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Analysis of the contributions of three-body potentials in the equation
of state of 4He

Sebastian Ujevica) and S. A. Vitiellob)

Instituto de Fı´sica, Universidade Estadual de Campinas, 13083 Campinas—SP, Brazil

~Received 16 April 2003; accepted 29 July 2003!

The effect of three-body interatomic contributions in the equation of state of4He are investigated.
A recent two-body potential together with the Cohen and Murrell@Chem. Phys. Lett.260, 371
~1996!# three-body potential are applied to describe bulk helium. The triple-dipole dispersion and
exchange energies are evaluated subjected only to statistical uncertainties. An extension of the
diffusion Monte Carlo method is applied in order to compute very small energies differences. The
results show how the three-body contributions affect the ground-state energy, the equilibrium,
melting and freezing densities. ©2003 American Institute of Physics.@DOI: 10.1063/1.1611872#

I. INTRODUCTION

The unique properties of the helium systems at low tem-
perature have attracted a continuous experimental and theo-
retical interest in the investigation of their ground state po-
tential energy.1 In the past, the construction of the best
potentials used semiempirical methods where some param-
eters were obtained by fits to experimental data. One of
them, the so-called HFDHE2 potential of Aziz and
co-workers,2 has allowed the understanding of many proper-
ties of helium in the condensed phases.3,4 Despite of small
inconsistencies in this potential, it was used during a long
time in these studies. It was attractive to use an effective
pairwise additive potential and avoid considering high-order
interactions among the atoms.

In the last decade, after a bound helium dimer was
observed,5,6 great efforts were applied to developab initio
methods in the description of He–He potentials.7,8 This ap-
proach was very successful. The fit8 of interacting energies
calculated using infinite order symmetry adapted perturba-
tion theory, Green’s function Monte Carlo results and accu-
rate dispersion coefficients to a Tang–Toennies model9 to-
gether with retardation added to the dipole–dipole
dispersion,10 produced to date the best characterization of the
helium potential energy.10

The use of very accurate two-body potential energies,7,8

like those offered by theab initio potentials, in the investi-
gation of bulk helium, uncovered what was known for a long
time: the correct description of many of its properties in the
condensed phases requires more general many-body poten-
tial. Among the many recent works where this situation was
observed, we cite Refs. 11–13.

The first form of the three-body interaction considered in
the study of the condensed phases of the rare gases was the
one proposed by Axilrod–Teller14 and Muto.15 It was ob-
tained by third order perturbation theory and the motivation
was the calculation of the triple-dipole dispersion energy for
spherical symmetric atoms. This term was used by Axilrod16

to examine the dependence of preferred crystalline structures
in rare gases. The investigation of the effects of three-body
exchange of electrons in trimers of helium started latter by
Rosen17 using a valance bond approach. Since the work of
Jansen and co-workers18,19 it is conjectured that three-body
exchange energy is needed to understand the energy differ-
ence between the fcc and hcp crystalline structure. Many
developments occurred in the investigation of nonadditive
effects are reviewed in Ref. 20.

As already mentioned, the estimation of the contribu-
tions of the three-body interactions to the properties of mat-
ter in the condensed phases depend on the knowledge of
accurate pair potentials. In the earlier period of the investi-
gations of the rare gases it was assumed that the triple-dipole
interactions was the only significant term beyond the two-
body contributions.21 The inclusion of this three-body inter-
action improved the agreement between the experimental
and theoretical values in a remarkable way.20 However an-
other important property of the solid phase, the crystal struc-
ture, remained nonunderstood.

At low temperatures, all heavier rare gases solids crys-
tallize in a fcc lattice and only helium, when subjected to
external pressure, solidify in a hcp structure. However most
of the reasonable two-body potentials favor hcp over the fcc
structure. The relative difference of the static potential en-
ergy is about 0.01% in favor of the hcp lattice.22 The inclu-
sion of triple-dipole interaction still left the hcp as the more
stable structure. The inclusion of higher-order terms in the
dispersion energy like dipole–octopole and quadrupole–
quadrupole terms did not improve agreement between theo-
retical results and experiment. So far, the proposed higher-
order interactions greater than three-body have given no
significant contributions to this question either. Recent
results23 in agreement with the early work of Jansen have
shown that the inclusion of nonadditive exchange contribu-
tions are necessary to understand the preferred fcc structure
of argon and its binding energy.

For the rare gases and in particular for the helium sys-
tems the largest and most well know part of the three-body
interatomic potential is the triple-dipole term of Axilrod–
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Teller–Muto. The exchange contribution is less known. De-
spite its importance, still now, competing calculations might
differ by an order of magnitude24 and different potential
forms could be used for fitting theoretical results obtained in
calculations of the exchange energy.

Quantum Monte Carlo methods, where quantities of in-
terest can be computed subject only to statistical uncertain-
ties, can be very useful in the analysis and understanding of
the different contributions to the potential energy. However
straightforward use of these methods to compute small ener-
gies differences might not be possible. Results of indepen-
dent runs and their associate statistical uncertainties might
render a simple energy difference meaningless. Perturbation
methods used together with quantum Monte Carlo methods
still needs extrapolation25 that introduces further uncertain-
ties. Even a more sophisticated approach, based on the finite
field method, might have difficulties in a situation where a
small energy difference has to be computed.

The calculation of energies subject only to small statis-
tical uncertainties~avoiding extrapolation and perturbative
calculations! is not only a matter of principle but a necessity
in the present case, where we have a small three-body energy
and a delicate balance between its different contributions. A
better understanding of the individual contributions of the
three-body interactions are important by themselves and
moreover can help increase the physical content of the ana-
lytical functional forms used to fit their contributions.

In this work we want to investigate in a quantitative way
how a proposed representation of the three-body interaction
affects the equation of state of4He in the liquid and solid
phases and properties like the binding energy, the equilib-
rium, freezing and melting densities. With this aim, we de-
scribe bulk helium by employing the two-body potential of
Aziz and co-workers7 together with the three-body potential
of Cohen and Murrell.26 This two-body potential continues to
be widely used in the investigation of systems of helium
atoms.27–29 The analytical expression of Cohen and Murrell
has been obtained by fittingab initio results of helium trim-
ers in the isosceles geometry and seems to be the most used
nowaday.12,24,30 In the past, the three-body potential of
Bruch–McGee31 was also used in the investigation of the
helium systems. However, the motivation of its functional
form representing the electronic exchange might not be so
clear and its amplitude is strongly density dependent.30,32,33

Our method does not depend on the form of the used poten-
tials. It is possible and interesting to analyze quantitatively
how three-body contributions will affect properties of inter-
est of a system of helium atoms when it is described by other
very accurate two-body potentials.8 However as our results
also show, it seems more urgent to concentrate efforts in the
three-body part of the potential.

To accomplish our intent of performing a quantitative
study of the effects of three-body interactions in the proper-
ties of helium atoms, we have developed an extension of the
diffusion Monte Carlo~DMC! method. It allows the indi-
vidual calculation and analysis of the Coulomb and exchange
terms of the three-body interactions without resort to a per-
turbative calculation followed by extrapolation. The effect of
these contributions are considered in the equation of state

and quantitative results show how they affect the ground-
state energy, the equilibrium, melting and freezing densities.
As an additional advantage of our development we mention
that it is of easy implementation and test in the available
DMC codes.

The paper is organized as follows: In the next section we
present the Hamiltonian together with the interacting poten-
tials used in this work. In Sec. III we briefly describe one of
the standard implementations of the diffusion Monte Carlo
algorithm and our extension of this algorithm. It allows the
use of a single set of walkers and reweighing to compute
properties of a system of helium atoms described by different
interacting potentials. Section IV contains details of our
simulations; the results are presented in Sec. V. A discussion
in Sec. VI concludes the work.

II. THE MODEL

The Hamiltonian we use to describe the system of he-
lium atoms is given by

H52
\2

2m
¹R

21V~R!, ~2.1!

whereR5$r 1,r 2,¯,rN% stands for theN coordinates of the
helium atoms andV(R) is the interatomic potential. In this
work three sets of calculations were performed. In the first
one the interatomic potential employed is an additive pair-
wise potentialV2(R) as proposed by Aziz and co-workers.7

In a second set, we considered theV2D potential,

V2D~R!5V2~R!1VD~R!, ~2.2!

obtained by adding toV2 a damped Axilrod–Teller–
Mutto14,15,26triple-dipole term (ddd[D)

VD5Z~3!~111!
113 cos~g1!cos~g2!cos~g3!

~r 12r 13r 23!
3

3F~r 12,r 13,r 23!, ~2.3!

whereZ(3)(111) is a constant, theg i are the internal angles
of the triangle~formed by the three particles! and ther i j the
lengths of its sides. The dampingF is given by the product

F~r 12,r 13,r 23!5 f ~r 12! f ~r 13! f ~r 23! ~2.4!

that depends on

f ~r i j !5H expS 2 l S k

r i j
21D 2D if r ,k

1 otherwise,

~2.5!

wherel andk are parameters. The damping of the dispersion
energies at distances where charge overlap is significant is
need for a reasonable description of the short range forces.
The value used forZ(3)(111) in Eq. ~2.3! is 0.324 K, as
obtained by double perturbation theory.34

Finally, the most complete interatomic potential we have
considered,

V2DJ~R![V2~R!1VD~R!1VJ~R!, ~2.6!

includes contributions from the exchange potentialVJ as
well. The two last terms of Eq.~2.6! form the three-body
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potential proposed by Cohen and Murrell.26 The potentialVJ

is expressed through symmetry adapted coordinatesQi ~lin-
ear combinations of the three distancesr i j )

Q15
1

A3
~r 121r 131r 23!,

Q25
1

A2
~r 132r 23!, ~2.7!

Q35
1

A6
~2r 122r 132r 23!.

Its functional form is given by

VJ5@c01c1Q11c2Q1
21~c31c4Q11c5Q1

2!~Q2
21Q3

2!

1~c61c7Q11c8Q1
2!~Q3

323Q3Q2
2!1~c91c10Q1

1c11Q1
2!~Q2

21Q3
2!21~c121c13Q11c14Q1

2!~Q2
2

1Q3
2!~Q3

323Q3Q2
2!#exp~2aQ1!, ~2.8!

that depends on parametersa and$ci u i 51,...,14%.

III. THE DIFFUSION MONTE CARLO METHOD

A. The standard algorithm

In almost all practical implementations of the diffusion
Monte Carlo method35,36 we compute quantities of interest
by sampling the probability distribution f 0(R)
5cG(R)c0(R) that depends onc0(R), the true ground state
wave function of the system and on a given guiding function,
cG(R).

A careful version of this method is presented by Umri-
gar, Nightingale, and Runge.37 A slightly simpler implemen-
tation could be described as follows. It is convenient to start
the calculation with a set of configurations drawn from
ucGu2, obtained through the Metropolis algorithm. The dis-
tribution f 0(R) is sampled after an initial transient, where the
excited states components are filtered. All the sampling is
accomplished iteratively through the integral equation,

f ~R,t!5E dR8Gd~R,R8!Gb~R,R8! f ~R8,t2Dt!,

~3.1!

where

Gd~R,R8!5~4pDDt!2~3N/2!

3expF2
~R2R82DDtvD~R8!!2

4DDt G , ~3.2!

D5
\2

2m
, vD52¹ ln CG , ~3.3!

Gb~R,R8!5expH 2S Dt

2 D @EL~R!1EL~R8!#1DtETJ .

~3.4!

Here,ET is a trial energy andEL is the local energy given by

EL5HCG /CG ; ~3.5!

f (R,t) for a long enought goes tof 0(R).
It is correct to write the Green’s function as the product

of Eq. ~3.1! only up to O(t3). This implies that to obtain
exact results, within statistical fluctuations, short timesDt
must be used in the iterations and an extrapolation toDt→0
performed~see however comments in Sec. IV!. This is the
so-called short-time approximation. The value ofDt is a pa-
rameter of the calculation.

Each configuration undergoes three steps: drift, diffu-
sion, and branching. Very frequently a single configuration is
called a walker and an iteration of all walkers a generation.
For the drift step we need to compute the quantum velocity
vD . In the second step the configuration diffuses. This is
accomplished by samplingGd . Accordingly, a walker inR8
is propagated during a time stepDt to its new point R
through

R5R81x1DDtvD~R8!, ~3.6!

where x are normal deviates of a Gaussian function with
variance 2DDt and zero mean.

To propagate a walker, we can change all the particle’s
coordinates at once or those of a single particle at a time. In
this last case we performN updates to propagate each
walker. To improve36,38 the approximation of the Green’s
function, we only accept moves with probability

paccept~R8→R!5minF1,
Gd~R8,R!CG

2 ~R!

Gd~R,R8!CG
2 ~R8!

G ~3.7!

and choseDt such that more than 99% of the attempted
moves are accepted. This condition imposes detailed balance
on the splited Green’s function and restores this property of
the exact Green’s function. Regardless of the time step, it
guarantees also a correct sampling if hypothetically we could
use ascG the exact ground state wave function. In such case,
this implementation of the DMC method reduces to a varia-
tional Monte Carlo calculation with trial moves sampled
from Gd .

To complete the iteration of Eq.~3.1!, we computeGb

considered as a weight for the walker. At the begin of the
simulation, all the walker’s weights are assumed to be equal
to one. In order to minimize fluctuations inGb , an effective
time step is used.36,37 It is given by Dteff5Dt(Dra

2/Dr2),
whereDr2 is the mean square displacement of all proposed
moves in the diffusion step andDra

2 is the related quantity
when only accepted moves are considered. Finally the
weight w8 of the walker is updated to its new valuew ac-
cording to

w5w8Gb~R,R8!. ~3.8!

After propagating all walkers we have a new generation
and a sample of the probability distributionf as an weighted
average over the walkers. For reasons of efficiency the num-
ber of configurations used in the estimation off (R) fluctu-
ates according to the following branching rules. Ifw is
greater than 2, the walker is duplicate and each one will carry
half of its weight. On the other hand if two walkers,Ri and
Rj , have weights less than 0.5, only one survives with a
weight given bywi1wj . The decision of which one will
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survive is made by samplingr 5wi /(wi1wj ). That is, we
draw a random numberj and compare it withr. If r is small
thanj we keep configurationRj , otherwiseRi is kept. If the
weight computed by Eq.~3.8! lies between 0.5 and 2, a
single copy of the walker with weightw is kepted. The val-
ues of the weights where the branching is performed cer-
tainly could be changed, we only need rules that neither in-
troduce bias or result in a scheme too inefficient.

Once a generation has been completed, quantities of in-
terest like the energy, can be computed as

Em5
( iw~Ri !EL~Ri !

( iw~Ri !
, ~3.9!

where the sum is performed over all the walkers of a given
generation. Usually for reasons of efficiency, one uses sparse
average to estimate the quantities of interest. Only a fraction
of the generations are employed to compute these quantities.
This is done to decrease the correlation between estimates.
This procedure together with block averages of the energies
$Em% are the most efficient way of obtaining the final esti-
mate of the energy and its variance.

The number of walkers is controlled by adjusting the
value ofET . This number is kept roughly constant. We have
experienced with both heuristic and automatic changes ofET

as given by

ET5E01k ln~Tp /Cp!, ~3.10!

wherek is a parameter,Tp is the target population andCp

the current population. For our purposes, the results were
equivalent for both methods of changingET . Adjustments in
ET were gentle and were not made more frequently than
once every 20 generations.

It is well known36,39 that estimates of the quantities of
interest like the energy in Eq.~3.9! are biased. The source of
bias are due to both: population control and because the ex-
pected value of a quotient is not the quotient of the expected
values. So the determination of useful results require the
evaluation of the bias or at least to have its magnitude
bounded. The bias can be reduced by increasing the size of
the population. We have observed that for a system of helium
atoms, where simulations with 108/64 bodies are easily per-
formed, a population of about 400 walkers give results where
errors due to the bias are smaller than the statistical ones.
Certainly, more sophisticated methods37,40 of bias suppress-
ing could be applied as well.

B. The algorithm with reweighing

In many situations it is interesting to compute energies
differences resulting from different interatomic potentials.
However it is not always possible to simply use results from
independent runs to obtain such differences. If they are
small, statistical fluctuations might well produce errors that
are bigger than these differences themselves, rendering the
result meaningless. It is however possible to modify the
DMC method in such a way that the same set of walkers are
used to compute quantities of interest associated to the dif-
ferent potentials we want to investigate. The energies that are
obtained are correlated and thus more meaningful differences

can be computed. No approximations are introduced. If the
actual interest is on the energies, it is not necessary to use
extrapolated estimators either. What we are proposing is to
sample different probabilities distributions functions, associ-
ated to the different interatomic potentials we want to inves-
tigate, by using the same set of walkers with appropriate
weights. As just mentioned, the values of the quantities of
interest obtained are correlated and the errors associate with
their difference reduced by orders of magnitude. We want to
call attention to the fact. Although our method relies on a set
of weights, it cannot be related to the forward walking41 or
reptation42 methods. For every generation of equilibrated
walkers, we can compute the quantities of interest without
any further propagation. Moreover the weights we have for a
given walker are associated with different interatomic poten-
tials.

In our modified DMC method, to each walker we attach
a set of weights, one for each potential we want to consider.
In our implementation of the algorithm we have attached
three different weights for each walker, one for each of the
three different interatomic potentials used. Of course this
number in the method is arbitrary. It was chosen because of
the specific aspects of many-body interactions in the inter-
atomic potential we want to investigate. It would be possible
to use only two weights or any other convenient number of
weights.

As in the standard algorithm, the calculations start with a
set of walkers draw fromucGu2. Since a single guide func-
tion is use, the drift and diffusion steps are performed exactly
as before. We compute the drift velocityvD , generate the
normal distribution of variates, updateR according to Eq.
~3.6!, and accept it with probabilitypacceptof Eq. ~3.7!. In the
present algorithm, we sample the three different probabilities
distributions in which we are interested by completing the
iteration considering three differentGb

(k) , and updating the
weights as follows:

To be specific let us consider a single walker just propa-
gated to a new configurationR. One of its weights,w(2) is
associate with the local energiesEL

(2)(R) computed using
only the Aziz two-body potentialV2 in the Hamiltonian of
Eq. ~2.1!. The weightw(2) is updated according to Eq.~3.8!
by evaluating Gb

(2) of Eq. ~3.4! using the local energy
EL

(2)(R). Another weight of the same walker,w(2D) is calcu-
lated with the local energyEL

(2D)(R) computed with the
Hamiltonian that uses theV2D potential of Eq.~2.2!, it in-
cludes the triple-dipole contributions to the two-body poten-
tial. The calculation of the new value ofw(2D) for this walker
proceeds as before.Gb

(2D) in Eq. ~3.4! is evaluated employ-
ing EL

(2D)(R) and the update finished according to Eq.~3.8!.
The third weight,w(2DJ), is associated with the interatomic
potential that also includes exchange contributions. It is com-
puted by consideringEL

(2DJ)(R) that depends on the Hamil-
tonian that uses the full potentialV2DJ of Eq. ~2.6!. The
update ofw(2DJ) is performed along the exact same lines
already described for the other weights. The different values
of the weights are due only to the local energy used in their
computation, i.e., to the interatomic potential employed. We
remember again that the same configuration is used to com-
pute these three weights.
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After propagating all walkers, a new generation will fi-
nally be obtained by using the following branching rules.
When min(w(2),w(2D),w(2DJ)) is large than 2 the walker is du-
plicated and each one of the copies will carry half of the
value of the weights: (w(2)/2,w(2D)/2,w(2DJ)/2). If two walk-
ers,i andj have weights such that max(wi

(2) ,wi
(2D) ,wi

(2DJ)) and
max(wj

(2) ,wj
(2D) ,wj

(2DJ)) are less than 0.3, we consider each
kind of weight individually. We draw a single random num-
berj and make comparisons ofj with r (2), r (2D), andr (2DJ),
where r (k)5wi

(k)/(wi
(k)1wj

(k)). Three situations might hap-
pen:~i! in all the comparisonsj is smaller thanr (k), then we
keep walker i with weights $wi

(2)1wj
(2) ,wi

(2D)

1wj
(2D) ,wi

(2DJ)1wj
(2DJ)% and discard walkerj; ~ii ! alwaysj

is greater thanr (k), in this case we keepRj with the same
sum of weights as above and discardRi ; ~iii ! one of the
comparisons favors a walker different from the other two.
For definiteness let say thatj is smaller thanr (2) and greater
than r (2D) and r (2DJ). In this case we will keep the two
walkers, Ri with weights $wi

(2)1wj
(2),0,0% and Rj with

weights $0,wi
(2D)1wj

(2D) ,wi
(2DJ)1wj

(2DJ)%. These new
weights are telling us that in fact we have deleted walkeri
from the calculations with the interatomic potential that in-
cludes three-body interactions and walkerj when we are con-
sidering only the two-body potential. This is a bad situation
in the sense that we are introducing two walkers in the cal-
culations that will not give anymore the correlations that we
are looking for. Fortunately, if needed, the cases where this
situation happens can be systematically reduced in a simple
way. It is enough to decrease the threshold value used to
combine walkers~see Sec. IV!. If one of the weights of a
walker lies between 0.3 and 2, a single copy is maintained
with weights (w(2),w(2D),w(2DJ)).

Each one of the calculations we are performing must
give within statistical fluctuations the results obtained by the
standard algorithm. This makes very easy to test the code.
Each new potential introduced give results that can immedi-
ately be tested against the standard implementation of the
algorithm. The computational cost of our modification of the
standard algorithm is very small, it amounts basically to the
calculation of a new term of the potential energy.

Periodically, about one every four or five generations we
compute several quantities of interest. Evaluations of the en-
ergies Em

(2) , Em
(2D) , and Em

(2DJ) in a given generation are
readily obtained by including all the walkersi it has

Em
~k!5

( iw
~k!~Ri !EL

~k!~Ri !

( iw
~k!~Ri !

~k52,2D,2DJ!, ~3.11!

in this expression,m denotes one of the estimates in the
sequence$Em

(k)%. Together with these quantities, we have
also evaluated the energy associate to the damped triple-
dipole term in the interatomic potential by

Em
~D !5Em

~2D !2Em
~2! , ~3.12!

and the energy associate with the exchange termVJ by

Em
~J!5Em

~2DJ!2Em
~2D ! . ~3.13!

As already mentioned, the computation of these values are
straightforward because we have already estimates of the en-

ergiesEm
(k) . Along the runs, block averages of the quantities

(Em
(2) ,Em

(2D) ,Em
(2DJ) ,Em

(D) ,Em
(J)) are formed and their esti-

mates and associate errors obtained.
Since each one of our results forE(2), E(2D) andE(2DJ)

are completely equivalent to those that could be obtained
using the standard algorithm, the observation regarding the
bias of these results are in order. However we stress that the
differencesE(D) andE(J) should have errors that are smaller
thanE(2), E(2D) or E(2DJ).

IV. THE SIMULATIONS

In the investigation of the properties of bulk helium we
impose periodic boundary conditions. The cutoff convention,
the distance beyond which a potential is set to zero, is en-
forced for all interactions at half of the box size,L/2. Dis-
tances between pairs of particles are computed by the
minimum-image convention. When considering three-body
interatomic interactions, the length of the third side of the
triangles formed by the particles cannot in general be com-
puted using the minimum-image convention. A modification
needs to be introduced so that the length of this side can be
computed in a proper way and discarded if greater thanL/2.
To be specific let us consider particlesi, j, andk. We com-
pute distancesr i j andr ik using the minimum-image conven-
tion. The difference in thex coordinates of the associated
particles are

xi j 5xi2xj2t i j ,
~4.1!

xik5xi2xk2t ik ,

where the translation vectort is defined as

t lm5@~xl2xm!/L#L

and@x# is the closest integer tox. If the differencexjk of the
third side is computed as43

xjk5xj2xk1t i j 2t ik , ~4.2!

it is not hard to see that all possibilities in the simulation box
are taken into account and the right value of the distance can
be obtained. If this value is little thanL/2 the calculation for
this triangle proceeds. For they andz coordinates a similar
approach is used and then the three-body interaction is com-
puted if all sides for this triangle are smaller thanL/2. The
calculation continues until all triangles have been consid-
ered.

The diffusion Monte Carlo calculations started with an
initial set of 400 configurations, previously draw fromucGu2

using the Metropolis algorithm. Before accumulating quanti-
ties of interest the excited states components of our ensemble
of configurations are filtered by performing several iterations
of Eq. ~3.1!. This process takes typically of the order of 400
generations, and depends on the system density. The accu-
mulation of the quantities of interest started after plots of the
configurations energies versus Monte Carlo time steps have
shown converged results for all these quantities.

We study the liquid phase using a guiding function of the
Jastrow form,
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CJ~R!5)
i , j

f ~r i j !, ~4.3!

where the factorf (r i j )5exp(2u(rij)/2) explicitly correlates
pairs of particles through a pseudopotential of the McMillan
form u(r i j )5(b/r i j )

5; b is a parameter.
For the solid phase we have used a Nosanov–Jastrow

guiding function

CNJ~R!5CJ~R!F~R!, ~4.4!

where

F~R!5)
i

expFC

2
2~r i2 l i !

2G ~4.5!

is a mean field term that localizes the particles around the
given lattice sitesl i .

All guiding functions were previously optimized by per-
forming variational calculations. Although this is a conve-
nient way of obtaining the values of the parameters, in prin-
ciple they could be obtained without performing such
calculations. It would be enough to chose parameters values
that give the fastest filtering of the excited states of the initial
configurations. The guiding functions used in this work, Eq.
~4.3! and Eqs.~4.4!–~4.5!, have been previously successfully
used in Green’s function Monte Carlo calculations.3

The time stepsDt used in the calculations depends on
the density. Their values vary within the range 0.001–0.002
~K21! in order to obtain more than 99% of acceptance of the
attempted moves. We also observed that at this acceptance
level, the extrapolation toDt→0 of the energies values were
in excellent agreement, within statistical fluctuations, to the
actual values obtained in the calculation itself.

The quantities reported in this work were obtained by
forming averages with about 500 estimates. Each estimate
was performed after four generations. Blocking was used in
order to avoid correlations in the calculations of the vari-
ances. After the initial transient we typically have 550 con-
figurations and they do not fluctuate by more than 5%.

We have considered systems with 108 particles in the
solid phase. In the liquid phase we have considered 64 par-
ticles. At the equilibrium density,r0521.86 nm23, to esti-
mate size effects we have also performed simulations with
108 particles. Tail corrections of the two-body potential en-
ergy were made by assuming a pair distribution function
equal to one beyond half the size of the simulation cell and
integrating the potential up to infinity. No tail corrections
were performed for the high-order interactions. For the
Axilrod–Teller interaction, the tail correction is less than 7%
of its value atr0521.86 nm23 ~see next section and Table
II !. This value is in rough agreement with a previous esti-
mate of this quantity.44 For the exchange energy the relative
tail correction is bigger than the one of the dispersion energy.
However it should remain within the statistical uncertainty of
our results~see Tables I and II!.

The situation where we have a walkers with one of its
weights equal to zero destroys the correlation we want to
construct. If we combine walkers when all their weights is
less or equal 0.3, we noticed that the number of walkers with
at least one of weights equal zero does not exceed 2% of

their total number. If needed this fraction can be further and
systematically reduced by using a threshold smaller than 0.3
to combine walkers. As we have observed, this is done at
expense of a less efficient calculation. We have concluded
that the threshold 0.3 for combination of walkers is perfectly
reasonable for our purposes.

V. RESULTS

A. Liquid phase

We conducted several independent runs at four different
densitiesr of liquid helium, 19.64 nm23, at the experimental
equilibrium densityr0521.86 nm23, 24.01 nm23, and at
26.23 nm23. In Table I are shown the total energies obtained
using the two-body potentialV2 , the V2D potential of Eq.
~2.2!, theV2 potential plus the Axilrod–Teller term, and the
V2DJ potential of Eq.~2.6!, the exchange term added to the
V2D potential. Note that at any given density, a single set of
walkers is used to compute the energies associated to each
one of the potentials and so these energies are correlated. We
can believe that the results show their evolution as more
elaborated interacting potentials are used, despite the statis-
tical uncertainties in the results.

In Table II we shown very accurate calculations of the
Axilrod–Teller and exchange energies at these four densities.
For comparison we show also extrapolated results of pertur-
bative calculations performed using configurations generated
with the V2 potential. We have plot these results in Figs. 1
and 2. The Axilrod–Teller energies calculated using reweigh-
ing are greater than the extrapolated perturbative results.
Moreover they do not always agree within the statistical un-
certainty. The triple-dipole interaction gives a positive con-
tribution to the energy of the system and its value double
when we go from the lowest to the highest density.

The energies due to the exchange term in theV2DJ po-
tential when calculated with respect to the total energies ob-
tained with theV2D potential are on average about 0.0010 K
smaller than the extrapolated perturbative results. In addition

TABLE I. Total energies per atom in units of K obtained at the given
densities and potentials. Results in the second column for the potentialV2 ,
in the third and fourth columns theV2D andV2DJ potentials were consid-
ered~see text!. In the liquid phase the results were obtained with 64 bodies
and in the solid phase with 108 particles. In the last column we show the
experimental values.

r ~nm23! E(2) E(2D) E(2DJ) Expt.

Liquid
19.64 27.12160.006 27.01660.006 27.01160.006 27.01b

21.86 27.23860.009 27.10360.010 27.09760.010 27.14b

21.86a 27.24060.007 27.10160.007 27.09560.007 27.14b

24.01 27.12060.010 26.94960.010 26.94260.010 27.00b

26.23 26.54160.014 26.32560.014 26.31860.014 26.53b

Solid
29.34 25.90760.004 25.60060.003 25.60060.004 25.78c

32.88 24.48960.006 24.07160.006 24.07660.007 24.32c

33.54 24.08960.005 23.64860.005 23.65660.005 23.94c

35.27 22.83160.006 22.32360.006 22.33660.006 22.70c

aResult for 108 particles.
bReference 45.
cReference 49.
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there is no agreement within statistical uncertainties between
the energies calculated with the reweighing and perturbative
methods atr519.64 andr524.01 nm23. The energies cal-
culated using reweighing are lower than the extrapolated per-
turbative results, contrary to what happens with the triple-
dipole interaction. The exchange energy is also positive at all
densities examined and increases with it. At the highest den-
sity it is approximately 50% greater than in the lowest one.

B. Solid phase

For the solid phase we have considered four densities:
29.34, 32.88, 33.54, and 35.27 nm23. In Table I are shown
the total energies, obtained with a systems of 108 particles in
a fcc structure. Again, we have considered the potentialsV2 ,
V2D , andV2DJ . Table II shows our very accurate results of

the Axilrod–Teller and exchange contributions to the poten-
tial energy and also extrapolated perturbative results for
comparison. The difference is about the same we have ob-
served in the liquid phase. For the Axilrod–Teller term they
do not agree within the statistical uncertainty atr equal to
32.88 and 35.27 nm23. In this phase as well, the Axilrod–
Teller energies computed by reweighing are greater than the
corresponding extrapolated perturbative results, and they re-
main positive. They also increase with the density. At the
highest density~35.27 nm23! it is 60% greater than in the
lowest one.

The contribution of the exchange term in the solid region
is null or negative and differs significantly from the pertur-
bative results. At the lowest density~29.34 nm23! the result
obtained by reweighing gives a null contribution while the
extrapolated perturbative quantity is positive. In the other

TABLE II. Energies per particle in units of K associated with the triple-dipole term (ED) and the exchange term
(EJ) at the given densities obtained by reweighing and by extrapolation of the perturbative calculation.

r ~nm23!

ED EJ

Rew. Extr. Rew. Extr.

Liquid
19.64 0.10560.001 0.101260.0002 0.004460.0003 0.005660.0001
21.86 0.13560.001 0.133360.0002 0.005660.0004 0.006660.0001
21.86a 0.13960.002 0.135160.0006 0.005860.0004 0.006860.0001
24.01 0.17160.001 0.169860.0002 0.006360.0003 0.007460.0001
26.23 0.21760.001 0.213660.0002 0.006960.0005 0.007860.0001

Solid
29.34 0.30760.001 0.303560.0002 0.000060.0003 0.001960.0001
32.88 0.41860.001 0.414060.0002 20.005160.0007 20.002860.0002
33.54 0.44160.001 0.437960.0002 20.007260.0008 20.005060.0002
35.27 0.50860.001 0.502960.0002 20.012860.0006 20.009760.0002

aResult for 108 particles.

FIG. 1. Energy per atom associated with the three-body Axilrod–Teller
interaction term for the liquid and solid phases. The crosses stand for the
DMC results with reweighing. The circles show extrapolated estimates of
perturbative calculations. The statistical errors are smaller than the size of
the symbols. The results were obtained using a simulation cell with 64
particles for the liquid phase and 108 for the solid one.

FIG. 2. Energy per particle associated with the three-body exchange term
for the liquid and solid phases, DMC with reweighing~crosses! and extrapo-
lated perturbative results~circles!. The statistical errors of the last calcula-
tions are smaller than the size of the symbols. The results were obtained
using a simulation cell with 64 particles for the liquid phase and 108 for the
solid one.
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densities the exchange energy computed by reweighing con-
tinues to be lower than the corresponding extrapolated per-
turbative values that are negative. In the solid phase the rela-
tive variation of the exchange energy is greater than the
corresponding quantity for the Axilrod–Teller energy.

C. Melting–freezing transition

The calculations of the melting and freezing densities
were performed by a Maxwell double-tangent construction in
analytical equations of state for the liquid and crystalline
phases. The equations were determined by fits of our results
to functions of the form,

E~r!5E01BS r2r0

r0
D 2

1CS r2r0

r0
D 3

. ~5.1!

This functional form has been extensively used in the litera-
ture, including to fit experimental equation of state.45,46 We
have fitted equations of state using results from the three
different potentials,V2 , V2D , andV2DJ . The fitted param-
eters,E0 , B, C, and r0 in the liquid and solid phases are
presented in Table III. In Fig. 3 we plot the equations of
state.

The freezing and melting densities determined by the
Maxwell double tangent construction are listed in Table IV.
Looking at this table, we can follow the changes in the freez-
ing and melting densities as more elaborated interacting po-
tentials are used. The computed freezing densities differs,
about 3% from the experimental value. This difference is of
about 4% for the melting densities. The calculated freezing
densities are below the experimental value, contrary to the
computed melting densities that are above the experimental
value.

VI. DISCUSSION

In this work we are able to verify without any approxi-
mations how small changes in the interacting potential af-
fects some of the properties of bulk helium. It was possible
to analyze in a quantitative way how the Axilrod–Teller and
the exchange three-body contributions to the interatomic po-

tential modify the equation of state of this system. This was
accomplished by a DMC calculation where a single set of
walkers was used. Thus the quantities of interest associate
with the different potentials were obtained in a correlated
fashion and so despite of the statistical errors their difference
are meaningful.

The comparison between the total energy per atom ob-
tained with a very accurate two-body potential and the ex-
perimental values made in Table I show that high-order terms
in the description of the atomic interaction are needed. In the
same token, as the contributions of the dispersion energy are
much better known than those of the exchange energy, the
results suggest that more efforts would be desirable in devel-
oping reliable ways of computing the energies associated to
this last kind of interaction.

The results of the Axilrod–Teller triple-dipole dispersion
energy and of the three-body exchange energy as a function
of the density reported in Table II, Figs. 1 and 2, show quali-
tative agreement between our method and the usual approach

TABLE III. Fitting parameters of the liquid and solid equations of state for
three different potentials. In the first line, for both the liquid and solid phase,
the two-body potentialV2 of Aziz et al. ~Ref. 7! was used. Then we present
results when the three-body Axilrod–Teller term is included in the interact-
ing potential,V2D . In the rows withV2DJ we show results obtained when
the full potential, that includes the three-body exchange term inV2D , was
used. The experimental value of the equilibrium density is also presented.
The units ofE0 , B, andC are expressed in K.

Potential r0 (nm23) E0 B C

Liquid
V2 22.133 27.240 13.549 37.025
V2D 21.845 27.103 12.143 35.705
V2DJ 21.834 27.097 12.081 35.480
Expt. 21.85a

Solid
V2 26.795 26.200 31.880 5.661
V2D 26.399 25.980 29.739 7.870
V2DJ 26.045 26.028 25.233 11.844

aReference 46.

FIG. 3. Analytical equations of state with three different potentials for the
solid and liquid phases. The dashed line represent the equation of state
obtained using the results determined with the two-body potentialV2 . The
solid line represent results using theV2D andV2DJ potentials that includes
only the Axilrod–Teller term and this term plus the exchange one, respec-
tively. At the figure scale the two last fits are indistinguishable. The squares
and circles represent results from our calculations.

TABLE IV. Melting and freezing densities using three different potentials
calculated by the Maxwell double tangent construction method. TheV2

potential is the two-body potential of Azizet al. ~Ref. 7!. TheV2D potential
is build using theV2 potential plus the three-body Axilrod–Teller interaction
term. Finally theV2DJ potential includes theV2 potential, the three-body
Axilrod–Teller, and the exchange terms. In the last line we give the experi-
mental values.

Potential r f (nm23) rm (nm23)

V2 24.94 29.39
V2D 25.00 29.35
V2DJ 24.99 29.28
Expt. 25.8a 28.0a

aReference 50.
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of extrapolating perturbative calculations. However this last
method can not be trusted in giving the right magnitude of
the three-body energies. In some cases the results do not
agree within statistical uncertainty with those obtained using
reweighing. Unfortunately since those cases can not be iden-
tified in advance, it will remain doubts over all results ob-
tained with extrapolated perturbative calculations of the
three-body contributions to the potential energy. Although
better functions, for instance with explicit triplet correlations,
could mitigate the difficulties associate with the extrapola-
tion, it would require more evolved programing and elabo-
rate trial function optimizations.

As expected, our results show that in both liquid and
solid phases, the Axilrod–Teller term gives more important
energy contribution to the total energy than the exchange
term. It is also interesting to note that at the lowest solid
density we have considered~29.34 nm23!, the extrapolated
perturbative result associated with the exchange term gives a
positive energy contribution whereas the value obtained by
reweighing is null.

Although the inclusion of the three-body interaction po-
tentials used in this paper did not bring agreement with the
experimental values of the melting and freezing densities, it
is important to note that our calculations show that the inclu-
sion of the triple-dipole and the exchange terms, as proposed
by Cohen and Murell,26 are leading the melting and freezing
densities to their right values, cf. Table IV. All the small
differences we observe in these quantities are within their
estimated error~0.2 nm23!. However since we used a single
set of walkers to compute them, we can trust that their rela-
tive difference are significant in our calculations.

It is also important to contrast our results with those
obtained with an equation of state determined using extrapo-
lated perturbative calculations. Although the freezing density
calculated by this last method practically follows our results,
the value obtained with this method for the melting density is
almost constant and equal to 29.29 nm23, independently of
the potential used. This last result could lead to the false
conclusion that three-body interactions does not affect this
property.

Other consequence of including many-body interactions
in the potential can be seen in the calculation of the equilib-
rium density@Table III, Eq. ~5.1!#. For both potentials,V2D

andV2DJ , the theoretical computed value of the equilibrium
density becomes almost identical to the experimental value.
The equilibrium density obtained using the full interatomic
potentialV2DJ diminished 0.3 nm23 from its value computed
with the two-body potential. In the solid phase, in which the
contribution of the exchange energy is greater, the parameter
r0 decreases 0.75 nm23 in a similar comparison.

The theoretical determination of a realistic equation of
state of4He requires an accurate two-body potential~like the
one we use7 or the one8 employed in Ref. 12! together with
three-body terms.26 Further understanding of these interac-
tions requires24 a quantitative discrimination of their differ-
ent contributions to the properties of the system. In this work
by introducing reweight in a DMC calculation we can follow
how each term of the three-body interaction used affects the

binding energy, the equilibrium, freezing and melting densi-
ties.

The reweight method we have presented here can in
principle be used to evaluate expectation values^A& of local
operatorsA, operators that depend only on the coordinates
and so that can be incorporated to the potential energy. Our
method can also be thought as complementary to the finite
field method use in conjunction with DMC. In this method a
term of the form (dA) is added to the Hamiltonian and the
value of ^A& is obtained by determining the slope ofE(d)
computed in a series of different runs. Our method could be
used to calculated all theseE(d) in a single run. Since the
E(d) are correlated, the slope of its plot as a function ofd,
the expectation̂A&, will be obtained more easily. If the am-
plitude of the operatorA is small, like those we have in this
work, the linear response approach most probably becomes
too noise and it would be necessary to use our method. For
nonlocal operators, like the kinetic energy of a component in
a multicomponent system, it would be very interesting to
learn if it is possible within the linear response approach of
Ref. 48 to assume that the diffusion does not change for the
different values ofd. If this is true, them always would be
advantageous to use the finite field approach together with
our method.

The extension we have proposed to the DMC method
might be very useful not only for the helium systems, but
also for other quantum many-body systems where a clue is
need to identify the best description between competing in-
teracting potentials. Even if these potentials differ by very
small amounts, the nature of the interactions they describe
can be different. A better understanding of these differences
and their relevance is important on its own and so as mean of
obtain better analytical representations of the interacting po-
tentials. The calculations of small energy contributions of
spin–orbit terms in molecular physics47 might be another
situation where our method can help in better understanding
a physical system.
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