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The local environment of Eu2+ s4f7, S=7/2d in Ca1−xEuxB6 s0.003øxø1.00d is studied by means
of electron spin resonancesESRd. Forx&0.07 the resonances have Lorentzian line shape, indicating
an insulatingenvironment for the Eu2+ ions. Forx*0.07, the lines broaden and become Dysonian
in shape, suggesting a change tometallic environment for the Eu2+ ions, anticipating the
semimetalliccharacter of EuB6. The broadening is attributed to a spin-flip scattering relaxation
process due to the exchange interaction between conduction and Eu2+4f electrons. High field ESR
measurements forx*0.30 reveal narrower and anisotropic linewidths, which are attributed to
magnetic polarons and Fermi surface effects, respectively. ©2005 American Institute of Physics.
fDOI: 10.1063/1.1855612g

I. INTRODUCTION

Ca1−xRxB6 sR=rare earths, specially Lad has become the
focus of extensive investigations since the reported weak fer-
romagnetismsWFd at high T sTc<600–800 Kd.1 Efforts
were devoted, both, theoretically2–4 and experimentally1,5 to
establish the origin of this WF in Ca1−xLaxB6 and its rela-
tionship with the conducting nature ofR doped CaB6. Stud-
ies of the de Haas–van Alphen effect, the plasma edge in
optical spectroscopy and the electrical resistivity support a
semimetallic character for CaB6, whereas NMR, angle-
resolved photoemissionsARPESd, thermopower, and other
resistivity measurements suggest that CaB6 is a well defined
semiconductor. High-resolution ARPES revealed an energy
gap of ,1 eV between the valence and conduction bands
and a carrier density of the order of,531019 cm−3 for
CaB6 single crystals. Depending on the crystal growth
method, CaB6 can also show WF and self-doping due to
defects. The data for Ca0.995La0.005B6 are strongly sample
dependent and doubts about the intrinsic nature of the WF in
these systems have been raised. It has been suggested that
CaB6 is a ,1 eV gap semiconductor and that the intrinsic
WF is hidden by the ferromagnetismsFMd of Fe and Ni
impurities at the surface of the crystals.6

In contrast to CaB6, EuB6 is a well establishedsemime-
tallic material that orders FM atTc<15 K.7 The substitution
of Ca2+ by Eu2+ impurities breaks the translational invariance
of the lattice and introduces localized split-off states from the
valence/conduction band. The energy of such state lies in the
gap of the semiconductor and its spatial extension is of the

order of one unit cell. An impurity band forms when the Eu
bound states overlap, leading to aninsulator to metal transi-
tion when apercolativenetwork of impurity bound states is
formed. This transition is revealed by the electron spin reso-
nancesESRd line shape.

Probing the local environment of Eu2+ via ESR sheds
light on the magnetic/nonmagnetic and metallic/nonmetallic
properties of Ca1−xEuxB6. We present systematic Eu2+ ESR
measurements in single crystals of Ca1−xEuxB6 for 0.003
øxø1.00. For EuB6 sx=1.00d the broad ESR linewidth,
DH, was attributed to a spin-flip scattering relaxation due to
the exchange interaction between the Eu2+4f and conduction
electrons.7 The observedH ,T, and angle dependence ofDH
is then intimately related to the formation of magnetic po-
larons and the Fermi surface of the conduction states.

II. EXPERIMENTS

Single crystals of Ca1−xEuxB6 s0.003&x&1.00d were
grown as in Ref. 1. The structure and phase purity were
determined by x-ray powder diffraction and the crystal ori-
entation by Laue x-ray diffraction. Most of the ESR experi-
ments were carried out on,130.530.3 mm3 single crys-
tals in a Bruker spectrometer using aX-band s9.48 GHzd
TE102 room-T cavity and aQ-bands34.48 GHzd cool split-
ring cavity, both coupled to aT controller using a helium gas
flux system for 4.2&T&300 K. The Eu2+ concentration was
obtained from Curie–Weiss fits of the susceptibility data.

III. RESULTS AND DISCUSSION

The room-T X-band ESR spectra forH in thes110d plane
along the angle of minimumDH, i.e., ,30°s,55°d awayadElectronic mail: urbano@ifi.unicamp.br

JOURNAL OF APPLIED PHYSICS97, 10A924s2005d

0021-8979/2005/97~10!/10A924/3/$22.50 © 2005 American Institute of Physics97, 10A924-1

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:

143.106.108.185 On: Mon, 15 Jun 2015 15:42:51

http://dx.doi.org/10.1063/1.1855612
http://dx.doi.org/10.1063/1.1855612
http://dx.doi.org/10.1063/1.1855612


from the f001g direction forxø0.10 sxù0.30d is displayed
in Fig. 1. The data show an increase ofDH as x increases.
Around x<0.07 there is a crossover from Lorentzian to
Dysonian line shape with anA/B ratio of ,2.3 correspond-
ing to a skin depth much smaller than the size of the
crystals.8 The Dysonian line shape suggests ametallic envi-
ronment for the Eu2+ ions, confirming an increasing semime-
tallic character of Ca1−xEuxB6 asx increases.

The angular dependence ofDH measured atX- and
Q-band frequencies in thes110d, s100d and s001d planes at
300 K and 50 K is presented in Fig. 2 forx=0.30. Note that

DH is smaller and more anisotropic for highH sQ bandd.
Above 50 K the anisotropy is independent ofT.

DH for the spectra of Fig. 1 measured atX andQ bands
is shown in Fig. 3sad. For x*0.30, with the Eu2+ ions in the
metallic environment,DH becomes smaller at higherH sQ
bandd. The larger anisotropy ofDH, Q,XDHf001g−

Q,XDHmin,
for Q band than forX band is seen in Fig. 3sbd. Figure 3scd
shows that the reduction,QDHmin−XDHmin, is nearlyx inde-
pendent. This suggests that the dipolar interaction between
Eu2+ ions cannot be the responsible mechanism for the
broadening of the resonance asx increases.9

The ESR results of Fig. 1 for Eu2+ in Ca1−xEuxB6 show
three different concentration regimes. Forx,0.07 the line
shapes are Lorentzian, therefore, the local environment of the
Eu2+ sites isinsulating. In this regime the spectra show par-
tially resolved fine structure and an overall minimum ofDH
at 30° away from thef001g direction in thes110d plane.7 For
0.07øxø0.10 the line shape starts to show an admixture of
Lorentzian and Dysonian shape, i.e., it begins to display me-
tallic character. Forxù0.30 the line shape is pure Dysonian,
i.e., the local environment is metallic with conduction elec-
tron spin diffusion.8

For smallx, each Eu2+ represents a charge neutral sub-
stitution that, as a consequence of the broken translational
invariance, gives rise to a bound state in the gap of the semi-
conductor. The impurity states are localized within the exten-
sion of about a unit cell. As the number of impurity states
increases withx, they start to overlap, form a band, and
eventually yield a percolative network. The critical concen-
tration for nearest-neighbor sitepercolationon a simple cu-
bic lattice is xc=0.307.10 The percolation threshold is re-
duced toxc=0.137 if next-to-nearest neighbors are included,
which correspond to neighbors in thef110g directions. Third

FIG. 1. ESR spectra of Eu2+ in Ca1−xEuxB6 single crystals at room tempera-
ture withH in the s110d plane. For 0.003øxø0.10H is at 30° fromf001g,
while for 0.30øxø1.00H is at 55° fromf001g.

FIG. 2. Angular dependence ofDH for X bandsopen symbolsd andQ band
sclosed symbolsd in the s110d, s001d, ands100d planes for Ca0.7Eu0.3B6 at sad
room temperature andsbd 50 K.

FIG. 3. H and x dependence of the ESRDH at room temperature:sad
minimum linewidth atX andQ bands,X,QDHmin, sbd difference between the
maximum and minimum linewidths,Q,XDHf001g−

Q,XDHmin, and scd differ-
ence between the minimum linewidths,QDHmin−XDHmin. The percolation
regime of the Eu2+ impurity bound states at 0.10&x&0.30 is shown as a
shaded area.
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neighbors are along the diagonals of the cube, but this direc-
tion is blocked for the wave functions because of the large
B6

2− anions. From our results in Fig. 1, it is reasonable to
assume that the transition frominsulator to metal occurs at
x<0.14. Hence, forx,xc<0.14 the system isinsulating.
For x.xc, the system is metallic and the spin diffusion of the
conduction electrons gives rise to a Dysonian line shape.
With increasingx the impurity band gradually smears the
semiconducting gap and the system evolves to asemimetal
for x=1sEuB6d.7

For x*0.30,DH has an overall cubic anisotropy corre-
sponding to the superposition of three tetragonal environ-
mentsfDHmin is at 55° in thes110d, see Fig. 2g. This differs
from the case forxø0.07 where the local symmetry is genu-
inely cubic. There are two possible scenarios to explain these
findings. First, the origin for the tetragonal symmetry may be
associated with the Eu/Ca substitution. This scenario as-
sumes that the crystal field of an Eu2+ ion is determined by
the nearest-neighbor cation ions. If a Eu ion is surrounded by
five Eu and one Ca, the local symmetry is tetragonal. Since
the Ca ion can be along any one of the axis, there is a super-
position of tetragonal symmetries along the three directions.
The overall spectrum is then cubic with inhomogeneous
broadening. However, more than two Ca neighbors can give
rise to a trigonal component inDH, which was not observed.
However, this mechanism does not account for the aniso-
tropy observed in stoichiometric EuB6.

7 It would require a
much larger number of Eu vacancies than the claimed for
these samples to explain the tetragonal dependence ofDH.11

The second possible scenario considers the relaxation of
the Eu2+ spins into the conduction electron bath and the con-
comitant spin diffusion. The conduction electrons occupy
small ellipsoidal pockets centered at theX points of the Bril-
louin zone, i.e., at s±p /a,0 ,0d ,s0, ±p /a,0d, and
s0,0, ±p /ad,12 wherea is the lattice constant. The drift of
the diffusion is predominantly into the direction of the major
axis of the ellipsoids, i.e., along one of the axes of the cube.
Thus, each relaxation process gives rise to a tetragonal an-
isotropy ofDH. The superposition of the relaxation into the
three directions is then expected. This mechanism explains
why there is a tetragonal dependence in the metallic regime
but not in the insulating one. The mechanism also applies to
stoichiometric EuB6.

DH for EuB6 was attributed to a homogeneous resonance
with the main contribution toDH involving spin-flip scatter-
ing relaxation due to the exchange interaction between the
conduction and Eu2+ 4f electrons.7 The H ,T, and angle de-

pendence ofDH suggests that magnetic polarons and Fermi
surface effects dominate the spin-flip scattering in EuB6. The
second scenario is supported by the ESR and magnetoresis-
tance data. Figures 2 and 3 show that the high-H spectra
have narrower lines forx*0.30, indicating that the spin-flip
mechanism is suppressed with field, which is consistent with
the formation of polarons. This is similar to EuB6. The nega-
tive magnetoresistance observed in Ca1−xEuxB6 for x*0.3
also supports the presence of magnetic polarons.13

IV. CONCLUSIONS

The change in the line shape of the ESR spectra shows
an evolution from insulating to semimetallic of the Eu2+ lo-
cal environment in Ca1−xEuxB6 as a function ofx. The cross-
over between these two regimes is approximately in the
range 0.10&x&0.30. Forx*0.30DH shows:sid a field nar-
rowing, which is attributed to magnetic polarons,7 andsii d an
overall cubic angular dependence corresponding to the su-
perposition of three tetragonal components along thef001g
axes, which is attributed to the relaxation mechanism and the
Fermi surface.7
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