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From Integral to Derivative Dispersion Relations
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Instituto de Matemática, Estatı́stica e Computação Cientı́fica

Universidade Estadual de Campinas, UNICAMP
13083-970 Campinas, SP, Brazil

and M. J. Menon
Instituto de Fı́sica Gleb Wataghin

Universidade Estadual de Campinas, UNICAMP
13083-970 Campinas, SP, Brazil

Received on 24 March, 2006

We demonstrate that integral dispersion relations for hadron-hadron scattering amplitudes can be replaced by
differential relations, without the usual high-energy approximation. We obtain analytical expressions for the
corrections associated with the low energy region and exemplify the applicability of the novel relations in the
context of an analytical parametrization for proton-proton and antiproton-proton total cross sections.
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I. INTRODUCTION

Dispersion relations constitute a fundamental mathemati-
cal tool in several areas of Physics. In special, in particle-
particle and particle-antiparticle interactions, the correlation
between the real and imaginary parts of the scattering am-
plitude play an important role in the investigation of forward
elastic hadron-hadron interactions.

Analyticity, Unitarity and Crossing lead to Integral Disper-
sion Relations (IDR) for the scattering amplitudes in terms
of a crossing symmetrical variable. For an elastic process,
m+m→ m+m, in the forward direction, this variable corre-
sponds to the energy of the incident particle in the laboratory
system, E. In this context the one subtracted IDR for crossing
even (+) and (−) odd amplitudes, above the physical thresh-
old (E = m), read [1, 2]

ReF+(E) = K +
2E2

π
P
∫ +∞

m
dE ′

1
E ′(E ′2−E2)

ImF+(E ′), (1)

ReF−(E) =
2E
π

P
∫ +∞

m
dE ′

1
(E ′2−E2)

ImF−(E ′), (2)

where K is the subtraction constant.
The connections with the hadronic amplitudes for crossed

channels, such as proton-proton (pp) and antiproton-proton
(p̄p) elastic scattering, are given by the usual definitions:

Fpp = F+ +F− Fp̄p = F+−F−. (3)

The main practical use of the IDR concerns simultaneous
investigations on the total cross section (Optical Theorem) and
the ratio ρ of the real to imaginary parts of the forward am-
plitude. In terms of the crossing symmetrical variable E these
physical quantities are given, respectively, by [2]

σtot =
4π√

E2−m2
Im F(E,θlab = 0), (4)

ρ(E) =
ReF(E,θlab = 0)
ImF(E,θlab = 0)

, (5)

where θlab is the scattering angle in the laboratory system.
Although originally introduced in the above integral forms,

subsequent analyses have made use of differential forms,
which are obtained from the integral ones in the limit of high
energies, specifically by considering m → 0 in Eqs. (1) and
(2) [3]. In terms of the variable E, these Derivative Disper-
sion Relations (DDR) are given by

Re F+(E) = K +E tan
[

π
2

d
dlnE

]
Im F+(E)

E
, (6)

Re F−(E) = tan
[

π
2

d
dlnE

]
Im F−(E). (7)

For a recent critical review on the replacement of IDR by DDR
at high energies see Ref. [4].

In this communication we demonstrate that this replace-
ment can be analytically performed without the high-energy
approximation, which is an important result since, in princi-
ple, it allows the investigation of the total cross section and
the ρ parameter at any energy above the physical threshold.
We also exemplify the applicability of these novel relations
by means of analytic parametrizations for the scattering am-
plitude in the context of a Pomeron-Reggeon model for pp
and p̄p elastic processes.

The paper is organized as follows. In Sec. 2 we discuss the
analytical replacement of IDR by DDR, without high-energy
approximations. In Sec. 3 we present the results of the fits to
forward data on pp and p̄p scattering. The conclusions and
some final remarks are the contents of Sec. 4.
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II. EXTENDED DERIVATIVE DISPERSION RELATIONS

The developments that follows were inspired in an previous
work by Cudell, Martynov and Selyugin [5]. The differences
between the derivative representations by these authors and
our final results are discussed in [6], as well as other formal
aspects involved.

Let us consider the even amplitude, Eq. (1). Integrating by
parts we obtain

Re F+(E) = K− E
π

ln
∣∣∣∣
m−E
m+E

∣∣∣∣
Im F+(m)

m

−E
π

∫ ∞

m
ln

∣∣∣∣
E ′−E
E ′+E

∣∣∣∣
d

dE ′
Im F+(E ′)

E ′
dE ′. (8)

Following Ref. [5], we define E ′ = meξ′ and E = meξ so
that the integral term in the above formula is expressed by

meξ

π

∫ ∞

0
lncoth

(
1
2
|ξ′−ξ|

)
d

dξ′
g(ξ′)dξ′, (9)

where g(ξ′) = Im F(meξ′)/(meξ′). Expanding the logarithm

in the integrand in powers of x = ξ′−ξ,

ln
(

cot
1
2
|x|

)
= ln

(
1+ e−|x|

1− e−|x|

)
= 2

∞

∑
p=0

e−(2p+1)|x|

2p+1
,

and assuming that g is an analytic function of its argument,
we perform the expansion

g̃(ξ′) =
d

dξ′
g(ξ′) =

∞

∑
n=0

dn

dξ′n
g̃(ξ′)
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ξ′=ξ

(ξ′−ξ)n

n!

=
∞

∑
n=0

g̃(n)(ξ)
n!

(ξ′−ξ)n.

Substituting the above formulas in Eq. (9), integrating term
by term and from ξ = ln(E/m), Eq. (8) can be put in the final
form

Re F+(E) = K +E tan
(

π
2

d
dlnE

)
Im F+(E)

E
+∆+(E,m),(10)

where the correction factor ∆+ is given by

∆+(E,m) =−E
π

ln
∣∣∣∣
m−E
m+E
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Im F+(m)

m
+

2E
π

∞
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k=0

∞
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d(lnE)k+1
Im F+(E)

E
. (11)

With analogous procedure for the odd relation we obtain

Re F−(E) = tan
(

π
2

d
dlnE

)
Im F−(E)+∆−(E,m), (12)

where

∆−(E,m) =−1
π

ln
∣∣∣∣
m−E
m+E

∣∣∣∣ Im F−(m)+
2
π

∞

∑
k=0

∞
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dk+1

d(lnE)k+1 Im F−(E) (13)

Equations (10 - 13) are the novel Extended Derivative Dis-
persion Relations (EDDR), which, in principle, are valid for
any energy above the physical threshold E = m. We note that
the correction factors ∆±→ 0 as E →∞, leading, in this case,
to the standard high-energy results, Eqs. (6) and (7).

III. REGGE PARAMETRIZATION

In order to check the consistences between the IDR and
the EDDR in an specific practical example, we consider, as

a framework, a Regge Parametrization for the scattering am-
plitude [7]. For pp and p̄p scattering this analytical model
assumes nondegenerate contributions from the even (+) and
odd (−) secondary reggeons (a2, f2 and ρ, ω, respectively),
together with a simple pole Pomeron contribution:

Im F(E) = XEαP(0) +Y+Eα+(0) + τY−Eα−(0), (14)

where τ = +1 for pp and τ = −1 for p̄p. As usual, the
Pomeron and the even/odd reggeon intercepts are expressed
by
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αP(0) = 1+ ε, α+/−(0) = 1−η+/−. (15)

The point is to treat simultaneous fits to the total cross sec-
tion and the ρ parameter from pp and p̄p and compare the re-
sults obtained with both IDR and EDDR. Schematically, with
parametrization (14-15) we determine Im F+/−(E) through
Eq. (3) and then Re F+/−(E) either by means of the IDR, Eqs.
(1-2) or the EDDR, Eqs. (10-13). Returning to Eq. (3) we

obtain Im Fpp(E) and Im Fp̄p(E) and, at last, Eqs. (4) and (5)
lead to the analytical connections between σtot(E) and ρ(E)
for both reactions.

A. Analytical Results

In the case of IDR we obtain

ρ(E)σtot(E) =
4πE√

E2−m2

{
K
E
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π
2

)
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ε

π
2
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}

(16)

and with the EDDR we have
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E
+Xmε +Y+m−η+

]}
, (17)

where the signs ± apply for pp (+) and p̄p (−) scattering.

B. Fitting and Results

For the experimental data on σtot(s) and ρ(s), we use the
Particle Data Group archives [8], to which we added the val-
ues of ρ and σtot from p̄p scattering at 1.8 TeV, obtained by the
E811 Collaboration [9]. The statistical and systematic errors
were added in quadrature. The fits were performed through
the CERN-Minuit code, with the estimated errors in the free
parameters corresponding to an increase of the χ2 by one unit.
To fit the data as function of the center-of-mass energy we
express the lab energy in the above formulas in terms of s,
namely E = (s−2m2)/2m.

We compiled all the data above the physical threshold,√
s > 2m ≈ 1.88 GeV. However, with the present model, the

large number of experimental points just above this threshold
allow reasonable statistical results (in terms of the χ2 per de-
gree of freedom) only for an energy cutoff at

√
smin = 4 GeV.

The results of the fits with both IDR and EDDR are dis-

played in Table I and the corresponding curves together with
the experimental data on σtot(s) and ρ(s) in Fig. 1. From
Table I we see that the numerical results are exactly the same.

TABLE I: Simultaneous fits to σtot and ρ,
√

smin = 4 GeV (270 data
points), with K as a free parameter and using Integral Dispersion
Relations and Extended Derivative Dispersion Relations.

IDR EDDR
X (mb) 1.598 ± 0.034 1.598 ± 0.034

Y+ (mb) 3.957 ± 0.053 3.957 ± 0.053
Y− (mb) -2.082 ± 0.080 -2.082 ± 0.080

ε 0.0919 ± 0.0021 0.0919 ± 0.0021
η+ 0.3554 ± 0.0098 0.3554 ± 0.0098
η− 0.569 ± 0.010 0.569 ± 0.010
K -2.27 ± 0.28 -2.27 ± 0.28
χ2 315.3764 315.3788

χ2/DOF 1.20 1.20
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FIG. 1: Results for the total cross sections and ρ(s) obtained through the IDR (solid) and EDDR (dashed) with fit cutoff at
√

smin = 4 GeV.
Both curves coincide.

IV. CONCLUSIONS

We have obtained novel expressions for the DDR without
any high-energy approximation. These extended DDR are,
therefore, intended for any energy above the physical thresh-
old. However, as in the case of IDR, the practical efficiency
of the EDDR in the reproduction of experimental data on σtot
and ρ depends, of course, on the model considered. Here we
made use of the Extended Regge Parametrization, for which
a cutoff at

√
s = 4 GeV was necessary. For example, by

considering the full nondegenerated case (four contributions,
each one from each meson trajectory, a2, f2,ρ,ω), or another

model, this cutoff can be reduced [10].

Acknowledgments

M.J.M is grateful to the Organizing Committee, in special
to Maria Beatriz Gay Ducati, for the nice and warm hospi-
tality in Porto Alegre and also congratulates all the organiz-
ers for the fruitfull efforts in starting this series of so impor-
tant Latin-American meetings. The authors are thankful to
FAPESP for financial support (Contracts No.03/00228-0 and
No.04/10619-9).

[1] M.L. Goldberger, Y. Nambu, and R. Oehme, Ann. Phys. 2, 226
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