observed, keep in mind that each
y2:x— A M*)CCt(M*). To proceed choose a fiducial cofrarﬁEa}eP'SoigM, dual to a

fiducial framep(Fuo) ={E.}e secpsdi 3M .
Now, let '

u:x—u(x) e Spirf(M*)CCeo(M*). (31

In complete analogy with Sec. | |€,,= Spirf(M*) X P'Soe M be the space of spinorial coframe
13
fields. We define also the 1-1 mapping
E:Spirf(M*)— 0/,

(32)
u—E(u)=E,=(u,{u"'Tu}).
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Note that there is a 2—1 natural mapping

i — ’
0\ 3E—~{ye PsoisM'

y2=u"1I3u. 39

Also, denoting the action ofa(x) e Spirf(M*) on ®,, by a-=,=(ua,{y?}) we have
Eyo=u"tu)E,, (34
S ((U')-E ) =Ad-141)-1(S (B ). (35)

As in the preceding section we have associatedSpirf(M*) to the fiducial spinorial coframe
field, but of course we could associate any other eleragnt— uy(x) € Spirf(M*) to the fidu-
cial spinorial coframe. In this general case, writEgO for the fiducial spinorial coframe, we have
S,(Euo) :{Fa}'

Note thats'(Z,)=s'(E(-,) and that any other coframe fiell (=) is then related to
S'(E,,) by

UoS' (B )Up =2 Us' (B ) (zu ) =2us' (E(y)(2u™h, (36)

where the meaning of this equation is analogous to the one given tdBgthrough Eq.(12).

Taking into account the results of the preceding sections and of the Appendixes A and B we
are lead to the following definitions.

Let{l Eu} be the set of all ideals geometrically equivalent to a given minilrga)l as defined

by Eqg.(15) where nowu, u’ are Clifford fields defined by mappings like the one defined in Eq.
(31).
Let

TM={(X,(EU,\PEU))|XE M,u(x) e Spirf(M*),E, €0},

Vg x—>¥z (X)elg ¥z x—>eVz (X)elz } 87
Consider an equivalence relati@,, on ¥ ,, such that
Xy, ¥z )~ (V,(Eu ¥z,) (39)
if and only if x=Yy,
U(X)S (Eyp)u () =" ()8 ()’ (%) (39
and
Vo ut=wo 0l (40)

u u

Definition 10 (preliminary): An algebraic spinor field (ASF) of type Ffor M* is an equiva-
lence classIfEu=[(x,(Eu ,\Ifgu))] e T IRy . We say that«lfgue Iz, is a representative of the
ASFV¥z in the spinorial coframe fielE .

Consider an equivalence relatiafy, on the setMXE ,,XC{(M*) such that[given
V2 XYz (0 ClMY), gz x> e gz (0 eClMN)] (((Euvz))  and
((y.(Ew %= ))) are equivalent if and only ik=vy,

u(X)s' (Eyp)u (X)) =u"(X)S (Eyrp)u’ ~H(x) (41
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and

gz, U =gz Ut (42
Definition 11 (preliminary): An equivalence class/;:[(x,(Eu,z,bEu))]eMXEM
XCE(M™)IEy is called a Hestenes spinor field favt*. ¢z e CE(M™) is said to be a repre-
sentative of the Hestenes spinor fielflz in the spinorial coframe fieldE,. When
lﬂauiXHlﬂau(X)ECfo(M*), QBEU,ZX'—>E¢EU(X)EC€O(M*) we call the equivalence class a

Dirac—Hestenes spinor field (DHSF)

V. THE DIRAC-HESTENES EQUATION (DHE)

In our preliminary presentation of the Dirac equation Minkowski space—timethat follows
we shall restrict our exposition to the case where any spinorial coframe field appearing in the
equations that follows, e.gs' (E,)={%} is teleparallel and constant. By this we mean that
Vx,yeM anda=0,1,2,3,

YAX)=A(y), (43
Ve ¥°=0. (44)

Equation(43) has meaning due to the affine structure of Minkowski space—time which permits the
usual identification of all tangent spade®d of all cotangent spagesf the manifold and Eq44),
is the definition of a teleparallel frame. Of course, the unique solution for4y.is v*= dx*,
where{x*} are the coordinate functions of a global Lorentz chart of Minkowski space—time. Such
a restriction is a necessary one in our elementary presentation, because otherwise we would need
first to study the theory of the covariant derivative of spinor fields, a subject that simply cannot be
appropriately introduced with the present formalism, thus clearly showing its limitation. Thus, to
continue our elementary presentation we need some results of the general theory of the covariant
derivatives of spinor fields studied in details in Ref. 126.

Using the results of the preceding sections and of the Appendixes we caf’shtivat the
usual Dirac equatiot?® (which, as well known is written in terms of covariant Dirac spinor figlds
for a representative of a DHSF in interaction with an electromagnetic poteftial> A(X)
e A{(M*)Cce(M*) is

D= v2v1— M=z Yot qAYz =0. (49)

[Covariant Dirac spinor fields are defined in an obvious way once we take into account the
definition of covariant Dirac spinors given by Ed@6) and Eq.(E7) of the Appendix E. See also
Refs. 41, 131-133.

Remark 12: It is important for what follows to have in mind that although each representative
ths X l/fau(x) e CLo%(M*) of a DHSFis a sum of nonhomogeneous differential forms, spinor
fields are not a sum of nonhomogeneous differential forms. Thus, they are mathematical objects of
a nature different from that of Clifford field$Not taking this difference into account can lead to
misconceptions, as, e.g., some appearing in Ref. 71. See our comments in Ref. 155 on that paper.
The crucial difference between a Clifford field, e.g., an electromagnetic potential A BxitS&
is that A is frame independent wherea®BISF is frame dependent

In the DHE the spinor covariant derivati@ is a first order differential operator, often called
the spin—Dirac operatoflf we use more general frames, that are not Lorentzian coordinate
frames, e.g.E,={y"} thenD%z (x)= yavga¢5u(x): Ya(€a+ 30,) = (X), wherew, is a two
form field associated with the spinorial connection, which is zero only for teleparallel frame fields,
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if they exist. Details in Ref. 12§.Let V?a be the spinor covariant derivative. We have the
following representation foD® in an arbitrary orthonormal framg?} dual of the frame({f,}
€ P5§ ,

1,3

D°=t2V? . (46)

In a teleparallel spirico)frames’'(E,)={y*} the above equation reduces to

J
S— gy ——
DS=dx o (47)

The spin—Dirac operator in an arbitrary orthonormal frame acts on a proﬁuc:tuﬁ whereC
is a Clifford field and Pz, a representative of a DHSFor a Hestenes fiejJdas a modular

derivation?®*%6j.e.,

DS(Cyz )=tVE (Cyz )=t*[(V; C) = +C(VF 4= )]

Also in Eq. (45 m andq are real parameteignass and chargedentifying the elementary
fermion described by that equatiofNote that we used natural unities in which the value of the
velocity of light isc=1 and the value of Planck’s constantfis-1.)

Now, from Eq.(42) we have

Y= =y=st E,=sE,, (48)

A—A, (49

wheres: x—s(x) e Spirf(M*) CCe°(M*) is to be considered a Clifford field. Consider the case
wheres(x) =s(y)=s, Vx,ye M. Such equation has a precise meaning due to our restriction to
teleparallel frames. We see that the DHE is trivially covariant under this kind of transformation,
which can be called a right gauge transformation.

Returning to the DHE we see also that the equation is covariant under active Lorentz gauge
transformations, or left gauge transformations. Indeed, under an active left Lorentz gauge trans-
formation (without changing the spinorial coframe figldve have

Yz >k =SPz , A>SAS T
z,~S¥=

(50
D%z D'k =sD%z .

The justification for the active left Lorentz gauge transformation BW//EUHD'SWEU
=SDS¢EU is the following. (A study of active local left Lorentz gauge transformations will be

presented elsewhere, for it needs the concept of gauge covariant deriyatheDirac operator
is a 1-form valued derivative operat®®=dx* (d/9x*). Then, under an active Lorentz gauge
transformation s it must transform like a vector, i.eQS%>D’S=sdx* s~ (d/9x*).

Note thatt//’gu is a representativén the spinorial coframe fiel& ) of a new spinor. Then, it

follows, of course, that the representative of the new spinor in the spinorial coframéfjelid
yE, =Sz s " (51)

We also recall that the DHE is invariant under simultaneous left and fighistants gauge
Lorentz transformations. In this case the relevant transformations are
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r_ -1
Yz Y= =S¥z
(52)
A—sAst, D'*yr =sD%z s

VI. JUSTIFICATION OF THE TRANSFORMATION LAWS OF DHSF BASED
ON THE FIERSZ IDENTITIES

We now give another justification for the definition of Dirac spinors and DHSF presented in
the preceding sections. We start by recalling that a usual covariant Dirac spinor field determines a
set ofp-form fields, called bilinear covariants, which describe the physical contents of a particular
solution of the Dirac equation described by that field. The same is true also for a DHSF.

In order to present the bilinear covariants using that fields, we introduce first the notion of the
Hodge dual operator of a Clifford field: M 2 x—C(x) e C¢(M*). We have the following.

Definition 13: The Hodge dual operator is the mapping

*:C—*C=Cys, (53
whereC is the reverse of C [Eq. (A5), Appendix A].

Then, in terms of a representative of a DHSF in the spinorial frame Hgjdhe bilinear
covariants of Dirac theory readwith J=J,y*, S=3 Yy K=K, v")

Yz Yz =0t*w, Pz Y%= =1,
v=,7"V0=,=S = "vP=,=*S (54)
vz,7%0=,=K, b= Y Pz =K.
The so-calledrierz identitiesare
F=0’+w? J-K=0, J?>=-K? JOK=-(w+xK)S, (55)
SLJ=wK, SLK=w],
(*S)LI=—0oK, (*S)LK=-0J, (56)
S S=w?—0? (*S)-S=—-200,
JS=—(w+*x0)K,
SJ=—(w—*0)K,
KS=—(w+x*0)J,
(57)
SK=—(w—*0)J,
P=w— 2= 20(xw),
S l=—S(o—*w)?/I>=KSK/JI*
The proof of these identities using the DHSF is almost a triviality and can be done in a few

lines. This is not the case if you use covariant Dirac spinor fiddtumns matrix fields In this
case you will need to perform several pages of matrix algebra calculations.
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The importance of the bilinear covariants is due to the fact that we can recover from them the
associate covariant Dirac spinor fidland thus the DHSFexcept for a phase. This can be done
with an algorithm due to Crawfofd and presented in a very pedagogical way in Ref. 109.

Let us consider, e.g., the equatiq&guyoTpEuzJ in (54). Now, J(x) e AY(M*)CCl(M*) is
an intrinsic object on Minkowski space—time and according to the accepted first quantization
interpretation theory of the Dirac equation it is proportional to the electromagnetic current gener-
ated by an elementary fermion. The expressiod @i terms of the representative of a DHSF in
the spinorial coframéZ: is (of course

=, Yoz, = (58)
Now, since
Yo=(u""tu) yo(u’ " tu) T, (59
we see that we must have
gz, == (U ), (60)

which justifies the definition of DHSF given abojmee Eq.(40)].
We observe also that iz iz =o+*w#0, then we can write

Yz, =p V2PTR, (61)
whereVxe M,
p(x) e A°C(M*)CCl(M¥),
B(x) e AS(M*)CCl(M*), (62)
Re Spir§ { M*)CCl(M*).

With this result the currenl can be written
J=pv (63)

with v =Ry°R™1. Equation(63) discloses the secret geometrical meaning of DHSF. These objects

rotate and dilate vector fields, this being the reason why they are sometimes called operator

spinors>0-86.109

VII. DIRAC EQUATION IN TERMS OF ASF
We recall from Eq(D2) of Appendix D that

eL = 3(1+y3y0) (64)

u

is also a primitive idempotent fielthere understood as a Hestenes spinor fitdt is algebra-
ically, but not geometrically equivalent to the idempotent fieﬂguz%(lJr vo). Let I’Eu

=C€(/\/l*)e’5u be a minimal left ideal generated le,’gu. Now, multiply the DHE[E(. (45)] on
the left, first by the primitive idempotem!;su and then by the primitive idempoteatju. We get
after some algebra

DSCDEu_m(DEu(*1)+QA(DEu:O, (65)
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wherex 1= vys is the oriented volume element of Minkowski space—time and
— ! [ — * !
(DEu_lpEueEueEUEIEu_C{(M )eEu. (66)

Equation(65) is one of the many faces of the original equation found by Dirac in terms of
ASF and using teleparallel orthonormal frames.

Of course, Eq(65), as it is the case of the DHEE(Q. (45)] is compatible with the transfor-
mation law of ASF that follows directly from the transformation law of AS given in Sec. Il. In
contrast to the DHE, in EJ65) there seems to be no explicit reference to elements of a spinorial
coframe field(except for the indice& ) sincex1, the volume element is invariant undgior-
ent2 gauge transformations. We emphasize also that the transformation law for ASF is compatible
with the presentation of Fierz identities using these objects, as the interested reader can verify
without difficulty.

VIII. MISUNDERSTANDINGS CONCERNING COORDINATE REPRESENTATIONS
OF THE DIRAC AND DIRAC-HESTENES EQUATIONS

We investigate now some subtleties of the Dirac and Dirac—Hestenes equations. We start by
pointing out and clarifying some misunderstandings that often appears in the literature of the
subject of the DHE when that equation is presented in terms of a representative of a DHSF in a
global coordinate chartM, ¢) of the maximal atlas oM with Lorentz coordinate functionisc*)
associated to itsee, e.g., Ref. 1561n that cases' (E,)={y*=dx"}. After that we study the
(usua) matrix representation of Dirac equation and show how it hides many features that are only
visible in the DHE.

Let{e,=d/dx*} and{e,=d/x'*}. The spinorial coframe fieldS, and= . (as defined in
the preceding sectigrare associated to the coordinate basksl basiss'(Z,) ={y*=dx*} and
S'(Ey)={y *=dx'#}, corresponding to the global Lorentz chartd o) and \M,¢’). The
DHE is written in the chartgx*) and(x'*) as

14
i W‘PEUJFQAM‘PEUHW)7271_”“1’5”7’0:0,
(67)
1y a ! ! ! ! ! ! r__
Y axruqfau,+un\PEu,71?’2 Y21~ mM¥z ,70=0,

where D= y* (9l x*) = y'* (9l x'*) and where ¥=,A,) and (‘PEU,,A;’L) are the coordinate
representations ofﬂEU,A) and (z/;Eu,,A), i.e., for anyxe M, we have

A=A (X" #)dx"#=A,(x*)dx*,
A;(X,O,X,l,Xlz,X"?'):LZAV(XO,Xl,Xz,Xa), (68)

(\PEU/U ' 71)|(X’O(X),X’l(X),X’Z(X),X'S(X)): (\PEUU 7l)|(xo(x),xl(x),xz(x),x3(x)) )
with U andU" the coordinate representationstoéindu’ [see Eq(42)] andL, is an appropriate
Lorentz transformation.

Now, taking into account that the complexification of the algeld& M*), i.e., C
®CL(M™*) is isomorphic to the Dirac algebta, ; (Appendix Q, we can think of all the objects
appearing in Eq967) as having values also i C¢ (M*). Multiply then, both sides of each one
of the Eqs.(67) by the following primitive idempotents fieldgconsidered as complexified
Hestenes spinor fieldsee Definition 8] of C® Cf(M*) [see Eq(D14) of Appendix D]
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fz,= 3(1+9)3(1+iv'yY),
(69)
fz,=3(1+y'9)3(1+iyy'?).
Next, look for a matrix representation it(4) of the resulting equations. We geising the
notation of Appendix D

W(im% + A (X)W (xH) —mW (x#) =0, (70
}/“(iajm +qu’L(x’”)\If’(x’“)—m\lf’(x"‘)=0, (71

whereW (x*),¥'(x'*) are the matrix representatioftsq. (D15), Appendix Oj of ¥z and¥z .

The matrix representations of the spinors are related by an equation analogous(ER)Eqf
Appendix E, except that now, these equations refer to fields{##g, ©=0,1,2,3 is the set of
Dirac matrices given by EdD13) of Appendix D. Of course, we arrived at the usual form of the
Dirac equation, except for the irrelevant fact that in general the Dirac spinor is usually represented
by a column spinor field, and here we end with &4 matrix field, which however has non-null
elements only in the first columfThe reader can verify without great difficulty that E§5) also

has a matrix representation analogous to (Ed) but with a set of gamma matrices differing from

the set{y*} by a similarity transformatior.

Equation(70), that is the usual presentation of Dirac equation in Physics textbooks, hides
several important facts. First, it hides the basic dependence of the spinor fields on the spinorial
frame field, since the spinorial frame&s,, E, are such thas'(E,)={y*} and s'(E./)
={y'#} are mapped on the same set of matrices, nafig{}. Second, it hides an obvious
geometrical meaning of the theory, as first disclosed by Hest&%hird, taking into account
the discussion in a preceding section, we see that the usual presentation of the Dirac equation does
not leave clear at all if we are talking about passive or active Lorentz gauge transformations.
Finally, since diffeomorphisms on the world manifold are in general erroneous associated with
coordinate transformations in many Physics textbooks(Hg.suggests that spinors must change
under diffeomorphisms in a way different from the true one, for indeed Dirac spinor fifus
also, DHSH are scalars under diffeomorphisms, an issue that we will discuss in another publica-
tion.

IX. CONCLUSIONS

In this paper we investigated how to define algebraic and Dirac—Hestenes spinor fields on
Minkowskispace—time. We showed first, that in general, algebraic spinors can be defined for any
real vector space of any dimension and equipped with a nondegenerated metric of arbitrary
signature, but that is not the case foirac—Hestenes spinorsThese objects exist for a four-
dimensional real vector space equipped with a metric of Lorentzian signature. It is this fact that
makes them very important objedtand gave us the desire to present a rigorous mathematical
theory for them, since as shown in Secs. V and VII the Dirac equation can be written in terms of
Dirac—Hestenes spinor fieldsr algebraic spinor fieldsWe observe that our definitions of alge-
braic and Dirac—Hestenes spinor fields as some equivalence classes in appropriate sets are not the
standard ones and the core of the paper was to give genuine motivations for them. We observe
moreover that the definitions of Dirac—Hestenes spinor fields and of the spin—Dirac operator given
in Sec. V although correct are to be considered only as preliminaries. The reason is that any
rigorous presentation of the theory of the spin—Dirac operéarin particular, on a general
Riemann—Cartan space—tijnean only be given after the introduction of the concepts of Clifford
and spin—Clifford bundles over these space—times. This is studied in a sequel®pap&ef. 155
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we show some nontrivial applications of the concept of Dirac—Hestenes spinor fields by proving
(mathematicalMaxwell-Dirac equivalences of the first and second kinds and showing how these
equivalences can eventually put some light on a possible physical interpretation of the famous
Seiberg—Witten equations for Minkowski space—time.

Noted addedAfter we finished the writing of the present paper and of Ref. 126, we learned
about the very interesting papers by Marchtitk'8There, a different point of view concerning
the writing of the Dirac equation using tensor fields is develogRdference 110, indeed, uses a
particular case of objects that we called extensors in a recent series of papetd’ 3 we will
discuss Marchuck papers elsewhere.
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APPENDIX A: SOME FEATURES ABOUT REAL AND COMPLEX CLIFFORD ALGEBRAS

In this appendix we fix the notations that we used and introduce the main ideas concerning the
theory of Clifford algebras necessary for the intelligibility of the paper.

1. Definition of the Clifford algebra  C€(V,b)

In this paper we are interested only in Clifford algebras of a vector spaeereserve the
notationV for real vector spaced/ of finite dimensiomn over a fieldF=R or C. Let q:V—I be
a nondegenerate quadratic form o¥emith values inl andb:V XV —I" the associated bilinear
form (which we call a metric in the cadée=RR). We use the notation

X-y=b(x,y)= 3(q(x+y)—aq(x)—q(y). (A1)

Let AV=3! ,A'V be the exterior algebra &f whereA'V is the (') dimensional space of the
i-vectors.A°V is identified withI' and AV is identified withV. The dimension of\V is 2". A
general elemenkKe AV is called a multivector and can be written as

x:_ZO (XY, (X)ieAlv, (A2)
where
{ )i:AV—=AV (A3)

is the projector inA'V, also called the-part of X.
Definition 14: The main involution or grade involution is an automorphism

“tAVa X—>Xe AV (A4)

such that

5<=k20 (= D¥(X)y. (A5)
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X is called the grade involution of X or simply the involuted of X
Definition 15: The reversion operator is the anti-automorphism

~:AVs X—>XeAV (AB)
such that
n
3’(22 (_1)1/2k(k71)<x>k, (A?)
k=0

X is called the reverse of X

The composition of the grade evolution with the reversion operator, denoteibycalled by
some authorge.g., Refs. 109, 141, 142he conjugation and is called the conjugate of. We
haveX = (X) = (X).

Since the grade and reversion operators are involutions on the vector space of multivectors,
we have thatX=X and X=X. both involutions commute with th&-part operator, i.e.(Xﬁ

= (%) and{X)=(X), for eachk=0,1,. .. n.
Definition 16: The exterior product of multivectors X and Y is defined by

K
<XDY>k:jZO XYY )i (A8)

for each k=0,1,...,n. Note that on the right-hand side there appears the exterior product of
j-vectors and(k—j)-vectors withO<j=<n. (We assume that the reader is familiar with the
exterior algebra. We only caution that there are some different definitions of the exterior product
in terms of the tensor product differing by numerical factors. This may lead to some confusions,
if care is not taken. Details can be found in Refs. 63 andl 64.

This exterior product is an internal composition law AN. It is associative and satisfies the
distributives lawgon the left and on the right

Definition 17: The vector spacdV endowed with this exterior product is an associative
algebra called the exterior algebra of multivectors

We recall now some of the most important properties of the exterior algebra of multivectors.

For anya,Bel, XeAV,

alB=pR0a=apB (product of ' numbers,

(A9)
aO0X=XOa=aX (multiplication by scalars
For anyX; e AV andY, e AV
X;OY\ = (= 1Y, 0X; . (A10)
For anyX,Ye AV
XOY =X0Y,
(A11)

X0y =X0.
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2. Scalar product of multivectors

Definition 18: A scalar product between the multivectory X AV is given by

X-Y=,§0 (X)i-(Y)i, (A12)

where (X)o-(Y)o=(X)o(Y)o is the multiplication in the field" and (X);-(Y); is given by Eq.
(A2), and writing

1 .
<x>k:HX'1'2“" kbil[jbiz"' b

i

(A13)
<Y>k:k_1!Yi1i2 iy Oy, by,
where{b,},k=1,2,... ,n is an arbitrary basis ol we have
T :
(X)k-<Y>k=WX'1'2 riylalz k(g Oby -+ by ) - (by Oby -+ by ), (Al4)
with
b, -bj, bi -bj,
(by, Oy, by)-(by Oy b= | (A15)
b; -bj, b; -bj,
It is easy to see that for any,Ye AV,
X-Y=X-Y,
~ ~ (A16)
X-Y=X-Y.

Remark 19: Observe that the definition of the scalar product given in this paper by Eq. (A12)
differs by a signal from the scalar product of multivectors defined, e.g., in Re©ut9definition
is a natural one if we start the theory with the euclidean Clifford algebra of multivectors of a real
vector space/. The euclidean Clifford algebra is fundamental for the construction of the theory

of extensors and extensor fieffs®®12#130

3. Interior algebras

Definition 20: We define two differemiontracted productfor arbitrary multivectors XY
e AV by

(XJY)-Z=Y(X0Z),
~ (A17)
(XLY)=X-(zOY),

whereZ e AV. The internal composition rulesand L will be called, respectively, the left and the
right contracted product

These contracted productsandL are internal laws oA V. Both contract products satisfy the
distributive laws(on the left and on the righbut they arenot associative.
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Definition 21: The vector spacAV endowed with each one of these contracted products
(either J or L) is a nonassociative algebra. They are called the interior algebras of multivectors
We present now some of the most important properties of the interior products:

(@ Foranya,Bel’, andXeAV,
alB=al B=ap (productin I,

aIX=XL a=aX (multiplication by scalars (A18)
(b) For anyX;e AlV andY, e A*V with j<k,
XY =(—D*DYLX . (A19)

(0 ForanyX;eAlV andY,e AV,
XJJYKZO, |f j>k,

XLY, =0, if j<k. (A20)
(d) For anyXy,Y.e AV
(e) ForanyveV andX,Ye AV
v J(XOY) = (v IX) Y+ X JY). (A22)

4. Clifford algebra C€(V,b)

Definition 22: The Clifford product of multivectors X and (denoted by juxtaposition) is
given by the following axiomatic:

(i) For all e e ' and X e AV:aX=Xa equals multiplication of multivectoX by scalara.
(i) ForallveV andXeAV:ivX=vIX+vOX andXv=XLv+X[v.
(i) ForallX,Y,Ze AV:X(Y2)=(XY)Z.

The Clifford product is an internal law oA V. It is associativgby the axiom(iii)] and
satisfies the distributives lawsen the left and on the rightThe distributive laws follow from the
corresponding distributive laws of the contracted and exterior products.

Definition 23: The vector space of multivectors oveendowed with the Clifford product is
an associative algebra with unity callét(V,b).

5. Relation between the exterior and the Clifford algebras and the tensor algebra

Modern algebra books give the

Definition 24: The exterior algebra of is the quotient algebraAV=T(V)/I, where TV) is
the tensor algebra o and ICT(V) is the bilateral ideal generated by the elements of the form
X®X, Xe V.

Definition 25: The Clifford algebra ofV,b) is the quotient algebraC¢(V,b)=T(V)/l,,
where |, is the bilateral ideal generated by the elements of the feenx— 2b(x,x), xe V.

We can show that this definition is equivalent to the one given abdWeen the exterior
algebra is defined a&4V=T(V)/l and the Clifford algebra as¢(V,b)=T(V)/l,, the (associa-
tive) exterior product of the multivectors in the terms of the tensor product of these multivectors
is fixed once and for all. We have, e.g., that xoy € V, xOy = 3(x®@y—y®Xx). However, keep in
mind that it is possible to define dassociativiexterior product inAV differing from the above
one by numerical factors, and indeed in Refs. 63—65, 127-130 we used another choice. When
reading a text on the subject it is a good idea to have in mind the definition used by the author, for
otherwise confusion may resyliThe space/ is naturallyembeddedn C¢(V,b), i.e.,

V;T(V)LT(V)/Ib:@(V,b),

and V=jei(V)CCl(V,b). (A23)
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Let C¢°(V,b) andCt(V,b) be, respectively, thg-images ofe” ;T2 (V) and®_ T?"1(V) in
C¢(V,b). The elements of¢°(V,b) form a subalgebra af¢(V,b) called the even subalgebra of
C¢(V,b). Also, there is a canonical vector isomorphidiy —C¢ (V,b), which permits to speak of
the embeddings\PVCC¢(V,b), 0<p=n, wheren is the dimension o/ (Ref. 20. [The iso-
morphism is compatible with the filtrations of the filtered algebraV, i.e.,
(A"V)O(ASV)C AT 5V.]

6. Some useful properties of the real Clifford algebras Cce(Vv,9)

We now collect some useful formulas which hold for a real Clifford algeffféV,g) and
which has been used in calculations in the text and AppendiRessthe reader can verify, many
of these properties are also valid for the complex Clifford algepras.

For anyv eV andXe AV,

vIX=L(vX—Xv) and XJv= 3(Xv—vX),

B B (A24)
vOX=(vX+Xv) and XOv= 3(Xv+uvX).
For anyX,Y eV,
X-Y=(XY)o=(XY)g. (A25)
For anyX,Y,ZeV,
(XY)-2=Y-(XZ2)=X-(ZY),
~ ~ (A26)
X-(Y2)=(YX)-Z=(X2Z)-Y.
For anyX,YeV,
XY=XY,
XY=YX. (A27)
Letl € A"V then for anyv eV andXe AV,
[(wOX)=(—1)"" T J(IX). (A28)

Equation(A22) is sometimes called the duality identity and plays an important role in the
applications involving the Hodge dual operatsee Eq.(53)].
For anyX,Y,ZeV,

XJ(YOZ)=(XOY)Jz,
(A29)
(XLY)LZ=XL(YDZ).
For anyX,Y eV,
X-Y=(XY),. (A30)
For X, e A"V, Y,e AV we have

XrYs:<XrYs>|r—s\ + (XrYs>|r—s|+2+ (X Ye)rts (A31)
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(We observe also that whelki=R and the quadratic form is Euclidean th&nY is positive
definite)

APPENDIX B: REPRESENTATION THEORY OF THE REAL CLIFFORD ALGEBRAS R, 4

The real Clifford algebrasl,, ; are associative algebras and they are simple or semisimple
algebras. For the intelligibility of the present paper, it is then necessary to have in mind some
results concerning the presentation theory of associative algebras, which we collect in what fol-
lows, without presenting proofs.

1. Some results from the representation theory of associative algebras

LetV be a set and a division ring. Give to the séf a structure of finite-dimensional linear
space oveK. Suppose that dipV/ =n, wheren e Z. We are interested in what follows in the cases
whereK=R, C or H. WhenK=R, C or H, we callV a vector space ovdt. WhenK=H it is
necessary to distinguish between right or léftinear spaces and in this cagewill be called a
right or left H-module. Recall thatl is a division ring(sometimes called a noncommutative field
or a skew fieldl and sincell has a natural vector space structure over the real field,lthisralso
a division algebra.

Let dimz V=2m=n. In this case it is possible to give the following.

Definition 26: A linear mapping

JV—V, (B1)
such that
J?=-1dy, (B2)

is called a complex structure mapping
Definition 27: The pair ¥,J) will be called a complex vector space structure and denote by
V. if the following product holds. Lets z=a+ib and letve V. Then

zv=(a+ib)v=av+bJv. (B3)

It is obvious that dim=m/2.

Definition 28: LetV be a vector space ovét. A complexificationof V is a complex structure
associated with the real vector spade> V. The resulting complex vector space is denoted by
Letv,we V. Elements ol/" are usually denoted by=v+iw, and if Cs z=a+ib we have

zc=av—bw+i(aw+bv). (B4)

Of course, we have that dinv“=dimj V.
Definition 29: AH-module is a real vector spadé carrying three linear transformatian, J,
and K each one of them satisfying

12=3?=—1ds,
(BS)
J=-JI=K, JK=—-KJ=I, Kl=-IK=J.
Definition 30: Any subsetd A such that
ayel VaeAVyel,
(B6)

y+odel Vi,del

is called a left ideal ofA.
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Remark 31: An analogous definition holds for right ideals where Eq. (B6) reads|,Va
e A, Yyel, for bilateralideals where in this case Eq. (B6) readglac|,Va,be A, Vyel.

Definition 32: An associativel algebra on thefield ' (R or C) is simpleif the only bilateral
ideals are the zero ideal and itself.

We give without proofs the following theorems.

Theorem 33: All minimal left (respectively, right) ideals of are of the form 3= Ae (respec-
tively, e4), where e is a primitive idempotent gf.

Theorem 34: Two minimal left ideals of4, J=.Ae and J=.4e’ are isomorphicif and only if
there exist a non-null Xe J’ such that J=JX'.

We recall that e= A is anidempotentelement if é=e. An idempotent is said to barimitive
if it cannot be written as the sum of two nonzero annihilating (or orthogonal) idempatent
e+e;+e,, with e;e,=e,e,;=0 and €=e;, es3=e,.

Not all algebras are simple and in particular semisimple algebras are important for our con-
siderations. A definition of semisimple algebras requires the introduction of the concepts of nil-
potent ideals and radicals. To define these concepts adequately would lead us to a long incursion
on the theory of associative algebras, so we avoid to do that here. We only quote that semisimple
algebras are the direct sum of simple algebras. Then, the study of semisimple algebras is reduced
to the study of simple algebras.

Now, let A be an associative and simple algebra on the fleld? or C), and letS be a
finite-dimensional linear space over a division riRg .

Definition 35: A representatiomf A in Sis a K algebra homomorphisrfwe recall that a
K-algebra homomorphism is B-linear mapp such thatVX,Y e A, p(XY)=p(X)p(Y)] p: A
—E=EndS (E=EndiS=Hom(S,9) is the endomorphism algebra & which maps the unit
element of4 to 1dz. The dimensiorkK of Sis called thedegreeof the representatian

The addition inS together with the mappingdXS—S, (a,x)—p(a)x turns S in a left
A-module, called the leftepresentation modul¢We recall that there are left and right modules,
so we can also define right modular representationsi diy defining the mappingx.A—S,
(x,a)—xp(a). This turnsS in a right 4-module, called the rightepresentation modulg

Remark 36: It is important to recall that whet=H the usual recipe foHom;(S,S) to be a
linear space ovetl fails and in generaHomy(S,S) is considered as a linear space overwhich
is the center of.

Remark 37: We also have that.if is an algebra ovetl’ and S is an.4-module, thert can
always be considered as a vector space dvemnd if e A, the mappingy:a— y, With x(9)
=as, se S, is a homomorphisl— E=End:S, and so it is a representation of in S. The study
of A modules is then equivalent to the study of theepresentations ofA.

Definition 38: A representatiomp is faithful if its kernel is zero, i.e.p(a)x=0Vxe S=a
=0. The kernel of is also known as thannihilatorof its module

Definition 39: p is said to besimple or irreducible if the only invariant subspaces pfa),

Vae A, are S and{0}.

Then, the representation module is also simple. That means that it has no proper submodules.

Definition 40:p is said to be semisimple, if it is the direct sum of simple modules, and in this
caseS is the direct sum of subspaces which are globally invariant under), Vae A.

When no confusion arisgga)x may be denoted bg-x, a*x or ax.

Definition 41: Two.4-modulesS and S’ (with the exterior multiplication being denoted,
respectively, by and *) are isomorphicif there exists a bijectiorp:S— S’ such that

e(x+ty)=o(X)+o(y), VYXyeS
plax)=a*e(x), VaeA,
and we say that representatignand p’ of A are equivalent if their modules are isomorphic

This implies the existence of B-linear isomorphismg:S—S' such thatgep(a)=p’(a)
op, Yae A or p'(a)=gep(a)ee L. If dim S=n, then dimS'=n.
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TABLE |. Representation of the Clifford algebr&s , as matrix algebras.

p—q

mod 8 0 1 2 3 4 5 6 7
H(z[nIZ]) I ‘[(z[nIZ]fl)

prq R(z[nIZ]) o ]R(z[nIZ]) ‘[:(z[n/Z]) H(Z[nlz]fl) e H(z[n/Z]fl) C(Z[n/Z])
R(z[nIZ]) H(z[ﬂlZ]fl)

Definition 42: A complex representatiorof A is simply a real representatiorp:.A
—Homg(S,S) for which

p(X)eJ=Jop(X), VXeA. (B7)

This means that the image pfcommutes with the subalgebra generated g} ~ C.
Definition 43: A quaternionic representation gfis a representatiom: A—Homk(S,S) such
that

p(X)el=lep(X),  p(X)eJ=Jop(X), p(X)cK=Kep(X), VXeA. (B8)

This means that the representatioias a commuting subalgebra isomorphic to the quaternion
ring.

The following theorer?1%is crucial.

Theorem 44 (Wedderburit If A is simple algebra ovei then A is isomorphic tolD(m),
whereD(m) is a matrix algebra with entries i) (a division algebra), and m anb are unique
(modulo isomorphisms)

Now, it is time to specialize our results to the Clifford algebras over the fiel®R or C. We
are particularly interested in the case of real Clifford algebras. In what follows we Hg (
=(R",g). We denote byRP'% a real vector space of dimensior=p+ g endowed with a nonde-
generate metrig:R"XR"—R. Let{E;}, (i=1,2,...,n) be an orthonormal basis &9,

+1, i=j=12,...,p
o(E Ej)=gij=g;=y ~1, i=j=ptl...p+tg=n (B9)
0, i#].

Definition 45: The Clifford algebrd?{p,qzce(Rp'q) is the Clifford algebra oveR, generated
by 1 and the{E;} (i=1,2,...,n), such that E=q(E;)=g(E; ,E;), EiE;=—-E;E (i#]), and
E.E,...E,#*x1.

Rp 4 is obviously of dimension 2and as a vector space it is the direct sum of vector spaces
AXR" of dimensions {),0<k=n. The canonical basis oA*R" is given by the elements,
=B Eop 1Sap<- <a=n. The elemene;=E;--- EneAkR”Cprq commutes § odd
or anticommutesr( even with all vectorsg, - -- E,e A'R"=R". The centeCt, g is APR"=R if
n is even and it is the direct sum®R"@ A°R" if n is odd.

All Clifford algebras are semisimple. ff+q=n is even,R, 4 is simple and ifp+qg=n is odd
we have the following possibilities.

@ Rpqis simple—~c?=—1—p—q+#1 (mod 4)-center ofRp, 4 is isomorphic toC;

(b) Ry 4 is not simple(but is a direct sum of two simple algebras)ﬁ: +1—p—q=1
(mod 4)-center ofR,, ; is isomorphic toR& R.

Now, for R, 4 the division algebra$) are the division rings®t, C or H. The explicit isomor-
phism can be discovered with some hard but not difficult work. It is possible to give a general
classification off all realand also the complexClifford algebras and a classification table can be
found, e.g., in Refs. 141 and 142. Table | is reproduced[@ah?] means the integer part of2.

Now, to complete the classification we need the following theot®m.

Theorem 46 (Periodicity:
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Rn+g=Rno®Rgo, Ropis=Ron®Rog,

(B10)
Rp+8,q:Rp,q®R8,0' Rp,q+8:Rp,q®RO,8-

Remark 47: We emphasize here that since the general results concerning the representations
of simple algebras over a fielll applies to the Clifford algebra$, , we can talk about real,
complex or quaternionic representation of a given Clifford algebra, even if the natural matrix
identification is not a matrix algebra over one of these fields. A case that we shall need is that
Ry z=I(2). But it is clear thatR, 3 has a complex representation, for any quaternionic represen-
tation of R, 4 is automaticallycomplex,once we restrict.C H and of course, the complex dimen-
sion of anyH-module must be even. Also, any complex representatidhy gfextends automati-
cally to a representation of® R, .

Remark 48: Now, C® R, , is an abbreviation for thecomplex Clifford algebracCt, ,=C
®R, 4, i.€., it is the tensor product of the algebrésand R, ;, which are subalgebras of the
finite-dimensional algebr&¢ . , overC.

For the purposes of the present paper we must keep in mind that

ROJZC,
]RO,ZZH!

R3,o: G(2),

(B11)
Ry 3= H(2),

R31=R(4),
Ry 1=C(4).

R3is called the Pauli algebr&,; s is called thespace-time algebra,R; ; is calledMajorana
algebra andi, ; is called theDirac algebra. Also the following particular results have been used
in the text and below:

R #~R3,=Rso, R} ~Ris,

(B12)
R4’1=\C®R3’1, R4’1=‘C®R3’1,

which means that the Dirac algebra is the complexification of both the space—time or the Majorana
algebras.

Equation (B11) show moreover, in view of Remark 7 that the space—time algebra has a
complexification matrix representation @it4). Obtaining such a representation is fundamental for
the present work and it is given in Appendix D.

2. Minimal lateral ideals of R,

It is important for the objectives of this paper to know some results concerning the minimal
lateral ideals ofR, ;. The identification table of these algebras as matrix algebras helps a lot.
Indeed, we haV® the following theorem.

Theorem 49: The maximum number of pairwise orthogonal idempotents(im) (wherelk
=R, Cor H) is m.

The decomposition oR, , into minimal ideals is then characterized by a spectrafegf ;}
of idempotents elements &f, , such that

@ Z{iepqi=1,
(b)  epqi€pq k= Sikepq, -
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(¢) the rank ofe,q; is minimal and nonzero, i.e., is primitive.

By rank ofe,q ; we mean the rank of th& R”'9 morphismee, ; : ¢ e, ; . Conversely, any
¢ elpq; can be characterized by an idempotegy ; of minimal rank# 0, with ¢= ey ; .

We now need to know the following theorelft.
Theorem 50: A minimal left ideal ofR, 4 is of the type

I R

pg— p,a€pqg>

where
epqz%(1+eal)---%(1+eak) (B13)

is a primitive idempotent dft, , and were &, "8, are commuting elements in the canonical

basis of R, ; generated in the standard way through the elements of the Bassch that
(eai)zzl, (i=1,2,... k) generate a group of orde, k=q—rqy_p, and r; are the Radon
Hurwitz numbers, defined by the recurrence formylgge=r;+4 and

i 0 1 2 3 4 5 6 7

ri 0 1 2 2 3 3 3 3
(B14)

Recall thatR, ; is a ring and the minimal lateral ideals are modules over thelting. They
are representation modulesf R, ;, and indeed we havgecall the table aboyethe following
theorem*#

Theorem 51:If p+q is even or odd with pg#1 (mod 4), then

Rp,q=Homg(I,q)=K(m), (B15)
where (as we already knovd=R, C or H. Alsg,
dimg(lpg)=m (B16)
and
K=eK(m)e, (B17)

where e is the representation gf, in K(m).
If p+g=n is odd, with p-q=1 (mod4), then

Rp,q=Homg (1 ,q) =K(m)&K(m), (B19)
with
dimg(1,g)=m (B19)
and
ekK(me=RaR
or (B20)

eK(m)e=HaeH.
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With the above isomorphisms we can immediately identify the minimal left idedls giwith the
column matrices oK(m).

Algorithm for finding primitive idempotents 8f, ,: With the ideas introduced above it is now
a simple exercise to find primitive idempotents Iof ;. First we look at Table | and find the
matrix algebra to which our particular Clifford algelitg , is isomorphic. Supposk,, , is simple.
(Once we know the algorithm for a simple Clifford algebra it is straightfoward to devise an
algorithm for the semisimple Clifford algebras.et Ry, ;=K(m) for a particulark andm. Next
we take an elemere, e{ea} from the canonical basige,} of Ry, 4 such that

e =1, (B21)

then construct the idempoterd,,=(1+e, )/2 and the ideall =R, 4e,q and calculate

dimg(l,q). If dimg(l,q)=m, thenepq is primitive. If dimg(l,4) #m, we choosee,, € {€e,} such
thate,, commutes withe,, ande =1 [see Theorem 39 and construct the idempogggt= (1

+e l)(1+e 1)/4] If drmk(l 9= m thene q IS primitive. Otherwise we repeat the procedure.

According to the Theorem 39 the procedure is finite.
These results will be used in Appendix D in order to obtain necessary results for our presen-
tation of the theory of algebraic and Dirac—Hestenes spifard spinors fields

APPENDIX C: R;

p.q» CLIFFORD, PINOR AND SPINOR GROUPS

The set of the invertible elements I8f , constitutes a non-Abelian group which we denote by
]ngq. It acts naturally ori},  as an algebra homomorphism through its adjoint representation

Ad:R} ;—Aut(R, o);u—Ady, with Ady(x)=uxu " (Cy
Definition 52: TheClifford—Lipschitz group is the set
[pq={ueR] |VxeRP9uxu~te R} (C2

Definition 53: The sef‘+ =1y qN R, q is calledspecialClifford—Lipshitz group
Definition 54 ThePrnor group Prgq is the subgroup of’,,  such that

Pin, ;={uel', 4IN(u)=*+1},

_ (€3
N:Rp q—Rp,q,N(X)=(xX)g.
Definition 55: TheSpin group Spip is the set
Spin, q={uel 4N(u)=*+1}. (Co
It is easy to see that Spjg is not connected.
Definition 56: The grouSpirf , is the set
Spirf q={uelp gIN(u)=+1}. (CH

The superscripe, means that Spﬁh is the connected component to the identity. We can
prove that Splgrq is connected for all pairs p(q) with the exception of Spfif1,0)
=Spirf(0,1).

We recall now some classical restiffsassociated with the pseudo-orthogonal groups Of
a vector spac&”? (n=p+q) and its subgroups.

Let G be a diagonah X n matrix whose elements are

G,=diag1,, ..,~1,-1,...—1), (C6)
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with p positive andq negative numbers.
Definition 57: Q, 4 is the set of iXn real matricesL such that

LGLT=G, detL?=1. (C7

Equation(C7) shows that Q is not connected.
Definition 58: SQ 4, the special (proper) pseudo-orthogonal group is the set @hnreal
matricesL such that

LGLT=G, detL=1. (C8

Whenp=0 (q=0) SQ, 4 is connected. However, $Q is not connected and has two con-
nected components fqu,q=1. The group SQq, the connected component to the identity of
S0, 4 will be called the speciarthocronouspseudo-orthogonal grouplhis nomenclature comes
from the fact that S€(1,3)= L/, is the specialprope) orthochronous Lorentz group. In this case
the set is easily defined by the conditibﬁ> + 1. For the general case see Ref. 120.

Theorem 59:Ad|pinp‘q:Pinp,q—>0p,q is onto with kernel, . Ad|spiqpvq:Spirb,q—>SOp,q is onto

with kernelZ,. Ad|spi,€q:8pirﬁ’qHSC§’q is onto with kernelZ,. We have

Pin, Spin, 4 Spirﬁyq
Opa=—z+ SGa=—7 " SGHa=—7" (C9)

The group homomorphism between %)(and SG(p,q) will be denoted by

L: Spirﬁlqasoglq. (C10

The following theorem that first appears in Porteous B&ak very important(In particular,
when Theorem 49 is taken into account together with some of the coincidence between the
complexifications of some low dimensions Clifford algebras it becomes clear that the construction
of Dirac—Hestenes spinofand its representation as in E§20)] for Minkowski vector space has
no generalization for vector spaces of arbitrary dimensions and signatdres.

Theorem 60 (Porteous For p+q<5, Spirf(p,q) ={ue R, oluu=1}.

Lie algebra of Spirf 5: It can be showtf® that for eachue Spirf 5 it holds u==e", F
e A’R*3CR; zandF can be chosen in such a way to have a positive sign inE&8), except in
the particular cas&?=0 whenu=—eF. From Eq.(C9) it follows immediately that the Lie
algebra of Spifi; is generated by the bivectoFse A?R'3CR; 3through the commutator product.
More details on the relations of Clifford algebras and the rotation groups may be found, e.g., in
Refs. 7 and 170.

APPENDIX D: SPINOR REPRESENTATIONS OF Ry;, R};, AND R4

Let bo={Eq,E;,E;,E3} be an orthogonal basis df'*CR;3, such thatE,E,+E,E,
=27,,, with »,,=diag(+1,—-1,—1,—1). Now, with the results of Appendix B we can verify
without difficulties that the elements e’, €" Ry 3,

e=3(1+ Eo), (D1)
e’ = 3(1+E3Ey), (D2)

e"= %(1+ E1E2E3), (D3)
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are primitive idempotents oR; ; The minimal left ideals)=R; s, |'=R; £, |"=R; £" are
right two dimension linear spaces over the quaternion field., lle=ell=eR, ). According to
a definition given originally in Ref. 150 these ideals are algebraically equivalent. For example,
e'=ueu !, with u=(1+E3) ¢y 3.
Definition 61: The element® e R, 53(1+E,) are calledmotherspinors
The above denomination has been givwith justice by Lounestd:®® It can be showf*®®
that eachd can be written

D= yne+ yrEsE e+ PsEsEqe+ E Epe= Z s, (D4)

S]_: e, 32: E3Ele, 33: E3Eoe, 34: ElEoe (DS)

and where they; areformally complex numbers, i.e., eagh=(a;+b;E,E;) with a;, b;e R and
the set{s;,i=1,2,3,4 is a basis in the mother spinors space.

We recall from the general result of Appendix C that Rit¥,, =0, 3, Spin 3/7, =S50, 3,
Spirt; 47, =S, 5, and Spifi 7~SI(2() is the universal covering group @f, =SC 5, the spe-
cial (prope) orthocronousLorentz group.

In order to determine the relation betweéty; and R;,; we proceed as follows: let
{Fo,F1,F>,F3,F4} be an orthonormal basis &%, ; with

—F3=Fi=F5=F5=F3=1F\Fg=—FgFA(A#B;A,B=0,1,2,3,9.
Define the pseudoscalar
i=FoFF,FsF,, i2=—1, iIFA=FAi, A=0,1,2,3,4. (D6)
Define
£,=F,Fy. (D7)

We can immediately verify thaf,&,+&,£,=27,,. Taking into account thdlﬁlyazngl we can
explicitly exhibit here this isomorphism by considering the mah ;— R, generated by the
linear extension of the maj: R13—>R41, i (FM) E,=F,F4, where&, (1n=0,1,2,3) is an
orthogonal basis of*3. Alsoj(1y 3) 1]R+ where k, and 1R+ are the |dent|ty elements iy 3

andR;,. Now consider the primitive |dempotent Hfl = R4 18

en=i(e)=3(1+&) (D8)

and the minimal left ideal 4 1= R, 1€4;.

In what follows we usgwhen convenientfor minimal idempotents and the minimal ideals
generated by them, the labels involving the notion of spinorial frames discussed in Sec. Il. Let
then, E, be a fiducial spinorial frame. The elemefhiis what follows we uséwhen convenient
for minimal idempotents and the minimal ideals generated by them, the labels involving the notion

of spin frames discussed in Sec] Bz elyqcan be written analogously ® € R; 53(1+E,) as

Z= =2 75, (D9)
where

S1=€41, $=E18€a1, S3=EsE0€s,  Sa=Er€€m (D10)

and where
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zZi=a;+ EZglbi

are formally complex numbers,;, b; e R.
Consider now the eIemerﬁtE0 eRyq

f50=e41%(1+lc5'152)=%(1+50)%(1+I5152), (Dll)

with i defined as in Eq(D6).
SincefEOR“,leO:CfEO: fEO‘C it follows thatho is a primitive idempotent oR, ;. We can
easily show that eactbz eIz =R,fz can be written

V== ifi, el

(D12)

fl:fEO’ f2:_5153f f3:g380f501 f4:glgof50

—
=0’

with the methods described in Refs. 67 and 68 we find the following representatiof) ifor the
generators,, of Ry ;=R 3:

12 0 ) (0 _(Ti)
—Eoy=| , (D13)

f=r0= g _q, 0

wherel, is the unit 2x2 matrix ando; (i=1,2,3) are the standard Pauli matrices. We immedi-
ately recognize the-matrices in Eq(D13) as the standard ones appearing, e.g., in Ref. 13.

The matrix representation of z elz, will be denoted by the same letter without the index,
i.e.,\PEOH\I’E‘C(4)f, where

f:%(1+iyly2) i=y—1. (D14)
We have
1 0 0 O
Yy, 0 0 O .
V= ys 0 0 0| YieC. (D15)
Yo, 0 0 O

Equations(D13), (D14), and(D15) are sufficient to prove that there are bijections between the
elements of the idealB; 33(1+Eg), Ry13(1+ &), andRy 13(1+ &) 3(1+iE,E,).
We can easily find that the following relation exist betweﬁh_:oem,lfao and Zz,
e Ry13(1+ &), Eo=(Ug,20) being a spinorial framésee Sec.)|
N =ZEO%(1+i€152). (D16)

0

DecomposingZE0 into even and odd parts relative to tAg-graduation ofJR?l'l:Rm, Zz,
=272 +ZL we obtainZZ =Z% & which clearly shows that all information @z is contained
in Z%o. Then,

=
=
=4

7% F(1+E)F(LHIEE). (D17)

0
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Now, if we take into accou®® that R} ;3(1+ &) =RIG3(1+ &) where the symbolR3)
meansRg%=R? ;~Rs o we see that eachiz e Ry13(1+&o) can be written

Zz ==, 3(1+ &), ¢=z,eRa=R1s. (D18)
Then settingZ%oz 1/;50/2, Eq.(D18) can be written

Wz, ==,3(1+E) 3 (1+i6E) = zgo 2(14i5E). (D19

0

The matrix representation afz and ¢z in C(4) (denoted by the same letter in boldface
without indeX in the spin basis given by ED12) are

b~ W3 Y g —¢3 0 O
o WY s — 3 o ¢y 0 0
v= : °, z= : (D20)
Vs Yy 1 Y vz Yy 0 O
ba —Y3 W Y s —¢3 0 0

APPENDIX E: WHAT IS A COVARIANT DIRAC SPINOR (CDS)

As we already knowaO:%(lJrEO) 3(1+i&,.&,) [Eq. (D12)] is a primitive idempotent of
Ry 1=C(4). If ue Spin(1,3)_Spin(4,1) then all ideallsElJ:IEOu*l are geometrically equivalent
to Iz, Now, let S(E,)={€,¢,&;, &} and S(E,)={¢; ¢, &, ¢} with s(E,)
=ugEo)u, (Ey)=U""1(Eg)u’ be two arbitrary basis foR'*CR, ;. From Eq.(D13) we
can write

Iz 5 Wz =2 ¥if;, a”dlaﬁ‘l’auFZ Pl (ED
where
fi=fz, fo=—€€fz, f3=C&fz, f=¢Efz
and
fi=fz, fo=—€1€sfz,, f3=¢53€fz ,, fa=€ €ofz .

SinceWz =Wz (u'"'u)~*, we get
Wz, =2 iU T T = 3 Sl Tihe= X i
Then
Y= 2 Sidu™ g, (E2

whereS;, (u~tu’) are the matrix components of the representatiofi(# of (u~'u’) e Spirf, .
As proved in Refs. 67 and 68 the matric&u) correspond to the representati@f 29
@ D2 of SL(2,0)=Spirf 5.
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We remark that all the elements of the $E§u} of the ideals geometrically equivalenttg

under the action ofi e Spirf] ;C Spirf; ; have the same imade=C(4)f wheref is given by Eq.
(D11), i.e.,

f=3(1+y0)(1+iyiyn), i=v-1, (E3
wherey,, n=0,1,2,3 are the Dirac matrices given by EQ14).
Then, if
¥:R41—C(4)=End C(4)f),
(E4)
X—=y(X):C(4)f—C(4)f
it follows that
YE€)=y(€,), y(f)=x(f) (E9
for all {&,}, {¢]} such that®, = (u’"'u)€,(u’~*u)~*. Observe thaall information concerning
the geometrical images of the spinorial franieg, E,, ..., unders disappear in the matrix
representation of the idealgu, lg e in C(4) since all these ideals are mapped in the same

ideal | =C(4)f.

With the above remark and taking into account the definition of algebraic spinors given in Sec.
IIC and Eq.(E2) we are lead to the following.

Definition 62: A covariant Dirac spinor (CDS) foR'? is an equivalence class of pairs
(ET, W), whereE|] is a matrix spinorial frame associated to the spinorial frag through the
S(u~t) e DW20g D12 representation oSpirf 5, ue Spirf ;. We say thatV, W' e C(4)f are
equivalent and write

1t

(EqW)~(EL V) (E6)

if and only if
V'=Su' "u¥, usEul=u's(E,)u’ "L (E7)

Remark 63: The definition of CDS just given agrees with that given in Ref. 40 except for the
irrelevant fact that there, as well as in the majority of Physics textbook’s, authors use as the space
of representatives of a CDS a complex four-dimensional spidastead of = C(4)f.
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