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We report the theoretical investigations on the giant magnetocaloric compound MnFeP0.45As0.55. The mag-
netic state equation used takes into account the magnetoelastic effect that leads the magnetic system to order
under first order paramagnetic-ferromagnetic phase transition. The model parameters were determined from the
magnetization data adjustment and used to calculate the magnetocaloric thermodynamic quantities. The theo-
retical calculations are compared with the available experimental data.

DOI: 10.1103/PhysRevB.70.094410 PACS number(s): 75.30.Sg, 75.40.Cx, 74.25.Ha, 65.40.2b

I. INTRODUCTION

In the last five years much scientific and technological
efforts have been focusing new materials that present the
magnetocaloric effect, especially near room temperature, due
to the possibility of the use of these materials as refrigerants
in magnetic refrigeration.1,2 The interest in this research area
considerably increased since 1976 when G. V. Brown3 de-
scribed a near-room temperature magnetic refrigerator,
which when compared with conventional gas compression/
expansion engines showed potential advantages in energy
savings and elimination of harmful CFCs and HCFCs. How-
ever, further improvements were necessary, mainly in refrig-
erant substances, and in 1997, a giant magnetocaloric effect
was discovered4 in Gd5sSi2Ge2d.

Recently, O. Tegus, and co-workers reported the giant
magnetocaloric effect in the MnFeP0.45As0.55 (Ref. 5) com-
pound. Both these materials, Gd5sSi2Ge2d and
MnFeP0.45As0.55, present the essential requirement, for a re-
frigerant material, of the reversibility of the ferromagnetic-
paramagnet phase transition. Also, the origin of the giant
magnetocaloric effect is due to the strong first order mag-
netic phase transition that both materials present. This point
can be easily understood by the Maxwell thermodynamic
relation that predicts high entropy changes when the magne-
tization presents discontinuity at the critical temperature. The
investigation performed by Morellon et al. in
Gd5sSi0.45Ge0.55d4 leads to the conclusion that the magnetic
first order phase transition occurs coupled to an
orthorhombic-monoclinic crystallographic phase
transformation.6 Differently, in MnFeP0.45As0.55 the magneti-
zation discontinuity(first order transition) is not associated
with a structural transition.

In order to study the origin of the first order magnetic
phase transition, Bean and Rodbell7,8 proposed a model to
describe the first order magnetic phase transition considering
that the exchange interaction parameter(or Curie tempera-
ture in molecular field approximation) is a strong function of
the inter-atomic spacing. This model was proposed to explain
the experimental evidences of a first order transition in the
MnAs compound.7

In this work, we theoretically describe the two thermody-
namic quantities which characterize the magnetocaloric po-

tential, namely, the isothermal magnetic entropy change,
DSmag, and the adiabatic temperature change,DTad, observed
upon changes of the external magnetic field for the
FeMnP0.45As0.55 compound. The model used is appropriate
because of the strong magnetoelastic interactions observed in
this compound around the magnetic transition.

The MnFeP1-xAsx compounds present hexagonal
crystallographic structure for 0.15,x,0.66.9 Below
and above these limits, orthorhombic and tetragonal
structures are observed, respectively. In the hexagonal
crystallographic phase, decreasing temperature from, e.g.,
350 K, three kinds of magnetic phase transitions appear,
namely P-AF, P-AF-F, and P-F, depending on the As concen-
tration (here P=paramagnetic, AF=antiferromagnetic, and
F=ferromagnetic). The last case, i.e., P-F, occurs in the com-
pound MnFeP0.45As0.55 to be modeled in this work. The giant
magnetocaloric effect is associated to the strong magneto-
elastic interaction observed in the temperature dependence of
thea andc hexagonal lattice parameters.9–11 It is notable that
for this compound the magnetic transition, though of first
order, is not accompanied by a structural transition, but there
are only great and abrupt changes in the values of the lattice
parameters, keeping the same crystallographic symmetry. In
this case a low hysteresis is expected for the transition, as is
observed experimentally, and this is one of the interesting
features of this compound for the magnetic refrigeration
technology.

In this work the temperature dependence of magnetization
was adjusted with the model and the best model parameters
were determined. The magnetocaloric effect for the
MnFeP0.45As0.55 compound, expressed as bothDSmag and
DTad, is theoretically predicted and compared with available
experimental data on the literature.

II. THE MODEL

The dependence of the exchange interaction on the inter-
atomic distance is phenomenologically considered via the
dependence of the critical temperature on the volume change
in the following way:

TC = T0s1 + bvd. s1d

In this equationv=sV−V0d /V0 is the cell deformation,b
measures the slope of the critical temperature curve on the
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cell, andT0 is the magnetic ordering temperature in the ab-
sence of the deformation.

Without external pressure, the Gibbs free energy, for a
ferromagnetic system described by the Zeeman effect, distor-
tion and exchange interactions, under the molecular field ap-
proximation, is given by

G = −
3

2
S J

J + 1
DNkBTCs2 − HgmBJNs +

1

2K
v2 − TS.

s2d

In this equationJ is the ion total angular momentum in the
lattice,N is the number of magnetic ions per unit volume,kB
is the Boltzmann’s constant,mB is the Bohr magneton,s
=M /gmBJN is the normalized magnetization at absolute tem-
peratureT, g is the Landé factor,H is the external magnetic
field, K is the compressibility, andS is the magnetic entropy.

The above free energy minimizes under the deformation

v =
3

2

J2

JsJ + 1d
NkBKT0bs2. s3d

Using (3) into (2) and minimizingG with respect tos, the
magnetic state equation is obtained as in Zach and co-
workers paper.12

s = BJsYd =
2J + 1

2J
cot ghF s2J + 1dY

2J
G −

1

2J
cot ghS Y

2J
D ,

s4d

where

Y =
1

T
F3T0S J

J + 1
Ds +

gmBJ

kB
H +

9

5
S s2J + 1d4 − 1

f2sJ + 1dg4 DT0hs3G .

s5d

HereBJ is the Brillouin function. The last term in the argu-
ment of the Brillouin function comes from the elastic defor-
mation. The parameterh controls the order of the magnetic
phase transitions and is given by

h =
5

2

f4JsJ + 1dg2

fs2J + 1d4 − 1g
NkBKT0b2. s6d

From the Landau theory of phase transitions, the condition
h.1 leads the magnetic system to undergo a first order
phase transition. Otherwise, ifh,1, the second order mag-
netic phase transition occurs. It is worth noticing that ifh
=0 the relation(4) reduces to the regular magnetic state
equation where the Brillouin function presents only the lin-
ear term ins and the magnetic phase transition is always of
second order kind and occurs atT=T0=TC.

The magnetic entropy can be obtained from the usual re-
lation

SmagsT,H;T0,hd = R . FlnsZd + T
] lnsZd

] T
G , s7d

whereR is the gas universal constant andZ is the partition
function which, in our case, is given by

Z =

sinhFS2J + 1

2J
DYG

sinhF Y

2J
G . s8d

The temperature and magnetic field dependence of the
magnetic entropy is not trivial, since for a given set of model
parameters sT0,hd, the magnetic state equation,s
=ssT,H ,sd, relation 4, must be solved self-consistently.

After the magnetic entropy calculation, the isothermal
magnetic entropy changes,DSmag, that occur for changes in
the external magnetic field, can be directly determined

DSmagsTd = SsT,H2d − SsT,H1d. s9d

In order to study the adiabatic temperature change, the
lattice entropy, which will be considered in the Debye ap-
proximation, must be included in the total entropy,StotsT,Hd.
The other contributions to the total entropy of the magnetic
system will be neglected.

StotsT,Hd = SmagsT,Hd + SlatsTd, s10d

with

SlatsTd = − 3R lnF1 − expS−
QD

T
DG

+ 12RS T

QD
D3E

0

QD/T x3dx

expsxd − 1
. s11d

In this equationQD is the Debye temperature. The adiabatic
temperature change(adiabatic magnetocaloric effect), DTad,
that occurs for changes in the external magnetic field is given
by

− DTad= T1 − T2. s12d

This quantity, for a given pair of curvesStotsT,H1d and
StotsT,H2d, is determined by the adiabatic process condition,
StotsH1,T1d=StotsH2,T2d.

We used a small piece of MnFeP0.45As0.55 to measure the
low temperature specific heat, using the relaxation method
and a Quantum Design PPMS equipment. From the low tem-
perature part of the measured curve, we obtained a Debye
temperature of 158.5 K for the compound.

III. APPLICATION OF THE MODEL

Entering the model parametersh andT0 into relation(4),
the temperature dependence of the magnetization can be cal-
culated for a magnetic system in which the magnetic ion is
characterized by the atomic factorsg and J. In order to re-
produce the saturation magnetization of about 125 Am2 kg−1

reported in Ref. 5, we have put, in relation(4), the external
magnetic fieldH=1 T to be consistent with the experimental
data and assumedJ=3/2 andg=2.48 as effective values of
the total angular momentum and Landé factors of Mn in the
crystal. The best model parameters obtained wereh=1.4 and
T0=296 K. Figure 1 shows the calculated and the experi-
mental data5 of the temperature dependence of the magneti-
zation in MnFeP0.45As0.55.

P. J. VON RANKEet al. PHYSICAL REVIEW B 70, 094410(2004)

094410-2



Using the determinedh and T0 model parameters into
relation (7) the magnetic entropy versus temperature curve
was obtained and the temperature dependence of theDSmag
curves were constructed for magnetic field changes from 0 to
2 T and from 0 to 5 T, as displayed in Fig. 2. It is worth
noticing, in Fig. 2, the good agreement between the theoret-
ical predictions and the experimental data.5

From relation(10) the adiabatic temperature change was
calculated considering the same model parametersh andT0
determined above and the Debye formula, relation(11), with
the measured Debye temperatureQD=158.5 K. Figure 3
shows the temperature dependence of theDTad in the mag-
netic phase transition region, calculated upon change of ex-
ternal magnetic field from zero to 1, 1.5, 2.0, 2.5 T. Sharp

peaks are predicted to exist near the Curie temperature,
which means that the lattice entropy increases(due to the
lattice vibration energy) to balance the decrease of the mag-
netic entropy(due to the alignment of the magnetic ion mo-
ments). When the magnetic field is reduced to zero the same
DTad is obtained, but with opposite sign(cooling). The ex-
perimental data of Tegus13 on DTad vs T displayed in Fig. 3
was measured with a continuous registration of the tempera-
ture change upon fast increase of the applied magnetic field
from 0 to 1.45 T. In the temperature region of the magnetic
phase transitions300–315 Kd the DTad is little sensitive in
the changing of the Debye temperature. Note that we do not
consider in our model the linear term in specific heat, there-
fore, the valueQD=158.5 K is probably underestimated.

FIG. 1. Temperature depen-
dence of magnetization for
MnFeP0.45As0.55 at H=1 T. The
solid line represents the theoreti-
cal results and the squares the ex-
perimental data.

FIG. 2. Temperature depen-
dence of DSmag for
MnFeP0.45As0.55 for magnetic
field changes from 0 to 2 T and
from 0 to 5 T. The solid lines rep-
resent the theoretical prediction
and the squares and the open
circles show the experimental data
from Ref. 5.
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However, our calculations show that the values ofDTad ob-
tained using variations in the Debye temperature of about
±30%, i.e.,QD=150±45 K are almost the same values as
that one obtained usingQD=158.5 K. On the other hand,
strong influence inDTad as well as inDSmag is observed for
small changes in the magnetic model parametersh andT0.

IV. FINAL COMMENTS

The above discussed model, with proper model param-
eters, can be considered as a good theoretical framework to
simulate refrigeration cycles, for example, the Ericsson
cycle,14 for magnetocaloric materials that present P-F first
order magnetic phase transition, such as MnFeP1–xAsx,
Gd5sSixGe1–xd4 and MnAs1–xSbx.

15,16 Using the model pa-
rametersh=1.4 andT0=296 K, the theoretical calculations
of the magnetization versus temperature in MnFeP0.45As0.55,
results show a good theoretical agreement with experimental

data. Our total angular momentJ=3/2 (assumed) and gyro-
magnetic factorg=2.48 (adjusted to fix the experimental
saturation moment5) are different from those considered by
Tegus,13 namely,g=2 (assumed) and J=2 (estimated from
the saturation moment). The calculated magnetocaloric quan-
tities DSmag and DTad are in good agreement with the pub-
lished experimental data.5
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