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We explore the physical properties of a unified microscopic theory for the coexistence of superconductivity
and charge-density wavessCDWsd in two-dimensional transition-metal dichalcogenides. In the case of particle-
hole symmetry, the elementary particles are Dirac fermions at the nodes of the charge density wave gap. When
particle-hole symmetry is broken, electronsholed pockets are formed around the Fermi surface. The supercon-
ducting ground state emerges from the pairing of nodal quasiparticles mediated by acoustic phonons via a
piezoelectric coupling. We calculate several properties in thes-wave superconducting phase, including specific
heat, ultrasound absorption, nuclear magnetic relaxationsNMRd, and thermal and optical conductivities. In the
case with particle-hole symmetry, the specific-heat jump at the transition deviates strongly from ordinary
superconductors. The NMR response shows an anomalous anisotropy due to the broken time-reversal symme-
try of the superconducting gap, induced by the triple CDW state. The loss of the lattice inversion center in the
CDW phase leads to anomalous coherence factors in the optical conductivity and to the appearance of an
absorption edge at the optical gap energy. In addition, optical and thermal conductivities display anomalous
peaks in the infrared when particle-hole symmetry is broken.
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I. INTRODUCTION

The quasi-two-dimensionals2Dd transition-metal dichal-
cogenidessTMDd 2H-TaSe2, 2H-TaS2, and 2H-NbSe2 are
layered compounds wheres-wave superconductivity coexists
with a charge-density wavesCDWd1,2 at low temperatures,
and whose transport properties are highly anisotropic in the
high temperature CDW phase.3 There is vast literature re-
porting anomalous effects in the CDW phase, including non-
linear Hall effect, anomalous impurity effects in the super-
conductingsSCd phase,4 stripe phases,5 and different regimes
of commensurability.6 Recent angle-resolved photoemission
experimentssARPESd reveal that the quasiparticles of the
TaSe2 crystal have a non-Fermi-liquid lifetime.7 This sce-
nario becomes a little more exciting with the verification that
some of the TMD properties, such as the linear growth of the
normal resistivity with temperature,3 and the strong aniso-
tropy in the in-plane and out-of-plane transport are similar to
the same properties in the high-temperature superconductors
sHTcd. HTc do not show a CDW gap, but ad-wavepseudo-
gap coexisting with the superconducting phase. In both
cases, the transport and thermodynamic properties are
weakly dependent on the application of external fields in the
normal/pseudogap phase, and strongly dependent on them in
the SC phase.8 Furthermore, the application of pressure in
TMD favors the superconductivity in a broad range and sup-
presses the CDW phase,9 in close analogy with the HTc
phase diagram temperature vs doping level. In contrast to the
HTc, however, the TMD are very clean crystals. The anoma-
lous TMD properties are sample independent and can help to
clarify the physics behind a whole class of exotic low-
dimensional superconductors.

The interpretation of the experimental data in TMD is,
however, still very controversial. Within the Peierls theory,
the CDW gap formation in 1D systems is usually due to

nested Fermi surfaces. In 2D systems, the nesting is not per-
fect and some parts of the Fermi surface may not be gaped.
Earyly band structure calculations10 indicated that theG cen-
tered sheetssSId are nested with theK centered onessSIId by
the Qi si =1,2,3d wave vectors of the triple-CDWssee Fig.
1d. The value of the CDW wave-vector,uQiu,

1
3GK, mea-

sured by neutron diffraction11,12 and some recent scanning-
tunneling microscopysSTMd experiments13–15 confirm the
plausibility of a nesting scenario. An alternative theory pro-
posed by Rice and Scott16 is based in a Fermi-surface-
independent CDW mechanism, where the CDW wave vec-
tors connect the saddle pointssindicated in Fig. 1, around
1
2GKd of the transition metald bands, generating a logarith-
mic divergence in the electronic susceptibility. However, the
saddle-point energy in NbSe2 is too large s,50 meVd in
comparison to the CDW ordering thermal energykBTCDW
,3 meV to allow a saddle-point driven instability.17 In
TaSe2, however, ARPES has observed an extended saddle
band alongGK. This band is nearly flat and closer to the
Fermi energy than the band calculations predicted.18,19As the
saddle points are not well defined in this case, it is question-
able to justify the CDW wave-vector measured with neutrons
by some mechanism related to special parts of the saddle
bands. More experimental studies are required to elucidate
this point.

Although these arguments seem to rule out at least a con-
ventional saddle-point mechanism, a consensus on the origin
of the CDW instability has not been reached. STM scans at
4.2 K in TaSe2, TaS2, and NbSe2 show that the amplitude of
the CDW gap isDCDW,80, 50, and 34 meV, respectively.20

The ability of ARPES to measure the SC gapDs,1 meV
!DCDW in NbSe2, combined with the complete failure of
ARPES to detect traces of the CDW gap in the Brillouin
zone of TaSe2 and NbSe2 sRefs. 7 and 21d were interpreted
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as an evidence that the Fermi surface is weakly covered by
the CDW. We observe that the photoemission results seem to
be in contradiction with the STM data, and cannot explain
the non-Fermi-liquid transport in the TaSe2 crystal. One pos-
sibility is that the ARPES data are obscured by the strong
dependence of the CDW gap with the directions of the Bril-
louin zone combined with the formation of pockets in the
points of the Fermi surface whereDcskd=0 smaxfDcskdg
=DCDWd. Another possibility is that the ARPES electronic
dipole matrix elements vanish for certain states in the CDW
phase due to the broken spacial inversion symmetrysde-
tected in neutron scatteringd12 forbidding the observation of
some bands.

The strong resemblance of the normal CDW phase resis-
tivity of TaSe2 with the HTc22 and the anomalous quasipar-
ticle lifetime decay, given by the inverse of the imaginary
part of the electronic self-energy7 Im SskF ,vd~t0

−1+buvu, in-
dicates that a marginal Fermi liquidsMFLd theory23 should
be developed as the basis of a minimal model unifying the
CDW and SC phases in TaSe2. The experimental verification
that kBTCDW!DCDW for all the TMD crystalssin TaSe2 for
example,kBTCDW,120 K=12 meVd gives a good indication
that a strong-coupling CDW theory is required.

One of ussA.H.C.N.d24 has recently proposed a unified
picture for the CDW and SC phases where the elementary
particles are Dirac fermions that are created in the region
where the CDW gap vanishes, leading to the generation of a
nodal liquid. According to neutron-diffraction studies, the in-
version center of the crystal is lost in the CDW phase,12

allowing for the possibility of piezoelectric effects.In a sys-
tem with nodal quasiparticles, the piezoelectric coupling is a
marginal coupling from the renormalization groupsRGd

point of view, while the usual electron-phonon coupling is
irrelevant under the RG.25 Based on atight-bindingdescrip-
tion of the electronic orbitals,26 and on the assumption of
imperfect nesting between different Fermi surface sheets, the
model of Ref.24 proposes af-wave symmetry CDW gap
with lobes along the saddle-point directions and six nodes at
the points where the gap is zerossee Fig. 1d. The proposed
CDW gap is odd in the Brillouin zone due to the symmetry
of the electron-phonon coupling,24 and due to the absence of
the inversion symmetry in the CDW phase, changing sign in
each node. The superconductivity emerges from Cooper pair-
ing between the Dirac fermions mediated by acoustic
phonons via a piezoelectric coupling. We propose that the
Fermi surface is fully gaped by the superposition of the
CDW and thes-wave superconducting order parameters.
This model is able to correctly explain some of the anoma-
lous properties of the TMD such as the marginal quasiparti-
cles lifetime in TaSe2, the dependence of the normal-SC
phase transition with the lattice parameters and the metallic
behavior of the resistivity in the CDW phase.24

The geometry of the proposed CDW gap is similar to the
Brillouin zone of graphite, where the nodes represent the
points where the conduction and valencep bands cross each
other.27 In contrast to graphite, the lattice inversion symme-
try is broken in the distorted phase and piezoelectricity can
arise. As it is usually observed in insulators since metals
screen the polarization fields, one may ask, “is it actually
possible to find piezoelectricity in a superconductor?” To an-
swer this question, we should first consider that in a nodal
liquid the density of statessDOSd goes to zero in the nodes,
and therefore the electrons cannot effectively screen electric
fields. Hence, one can conciliate a metallic theoryswith gap-
less quasiparticle excitationsd with the piezoelectricity. The
rigorous vanishing of the DOS in the Fermi surface, how-
ever, is not essential for the piezoelectricity to appear. It is
sufficient to consider that the electrons of low-lying momen-
tum sfor example, in a small pocket around the nodesd are
“slow” enough to couple with the acoustic phonons of the
polarized lattice.

If the piezoelectricity and the metallic character are not
mutually excluding, it remains a question of how the polar-
ization vector affects the phase coherence of the condensate.
The answer to this second question can be found in the col-
lective modes. The electromagnetic gauge invariance of the
SC state is provided by the longitudinal response of the col-
lective excitations, which screen the electrons through a
cloud of virtual plasmons.28 Only the plasmons respond to
the longitudinal fields, and give rise to screening. Since the
piezoelectricity involves electric fields only, it does not affect
the phase coherence of the electrons. In a previous work,29

we have shown by means of a semiclassical calculation that
that piezoelectricity is not only consistent with the stability
of the condensate as it is possibly behind the quantum criti-
cal points sQCPsd observed experimentally in the TaSe2
phase diagram, separating theT=0 commensurate phases
from the stripe phase as a function of the applied pressure.

The organization of the paper is as follows. In Sec. II we
introduce the minimal model Hamiltonian of theCDW and
SC phase. In Sec. III we derive the SC gap equation. Section
IV is devoted to the thermodynamics of the SC phase, while

FIG. 1. Schematic representation of the TMD Fermi surface.
TheG centered sheetsSId is nested with theK centered onessSIId by
the CDW wave vectorsQi. A CDW gap develops in the two sheets,
except in the nodal points, indicated by the black filled circles. The
empty circles are the saddle points. The thick solid line around the
SI sheet is the proposed CDW gap. The dashed lines indicate the
nodes connected byQi.
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in Sec. V we calculate the acoustic attenuation rate and the
nuclear magnetic relaxationsNMRd response. In Sec. VI we
calculate the optical and thermal conductivities, in Sec. VII
we discuss the Meissner effect. Finally, in Sec. VIII we
present our conclusions.

II. THE HAMILTONIAN

The nodal system is composed of two subsystems defined
by the nodes of the CDW state which are connected by the
triple-CDW wave vectorsQi si =1,2,3d. It is convenient to
introduce the spinors

Ci,sskd = S ck,s

ck+Qi,s
D = Sc+,i,sskd

c−,i,sskd
D ,

where1, 2 indicate the two nodal spaces, andck,s
† sck,sd are

creationsannihilationd operators for electrons with momen-
tum k and spins= ↑ ,↓. The electronic Hamiltonian in the
normal CDW phase is made of two terms

HCDW = He + He−c.

He is the Hamiltonian of the free electrons in the vicinity of
the nodes,

He = o
k,s,i

fekcs,k
† cs,k + ek+Qi

cs,k+Qi

† cs,k+Qi
g

=
1

2 o
k,a,b,s,i

ca,i,s
† skd

3fsek + ek+Qi
dh0

ab + sek − ek+Qi
dh3

abgcb,i,sskd, s1d

where hn sn=0,1,2,3d are Pauli matrices that act in the
nodal indexesa,b=±, andek is the free electron dispersion.
In our convention,h0 is the identity andn=1,2,3 indexes
the x,y,z directions, respectively. The second term in the
Hamiltonian,He−c, is the CDW exchange Hamiltonian be-
tween electrons situated in two different nodes connected by
Qi,

He−c = o
i,k

Dckcks
† ck+Qi

+ H.c.

= o
i,k,s,a,b

Dckca,i,s
† skdh1

abcb,i,sskd, s2d

where Dck is the CDW gap, with odd parity in the nodal
space due to the loss of the lattice inversion symmetry. This
term arises from the scattering of the electronic wave func-
tion by the CDW periodic superstructure.

Applying thenestingconditionek +ek+Q=0 ssee Fig. 2d in
Eq. s1d, and taking the long-wavelength, low-energy limit,
the Hamiltonian in the CDW phase reads,

HCDW = o
k,s,i

Ci,s
† skdfvFk'h3 + vDkih1gCi,sskd s3d

wherek' andki are the momentum components in the nor-
mal and parallel directions to the Fermi surface, respectively,
vF is the Fermi surface velocity, andvD=]Dc/]ki. The CDW
elementary excitations around the nodes are therefore fermi-

ons which follow the 2D massless Dirac Hamiltonian, simi-
larly to the two-band electronic description of graphite.27

The broken lattice inversion symmetry due to the CDW
gap allows piezoelectricity in the crystal. We propose that the
electron-phonon coupling is piezoelectric, giving rise to a
pairing of Dirac fermions in the singlet state through the
triple-CDW superstructure. In contrast to the usual Cooper
pairs, whose electrons are paired across the Fermi surface,
these pairs are formed by electrons located in different nodes
linked by a CDW wave vectorQi ssee Fig. 1d. The pairing
approximation consists of assuming a condensate of pairs
whose center-of-mass has momentumQi and zero spin. This
assumption clearlyviolates the time-reversal symmetry of
the superconductor order parameterDs. According to
Anderson,30 the strong insensibility of the BCS supercon-
ductors to impurities is due to the tendency of electrons to be
in the state of highest possible degeneracy in the condensate,
implying pairing each electron with its symmetric in spin and
momentum. In such a case, the scattering channels promote
transitions between two degenerated states, keeping the sys-
tem coherent. The absence of time-reversal symmetry should
destroy the condensate in the presence of a very small impu-
rity concentration.31 In the case of TMD, however, the CDW
scattering does not affect the degeneracy of the condensate
as far as the Dirac fermionsCi living in different nodal sub-
spaces indexed by the three CDW directionsi =1,2,3remain
decoupled. For this reason, we may drop thei index from
now on.

After tracing the phonons, the piezoelectric pair interac-
tion has the form24

HP = − go
k,k8

o
a,b,c,d

h2
abh2

cdca,↑
† skdcb,↓

† s− kd

3cc,↑sk8dcd,↓s− k8d,

whereg is the piezoelectric coupling constant. The choice of
the antisymmetric Pauli matrixh2 incorporates the broken
symmetry of the superconductor gap. In the mean-field ap-
proximation, the pairing Hamiltonian reads,

FIG. 2. Nesting condition in the two sheetsSI and SII of the
TMD Fermi surface. The momentumk outsideSI is mapped by a
CDW wave vector displacement intok +Q, insideSII . As the free
electron dispersionek is odd with respect to the Fermi surface
sheets, we haveek =−ek+Q.
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HP = o
k

o
a,b

fDsca,↑
† skdh2

abcb,↓
† s− kd + H.c.g +

Ds
2

g
, s4d

where

Ds = − go
k

o
a,b

kca,↑skdh2
abcb,↓s− kdl s5d

is the complex superconductor order parameter.
So far, we have discussed the problem with particle-hole

symmetry, that is, the chemical potentialm is exactly at the
Dirac point sm=0d. In order to include the situation where
particle-hole symmetry is broken, we have added to Eq.s3d a
chemical potential term

Hm = − mo
s,a

ca,s
† skdca,sskd. s6d

This term introduces an electronicsm.0d or hole sm,0d
pocket around the Dirac point producing a finite density of
states.

In order to diagonalize the problem, it is convenient to
extend the spinorial notation to the Nambu space

Cskd =1
c+,↑skd

c+,↓
† s− kd
c−,↑skd

c−,↓
† s− kd

2 , s7d

with k defined with respect to the nodes. We introduce a
new set of Pauli matricestm which operates in the space
s↑k, ↓−kd. Denotingtmhn as the tensor product between the
Nambu and nodal spaces, it is not difficult to see that the full
Hamiltonian is written as

H = o
k

C†skdfvFk't0h3 + vDkit0h1 + Dst1h2 − mt3h0gCskd.

s8d

Notice that the gauge symmetry of the problemc→ceiu,
and Dse

2iu→Ds is broken at the mean-field level. With this
notation, the SC order parameter is given by

Ds = − go
k

kC†skdt1h2Cskdl. s9d

The diagonalization of the Hamiltonian above leads to four
branches of excitations

±Ek,±m ; ± ÎsvFk̄ ± md2 + Ds
2, s10d

where k̄ =kW'+svD /vFdkWi is the in-plane anisotropic momen-

tum, with k̄;uk̄ u. In the normal phase, we identify two
branches of excitationsswe assumem.0d:

±Ek,±m ——→
Ds→0 5±vFk̄ + m sholelike branchd,

±vFk̄ − m sparticlelike branchd,6
which are related to holelike and particlelike pockets around
the CDW nodessfor m,0, the nomenclature is exchangedd.
The two branches are physically equivalent to each other,

except for a constant equal to −ok2m, integrated in the vol-
ume of the Dirac cone. The optical gap of the bands in the
SC phase is 2Îm2+Ds

2, as one can see from Fig. 3.

III. GAP EQUATION

To calculate the gap self-consistently, we use the standard
many-body Green’s function method. Since the Hamiltonian
s8d is in the quadratic formH=okC†vJC, its corresponding
Green function in 434 space is

GJsk,ivnd = −E
0

b

dteivntkTtfCC†gl = sivn − vJkd−1,

whereTt is the time-ordering operator in imaginary time,vn
are the fermionic Matsubara frequencies,b=1/skBTd is the
inverse of temperature,kB is the Boltzmann constant, and

vJk ; vFt0hW · k̄ + Dst1h2 − mt3h0 s11d

is the dispersion tensor withvFhW ·k̄ ;vFk'h3+vDkih1. Ex-
ploring the anticommutative property of the Pauli matrices,
the Green function which is systematically used in our cal-
culation is

GJsvn,kd = − sivn + vJkd
vn

2 + Ek8
2 + 2mvFt3hW · k̄

fvn
2 + Ek,m

2 gfvn
2 + Ek,−m

2 g
, s12d

where

Ek8
2 ; vF

2k̄2 + m2 + Ds
2 = Ek,±m

2 − 2vFs±mdk̄.

Noting that kCa
†skdCbskdl is the retarded part of the

Green functionGbask ,t→0−d, we see from Eq.s9d that the
amplitude of the mean-field gap is written in the Nambu
spinorial notation as

FIG. 3. Dirac fermions dispersion in the pocket with the opening
of the SC gap forumu= 3

2Ds=1 meV. Each band has two pocket
branches indicated by the dotted and thick solid lines. The thin solid
lines with the vertex abovesbelowd the Fermi energyE=0 represent
the holelikesparticleliked branches of the Dirac cone in the normal
CDW phase.
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2Ds = −
g

b
o
k

o
vn=−`

`

Trft1h2GJsvn,kdg.

Evaluating the trace yields

2Ds =
gvFDs

2pvD
o

s=±1
E

0

L

dk̄
k̄

Ek,sm

tanhSb
Ek,sm

2
D , s13d

whereL is a momentum cutoff associated with the lineariza-
tion of the dispersion close to the CDW nodes.

For m=0, the gap equation is rather simple and reads

DssT,g,m = 0d =
2

b
cosh−1scoshfpvDvFb/gcge−pvDvFb/gd,

s14d

wheregc=2pvD /L is the zero-temperature critical coupling
constant. In fact,

DssT = 0,g,m = 0d = 2pvDvFgc
−1S1 −

gc

g
D . s15d

Notice that for g,gc we find DssT=0,g,gc,m=0d=0.
Hence, them=0 gap equation has a quantum critical point
sQCPd, indicating that superconductivity occurs only above a
minimal couplinggc. This is a general property of the nodal
liquid, due to the absence of the background Fermi sea. In a
Fermi liquid swhere the Fermi surface is large in comparison
to all other energy scalesd, the Fermi sea is unstable to the
formation of Cooper pairs between two electrons mediated
by an attractive potential, even for infinitesimal coupling.32

In this case, the Pauli exclusion principle of the background
electrons plays the role of the interaction, making the con-
densate stable even in the weak coupling limit.33 The zero
temperature gaps15d equals the energy cutoffa=vFL in the
g→` limit.

A. Zero-temperature analysis

To see how the pocket affects the QCP wheng=gc we
analyze the gap equation in the zero-temperature limit. At
this point, we introduce a more suitable cutoff, given by the
momentas± that define the surfaces of constant energy in the
Dirac cone

a2 ; vF
2L2 = svFs± ± md2 + Ds

2 = const. s16d

This new definition of the cutoffsbasically replacingL by
ss, with s=±d is convenient because it simplifies the integra-
tion, allowing us to find simple analytical expressions for the
gap. This kind of approximation is fairly reasonable, since
the results of this model are not to be taken literally whenm
andDs are comparable to the energy cutoff of the conea, in
which case the contribution of the high-energy states cannot
be neglected. On the other hand, we should be warned by the
fact that this new momentum cutoffss doesnot conserve the
number of states of the normal phase. When calculating ther-
modynamic functions, the correct cutoff isL, which cor-
rectly maps the volume of the Dirac cone and avoids prob-
lems such as losing states in the SC phase, which would
certainly have an effect in the condensation energy. For al-

most all the applications, the results are not seriously af-
fected by the details of the cutoff if the gapDs is sufficiently
small in comparison toa. TheT=0 gap equation becomes

2Ds =
gvF

vD

Ds o
s=±1

E
0

ss dk̄

2p

k̄

Ek,sm

=
g

2pvFvD

DsF2a − 2ÎDs
2 + m2 − m lnSÎDs

2 + m2 − m

ÎDs
2 + m2 + m

DG .

s17d

We rescale all the quantities by definingx=Ds/ umu and

hsgd = 2pvFvD

gc
−1 − g−1

umu
.

The T=0 scale invariant equation is

Ffx,hsgdg = Î1 + x2 +
1

2
lnSÎ1 + x2 − 1

Î1 + x2 + 1
D − hsgd = 0.

s18d

We see in Fig. 4 that Eq.s18d has two distinct coupling
regimessid the strong-coupling sectorg.gc, where the mar-
ginal physics develops, withumu!Dss0,g,md for g@gc

sstrong-coupling limitd and sii d the weak-coupling sectorg
,gc, where the energy scale of the pocket is large in com-
parison to the gapfi.e., umu@Dss0,g,mdg wheng/gc→0.

In the latter, the system flows in the direction of a Fermi
liquid in the weak-coupling limit sg!gcd, while in the
former the nodes are well defined forg.gc, resulting in a
nodal liquid description. We notice that the quasiparticle
properties are strongly affected by the coupling constantg,
which separates the marginal Fermi liquidsMFLd sector
from the “Fermi-liquid” one, where the pocket plays the role
of the Fermi surface, raising the density of states in the
nodes.

For convenience, we denote the zero-temperature gap
Dss0,g,md by D0m from now on. In the strong-coupling limit
sumu /D0m!1d, we may write Eq.s17d as

FIG. 4. Scaling of the zero temperature gap equation vs the
coupling constant parameterhsgd~ sgc

−1−g−1d / umu.
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1 =
g

2pvDvF
Sa − Ds +

m2

2Ds
D ,

whose solution is

D0m ——→
g@gc D0

2
s1 +Î1 + 2m2/D0

2d, s19d

whereD0;DsT=0,g,m=0d is given by Eq.s15d. In the op-
posite limit D0m / umu!1 in the weak-coupling sector, we see
that Eq.s18d can be expanded in leading order inx, giving

Ffx,hsgdg ——→
x→0

1 + lnS x

2
D − hsgd

=1 + lnS Ds

2umuD − 2pvFvD

gc
−1 − g−1

umu
= 0,

yielding

D0m ——→
g!gc

2umuehsg,md−1 = 2umue2pvFvDsgc
−1−g−1dumu−1−1.

s20d

Although the strong-coupling approximation is rigorously
valid for g@gc and the weak-coupling one forg!gc, these
two approximations are remarkably good in almost the entire
coupling range of their respective sectorssas shown in Fig.
5d provided thatm /a is small. However, to find sensible
results, one should consider that the valid coupling range of
the theory is limited not too far above the critical coupling
gc, in order to keep the ratioD0m /a small ssee Fig. 5d.

B. Finite temperature

Let us return to Eq.s13d. After some algebraic manipula-
tion ssee the details in Appendix Ad, the gap equation in the
strong-coupling regime assumes the form

coshsbDs/2de−m2b tanhsbDs/2d/s4Dsd

= coshspvDvFb/gcde−pvDvFb/g. s21d

The quantity tanhfbDs/2g /Ds changes very little withb in
the whole temperature interval. In a first approximation, we
can obtain the analytical expression of the low-temperature
gap by replacing the gap inside the exponential above by its
zero-temperature valueD0m. This substitution leads to:

DssT,g,md ,
2

b
cosh−1fcoshspvDvFb/gcd

3 e−pvDvFb/gem2b tanhsbD0m/2d/s4D0mdg,

valid at strong coupling for smallm /a. Close to the phase
transition, Eq.s13d yields

FIG. 5. Dependence of the zero temperature gapsnormalized by
the cutoff ad with the coupling constantg. Solid lines: numeric
solution of the gap equations18d; dotted: strong coupling approxi-
mation sumu!D0md; dashed: weak coupling onesumu@D0md. We
have setumu /a=0, 0.1, and 0.3 from the bottom to the top. Notice
that the QCP atm=0 is suppressed by the pocket formationsumu
.0d.

FIG. 6. Top: SC gapDssT,g,md vs the coupling constantg/gc.
Solid lines: numeric solution of the gap equations13d; dotted lines:
strong coupling solutionsanalyticd. From left to right: kBT/a
=0.005,0.1,0.2 andumu /a=0.2,0.2,0.1, respectively. Bottom: SC
gap vs temperature. The scales are normalized by the energy cutoff
a of the Dirac cone. Dotted line:sumu /a=0.06,g/gc=1.2d; solid:
sm /a=0,g/gc=1.2d; dashed:sumu /a=0.06,g/gc=1.1d.
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DssTd ——→
T→Tc 52ÎD0

bc
+

m2

2
t1/2, umu/D0m ! 1,

1

bc
F7zs3d

8p2 +
1

2bc
2m2G−1/2

t1/2, umu/D0m @ 1,6
s22d

wheret;sTc−Td /Tc is the reduced temperature andz is the
Zeta function. The critical temperature is also calculated
from the gap Eq.s13d in the Ds→0 limit, giving

Tc =5
1

2kB ln 4
fD0 + ÎD0

2 + m2 ln 4g, umu/D0m ! 1,

umug
kBp

eas1−gc/gdumu−1−1, umu/D0m @ 1, 6
s23d

where lng,0.577 is the Euler constant. In the particle-hole
symmetric casesm=0d, we haveTc=D0/ skB ln 4d and DssT
→Tc,g,0d=2D0t

1/2/ ln 2 ssee Appendix A for detailsd.
We see that the existence of a pocket suppresses the QCP

sT=0d separating the normal and SC phasesssee Fig. 5d. This
effect is due to the establishment of the background Fermi
sea, which stabilizes the Cooper pairs for an arbitrarily small
coupling. The thermal effect on the gap recovers the para-
metric phase transition with the coupling constantg, as dis-
played in Fig. 6stopd by noting the presence of a minimal
coupling fsay, g0sT,md, with g0s0,0d=gcg, below which
Dssg,g0,md=0. The explanation can be found in the strong
dependence of the critical temperatureTc with g, as shown in
Fig. 6 sbottomd. At a given nonzero temperatureT, a minimal
coupling is required to satisfyTcsg.g0d.T.

IV. THERMODYNAMICS

In this section, we calculate the thermodynamic functions
starting from the partition functionZ of the nodal fermions.
The partition function is defined as usual from the original
Hamiltonian s8d, written in a diagonal basis of eigenstates
indexed byk, g= ±1 sfor the two particle-hole branchesd,
s= ±1, and with eigenvaluesEk

a= ±Ek,sm,

Z = e−bV = tre−bH

= e−bg−1Ds
2p

k,a
o
nk

a=0

1

knk
aue−bEk

ank
a
unk

al

= e−bg−1Ds
2 p
k,g,s

s1 + e−bgEk,smd,

where V is the thermodynamic potential. The Hamiltonian
includes the termDs

2/g, in order to give the correct conden-
sation energy. The thermodynamic potentialV=V0+Ds

2/g is
given by

V0sTd = −
1

b
o
k,s

lnf2 + 2 coshsbEk,smdg

= −
vF

pbvD
o
s
E

0

L

dk̄ k̄ lnf2 + 2 coshsbEk,smdg.

s24d

If Vn is the thermodynamic potential in the normal phase, the
energy of condensationVns0d−V0s0d=Hc

2s0d / s8pd is given
in terms of the zero-temperature critical fieldHc, shown in
Fig. 7. The internal energyE=E0+Ds

2/g is given by

E0sTd = o
k,g,s

gEk,smnk
g

= −
vF

2pvD
o
s
E

0

L

dk̄ k̄Ek,sm tanhSbEk,sm

2
D . s25d

wherenk
g=segbEk,sm+1d−1 is the Fermi-Dirac distribution in-

dexed ins ,g= ±1.
According to the usual thermodynamic relations, the spe-

cific heat is defined by

CV = T
dS

dT
= − b

dS

db
, s26d

where S=sE−Vd /T=−s]V /]TdV is the electronic entropy
due to the Dirac fermions. At low temperature, the gap is
practically independent of temperature. It is easy to check
that the specific-heat dependence with temperature in this
limit for m=0 is given by:

CV ——→
T!Tc 1

2pvFvD
E

Ds

EL

dEE3sech2SbE

2
D

——→
L→` 6kB

pvFvD

Ds
2e−bDs,

leading to the expected exponential behavior with the gap. A
more interesting result is related to the jump of the specific

FIG. 7. Solid line: critical fieldHc dependence with tempera-
ture, in units ofÎsa2/gcd for m=0 andg/gc=1.1; dotted: empirical
law Hcs0df1−T2/Tc

2g. The difference between the two curves is
shown in the inset.
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heat in the normal-SC phase transition. The calculation is
given in Appendix B for the weak- and strong-coupling re-
gimes. It results in two well defined limits: the marginal one
sumubc!1d,

UDCV

Cn,V
U

Tc

=
2 ln 4

9zs3d
Sln 4 +

bc
2m2

2
D ù 0.35,

where the equality holds form=0, and the Fermi-liquid limit

UDCV

Cn,V
U

Tc

=
3

2p2

1

7zs3d
8p2 +

1

2bc
2m2

ø 1.43, s27d

which recovers the BCS result forbcumu@1. The jump ob-
served in the NbSe2 crystal34–36 sDC/Cn,2d is a good indi-
cation in favor of a conventional Fermi liquid and BCS be-
havior. In TaSe2, however, where the transport is marginal
and the quasiparticles are not well defined in the Landau
sense37 stv,1, wheret−1 is the scattering rated, the picture
can be very different. In the nodal liquid case, the specific-
heat jump is strongly attenuated due to the vanishing density
of statessDOSd in the Fermi surface, resulting in the univer-
sal constantDCV/Cn=0.35. The plot of the specific heat dis-
played in Fig. 8 shows that the temperature dependence of
the normal CDW phase is quadratic. As the DOS is raised by
a pocket around the nodes, the jump grows in the direction of
the BCS value of 1.43, which corresponds to the weak-
coupling limit. However, we notice that the nodes cease to be
well defined in the presence of large pockets. In this case, the
pairing ansatz adopted in Sec. II and the role of piezoelec-
tricity in the electron-phonon coupling are questionable.

V. COHERENCE FACTOR EFFECTS

In this section we calculate two basic properties of the
superconductor: the acoustic attenuation and the nuclear-
spin-relaxation rate in the absence of impurities.

A. Acoustic attenuation

The ultrasound attenuation results from the resonant ab-
sorption of the longitudinal phonons in the solid.38 The ab-
sorption rate is proportional to the imaginary part of the
charge susceptibility39

assqd = − l1
2 lim

v→0
F 1

v
Im xcsq,vdG s28d

in the q→0 limit, since the phonon wavelength is much
larger than the typical electronic wavelength. This property is
connected to the superconductorcoherence factors, which
basically define the probability amplitude of quasiparticle
transitions between two states represented by the pairs space
sk ↑ ,−k ↓ d.33,38 These factors conserve the time reversal
symmetries of the interaction involved in the transition. They
are usually divided into type I, for interactions which pre-
serve the time-reversal symmetrysas in the electron-phonon
couplingd and type II when this symmetry is broken, as in the
spin-exchange interaction. The charge susceptibility is de-
fined in terms of the time-ordered charge-density correlation
function. All the correlation functions used in this article are
defined in Appendix C. Using the spinor defined ins7d the
charge-density operator is given by

rsqd = o
k,s,a

cas
† sk − q/2dcassk + q/2d

= o
k

C†sk − q/2dt3h0Csk + q/2d. s29d

We define GJ+;GJsk +q /2 ,ivn+ ivd and GJ−;GJsk
−q /2 ,ivnd, so that the electronic charge susceptibility reads

xcsq,ivd =
1

b
Tr o

k,vn

GJ+t3h0GJ−t3h0. s30d

It is convenient to define the gapless Dirac fermions disper-

sion by ek =vFk̄, and the quantitye0=ÎvF
2sk̄2+ q̄2/ 4d. After

evaluating the trace and the sum over the fermionic Matsub-
ara frequencies, the imaginary part of the susceptibility
reads:

Im xcsq,v → 0d =
v

eq/2

vF

pvD
E

0

L

dk̄k̄ o
s=±1

]nsEsm
0 d

]Esm
0

3
e0 + sm

e0Esm
0

Îse0d2 − eq/2
2 , s31d

whereEsm
0 =Îse0+smd2+Ds

2, andn is the Fermi-Dirac distri-
bution. Replacing Eq.s31d into Eq.s28d, we obtain the ultra-
sound attenuation rate

as ——→
q→0

−
1

eq/2

l1
2

pvDvF
o

s=±1
E

0

a dee

Esm

se + smd
]nsEsmd

]Esm

.

The temperature dependence is displayed in Fig. 9 and
shows a power-law behavior near the phase transition. This
result is compared with the BCS curveas/an=2/sebDs+1d.33

FIG. 8. Specific heatCV31/T vs temperature form=0, in units
of kB

2 /gc. The jump occurs atkBTc=D0/ ln 4. Dashed line: normal
behavior in the absence of the SC gap.
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B. NMR relaxation

The NMR relaxation has its origin on the hyperfine inter-
action between the nuclear spins and the electrons. The re-
laxation rate measures the nuclear-spin time variation along

an arbitrary direction of the spin space, sayb̂. The conden-
sate exhibits no paramagnetism in the singlet channel, where
the total spin of the pairs is zero. Since the Zeeman and
hyperfine energies are usually small in comparison to the
gap, the only processes that contribute to the spin relaxation
are thermally excited quasiparticles. The inverse of the spin
relaxation is proportional to the local magnetic susceptibility

projected alongb̂,

T1
−1sb̂d = − l2

2o
q

lim
v→0

F 1

v
Im x

b̂

ssq,vdG , s32d

wherex
b̂

ssvd is given in terms of the normal directions of the

spin space byx
b̂

ssvd=oi jsdi j −bibjdxi j
s svd, with i , j =1,2,3

representing thex,y,z directions, respectivelyssee Appendix
Cd.

Before defining the spin-density operator, we must intro-
duce the spin degrees of freedom in the spinor representa-
tion, Eq.s7d. This is naturally done in the Balian-Werthamer
sBWd space40

Caskd = S zaskd
− is2za

†s− kd
D =1

ca↑skd
ca↓skd

− ca↓
† s− kd

ca↑
† s− kd

2 s33d

which contains an additional spin subspace

zskd = Sc↑skd
c↓skd

D
inside the regular Nambu space,s↑k , ↓−kd. We have defined
a new set of Pauli matricessm=ss0,sW d which operates in
this new space. The general spin-density operator is

Sisqd =
1

2 o
kss8a

ca,s
† sk − q/2dsi

ss8ca,s8sk + q/2d

=
1

2 o
kP

1
2

BZ

C†sk − q/2dsit0h0Csk + q/2d, s34d

where i =1,2,3 are thespin directions,k is summed in the
half Brillouin zone, ands ,s8= ↑↓ are the spin indexes. It is
not difficult to check that the Hamiltonians8d written in the
BW space is given byssee Appendix Dd

H = o
kP

1
2

BZ

C†skdfvFs0t0hW · k̄ − Dss3t1h2 − ms0t3h0gCskd.

s35d

The matrix inside the parenthesis defines the new dispersion

tensorvJk of the Green functions12d, GJ =sivn−vJd−1. Notice
that the BW Green function is very similar to the previous
one, except for the size of the Hamiltonian space, which is
now 838.

The pairing term brings something new because of the
broken time-reversal symmetry of the SC phase, expressed
by the antisymmetric property of the Pauli matrixh2 under
the transpositionha

ab→ha
ba. We will soon explore the physi-

cal consequences of this broken symmetry. From Eq.sC2d
the spin susceptibility tensor is given by

xi j
s sq,ivd =

1

4b
Tr o

kP
1
2

BZ

o
vn

GJ+sit0h0GJ−s jt0h0. s36d

Notice that the productsit0h0GJsit0h0=GJ for i =3. For
i =1,2, the anticommutative matriceshi lead to a sign
change in the gap term ofvJ inside the Green function, mean-
ing Ds→−Ds. Thus, thei =1,2 si.e., x,yd directions have the
same coherence factors of the charge susceptibility

xxx
s sq,vd = xyy

s sq,vd =
1

4
xcsq,vd. s37d

This property is better illustrated in them=0 case, where

xxx
s =

1

b
o
k,vn

seW− · eW+ − Ds
2d − vnsvn + vd

fvn
2 + E−

2gfsvn + vd2 + E+
2g

= xyy
s ,

xzz
s =

1

b
o
k,vn

seW− · eW+ + Ds
2d − vnsvn + vd

fvn
2 + E−

2gfsvn + vd2 + E+
2g

,

with eWk ;vFk̄ and the indexes ± representing the momentum
±→k ±q /2. Notice the sign difference in front ofDs

2 be-
tween thezzand the other two components. This gives rise to
an axial anisotropy in thez direction of the spin space. This
anisotropy is a consequence of the broken time-reversal sym-
metry induced by the finite momentum of the pairsQi, which
defines the CDW wave vectors. This broken symmetry is
reflected in the appearance of the spin structure oriented in
thez direction of the spin spacesindicated by thes3 matrixd
in the pairing term of the BW Hamiltonians35d. Therefore,
we conclude that thez direction of the spin space corre-

FIG. 9. Temperature dependence of the acoustic attenuation rate
normalized by the normal phase rate. Solid: this modelsm=0 and
g/gc=1.1d; dashed: BCS model.
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sponds to the CDW directionQi in thek space, since it is the
only rotational symmetry broken in the crystal. The calcula-
tion of the imaginary part of thexzz

s susceptibility reads

Im xzz
s sq,v → 0d

=
v

4p

vF

vD
E

0

L

dk̄k̄H ]nsẼd

]Ẽ

2Ds
2

ẽkẼ

eq/2
2 − m2

ẽk
2 − m2

3ReFusẽk − umudẽk + usumu − ẽkdumu
Îseq/2

2 − m2dsẽk
2 − eq/2

2 d
G

+ o
s=±1

]nsEsm
0 d

]Esm
0

Esm
0

se0 + smd

Îse0d2 − eq/2
2

eq/2e0 J , s38d

where

ẽk = ReÎek
2 + eq/2

2 − m2,

Ẽk =Îẽk
2+Ds

2, ande0, Esm
0 follow the definitions of the previ-

ous subsection. Thexxx,yy
s can be obtained from the substitu-

tion of Eq. s31d into Eq. s37d. Noting thatxxy
s =xxz

s =xyz
s =0,

the contribution of each CDW wavevectorQ j s j =1,2,3d to

the NMR relaxation rate along a given directionb̂ gives

1

T1
sb̂d = l2

2E
0

L dq̄

2p
q̄ lim

v→0
F 1

v
o

i
sbi

2 − 1dImxii
sG s39d

In Fig. 10 we distinguish the two principal directions, for

in-plane b̂ vectors and out-of-plane ones directed along the
normal c-axis. A small Hebel-Slichter peak is formed for
finite m, but no peak is observed form=0.

The zz component of the susceptibility carries coherence
factors with the symmetry of the spin interactionssi.e., they
are odd by interchangingk →−kd, while thexx andyy com-
ponents are analogous to the charge susceptibilityfsee Eq.

s37dg. This is easily understood by a qualitative argument
with the aid of Eq.s39d. Consider the CDW directionQ1 for
the moment. TheQ1 direction sor, equivalently, theb= ẑ di-
rection for the spin, according to our previous discussiond
affects the electronic spin correlations in the normal direc-
tions to Q1, meaning thexy plane. The NMR directionb
= ẑ is affected by the susceptibility componentsxxx and xyy
but not by thexzzonefsee Eq.s39dg. The CDW introduces an
additional time-reversal broken symmetry to the spin corre-
lations in theQ1 sxyd plane, explaining why the related co-
herence factors have the same symmetry of the charge inter-
actions. On the other hand, the planes which are normal to
the Q1 plane are affected by thexzz component, which con-
serves the odd symmetry of the spin interactions. In sum-

mary, the NMR relaxation in theb̂=Q1 directionsin k spaced
is therefore associated to achargelikesymmetry, as in the
phonon attenuation response, while the NMR directions
which are normal toQ1 have a mixed symmetry and exhibit
a more intense response. The same analysis applies to the
Q2,3 vectors separately. The NMR pattern ink space for the
SC planes results from the superposition of the contributions
due to each vectorQi si =1,2,3d of the triple CDW. As each
vector Qi is rotated with respect to the other two by 2p /3
and 4p /3 ssee Fig. 1d, if we define the contribution of each
CDW wavevector to the NMR response along an arbitrary

direction b̂, as T1,i
−1sb̂d=T1

−1sb̂+uid, with ui =0,2p /3 ,4p /3
respectively fori51,2,3, it is not difficult to very from Eq.
s39d that

o
i

3
1

T1,i
sb̂d = − 3l2

2E
0

L dq̄

2p
q̄ lim

v→0

1

v

3FIm sxxx
s + xxx

s d +
1

2
sin2 w Im sxxx

s − xzz
s dG ,

s40d

wherew is the angle thatb̂ makes with the normal direction
to the SC planes. We notice that despite the broken rotational
symmetry of the triple-CDW state, the total NMR response is
rotationally invariaint in the planes and shows an anisotropic
direction along the normalc-axis, as displayed in Fig. 10

VI. TRANSPORT

In this section we calculate the optic and thermal conduc-
tivities of the SC phase in the clean limit. The transport
calculation for ad-wave-order parameter with and without
d-wave superconductivity has been done by Yang and
Nayak.41 Here, we shall repeat this calculation for a CDW
gap with nodes coexisting with as-wave SC order parameter.
We ignore the effects of scattering centers such as impurities
and disorder from the CDW fluctuations motivated by two
facts: s1d the TMD are very clean materials ands2d the ex-
tremely low temperatures where the SC phase appears in
2H-TaSe2 sT&0.1 Kd, where conventional thermal disorder
in the CDW phase should play no relevant role in the trans-
port.

The thermal current is defined byj Q= j E−sm /edj ,39 where
j E is the energy current,j is the electrical current, andm is

0.2 0.4 0.6 0.8 1
T�Tc

0

0.2

0.4

0.6

0.8

1

1
������������
T1

FIG. 10. Temperature dependence of the NMR relaxation rate
normalized by the normal phase relaxation forg/gc=1.1. Dashed
sm=0d and dottedsumu /a=0.05d lines: NMR response along the
in-plane directionsfw=p /2 case of Eq.s40dg; solid sm=0d and
dot-dashedsum u /a50.05d lines: NMR response along the normal
c-axis sw=0d. The pocket produces a small Hebel-Slichter peak,
indicated by the dot-dashed line.
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the chemical potential. Experimental measurements of the
thermal conductivityk require zero electric current flow in
the sample, and we may assume thatj Q= j E .The Kubo for-
mulas for frequency-dependent thermal conductivityksvd
and the optical conductivityssvd, are:39

ki jsvd = −
1

vT
lim
q→0

Im Pi j
EEsq,vd + TSij

2svdsi jsvd, s41d

si jsvd = −
1

v
lim
q→0

Im Pi jsq,vd, s42d

where

Sijsvd = −
1

T
lim
q→0

F Im Pi j
Esq,vd

Im Pi jsq,vdG s43d

is the thermoelectric conductivitysalso known as ther-
mopowerd S=−DV/DT, that measures the current voltageDV
produced by a temperature gradientDT, andP, PEE, andPE

are, respectively, the electric, thermal, and thermoelectric
current correlation functions, which we define in Appendix
C. The second term in Eq.s40d guarantees the zero current
flow condition to the charge carriers.

A. Optical conductivity

To incorporate the magnetic field into Hamiltonians8d, we
proceed with the Peierls substitutionk →k −se/cdt3A. We
assume that the vector potentialAskd is symmetric with re-
spect to momentum inversion inside the nodal space. For this
reason, we must use thet3 Pauli matrix, which operates in
the usual Nambu space. Notice that a given Hamiltonian
density for spin1

2 fermions in the formosfskdcs
†skdcsskd is

equivalently written in the Nambu space as

fc↑
†skd, c↓s− kdgS fskd 0

0 − fs− kd
DS c↑skd

c↓
†s− kd

D .

The associated matrix above is clearlyt3 if f is a symmetric
function in k andt0 if f is antisymmetric. As the Dirac fer-
mions dispersion is antisymmetric in the cone, we should be
especially careful with the usual Peierls substitution, since it
introduces an even terms~t3Ad, which violates the odd sym-
metry of the zero-field dispersion dependence withk. For a
given Hamiltonian in the general form

H = o
k

ekC†skdt0hiCskd,

the correct Peierls substitution involves the separation of
symmetricsSd and antisymmetricsAd components ink,

eskdt0 → eASk −
e

c
t3ADt0 + eSSk −

e

c
t3ADt3, s44d

where

eSSk −
e

c
t3AD =

1

2
FeSk −

e

c
t3AD + eS− k −

e

c
t3ADG

eASk −
e

c
t3AD =

1

2
FeSk −

e

c
t3AD − eS− k −

e

c
t3ADG .

Applying this procedure to the Hamiltonians8d, it is easy
to see that the magnetic part of the Hamiltonian is

HB = − C†skdFvF
e

c
A't0h3 + vD

e

c
Ait0h1GCskd,

written in terms oft0 instead oft3, as one could naively
expect from the straight substitutionk →k −se/cdt3A.

The current density operatorj skd=−c¹AH is given by

j skd = C†skdfvFet0h3ê' + vDet0h1êigCskd. s45d

The current-current density correlation function defined in
Appendix C is given by:

P'sq,ivd =
vF

2e2

b
Tr o

k,vn

GJ+t0h3GJ−t0h3,

Pisq,ivd =
vD

2e2

b
Tr o

k,vn

GJ+t0h1GJ−t0h1,

where' and i are the normal and parallel directions to the
Fermi surface for a given nodessee Fig. 2d. Applying the
Kubo formula s41d to the imaginary part of the correlation
functions above, we find that the optical conductivity is sepa-
rated into two parts: the Drude term

s'
DCsvd = −

vFe2

2vD

dsvd o
s8=±1

E
0

a

deeS1 −
Ds

2

Es8m
2 D ]nsEs8md

]Es8m

s46d

and an extra term due to the interband excitations of the
Dirac fermions,

s'
ACsvd =

2vFe2

vD

Ds
2

v2FnS−
uvu
2
D − nS uvu

2
DG

3usuvu − 2Îm2 + Ds
2d +

vFe2

2vD

vn0S1 −
4m2

v2 D
3HuSumu −

uvu
2
D 1

Q−
fnsE0,umud − nsE0,−umudg

− uS uvu
2

− Îm2 + Ds
2D 1

Q+
fnsE0,md − ns− E0,−mdgJ

——→
T→0 vFe2

2vD
FS1 −

4m2

v2 Dvn0

Q+
+

4D0
2

v2 G
3usuvu − 2Îm2 + Ds

2d, s47d

where

n0 ;
v

2
Î1 −

4Ds
2

v2 − 4m2 s48d

and

Q± = usun0u − mdE0,m ± sun0u + mdE0,−mu

with E0,±m
2 =sun0u ±md2+Ds

2. In order to calculate the parallel
componentsi we just have to exchangevF and vD. For m
=0, the interband conductivity is given by:
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s'
ACsvd =

e2vF

2vD

S1 +
4Ds

2

v2 DU1 − 2nSv

2
DUusuvu − 2Dsd.

s49d

The conductivitys46d is considerably simpler in the nor-
mal CDW phase. Setting the gapDs to zero, we haven0
→v /2 andE0,±m→ uuvu /2±mu, leading to

s'CDW
AC svd =

vFe2

2vD
FnS−

uvu
2

+ mD − nS uvu
2

+ mDG
——→

T→0 vFe2

2vD

uS uvu
2

− umuD . s50d

Analogously, the Drude part of the conductivity becomes

s'CDW
DC svd =

vFe2b

8vD

dsvd o
s8=±1

E
0

a

deesech2Sb
e + s8m

2
D

——→
T→0 vFe2

2vD

dsvd 3 5ln s2d
2

b
, for m = 0,

umu, for m Þ 0.
6
s51d

Notice that in the absence of SC we find thatsDCsT
→0d is constant and proportional tom. In the SC case, Eq.
s45d shows thatsDCsT→0d vanishes independently of the
pocket sizesas shown in Fig. 11d. The presence of a Drude
conductivity sDC~dsvd, results from an infinite electron
mean free path due to the absence of scattering centers. If we
consider that the electrons in TaSe2 have a finite scattering
rate G=1/tsvd,37 the Drude peak will be broadened around
v=0. The normal transport in the presence of an order pa-
rameter with nodesssuch as the CDW, in our cased in the
dirty limit is given in Ref. 41.

Photon absorption involves quasiparticle excitations and
results in the formation of in-phase currents with the electric
field.42 The absorption rate is therefore proportional to the

real part of the conductivity. In conventional superconduct-
ors, there is no absorption atT=0 in the infrared region,
where the photons with energyv,2Ds cannot break a Coo-
per pair. At finite temperature, the excitation channels are
gradually recovered and photons with energy smaller than
2Ds have a finite probability of been absorbed. We should
stress that the coherence factors in those superconductors
ssay, BCS typed are finite only in the dirty case, where the
processes conserve energy but do not conserve momentum.
The first important distinction of the traditional supercon-
ductors to the Dirac fermion ones is in the presence oftwo
bands, resembling the spectrum of small gap semiconductors
ssee Fig. 3d. In the nodal liquid superconductor, made out of
Cooper pairs of Dirac fermions, the clean limit absorption
process comprehends the excitation of an electron from the
lower to the upper band, transferring energy equal to the the
photon energyv but with no momentum transfer. In the situ-
ation where the lower band is completely filledsm=0d, there
are no thermal channels of quasiparticle excitationsssince

FIG. 11. Temperature dependence of the Drude conductivity in-
tegrated in v, for g/gc=1.1 and m /a=0.1. s in units of
vFe2a / s2vDd.

FIG. 12. Top: optical conductivitys' vs frequency. For
umu / s2Dsd=0.9: dashed linesT=0d and solidfkBT/ s2Dsd=1.2g; dot-
ted line: m=0 andT=0. Bottom: optical conductivitys' vs tem-
perature, forg/gc=1.1 andumu /a=0.1. Dashed lines: 0.4D0m,v
,1.4D0m; solid: v=2.3D0m; dotted: 2.8D0m,v,4D0m. In both
plots, s is in units ofvFe2/ s2vDd.
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the thermally excited electrons occupy the upper band, where
there is no absorption due to momentum conservationd and
the photon is absorbed only when its energy is sufficient to
break a pairsuvu.2Dsd, producing quasiparticle excitations
directly from the condensatespair-breaking channelsd. When
the system exhibits particle-hole symmetry, the clean limit
absorption is totally independent of the temperature in the
infrared, forv,2Ds.

The second important distinction is that the optical con-
ductivity shows an anomalous absorption edge inv
=2Îm2+Ds

2 ssee Fig. 12d. This energy corresponds to the
optical gap of the two bands shown in Fig. 3. The presence
of the edge is a consequence of the broken lattice inversion
symmetry in the CDW distorted phase, which affects the
coherence factors of the infrared conductivitysin our case,
type I, similar to the charge interactionsd. When the particle-
hole symmetry is lost by shifting the chemical potential from
the vertex of the Dirac cone, new thermal channels of qua-
siparticle excitations emerge, giving rise to an absorption
peak in the infrared. To see this effect, we illustrate in Fig. 13
the thermal excitation process of the holelike branch, where
photons with energies smaller than 2umu are able to promote
the thermally excited electrons occupying the empty states in
the top of the lower band to the upper band. As in the case of
superfluid He3, the superconductor is an electronic liquid
composed of two “fluids,” where there is a one-to-one cor-
respondence between the excited states in the SC and in the
normal phases. The thermal excitations promote electrons
from the condensate to the empty states above the pocket
Fermi surface of the holelike branch. The optical channels of
absorption through the thermally excited electrons are there-
fore limited to the windowuvuø2umu sin the clean limitd, as
shown in Figs. 12stopd and 13.

The temperature dependence of the optical conductivity,
displayed in Fig. 12sbottomd, shows a clear distinction be-
tween the two absorption channels. The dashed lines repre-
sent the thermal channels, which vanish atT=0. The dotted
lines indicate the pair-breaking channels. These channels de-
pend on the number of electrons in the condensate and are
more effective as the temperature is reduced. The solid line
in the same figure represents a pair-breaking channel which
is abruptly suppressed by lowering the temperature. This is
understood by noting that the optical gap 2Îm2+Ds

2sTd fsee

Fig. 12 stopdg displaces the absorption edge towards the ul-
traviolet as the temperature is reduced. In this situation, we
expect that some of the absorption channels at a given energy
slightly to the right of the edge will be abruptly suppressed if
the temperature is sufficiently reduced, i.e., if the edge is
sufficiently displaced to the right in Fig. 12sbottomd.

1. Spectral weight

According to thef sum rule one should have

E
0

`

ssvddv =
pne2

2m
, s52d

and therefore, the area “under” the curvessDC+sAC is con-
served in the normal and in the SC phases. In the SC phase,
however, there is a “missing” area in comparison to the nor-
mal phase. The difference between the two areas corresponds
to thev=0 spectral weight, responsible for the diamagnetic
supercurrents in the Meissner effect.33 This part of the spec-
tral weight swhich properly defines a superconductord de-
pends on a different order of limits betweenv and q, and
does not appear explicitly in the calculation. Thus, a required
condition for superconductivity is

E
0

`

fss
DCsvd + ss

ACsvdgdv , E
0

`

fsn
DCsvd + sn

ACsvdgdv.

From now on, we call the difference between then and s
areas the Meissner spectral weight.

It is not difficult to see that form=0 at zero temperature
we havess

DC=sn
DC=0, and that the curves in the AC sector

haveexactlythe same area. This behavior is depicted in Fig.
14 for different values ofm, showing an anomalous suppres-
sion of the Meissner spectral weight at low temperatures for
smallm. A superficial analysis would indicate that there is no
spectral weight due to the condensate and therefore the

FIG. 13. Schematic representation of the photon absorption pro-
cess in the channel of thermal excitations of the condensate, within
the absorption windowuvu,2umu of the holelike branchssee Fig. 3d.
v is the photon frequency,T represents the thermal excitations, and
m indicates the Fermi level.

FIG. 14. Meissner spectral weightA as a function of tempera-
ture. Curves drawn for 0ø umu /aø0.15, from the bottom to the top,
in fixed intervals of 0.03.A in units of vFe2a / s2vDd, with g/gc

=1.1.
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superconductivity is not stable. This analysis, however, is
incompatible with the thermodynamic verification that there
is a finite zero-temperature critical fieldHcs0d ssee Fig. 7d,
resulting in a finite condensation energy.

The origin of the problem has connections with the spec-
tral weight shift from the high- to the low-energy states of
the band as the temperature is reduced, which has been ob-
served experimentally in the crystal of TaSe2.

22 In this com-
pound, part of the spectral weight around 60 meVs; of the
order of the cone cutoffd at 300 K is displaced towards the
infrared at temperatures of the order of the SC phase transi-
tion. Apparently, the opening of the gap attracts states be-
yond the cone approximation. In lowest order, the nonlinear
states in the CDW spectrum yieldek ~ fk−se/cdAg2. These
states are the only ones that contribute to the diamagnetism,
which results from terms~A2 in the energy. We conclude
that the cone approximation excludes the “diamagnetic”
states of the band, and for this reason thef-sum rule is not
able to correctly incorporate the diamagnetic spectral weight,
especially at low temperature, where the contribution of the
high-energy states is more pronounced. The zero-field prop-
erties which are not directly related to the Meissner effect,
however, are not so sensitive to the absence of the high-
energy states and give satisfactory results within the cone
approximation. This analysis is confirmed later in Sec. VII,
when we discuss the Meissner effect in the London limit.

B. Thermal conductivity

The energy current is a conserved quantity defined by the
nondiagonal components of the momentum-energy tensorT0

i ,
defined as43

Tn
m ;

]L
]s]mCd

]nC − Ldn
m. s53d

According to the usual relationH=f]L /]s]0Cdg]0C−L, the
Lagrangian associated to the Hamiltonians8d in the real
space representation is

L = C†sxdfict3h0]0 − ivFt0h3]3 − ivDt0h1]1 − Dst1h2

+ mt3h0gCsxd, s54d

wherec]0; ic]t with t as the imaginary time. The conserved
energy currentj Esxd=cT0

i gives

j Esxd =
]L

]s]iCd
c]0C = C†sxdfvFt0h3ê' + vDt0h1êig]tCsxd

or, equivalently,

j Esq,td = − o
k

C†sk − q/2,tdfvFt0h3ê'

+ vDt0h1êigvJk+q/2Csk + q/2,td, s55d

where the time evolution of the Dirac fermionsC is

Csq,td = e−tvJqCsqd,

with vJ defined in Eq.s8d.
We are interested in the diagonal components of the

current-current polarizationsP11
EE;P'

EE andP11
E ;P'

E given
by:

P'
EEsq,ivd =

vF
2

b
Tr o

k,vn

GJ+t0h3vJ+GJ−t0h3vJ−,

P'
E sq,ivd =

vF
2e

b
Tr o

k,vn

GJ+t0h3vJ+GJ−t0h3.

We find that

Im P'
EEs0,vd =

vFv

2vD

dsvd o
s8=±1

E
0

a

deeEs8m
2 S1 −

Ds
2

Es8m
2 D ]nsEs8md

Es8m

−
vF

2vD

v2n0S1 −
4m2

v2 DE0,mE0,−m

3HuSumu −
uvu
2
D 1

Q−
fnsE0,umud − nsE0,−umudg + uS uvu

2
− Îm2 + Ds

2D 1

Q+
fnsE0,md − ns− E0,−mdgJ

+
vFv

2vD

Ds
2FnS−

uvu
2
D − nS uvu

2
DGusuvu − 2Îm2 + Ds

2d, s56d

and

Im P'
E s0,vd =

vFe

4vD

v2un0uS1 −
4m2

v2 DHuSumu −
uvu
2
DfE0,m − E0,−mg

1

Q−
fnsE0,md − nsE0,−mdg

− uS uvu
2

− Îm2 + Ds
2DfE0,m + E0,−mg

1

Q+
fnsE0,md − ns− E0,−mdgJ

+
vFe

vD

Ds
2FnS−

uvu
2
D − nS uvu

2
DGusuvu − 2Îm2 + Ds

2d. s57d
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wheren0 andE0,sm are defined as in Eq.s47d In contrast to
the thermal polarization, the thermoelectric one does not
have a Drude part. The thermal conductivity follows from a
straightforward substitution of the previous resultss46d, s55d,
and s56d into the Kubo formulas40d.

Let us analyze these results form=0. We have

1

v
Im P'

EEs0,vd =
vF

vD

dsvdE
Ds

EL

dE3S1 −
Ds

2

E2D
3

]nsEd
]E

+
vF

2vD
Sv

2
D2S1 +

4Ds
2

v2 D
3F1 − 2nS uvu

2
DGusuvu − 2Dsd s58d

and

1

v
Im P'

E s0,vd =
evF

2vD

v

2
S1 +

4Ds
2

v2 D
3F1 − 2nS uvu

2
DGusuvu − 2Dsd. s59d

Replacing Eqs.s48d and s58d into Eq. s42d, the m=0 ther-
mopower yields

S' = −
1

T

Im P'
E s0,vd

Im P's0,vd
=

v

2eT
. s60d

Substituting Eqs.s48d, s57d, and s59d into Eq. s40d, we
find that the only contribution comes from the Drude term

k'svd = −
vF

vDT
dsvdE

Ds

EL

dEE3S1 −
Ds

2

E2D ]nsEd
]E

, s61d

wherekAC=0 for zerom. When the system exhibits particle-
hole symmetry, the exact cancellation of the interband con-
tributions to the thermal conductivity is due to the fact that
the total heat carried by the particle-hole pair is zero. The
argument is the following:41 the interband excitation process
involves the annihilation of an electron with negative energy
in the lower band, and the creation of a particle with positive
energy −Ek +v= +Ek in the upper band, wherev is the pho-
ton energy and −Ek is the energy of the annihilated electron.
Destroying a particle with negative energy, momentumk and
chargee is equivalent to create a hole with momentum −k
and charge −e at the energy cost +Ek. The energy current
carried by the quasiparticle formed by the particle-hole pair
is kEk +s−kdsEkd=0. On the other hand, the charge current is
finite, ke+s−kds−ed=2ek, explaining why the quasiparticles
are able to transport charge but not heat when the pocket is
absent.

When the particle-hole symmetry symmetry is lost, the
thermal current due to the pair breaking channels is equal to
Ek,mskd+sEk,−mds−kd, or equivalently to 2mk in the normal
CDW phase, when the ground-state electrons are promoted
to the upper band. As a second effect, the thermal channels
of quasiparticle production give rise to an infrared peak for
uvu,2umu as shown in Fig. 15stopd, analogously to the op-
tical conductivity. In contrast to the charge transport, how-

ever, the amount of heat carried by the quasiparticles is of
the order of the pocket energy and vanishes atm=0. The
temperature dependence ofk is shown in Fig. 15sbottomd.
The solid lines represent the thermal channels of quasiparti-
cle excitation, while the dotted lines indicate the pair break-
ing channels. As in the case of the optical conductivity, some
of the latter channels which are slightly above the optical gap
energy v0=2Îm2+Ds

2 are suppressed at low temperatures
ssee Fig. 15d. At T=0 the thermal conductivity is zero for
uvu,v0, and infinity for uvu.v0.

Let us verify the normal CDW propertiessDs=0d in the
transport. The thermoelectric spectral functions56d is given
by

1

v
Im P'CDW

E s0,vd =
vFe

2vD

v

2
FnS−

uvu
2

+ mD − nS uvu
2

+ mDG .

Comparing the expression above with the optical conductiv-
ity of the normal phases49d, the thermoelectric coefficient
yields

S'CDWsvd =
v

2eT
,

as in the SC particle-hole symmetric cases59d. Returning to
Eq. s55d, and settingDs=0, we have

1

v
Im P'CDW

EE s0,vd =
vF

2vD
FSv

2
D2

− m2G
3FnS−

uvu
2

+ mD − nS uvu
2

+ mDG .

The thermal conductivity therefore yields:

kCDWsvd = kCDW
DC svd + kCDW

AC svd,

where

k'CDW
DC svd = −

vFdsvd
2vDT

o
s8=±1

E
0

a

deeEs8m
2 ]nsEs8md

Es8m

——→
T→0 vFkB

2vDb2dsvd59zs3d,for m = 0

p2

3
bumu,for m Þ 06 ,

s62d

and

k'CDW
AC svd = m2 vF

2vDT
FnS−

uvu
2

+ mD − nS uvu
2

+ mDG
——→

T→0

m2 vF

2vDT
uS uvu

2
− umuD . s63d

The verification of the Wiedmann-FranzsWFd law can be
done in two cases. Form=0, despite the optical conductivity
is dominated in the low temperature region by the interband
conductivity
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s'CDWsv,T → 0d =
vFe2

2vD

tanhSbv

4
D + lns2d

vFe2

vDb
dsvd,

s64d

the v / skBTd!1 limit is dominated by the Drude part. Com-
paring the expression above with Eq.s61d for m=0, we see
that the CDW phase obeys the temperature dependence of
the WF law

lim
T→0

kCDWs0,Td
TsCDWs0,Td

=
9zs3d
2 lns2dSkB

e
D2

, s65d

but with a particular numerical constant 9zs3d / f2 lns2dg
<7.8. Note that the order of the limits is essential, otherwise,
sCDW is dominated by the interband term in thev / skBTd
@1 limit

lim
v→0

sCDWsv,0d =
vFe2

2vD

,

violating the WF law. We should stress, however, that this
relation is typically valid in the dc limitv→0, which is well
defined forbv!1 but not forbv@1. This is easily seen by
noticing that atT=0 the quasiparticle excitation energyv do
not have a scale and the ac and dc sectors cannot be distin-
guished from one another.

For finitem, it is immediate to check that the WF relation
is verified exactly as in a metal,

lim
T→0

kCDWs0,Td
TsCDWs0,Td

=
p2

3
SkB

e
D2

.

VII. MEISSNER EFFECT

The nonlocal electrodynamic is described in the London
limit where the vector potential functionAskd→A0=const.,
under the assumption that the field variations are slow in
comparison to the coherence lengthj. In this limit, the cur-
rent j and the vector potential obey the London equation

k j il = j i
c.m.+ QijAj ,

valid in the Coulomb gaugek ·A =0, wherej c.m. is the current
due to the momentum of the pair center-of-mass. For all
purposes, we neglect this effect and consider only the re-
sponse to the magnetic field.

To calculate the London kernelQij , instead of writing the
current density operators44d, we propose a more general
calculation, extending the CDW band beyond the cone ap-
proximation. As in Sec. II, we start from a CDW Hamil-
tonian written in terms of an extended band

HCDW = o
k,s

Cs
†skdfekh3 + Dckh1gCsskd, s66d

whereek andDck areany antisymmetric functions ofk with
respect to a given Fermi surface node.

Introducing the magnetic field through the modified
Peierls substitutions43d, the series expansion ofefk
−se/cdt3Ag in powers ofA is separated into symmetric and
antisymmetric terms ink,

eSk −
e

c
t3AD = fes0dskd + es2dskd + ¯ gt0

+ fes1dskd + es3dskd + ¯ gt3

= Fek −
e

c
Ai]

iek +
1

2
Se

c
D2

AiAj]
i] jekGt0,

up to second order inA, where]i ;] /]ki defines the momen-
tum derivatives and repeated indexes are to be summed. The

same applies toDcfk −se/cdt3Ag. Using the abbreviationk̃
;k −se/cdt3A, the Hamiltonian of the CDW+SC phase
with an external magnetic field is

H = o
k

C†sk̃dfek̃t0h3 + Dck̃t0h1 + Dst1h2 − mt3h0gCsk̃d.

The current density operatorj iJskd=−c¹AH gives

FIG. 15. Top: thermal conductivity3T vs frequency.kT is in
units of s2vF /vDdDs

2 andv in units of 2Ds, with m=2.2Ds. Dashed
line: T→0 limit; dotted skBT= 1

2Dsd; solid: skBT=Dsd; dot-dashed:
skBT= 5

2Dsd. Below: thermal conductivity dependency with tempera-
ture. We have setk in units of vFkBa / s2vDd, g/gc=1.1, andum /a
=0.1u. Solid lines: 0.4D0m,v,1.4D0m; dotted: 2D0m,v,4D0m.
The dot-dashed line is the Drude thermal conductivity integrated in
v with units of 1

5vFkBa2/ s2vDd.
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j iJskd = C†sk̃dFeS]iek −
e

c
Aj]

i] jekDt0h3

+ eS]iDck −
e

c
Aj]

i] jDckDt0h1GCk̃ .

We calculate the expectation valuek jJl up to first order inA
ssee details in Appendix Ed, and find that the London kernel
reads

Qij =
e2

c
o
k

o
s=±1

Hb

2
fs]iekds] jekd + s]iDckds] jDckdg

3 sech2SbEk,sm

2
D + S ek

Ek,sm

]i] jek

+
Dck

Ek,sm

]i] jDckDsm + Ek
*

Ek
* tanhSbEk,sm

2
DJ , s67d

whereEk
* =Îek

2+Dck
2 and

Ek,sm = fsÎek
2 + Dck

2 + smd2 + Ds
2g1/2

is the generalized dispersion in the extended CDW band.
The nonlocal properties valid in theq→0 limit do not

depend on the details of the cutoffL. For this reason, we are
allowed to takeL to infinity with no further consequences.
However, the Green functions method leads to some spurious
results in the ultraviolet if we do not take the Brillouin zone
into account. To see this, consider the illustrative case of the
normal CDW band Hamiltonians65d. After a suitable diago-
nalization into a particle-hole eigenstate basis with eigenval-
ues ±Ek

* = ±Îek
2+Dck

2 , we may write it into the form

HCDW = o
k

E
k̃

*
C̄†sk̃dh3C̄sk̃d.

The London kernel of this problem can be derived directly
from Eq.s66d by settingDs=m=0, ignoring theDck terms on
it, and performing the substitutionek →Ek

* . It is immediate to
see that in this case one has

Qij
CDW = Ajo

k
]iFs] jEk

* dtanhSbEk
*

2
DG

resulting in a nonzero surface term fori = j , which diverges in
the ultraviolet for any monotonically crescentEk

* . The inte-
grability of the results derived by this method depends on the
introduction of states in the entire Brillouin zone. In particu-
lar, we have thatk j i

CDWl=0 sas expectedd by assuming that
the surface term cancels in the Brillouin zone because of its
periodicity. In order to fix the spurious divergences, we adopt
an argument due to Lifshitz and Pitaevskii.44 Considering
that the kernel forDs=0 is zero, since no supercurrents are
induced by the magnetic field, there is no physical result in
subtracting the normal phase kernel from the SC kernel

k j il = fQijsDsd − Qijs0dgAj . s68d

We may consider that the kernel above correctly incorporates
the Brillouin zone effects, at least near the phase transition.

To analyze the spectral weight behavior due to the Meiss-
ner effect within the cone approximationek ,vFk' andDck

,vDki, we calculate the London equation in two limits, near
the normal-SC transition and atT=0. Including the Brillouin
zonef−p /d,p /dg in the normal direction to the planes, with
d the interplane distance, from Eq.s66d, we have

Q'sDsd = vF
2 b

2

e2

c
o

k,s=±1
sech2SbEk,sm

2
D .

At T=0, the kernel gives

Q'sDsd − Q's0d ——→
T→0

−
umu
d

e2vF

pvDc

confirming the anomalous behavior detected by thef-sum
rule s51d in the optical conductivity.

In the opposite limit, forT,Tc, the kernel in the strong
coupling approximationsbcumu!1d gives

Q'sDsd − Q's0d

——→
T→Tc

−
bc

4d

vFe2

pvDc
S1 + m2bc

4
DDs

2,

in agreement with the mean-field result for the penetration
depthl'=Îc/ h4pfQ's0d−Q'sDsdgj~Ds

−1.
The dependence of the London kernel withm and the

temperature is shown in Fig. 16. There is a clear suppression
of the Meissner effect in the low-temperature region, espe-
cially when the density of states in the Fermi surface nodes is
close to zero. As we discussed previously in Sec. VI, the
opening of a SC gap in a nodal liquid possibly causes the
spectral shift of high-energy states beyond the cone cutoffa
in the CDW band to the infrared. As we mentioned before,
the spectral shift of the states belowa s,60 meVd has actu-
ally been observed in the normal CDW phase of the TaSe2
crystal.22 More experimental studies are required to under-
stand the SC phase properties in this crystal.

FIG. 16. London kernel dependence with temperature in the
cone approximationsg/gc=1.1d. Plots for 0ø umu /aø0.16, from
the bottom to the top, in fixed intervals of 0.02.Qs0d−QsDsd in
units of e2vFa / s2pdvDcd.
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VIII. DISCUSSIONS

In this paper we have studied the thermodynamic and
transport properties of a model proposed originally in Ref.24

for the coexistence of a gapless CDW phase and ans-wave
superconductor in TMD. While the lattice inversion symme-
try is broken in the CDW distorted phase, as observed ex-
perimentally by neutron diffraction, we propose a pairing
ansatz which also violates the time-reversal symmetry. Ac-
cording to the ansatz, the pairing of the electrons is mediated
by virtual acoustic phonons via a piezoelectric coupling, and
the center-of-mass momentum of the pairs equals the CDW
wave vectors connecting different sheets of the TMD Fermi
surface. This additional broken symmetry has dramatic con-
sequences on the spin-exchange interaction and produces an
anisotropic NMR response along the normal direction to the
triple-CDW plane. In contrast to TaSe2, the quasiparticles of
NbSe2 are well defined in the Fermi-liquid regime. The SC
phase of NbSe2 has been extensively studied and indicates
that a conventional BCS description is warranted.34–36

In contrast to the BCS theory, which is not critical, the
gap equations13d has a QCP in the critical couplingg=gc
when the system exhibits particle-hole symmetrysm=0d.
When this symmetry is broken, the SC gapDs is strongly
rescaled bym as the coupling parameter is modified, and the
QCP is suppressed. The scaling of the quantityDs/m follows
two different coupling regimes:sid “Fermi-liquid” sector in
weak coupling, forg,gc, whereDs/m flows to zero asg
→0 andsii d strong-coupling marginal limit forg.gc, where
Ds/ umu@1. The specific-heat jump is strongly attenuated in
the particle-hole symmetric caseswhereDCV/Cn=0.35d, be-
cause of the low density of states at the Fermi energy. As
expected, in the Fermi-liquid regime we recover the jump of
the BCS modelDCV/Cn=1.43.

We have observed several anomalous properties in the
transport. Unlike traditional one-band superconductors, the
spectra for optical and thermal conductivities in the clean
limit have an infrared peak due to the thermal channels of
quasiparticle excitation. These channels involve thermal in-
traband excitations, promoting the electrons in the conden-
sate to the empty states of the pocket, at the top of the lower
bandssee Fig. 13d. The absorption window for this channel is
limited to the pocket energy 2umu. A second kind of absorp-
tion channel is due to interband excitations, when a pair is
broken as a result of the absorption of a photon. In this case,
the electron is excited to the upper band, across the optical
gap barrierv0=2Îm2+Ds

2. The later type depends on the
number of electrons in the condensate and is more effective
at T=0, except for a few channels at a given frequencyva
which are abruptly suppressed by the temperature reduction
ssay, belowTad because of the optical gap enlargement, that
is va,v0sTd for T,Ta. The thermal channels on the con-
trary vanish atT=0 with no exception.

The optical conductivity has an absorption edge atv0.
The coherence factors are affected by the broken lattice in-
version symmetry in the CDW phase. Thef-sum rule revels
an anomalous suppression of the diamagnetic spectral
weight, mainly form=0. This behavior is an evidence that
there are missing high-energy diamagnetic states in the SC

phase, which would be attracted from the bottom to the top
of the lower band by the opening of the SC gap in TaSe2.
Close to the normal-SC phase transition, however, these
states can be introduced by the same procedure that fixes the
anomalous divergence of the London kernel in the ultravio-
let, which is due to the absence of the Brillouin zone period-
icity into the calculation. We have extended the calculation
to a general CDW band where the loss of the crystal inver-
sion symmetry is included by assumption.

In summary, we have presented a complete theory for
s-wave superconductivity in nodal liquids. We have calcu-
lated the thermodynamics, various response functions, and
transport properties of this system and have shown that these
quantities deviate strongly from the same properties in ordi-
nary BCS superconductors. We believe our theory can be
applied to some TMD, such as 2H-TaSe2 or 2H-TaS2, and
our predictions can be checked experimentally.
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APPENDIX A: GAP EQUATION

In this appendix we derive Eqs.s21d–s23d. Applying the

variable substitutionn=vFk̄+sm, the equations13d can be
written into the form

1 =
gvF

4pvD
o

s=±1
E

0

ss

dk̄
k̄

Ek,sm

tanhSb
Ek,sm

2
D

=
g

4pvDvF
H 4

b
lnfcoshsba/2dsechsbÎDs

2 + m2/2dg

+ mE
−m

m

dn
1

În2 + Ds
2

tanhSb

2
În2 + Ds

2DJ . sA1d

In the umu /Ds!1 limit we find:

1 =
g

4pvDvF
H 4

b
lnF coshsba/2d

coshsbDs/2dG +
m2

Ds
tanhSb

2
DsDJ ,

which is equivalent to Eq.s21d. We notice, however, that the
above expression remains valid atTc si.e., for finite m and
Ds→0d if the strong-coupling approximationumu /D0m!1 is
satisfied.

We definea=2pvFvD /gc. Close toTc, taking Ds→0, we
obtain

2gc

g
=

4

bca
lnFcoshSbca

2
DG +

m2bc

2a
.

The critical temperature forg.gc is

Tc =
1

2kB ln 4
fD0 + ÎD0

2 + m2 ln 4g , sA2d

where D0;DssT=0,g,m=0d=as1−gc/gd. The expression
that gives the critical dependence of the gap with tempera-
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ture for sumu /D0m@1d follows directly from the expansion of
the gap equations13d in terms ofbDs.

To calculate the critical temperature in the weak-coupling
regime, we takeDs→0 in Eq. sA1d, giving

2gc

g
=

4

bca
lnF coshsbca/2d

coshsbcm/2dG +
2umu

a FlnSbcumu
2

D
3 tanhSbcumu

2
D −E

0

bcumu/2

dz
ln z

cosh2zG
after integrating the second term of Eq.sA1d by parts. If
bcumu*4, the integration above can be extended to the inter-
val f0, `g,

2gc

g
= 2 +

2umu
a

FlnSbcumug
p

D − 1G .

In weak couplingsumu /D0m@1d the conditionbcumu@1 is
easily satisfied. The equation above implies that

Tc =
umug
kBp

eas1−gc/gdumu−1−1, sA3d

where lng>0.577 is the Euler constant.
In the weak-coupling regime, we can find the gap equa-

tion near the phase transition. Forbumu@1, we use the power
series expansion inbDs!1 of the integral45

E
0

m

dn

tanhSb

2
În2 + Ds

2D
În2 + Ds

2
, E

0

m

dn
1

n
tanhSb

2
nD

−
7zs3d

8

b2Ds
2

p2 .

Expanding the gap equationsA1d in lowest order aroundbc,
we find

DssT → Tc,md →
bcm@1 1

bc
F7zs3d

8p2 +
1

2bc
2m2G−1/2ÎTc − T

Tc
.

sA4d

The weak-coupling expansions above are correct whenever
tanhsbcumu /2d,1 or bcumu*4.

APPENDIX B: SPECIFIC HEAT

In this section we calculate explicitly the specific heat
jump in the weak and strong coupling limits. The entropy of
the problem is given by

S= − kB o
k,g,s

fs1 − nk,sm
g dlns1 − nk,sm

g d + nk,sm
g ln nk,sm

g g,

wherenk,sm
g =segbEk,sm+1d−1 is the Fermi-Dirac distribution,

indexed bys= ±1, and by the two branches of the coneg
= ±1. The specific heat yields33

CV = − b
dS

db
= − kBb o

k,a,s
g

]nk,sm
g

]Ek,sm
SEk,sm

2 +
b

2

dDs
2

db
D .

sB1d

At the phase transition, the specific-heat jump reads

DCsbc,md = lim
b→bc

F− kB

bc
2

2

dDs
2

db
o

k,g,s
g

]nk,sm
g

]Ek,sm
G

=
kBbc

3

8pvDvF
UdDs

2

db
U

bc

3 o
s=±1

E
0

a

deesech2Sbcse + smd
2

D .

If bca*4, we may extend the integration range to infinity.
This integral can be evaluated in two limits, forbcumu!1 and
bcumu@1, which yields

DCsb,md → kBbc

2pvDvF
UdDs

2

db
U

bc

3 5ln 4 +
bc

2m2

4
, for bcumu ! 1,

bcumu, for bcumu @ 1.
6 sB2d

From Eqs.s22d and sA2d, we find:

UdDs
2

db
U

bc

=5
4

bc
2Sln 4 +

bcm
2

4
D , for bcumu ! 1,

1

bc
3S7zs3d

8p2 +
1

2bc
2m2D−1

, for bcumu @ 1.6
sB3d

In the normal phase, the specific heatCVn is obtained from
Eq. sB1d,

CVnsbcd =
kBbc

2

4pvDvF
o

s=±1
E

0

a

de ese + smd2

3 sech2Sbcse + smd
2

D .

Evaluating the integral gives:

CVnsbcd → kB

2pvFvD

1

bc
25 18zs3d, umubc ! 1,

2

3
p2bcumu, umubc @ 1.6 sB4d

Combining Eqs.sB2d–sB4d, we find

UDCV

Cn,V
U

Tc

=5
2 ln 4

9zs3d
Sln 4 +

bc
2m2

2
D , umubc ! 1,

3

2p2

1

7zs3d
8p2 +

1

2bc
2m2

,
umubc @ 1.

h

sB5d
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APPENDIX C: CORRELATION FUNCTIONS

We define the charge and spin susceptibilities from the
imaginary time ordered correlation functions:

xcsq,ivd = −E
0

b

dteivtkTtfrsq,tdrs− q,0dgl, sC1d

xab
s sq,ivd = −E

0

b

dteivtkTtfSasq,tdSbs− q,0dgl, sC2d

with r andSa, respectively, the charge- and spin-density op-
erators defined by Eqs.s29d and s34d.

The optical, thermal, and thermoelectric correlation func-
tions are defined as

Pi jsq,ivd = −E
0

b

dteivtk j isq,td j js− q,0dl, sC3d

Pi j
EEsq,ivd = −E

0

b

dteivtk j i
Esq,td j j

Es− q,0dl, sC4d

Pi j
Esq,ivd = −E

0

b

dteivtk j i
Esq,td j js− q,0dl, sC5d

where j is the electric current operators44d and jE is the
thermal current operator defined by Eq.s54d.

APPENDIX D: HAMILTONIAN IN THE BALIAN-
WERTHAMER SPACE

In this Appendix we discuss Eq.s35d. The BW space is
introduced to extend the pairs spacesk ↑ ,−k ↓ d to a larger
one where the spin and momentum degrees of freedom are
decoupled. The procedure rests on “duplicating” the Hamil-
tonian skeeping it invariant by summing in half Brillouin
zoned, interchange the order of thec fermionic operators in
the duplicated term, and explore the symmetry under thek
→−k exchange in thek sum. The CDW Hamiltonian in the
BW space reads

HCDW = o
k,s,a,b

vFcas
† skdk̄ · hW abcbsskd

=
vF

2 o
k,a,b

k̄ · fca↑
† skdhW abcb↑skd + ca↓

† skdhW abcb↓skd

+ cb↑s− kdhW baca↑
† s− kd + cb↓s− kdhW baca↓

† s− kdg

= o
kP

1
2

BZ

vFC†skds0t0hW · k̄Cskd sD1d

by the definition of the BW spinors33d.
The chemical potential terms6d can also be written as

−mokP
1
2

BZC†skds0t3h0Cskd. The pairing term can be ob-

tained with the use of the antisymmetric property of the Pauli
matrix h2 under the transpositionh2

ab→−h2
ba, namely,

HP = o
k,a,b

Dsca↑
† skdh2

abcb↓
† s− kd + H.c.

=
1

2 o
k,a,b

Dsfca↑
† skdh2

abcb↓
† s− kd + ca↓s− kdh2

abcb↑skd

+ cb↓
† skdh2

baca↑
† s− kdg + cb↑s− kdh2

baca↓skd

= − o
kP

1
2

BZ

DsC
†skds3t1h2Cskd. sD2d

APPENDIX E: LONDON KERNEL

In this appendix, we calculate the London kernels66d. It
can be derived from the calculation of the expectation value
of the current density operator

k jJilskd = Tro
k
FeS]iek −

e

c
Aj]i] jekDkC†sk̃dt0h3Csk̃dl

+ eS]iDck −
e

c
Aj]i] jDckDkC†sk̃dt0h1Csk̃dlG

sE1d

at first order inA, where in our definitionk̃ =k −se/cdt3A.

Expanding the Green functionGJsivn, k̃d=sivn−vJ k̃d−1 up to
leading order,

TrkC†sk̃dtmhnCsk̃dl

=
1

b
Tro

vn

tmhnGJ0F1 −
e

c
GJ0s]iekt0h3 + ]iDckt0h1dAiG ,

whereGJ0 is the Green functions12d. The zeroth order terms
are:

TrkC†sk̃dt0h3Csk̃dl0

=
1

b
Tro

vn

t0h3GJ0

= ek o
s=±1

ms + Ek
*

Ek
* Ek,sm

fnsEk,smd − ns− Ek,smdg sE2d

and

TrkC†sk̃dt0h1Csk̃dl0

= Dck o
s=±1

ms + Ek
*

Ek
* Ek,sm

fnsEk,smd − ns− Ek,smdg, sE3d
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whereEk
* ;Îek

2+Dck
2 and

Ek,sm = fsEk
* + smd2 + Ds

2g1/2.

At first order, we find after a straightforward calculation

TrkC†sk̃dt0h3Csk̃dl1

= −
e

c
Ai]iek

1

b
o
vn

TrfsGJ0d2g

= −
e

c
o

s=±1
Ais]iekd

]

]Esm

fnsEsmd − ns− Esmdg sE4d

and

TrkC†sk̃dt0h1Csk̃dl1 = −
e

c
o

s=±1
Ais]iDckd

3
]

]Esm

fnsEsmd − ns− Esmdg.

sE5d

The London kernels66d follows from the direct substitu-
tion of Eqs.sE2d–sE5d into Eq.sE1d, just noting that the zero
order current term

k jl0 = o
s=±1

o
k

esek]iek + Dck]iDckd
ms + Ek

*

Ek
* Ek,sm

3fnsEk,smd − ns− Ek,smdg

is zero by symmetry when integrated ink.
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