
UNIVERSIDADE ESTADUAL DE CAMPINAS
SISTEMA DE BIBLIOTECAS DA UNICAMP

REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP

Versão do arquivo anexado / Version of attached file:

Versão do Editor / Published Version

Mais informações no site da editora / Further information on publisher's website:

http://www.scielo.br/scielo.php?script=sci_abstract&pid=S0103-

97332008000100031&lng=en&nrm=iso

DOI: 10.1590/S0103-97332008000100031 

Direitos autorais / Publisher's copyright statement:

©2008 by Springer. All rights reserved.

DIRETORIA DE TRATAMENTO DA INFORMAÇÃO

Cidade Universitária Zeferino Vaz Barão Geraldo
CEP 13083-970 – Campinas SP

Fone: (19) 3521-6493

http://www.repositorio.unicamp.br

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296620113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.repositorio.unicamp.br/


188 Brazilian Journal of Physics, vol. 38, no. 1, March, 2008

Atomic Hydrogen Under Strong Soft X-Ray Pulses
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We discuss theoretically the behavior of atomic Hydrogen under irradiation with strong light pulses in the soft
X-ray spectral region. The method consists in the direct numerical solution of the time dependent Schrödinger
equation. We find ranges of (high) peak incident intensity I0, where 2-photon absorption becomes more probable
than 1-photon absorption. At very high intensity, the total ionization probability goes very close to 1 and then
decreases as I0 is further increased.
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I. INTRODUCTION

In a series of recent papers the effect on a Helium atom, of
short intense pulses in the XUV spectral range, was discussed
both theoretically and experimentally [1-5] with regard to n-
photon absorption of light at �ωph= 13 eV. The theoretical
model contemplated the direct numerical solution of the Time
Dependent Schrödinger Equation (TDSE) in a basis of finite
and rather small dimensionality. In spite of the fact that the
experimental results were in good agreement with the theory,
the theory was questioned [6-8].

In what concerns the theory, the points of dissention seem
to be (a) The use of approximate Helium electron eigenstates,
which were not all orthogonal; (b) The fact that the procedure
had not been tested by applying it to a well-known, previously
solved problem; (c) The relevance of going beyond the Elec-
tric Dipole Moment Approximation (EDMA).

We have, therefore, applied the same procedure to the case
of a Hydrogen atom, which had been discussed before using
other methods. For Hydrogen, all energy eigenstates of the
isolated atom are exactly known and orthogonal. All matrix
elements of the interaction terms p • A and A • A for general
kphoton > 0 can be calculated with arbitrary numerical preci-
sion, if not as closed analytical expressions, at least as fast
converging series. Exact expressions for all matrix elements
are given in the Appendices. For our purpose of numerical
solution of the Time Dependent Schrödinger Equation, these
matrix elements were calculated to 6 significant figures and
carefully checked as to convergence of the series. Then, we
can also cover the EDMA case for purposes of comparison,
simply by setting kphoton=0 in the general expressions.

We find fair quantitative agreement with previously pub-
lished theoretical results.

II. SCENARIO 1 FOR THE CALCULATION

We assume the following scenario for the experiments: a
photo-electron detector counts electrons resulting from ion-
ization of the Hydrogen atoms and going into a small solid
angle ∆Ω around the z axis, which we choose to be paral-
lel to the direction of the electric field E in the linearly po-
larized light beam. The radiation field is supposed to be
single-mode (strictly monochromatic) with �ωph = 27.21 eV

(kphrB=0.00729, kph orthogonal to E=Ez).
We consider only a small number of low-lying bound eigen-

states and two unbound eigen-states |k1 > |k2 > with definite
k-vector in the z direction; the energy eigen-values are E1 =
�

2k2
1/2me and E2= �

2k2
2/2me. We choose k1 k2 so that both

transitions (from ground state 1s into k1 and from k1 into k2)
are 1-photon resonant. An energy level diagram is shown in
Fig. 1.

1s

2s 2p-1 2p0 2p1

k2

k1

E=0E=0

FIG. 1: Hydrogen atom energy levels (not to scale), showing all
transitions possible, if exact matrix elements are considered. For
the geometry considered here, however, the transitions 1s-2s and 1s-
2p±1 are forbidden.

We have therefore the parameter values in Table I:
The quantized radiant field is described in terms of its en-

ergy eigenstates. Let us add here that there is no cogent reason
not to use a fully quantized radiation field. In fact, it allows
us to keep track very conveniently of the system states, is per-
fectly sound mathematically, and . . . nature seems to be quan-
tum, not classical.

We should comment on the normalization of the quasi-
free (E > 0) eigenstates of the Hydrogen atom. From the
point of view of solving a system of coupled 1st order dif-
ferential equations it is much more convenient to divide up
the k space (labels of the unbound states) into finite cells
of volume (∆3k)=k2dkdΩ, define the new states |k >discr=
(∆3k)−1/2 ∫

ξ∈∆(k) d3ξ|ξ > and use instead of the set {|k >}
the denumerable ortho-normal set {|k >discr}. We are inter-
ested in small values of (∆3k), describing the energy resolu-
tion and angular acceptance of the photo-electron detector.

For small (∆3k), |k >discr∼= (∆3k)1/2|k >; we can therefore
immediately write down the matrix elements in the new basis
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TABLE I: Parameter values for the calculation in Scenario 1
Energy (eV) Wavevector Other

Photon energy �ωph 27.21 kphrB=0.00729 kph • z=0
E • z=E

Ionization potential IPH 13.606
Excited quasi-free state E1
E1 = �ωph-IPH

13.606 k1rB=1.000 k1 • z=k1

Excited quasi-free state E2
E2 = 2�ωph-IPH

40.818 k2rB=1.732 k2 • z=k2

as discr < k|Hint|nlm > = (∆3k)1/2 < k|Hint|nlm > and also
discr < k2|Hint|k1 >discr = (∆3k1)1/2(∆3k2)1/2 < k2|Hint|k1 > .

If we consider energy resolution ∆E, and angular accep-
tance limited to a cone of small half-angle θm about k, then
∆(k) = (πθ2

m)k3(1/2 ∆E/E). Take ∆E/E=0.1, θm=0.174 rad
[5]. Then (∆3k1) = 43.2x10−4 r−3

B and (∆3k2) = 224.5x10−4

r−3
B .

Details of the calculation have been given elsewhere [1];
in short, we go over to the interaction picture [9] and solve a
linear system of 1st order differential equations numerically,
using the Hairer and Wanner [10] code. Let H′ be the interac-
tion term in the Hamiltonian. In dimensionless form (atomic

units), the system of equations is

i∂/∂tCn(t) = ∑
m

exp(iωnmt) < n|H ′′|m > Cm(t)

ωnm = (En −−Em)/(2Rydberg)
H ′′ = H ′/(2 Rydberg) (1)

Here H ′′ has two contributions. The first connects field
states differing by 1 photon, while the second connects field
states differing by 2 photons:

H ′′
p.A = (1/2m)(e/c) < f in|2A•p|ini > /(2Rydberg) =

= i(1.76610−12erg−1/2sec1/2cm
√

I) < f in|exp(ikph • r)∂/∂z|ini >

H ′′
A.A = (1/2m)(e/c)2 < f in|A•A|ini > /(2Rydberg) =

= (1.56110−24erg−1seccm2 I ) < f in|exp(2ikph • r)|ini > (2)

where I is the intensity (peak power density/unit area) in units
of erg sec−1cm−2.

We assumed a smooth bell-shaped envelope for the laser
pulse intensity, with peak power density I0:

I(t) = I 0 sin2[3πt/2T ] if 0 < t < T/3
= I 0 if T/3 < t < 2T/3

= I 0 sin2[3π(T − t)/2T ] if 2T/3 < t < T (3)

The index n in Cn(t) runs over a double set of 7 orbital
states (1s, 2s, 2p1, 2p0, 2p−1, k1, k2) and 4 photon states N-j,
j=0,1,2,3 where N is the number of photons in the (single-
mode) field, and j is the number of photons absorbed by the
Hydrogen atom. So, there is a total of 21 complex functions
Cn(t) to be determined. The system is solved under the initial
condition that the atom is in the ground state.

We have extensively checked the correctness of the numer-
ical solutions in the context of quantum mechanics: it was, for
instance verified that the system state norm is kept invariant to
better than 1 part in 106, that the occupation probabilities do
not depend on the phase of the initial condition, etc.

We have more recently performed additional tests. For in-
stance, we can disable all transitions except one. In this way,
we can simulate a two-level system, under resonant or non-
resonant conditions, for absorption of one or two photons, un-
der excitation with arbitrary time envelopes.

For either 1-photon absorption or 2-photon absorption, in
the weak excitation limit, with fixed square or bell-shaped
laser pulse envelope, under resonant conditions, we find that
the occupation probability of the excited state depends on
intensity linearly (1-photon absorption) or quadratically (2-
photon absorption), as expected.

For either 1-photon absorption or 2-photon absorption, in
the strong excitation limit, with long square pulse envelope,
under resonant or non-resonant conditions, the occupation
probability of the excited state, given by the numerical solu-
tion of the TDSE, is found to depend on time, on the “detun-
ing” ωnm and on field intensity just as predicted by the Rabi
equations [9].

We want to compare our results with the calculation by
Nurhuda and Faisal [11], where the Electric Dipole Moment
Approximation (EDMA) is used.

Table II gives the numerical values of the matrix elements
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< f in|exp(ikph •r)∂/∂z|ini > calculated according to the gen-
eral formulae in the Appendices (and setting kph = 0). In the
EDMA, < f in|exp(2ikph • r)|ini >= 0.

TABLE II: Matrix elements ∆ (EDMA) for comparison with ref [11].

Transition Normalized dimensionless matrix el-
ement M

2s ← 1s 0
2p±1 ← 1s 0
2p0 ← 1s -0.2793
k1z ← 1s -0.009346 i
k1z ← 2s -0.004445 i
k1z ← 2p±1 0
k1z ← 2p0 0.0005552
k2z ← 1s -0.004746
k2z ← 2s 0.001921 i
k2z ← 2p±1 0
k2z ← 2p0 0.00007007
k2z ← k1z -0.00007503 i

The quantity needed for the numerical solution is γ = Cp.A

M
√

I0, where I0 is the maximum intensity in units of 1012

W/cm2 and Cp.A = 0.005584 i.
We used T = 93 atomic units of time and a field intensity

range 1 < I0 < 120 000 (x1012 W/cm2), which spans the re-
gion up to and beyond the intensity considered in [11]. We
focus on the occupation probabilities of the quasi-free orbital
states k1 k2 for comparison with the results in Fig. 1 of ref
[11].

There are small differences in the normalization of the
quasi-free states used here and in ref [6]; we think these are of
minor significance, but are expected to change somewhat the
numerical values.

Our discussion is centered on the radiant field intensity-
dependence of the occupation probabilities after the excita-
tion pulse is turned OFF, and on the time-dependence of the
projections while the laser pulse is ON. The discussion of
Nurhuda and Faisal [11] is centered on the electron-energy
dependence of the ionization rate after the excitation pulse
is finished, but at the single fixed radiation field intensity of
3.5x1016 W/cm2.

Figure 2 shows the dependence on field intensity of the oc-
cupation probability of the quasi-free states k1 and k2 imme-
diately after the excitation pulse is finished.

At lower field intensity, the probability grows linearly with
intensity, as expected for a 1-photon absorption process. The
matrix elements for transitions from 1s into k1 or k2 have al-
most the same values, but the transition into k1 is resonant,
while the transition into k2 is not. The large detuning causes
the projection of the system state on k2 to oscillate during the
excitation pulse, and the net transfer of population into k2 is
very small.

At large field intensity, we witness strong non-linear and
non-monotonic behavior of the probabilities P(k1) P(k2), as
found before [1]. There are narrow ranges of field intensities

FIG. 2: Probability of occupation for the atomic Hydrogen quasi-free
states k1 and k2, immediately after completion of the light pulse. The
horizontal axis covers the range 1012 up to 1017 W/cm2. The light
pulse is bell-shaped, with total duration of 93 atomic units of time
and photon energy Eph=27.21 eV. The full lines are the result of a
calculation in the Electric Dipole Moment Approximation. The full
diamonds are the result of a calculation with exact matrix elements
for both terms p • A and A • A of the interaction.

(for instance, 3.0 to 4.0x1016 W/cm2 ) where the k1 popula-
tion P(k1) changes very rapidly, and goes successively thru
values much larger and much smaller than the k2 population
P(k2). Nurhuda and Faisal find P(k1)/P(k2) ∼10 at 3.5x1016

W/cm2 ), while in the present calculation, this happens at
3.0x1016 W/cm2. We attribute the difference to distinct cri-
teria for normalization of the quasi-free states; while we nor-
malized to the acceptance ∆3k of a typical electron analyzer
placed along the direction of the radiant electric field vector
E, ref [6] does not specify the normalization of the states or
the experimental arrangement.

Figure 3 shows the time development of the system state
projections on the state k1. Let us observe that while the ra-
diant field is ON, we cannot speak of “electron state” because
the electron is tightly coupled to the radiation field. However,
the system state can still be written as a superposition of eigen-
states from the isolated atom and the free radiation field, and
we can follow the evolution of the projections. At lower field
intensities, the projection on k1 grows smooth and monotoni-
cally, as expected from elementary perturbation theory. How-
ever, a complicated non-monotonic behavior is evident at high
field intensity.

Regarding this complex behavior, let us observe that all
two-level systems under harmonic steady-state excitation are
exactly described by the Rabi equations [9]. These equations
predict non-linear non-monotonic dependence of the popula-
tions on field intensity. Here, on the other hand, we are dis-
cussing a n-level (n > 2) system excited by very short bell-
shaped pulses, not a steady-state excitation. Furthermore, here
the pulse length and the Rabi period for the transitions are
comparable, and we expect a complicated interplay of these
various effects.

We have also tried to ascertain the importance of the cor-
rections to the EDMA. The full diamonds in Fig. 2 are the
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FIG. 3: Time-dependence of the system-state projection on the elec-
tron quasi-free state k1, at low incident intensity and at high incident
intensity. In the former case we see a smooth monotonic increase of
the projection, while in the latter case, a complicated non-monotonic
evolution. At low intensity, the Rabi period is much longer than the
pulse length. At high intensity, the pulse length and Rabi period have
values in the same order-of-magnitude.

result of the exact calculation for the matrix elements of p • A
and A • A, setting kph=0.00729. It is clear from Fig. 2 that in
Hydrogen these corrections are significant only for the highest
intensities (I0 ∼ 1016 W/cm2) and affect mostly the probabil-
ity of occupation of the quasi-free state k2, which requires
2-photon absorption in order to be populated.

Let us also observe that the deep minima shown in Fig. 2 are
not believed to be experimentally observable, in so far as the
experimental apparatus will collect not only photo-electrons
going into the sharply defined k1 (or k2) state, but also going
into neighboring quasi-free states, within some energy accep-
tance. In the next section we address this question.

It is seen that our procedure, when applied to atomic Hydro-
gen, under the conditions considered by Nurhuda and Faisal
[11], reproduces their result regarding the ratio of probabili-
ties for 1-photon and 2-photon absorption, except for a small
shift (15%) in the value of the radiant field intensity. On the
other hand, our calculation shows that the probabilities are
changing very rapidly and by several orders of magnitude in
this region of field intensities. A more detailed comparison
would need more complete information about the normaliza-
tion of the quasi-free electron states in [11], which has not
been given.

III. SCENARIO 2 FOR THE CALCULATION

Here we would like to compare our results with those of
Bauer Plucinski Piraux Potvliege Gajda and Krzywinski [12].
They also used EDMA, with different pulse profile and inten-
sity range.

We have here the parameter values given in Table III:
The normalization constants are now (∆3k1)1/2 = 0.1375

and (∆3k2)1/2 = 0.2629.

The pulse length here is T=103 atomic units while the pulse
profile is

I(t) = I0sin2(πt/T ) for 0 < t < T, (4)

The intensity independent dimensionless matrix elements
M are given in Table IV below.

Tables II and IV show that the matrix elements M change
little on going from �ω = 27.21 eV to �ω = 50 eV. However,
for given M and �ω, the transition rates are strongly affected
by the resonant or non-resonant character of the process. So,
we simulate the effect of adjoining quasi-free levels by repeat-
ing the calculation with the same matrix elements M but intro-
ducing energy displacements δE in the quantities ωnm. Then
we average over the group of adjoining quasi-free states. For
each value of I0, we used groups of 5 quasi-free states, with
(δE1,δE2) = (0,0), (ε ,0), (-ε ,0), (0,ε), (0,-ε) and ε = 2 eV, a
value which is consistent with the normalization of the quasi-
free states.

FIG. 4: Probability of occupation for a group of 5 atomic Hydrogen
quasi-free states k1 and k2, separated by δE=0, ±2 eV, immediately
after completion of the light pulse. The horizontal axis covers the
range 1012 up to 2.5 1019 W/cm2.
The light pulse is bell-shaped (sin2), with total duration of 103
atomic units of time and photon energy Eph=50 eV. The full lines are
the result of a calculation in the Electric Dipole Moment Approxi-
mation. Notice the sudden increase in the population of k2 at about
2.5 1018 W/cm2, and the slopes 1 2 in the log-log plot, characteristic
of 1-photon and 2-photon absorption at low intensity.

Figure 4 shows our results for the average occupation of
each group (centered on k1 and k2, respectively). In our
model with a finite number of accessible orbital states, and
for the experimental scenario described above, the total ion-
ization probability per atom per incident pulse is the sum of
the probabilities for going into the groups k1 and k2.

The figure shows that at low intensities, the population in
group k1 (transition assisted by 1-photon absorption) is orders
of magnitude larger than in group k2 (transition assisted by
2-photon absorption), as expected from perturbation theory.
The slopes in the log-log plot are as expected, namely, exactly
1 and 2.
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TABLE III: Parameter values for the calculation in Scenario 2.
Energy (eV) Wavevector Other

Photon energy �ωph 50.0 kphrB=0
(EDMA)

kph • z=0
E • z=E

Ionization potential IPH 13.606
Excited quasi-free state E1
E1 = �ωph-IPH

36.394 k1rB=1.636 k1 • z=k1

Excited quasi-free state E2
E2 = 2�ωph-IPH

86.394 k2rB=2.520 k2 • z=k2

TABLE IV: Matrix elements ∆ (EDMA) for comparison with ref
[12].

Transition Normalized dimensionless matrix el-
ement M

2s ← 1s 0
2p±1 ← 1s 0
2p0 ← 1s -0.2793
k1z ← 1s -0.009864 i
k1z ← 2s -0.004045 i
k1z ← 2p±1 0
k1z ← 2p0 0.0001699
k2z ← 1s -0.007276
k2z ← 2s 0.002761 i
k2z ← 2p±1 0
k2z ← 2p0 0.00003754
k2z ← k1z -0.001736 i

The figure also shows that at high intensities (above about
1016 W/cm2) the behavior is non-monotonic. At about 1018

W/cm2 the population of the k2 group shoots suddenly up and
exceeds the population of the k1 group by roughly a factor of
10. The two populations then go down slowly as the incident
field intensity is further increased.

It is not so easy to compare these results with ref [12] be-
cause it is not clear what the authors mean by “ionization rate
[a.u.]” in their figure 3, where the maximum value is ∼0.07
at I0 = 4x1017 W/cm2, or “total ionization yield” in their fig-
ure 4, where a very broad maximum value ∼ 0.95 is found at
2x1017 W/cm2 < I0 < 2x1018 W/cm2. Our data gives a max-
imum ionization probability per atom per pulse ∼ 0.54 at I0 =
2.5x1018 W/cm2.

Figures 5 and 6 in ref [12] give also photo-electron spec-
tra at incident intensities I0 = 2.5x1018 W/cm2 and I0 =
2.5x1019 W/cm2, both within the range of the present calcu-
lation. There is clear disagreement between the results at I0 =
2.5x1019 W/cm2, since our calculation (see our figure 4) pre-
dicts a 2-photon peak larger than the 1-photon peak, while ref
[12] predicts a 1-photon peak larger than the 2-photon peak.
Regarding the spectra at I0 = 2.5x1018 W/cm2, the compari-
son is inconclusive, because our occupation probabilities are
changing very fast at precisely this field intensity. The posi-
tion (along the intensity axis) of the cross-over is expected to

depend on the normalization of our quasi-free states, as ex-
plained before.

There are other differences in the calculations, which may
or may not have a bearing on these comparisons. We used
exact Coulomb wave-functions with definite k for the quasi-
free states, which are an infinite sum of spherical waves. A
large number of such waves was needed to reach convergence
with 6 significant figures. The authors of ref [12], on the
other hand, used the semi-classical approximation to set up the
TDSE and solved it on a basis of Sturmian functions, which
are not eigen-functions of the isolated hydrogen atom. Also,
we explicitly address a situation where the photo-electron de-
tector, although placed in the preferential direction for photo-
ionization, collects electrons only on a restricted solid angle.

IV. DISCUSSION AND CONCLUSION

The non-monotonic dependence on incident light inten-
sity, of occupation probabilities for quasi-free electron states
involving absorption of 1, 2, . . . photons, found in the He-
lium calculation [1] is evident also in the present calculation.
Here, however, only exact eigen-states were used; the non-
monotonic behavior just mentioned cannot therefore be asso-
ciated with faulty approximate eigen-states, as has been sug-
gested in the case of Helium [6,7].

For Hydrogen, and for the radiant field intensity range con-
sidered in ref [11], the EDMA seems quite adequate. This
shows also that the non-monotonic behavior of the probabil-
ities for 1-photon and 2-photon absorption (at least in Hy-
drogen) do not depend exclusively on the exact forms of the
p • A and A • A interaction terms. Upon consideration of
the detailed time-dependence of the system-state projections
it is clear that, for sufficiently short and powerful laser pulses,
many quasi-free states will be populated whether or not the
transition is resonant. Physically, this is completely consistent
with the fact that a sufficiently short pulse cannot be strictly
monochromatic.

Regarding the calculation of the matrix elements, where
misleading symmetry arguments are often invoked to claim
they should vanish, let us observe the following:

1) The matrix element of A • A is non-vanishing in gen-
eral, although it is zero when kphoton=0 and the initial and final
states are orthogonal. Therefore, even for small kphoton, it may
be important to keep the leading non-vanishing contribution
of A • A, as we did in [1], specially if one is contemplating
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very high peak power density applications. This is in sharp
contrast to the opinion of our critics [6-8].

2) If the matrix element of p.A has a finite value at
kphoton=0, the next correction is, for initial and final states
of usual interest and current FEL wavelengths, comparatively
very small. Here, it seems quite safe to use the EDMA
(kphoton=0) without further ado, as most text-books teach, and
as our critics [6-8] hold to be the correct way to deal with
matter-light calculations in a regime similar to the one we con-
templated in [1].

Regarding comparison with previous theoretical results in
the literature, we find quantitative agreement within 15% for
the relative intensities of photo-electron peaks at intensities
close to 3.5x1016 W/cm2, resulting from 1 and 2 photon ab-
sorption as calculated by Nurhuda and Faisal [11]. We find
qualitative agreement with ref [12] in so far as both calcula-
tions predict almost complete (95% in ref [12], 54% in our

calculation) ionization at intensities close to 2.5x1018 W/cm2,
and a “stabilization” effect (reduction in the ionization yield
as the intensity is even further increased). We disagree on
the relative intensities of the photo-electron peaks at 2.5x1019

W/cm2. As far as the author knows, there are not yet experi-
mental results to check such calculations.
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Appendix 1: definitions and useful formulae
The exact normalized energy eigenstates for Hydrogen are (using spherical coordinates rθϕ, with r given in units of rB and k

in units of r−1
B ; 1F1 are confluent hypergeometric functions)

(eq. (1.1); bound states with definite lm)

|nlm >= fnl(r)Ylm(θϕ)

fnl(r) = Nnl(2r/n)lexp(−r/n)1F1(1+ l −n,2+2l,2r/n)

Nnl = 2[n2(2l +1)!]−1[(n+ l)!/(n− l −1)!]1/2

(eq. (1.2); unbound Coulomb states with definite lm)

|k, lm > = C(k, l)(2ikr)lexp(−ikr)

1F1(1+ l + i/k,2+2l,2ikr)Ylm(θϕ)

C(k,0) = (2/
√

k)[1− exp(−2π/k)]−1/2

C(k, l) = (2/
√

k)[1− exp(−2π/k)]−1/2

[l!/(1+2l)!] ∏
s=1,l

[1+(ks)−2]1/2 (l > 0)

The unbound Coulomb states with definite lm are formally obtained from the bound states replacing 1/n with ik and Nnl with
C(k, l).

(eq. (1.3); unbound Coulomb states with definite k)

|k >= ∑lmYlm(ek)∗ |k, lm >

The energy eigenvalues are En = −E0/n2, with E0 = e2/rB for the bound states and E(k) = (∇k)2/2me for the unbound states.
They are degenerate with respect to the orbital angular momentum quantum numbers lm.

The radial function of the unbound states, {(2kr)lexp(−ikr)1F1(1+ l + i/k,2+2l,2ikr)} (with no i factor in (2kr)l), has been
shown to be real [13].

The following developments will be useful:

exp(ik.r) = 4π∑lmil jl(kr)Ylm(θϕ)Ylm(ek)∗ (1.4)
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jS(u) = [uS/(2S +1)!!]exp(−iu)1F1(1+S,2+2S,2iu) (1.5a)
jS(u) = ∑∞

q=0b(S)
q u2q+S

with

b(S)
q = 2S(−1)q(q+S)!/[(1+2q+2S)!q!] (1.5b)

jS(u) = ∑S+1
q=0u−q[A(S)

q exp(iu)+B(S)
q exp(−iu)] (1.5c)

The A(S)
q B(S)

q follow from the recursion relations of the spherical Bessel functions.
We adopt the following convention for the phase of the spherical harmonic functions Ylm:

Ylm(θϕ) = WlmPl|m|(cosθ)exp(imϕ)
Wlm = (−1)(m+|m|)/2[(2l +1)/4π]1/2[(l −|m|)!/(l + |m|)!]1/2 (1.6)

The following identities for hypergeometric functions [15] were extensively used in the calculation of matrix elements:
1F1(−n,c,z) =

n

∑
v=0

[(−n)v/(cvv!)]zv if n ≥ 0 is an integer (1.7a)

1F1(a,c,z) = Γ(c)Γ(a)−1Γ(c−a)−1
∫ 1

0
dteztta−1(1− t)c−a−1 if Re(c) > Re(a) > 0 (1.7b)

2F1(a,b,c,z) =
b−c

∑
v=0

[av(c−b)v/(cvv!)](−z)v(1− z)−a−v if b− c ≥ 0 is an integer (1.7c)

2F1(a,b,c,z) = Γ(c)Γ(c−b−a)Γ(c−b)−1Γ(c−a)−1
c−b−1

∑
v=0

[bv(b− c+1)v/(v!(b− c+a+1)v)]z−b−v(z−1)v . . .

+(−1)c−b−aΓ(c)Γ(b− c+a)Γ(b)−1Γ(a)−1
b−1

∑
v=0

[(c−b)v(1−b)v/(v!(c−b−a+1)v)]z−b−c(z−1)v+c−b−a

if c−b ≥ 1 and b ≥ 1 are integers (1.7d)

2F1(a,b,c,z) = Γ(c)Γ(b)−1Γ(c−b)−1
∫ 1

0
dttb−1(1− t)c−b−1(1− zt)−a if |z| < 1, and also Re(b) > 0, Re(c−b) > 0

(1.7e)∫ ∞

0
drrMe−ζr

1 F1(a,c,κr) = [Γ(M +1)/ζM+1]2F1(a,M +1,c,κ/ζ) if Re(ζ) > 0 and M > −1 (1.7f)

∫ ∞

0
drrM−1e−ζr

1 F1(a,M,kr)1F1(a′,M,k′r) = Γ(M)ζa+a′−M(ζ− k)−a(ζ− k′)−a′
2 F1(a,a′,M,u)

where u = kk′/(ζ− k)(ζ− k′) and we require Re(ζ) > 0 and M > 0 (1.7g)

∫ ∞

0
drrM−1+se−ζr

1 F1(a,M,kr)1F1(a′,M,k′r) = (−∂/∂ζ)s{Γ(M)ζa+a′−M(ζ− k)−a(ζ− k′)−a′
2 F1(a,a′,M,u)} (1.7h)

Appendix 2: matrix elements of A • p
Following standard procedures [13,14], we get the following exact matrix elements for general transitions between bound

states (we choose the z axis parallel to the radiation electric field E), induced by the term linear in A(r) ( A(r) is the spatially
dependent part of the vector potential operator for the radiation field) in the electron-radiation interaction:

< νλµ|exp(ikph • r)∂/∂z|nlm >=
∞

∑
S=0

S

∑
σ=−S

{F(+)
ang F(+)

rad +F(−)
ang F(−)

rad } (2.1)

F(+)
ang = 4πiSYSσ ∗ (εph)

∫
dΩYλµ ∗YSσYl+1m[(l +1−m)(l +1+m)/(2l +1)(2l +3)]1/2 l ≥ 0

F(−)
ang = 0 if l = 0
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= 4πiSYSσ ∗ (εph)
∫

dΩYλµ ∗YSσYl−1m[(l −m)(l +m)/(2l +1)(2l −1)]1/2 if l > 0 (2.2)

The angular integrals vanish for most choices of the parameters in the spherical harmonic functions, see (eq. 2.3) below.
The “3Y” factor

∫
dΩYl1m1 ∗Yl2m2Yl3m3 vanishes exactly, unless

m1 +m2 +m3 = 0 (2.3a)
l1 + l2 + l3 = even integer (2.3b)

l1, l2, l3 non-negative integers satisfying the “triangular inequalities”
|l1 − l2| ≤ l3 ≤ l1 + l2

and |l2 − l3| ≤ l1 ≤ l2 + l3
and |l3 − l1| ≤ l2 ≤ l3 + l1
and if any one of the three numbers is zero, the other two must be equal.

(2.3c)

Such conditions restrict the sums over angular momentum quantum numbers very strongly. In addition, it may also happen that
the Y’s in the prefactors independently vanish for certain choices of the directions of incident field polarization and propagation
vector kph=kphε ph.

In the sum in (eq. 6) it is obvious that contributions with S > λ + l + 1 have null angular coefficients. For the geometry
of our helium experiments in the DESY FEL Phase 1, the z axis was chosen parallel to the radiant electric field, then, due to
transversality, cosθ = 0 and there are even less non-trivial choices of λSl for either F(+)

ang or F(−)
ang .

The radial integrals are

F(−)
rad =

∫ ∞

0
r2dr jS(kphr) fνλ(r)[∂ fnl/∂r +[(1+ l)/r] fnl ]

= NνλNnln−l−1ν−λ
{
−

∫ ∞

0
r2dr jS(kphr)(2r)λ+lexp[−r(1/n+1/ν)]1F1[1+λ−ν;2+2λ;2r/ν]1F1[1+ l −n;2+2l;2r/n]

. . . + n(1+2l)
∫ ∞

0
r1dr jS(kphr)(2r)λ+lexp[−r(1/n+1/ν)]1F1[1+λ−ν;2+2λ;2r/ν]1F1[1+ l −n;2+2l;2r/n]

. . . + [(1+ l −n)/(1+ l)]
∫ ∞

0
r2dr jS(kphr)(2r)λ+lexp[−r(1/n+1/ν)]1F1[1+λ−ν;2+2λ;2r/ν]1F1[2+ l −n;3+2l;2r/n]

}

F(+)
rad =

∫ ∞

0
r2dr jS(kphr) fνλ(r)[∂ fnl/∂r− [l/r] fnl ]

= NνλNnln−l−1ν−λ
{
−

∫ ∞

0
r2dr jS(kphr)(2r)λ+lexp[−r(1/n+1/ν)]1F1[1+λ−ν;2+2λ;2r/ν]1F1[1+ l −n;2+2l;2r/n]

. . . + [(1+ l −n)/(1+ l)]
∫ ∞

0
r2dr jS(kphr)(2r)λ+lexp[−r(1/n+1/ν)]1F1[1+λ−ν;2+2λ;2r/ν]1F1[2+ l −n;3+2l;2r/n]

}

(2.4)

All integrals in Frad can be expressed exactly in terms of standard hypergeometric functions 2F1:

F(+)
rad = (−−1/n)NνλNnl(kph)S[(2S +1)!!]−1∑(ν−λ−1)

u=0 ∑(n−l−1)
v=0 (2/ν)u+λ(2/n)v+l . . .

. . . [(1+λ−ν)u/[u!(2+2λ)u]][(1+ l −n)v/[v!(2+2l)v]]Γ(M +1)ζ−M−1
2 F1(1+S;M +1;2+2S;2ikph/ζ) . . .

. . . + [(1+ l −n)/(n+nl)]NνλNnl(kph)S[(2S +1)!!]−1∑(ν−λ−1)
u=0 ∑(n−l−2)

v=0 (2/ν)u+λ(2/n)v+l . . .

. . . [(1+λ−ν)u/[u!(2+2λ)u]][(2+ l −n)v/[v!(3+2l)v]]Γ(M +1)ζ−M−1
2 F1(1+S;M +1;2+2S;2ikph/ζ)

M ≡ 2+λ+ l +S +u+ v
ζ ≡ 1/ν+1/n+ ikph

F(−)
rad = (−−1/n)NνλNnl(kph)S[(2S +1)!!]−1∑(ν−λ−1)

u=0 ∑(n−l−1)
v=0 (2/ν)u+λ(2/n)v+l . . .

. . . [(1+λ−ν)u/[u!(2+2λ)u]][(1+ l −n)v/[v!(2+2l)v]]Γ(M +1)ζ−M−1
2 F1(1+S;M +1;2+2S;2ikph/ζ) . . .

. . . + (1+2l)NνλNnl(kph)S[(2S +1)!!]−1∑(ν−λ−1)
u=0 ∑(n−l−1)

v=0 (2/ν)u+λ(2/n)v+l . . .

. . . [(1+λ−ν)u/[u!(2+2λ)u]][(1+ l −n)v/[v!(2+2l)v]]Γ(M)ζ−M
2 F1(1+S;M;2+2S;2ikph/ζ) . . .

. . . + [(1+ l −n)/(n+nl)]NνλNnl(kph)S[(2S +1)!!]−1∑(ν−λ−1)
u=0 ∑(n−l−2)

v=0 (2/ν)u+λ(2/n)v+l . . .

. . . [(1+λ−ν)u/[u!(2+2λ)u]][(2+ l −n)v/[v!(3+2l)v]]Γ(M +1)ζ−M−1
2 F1(1+S;M +1;2+2S;2ikph/ζ) (2.5)
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For the simplest case of interest ν = 2, λ = 1, n = 1, l=0 only the terms S = 0,2 survive. They reduce to the elementary result
[−(2/3)4√2] in the electric dipole approximation kph = 0.

Similarly, for transitions from a bound into a quasi-free state, we get

< ke|exp(ikph • r)∂/∂z|nlm >=
∞

∑
λ=0

λ

∑
µ=−λ

∞

∑
S=0

S

∑
σ=−S

{
G(+)

ang G(+)
rad +G(−)

ang G(−)
rad

}
(2.6)

G(+)
ang = 4π(−1)λiSYλµ(εke)YSσ ∗ (εph)

∫
dΩYλµ ∗YSσYl+1m[(l +1−m)(l +1+m)/(2l +1)(2l +3)]1/2 l ≥ 0

G(−)
ang = 0 if l = 0

= 4π(−1)λiSYλµ(εke)YSσ ∗ (εph)
∫

dΩYλµ ∗YSσYl−1m[(l −m)(l +m)/(2l +1)(2l −1)]1/2 if l > 0

(2.7)

(εke along z, εph orthogonal to z).
For the radial integrals, case bound-free transitions,

G(+)
rad =

∫ ∞

0
r2dr(2iker)λexp[−iker]1F1[1+λ+ i/ke;2+2λ;2iker] jS(kphr)[∂ fnl/∂r− [l/r] fnl ]

= C(ke,λ)Nnln−l−1
{
− int∞

0 r2dr jS(kphr)(2ker)λ(2r)lexp[−r(1/n+ ike)]

1F1[1+λ+ i/ke;2+2λ;2iker]1F1[1+ l −n;2+2l;2r/n]

. . . + [(1+ l −n)/(1+ l)]
∫ ∞

0
r2dr jS(kphr)(2ker)λ(2r)lexp[−r(1/n+ ike)]

1F1[1+λ+ i/ke;2+2λ;2iker]1F1[2+ l −n;3+2l;2r/n]
}

G(−)
rad =

∫ ∞

0
r2dr(2iker)λexp[−iker]

1F1[1+λ+ i/ke;2+2λ;2iker] jS(kphr)[∂ fnl/∂r +[(1+ l)/r] fnl ]

= C(ke,λ)Nnln−l−1
{
−

∫ ∞

0
r2dr jS(kphr)(2ker)λ(2r)lexp[−r(1/n+ ike)]

1F1[1+λ+ i/ke;2+2λ;2iker]1F1[1+ l −n;2+2l;2r/n]

. . . + n(1+2l)
∫ ∞

0
r1dr jS(kphr)(2ker)λ(2r)lexp[−r(1/n+ ike)]

1F1[1+λ+ i/ke;2+2λ;2iker]1F1[1+ l −n;2+2l;2r/n]

. . . + [(1+ l −n)/(1+ l)]
∫ ∞

0
r2dr jS(kphr)(2ker)λ(2r)lexp[−r(1/n+ ike)]

1F1[1+λ+ i/ke;2+2λ;2iker]1F1[2+ l −n;3+2l;2r/n]
}

(2.8)

These integrals no longer have exact analytic expressions in terms of elementary special functions. They can, however, be written
in terms of some integrals over the interval (0,1) which are easy to calculate numerically, and which reduce to some 2F1 in the
special cases α = 0, q = 0, or α−M−1−q = 0, or x = 0 or y = 0:

G(+)
rad = C(ke,λ)Nnl(2ike)λ(kph)S(2/n)l [(2S +1)!!]−1 . . .

. . .
{

(−1/n)∑n−l−1
v=0 [(1+ l −n)v/(v!(2+2l)v)](2/n)v Γ(1+M) . . .

. . . ∑1+M−Λ
q=0 [(Λ−M−1)q(α)q/(q!(Λ)q)](−2ike)q(ζ−2ike)−α−qζα−M−1ϒ(S)

∫ 1

0
dttS(1− t)S(1− xt)α−M−1−q(1− yt)−α

+ (1+ l −n)(n+nl)−1∑n−l−2
v=0 [(2+ l −n)v/(v!(3+2l)v)](2/n)vΓ(1+M) . . .

. . . ∑1+M−Λ
q=0 [(Λ−M−1)q(α)q/(q!(Λ)q)](−2ike)q(ζ−2ike)−α−qζα−M−1ϒ(S)

∫ 1

0
dttS(1− t)S(1− xt)α−M−1−q(1− yt)−α

}
(2.9)
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with
ϒ(S) = Γ(2+2S)[Γ(1+S)]−2

M = 2+λ+ l +S + v (notice that this depends on v, a summation index)
[Λ = 2+2λ]
α = 1+λ+ i/ke
ζ = 1/n+ ike + ikph x = 2ikph/ζ y = 2ikph/(ζ−2ike)

G(−)
rad = C(ke,λ)Nnl(2ike)λ(kph)S(2/n)l [(2S +1)!!]−1 . . .

. . .
{

(−1/n)∑n−l−1
v=0 [(1+ l −n)v/(v!(2+2l)v)](2/n)vΓ(1+M)(ζ−2ike)−α . . .

. . . ∑1+M−Λ
q=0 [(Λ−M−1)q(α)q/(q!(Λ)q)](−2ike)q(ζ−2ike)−α−qζα−M−1ϒ(S)

∫ 1

0
dttS(1− t)S(1− xt)α−M−1−q(1− yt)−α

+ (1+2l)∑n−l−1
v=0 [(1+ l −n)v/(v!(2+2l)v)](2/n)vΓ(M)(ζ−2ike)−α . . .

. . . ∑M−Λ
q=0 [(Λ−M)q(α)q/(q!(Λ)q)](−2ike)q(ζ−2ike)−α−qζα−Mϒ(S)

∫ 1

0
dttS(1− t)S(1− xt)α−M−q(1− yt)−α

+ (1+ l −n)(n+nl)−1∑n−l−2
v=0 [(2+ l −n)v/(v!(3+2l)v)](2/n)v Γ(1+M)(ζ−2ike)−α . . .

. . . ∑1+M−Λ
q=0 [(Λ−M−1)q(α)q/(q!(Λ)q)](−2ike)q(ζ−2ike)−α−qζα−M−1ϒ(S)

∫ 1

0
dttS(1− t)S(1− xt)α−M−1−q(1− yt)−α

}

(2.10)

Finally, we discuss transitions into unbound k’ from unbound k states.
Let us start by saying that if one uses plane waves exp(−ik• r) to describe the unbound electron states, 1-photon absorption

is strictly forbidden due to conservation of energy and linear momentum. In fact, the matrix element of p.A is in this case
proportional to δ(k2-k1+kphoton). Typical values for experiments at the DESY FEL Phase 1 would be kphoton = 0.00035, k1=
0.35, k2= 1.05, all in units of r−1

Bohr. It is clear there is no way to make the argument of the δ-function vanish.
If, however, we consider exact Coulomb states (unbound electron in the presence of a positive ion, eq. 1.2 or eq. 1.3) we

find a rather large value for the matrix element, comparable to values for 1-photon absorption in the transitions (ground state)?
(excited bound state).

The exact matrix element can be written as an infinite series only, but for parameter values of current interest, the series
converges very rapidly. The result, assuming the radiant field E is parallel to z, and using the definitions below is,

α = 1+ l + i/k
α′ = 1+ l′ + i/k′

Λ = 2+2l
Λ′ = 2+2l′

ε = k/k
ε′ = k′/k′

εph = kph/kph

(2.11)

< k’|exp(ikph • r)∂/∂z|k > = ∑
lm

∑
l′m′

∑
Sσ

H(+)
ang (l′m′ε ′,Sσεph, lmε)H(+)

rad (l′k′,Skph, lk) . . .

. . . + ∑
lm

∑
l′m′

∑
Sσ

H(−)
ang (l′m′ε′,Sσεph, lmε)H(−)

rad (l′k′,Skph, lk)

(2.12)
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H(+)
ang (l′m′ε′,Sσεph, lmε) = 4πiSYl′m′(ε′)Y ∗Sσ (εph)Ylm ∗ (ε)[(l +1+m)(l +1−m)(2l +1)−1(2l +3)−1]1/2 . . .

. . .

∫
dΩθϕY ∗l′m′ (θϕ)YSσ(θϕ)Yl+1,m(θϕ) l ≥ 0

H(−)
ang (l′m′ε′,Sσεph, lmε) = 0 if l = 0

= 4πiSYl′m′(ε′)Y ∗Sσ (εph)Ylm ∗ (ε )[(l +m)(l −m)(2l +1)−1(2l −1)−1]1/2 . . .

. . .
∫

dΩθϕYl′m′ ∗ (θϕ)YSσ(θϕ)Yl−1,m(θϕ) if l > 0

(2.13)

H(+)
rad (l′k′,Skph, lk) = C(k, l)C(k′, l′)(2ik)l(2ik′)l′ . . .

. . .
{

(−ik)
∫ ∞

0
r2+l+l′drexp[−i(k + k′)r] jS(kphr)1F1(α′,Λ′,2ik′r)1F1(α,Λ,2ikr) . . .

. . .+[ik− (1+ l)−1]
∫ ∞

0
r2+l+l′drexp[−i(k + k′)r] jS(kphr)1F1(α′,Λ′,2ik′r)1F1(α+1,Λ+1,2ikr)

}

H(−)
rad (l′k′,Skph, lk) = C(k, l)C(k′, l′)(2ik)l(2ik′)l′ . . .

. . .
{

(1+2l)
∫ ∞

0
r1+l+l′drexp[−i(k + k′)r] jλ(kphr)1F1(α′,Λ′,2ik′r)1F1(α,Λ,2ikr) . . .

. . .(−ik)
∫ ∞

0
r2+l+l′drexp[−i(k + k′)r] jλ(kphr)1F1(α′,Λ′,2ik′r)1F1(α,Λ,2ikr) . . .

. . . + [ik− (1+ l)−1]
∫ ∞

0
r2+l+l′drexp[−i(k + k′)r] jλ(kphr)1F1(α′,Λ′,2ik′r)1F1(α+1,Λ+1,2ikr)

}

(2.14)

The expressions for transitions with bound or unbound initial or final states have all the same form, and can be obtained
formally from each other by replacement of Nnl and 1/n occurring for bound states, with C(k,l) and ik, occurring for unbound
states. Here, however, the 1F1 do not, in general, reduce to polynomials, because the arguments αα’ are not negative integers.
These integrals must be handled with care.

The radial integrals are all, generally speaking, non-vanishing. On the other hand, in the angular functions we have “3 Y”
integrals which vanish for most values of the arguments, in particular for S > l +1+ l′ (in H(+)

ang ) and for S > l−1+ l′ (in H(−)
ang ).

For the radial integrals corresponding to non-zero angular integrals, we might use the spherical Bessel function expansion
(eq. 1.5c) which is a finite sum of inverse powers (kphr)−q, 1 ≤ q ≤ S +1. Notice that, given the restrictions 0 ≤ S ≤ l + l′ +1
(for H(+)

rad ), 0 ≤ S ≤ l + l′ − 1 (for H(+)
rad ) just mentioned, the integrand will never be singular at the origin. In addition, we use

the integral representation (eq. 1.7b) for 1F1(α, Λ,2ikr) plus (eq. 1.7f). We can also use the infinite power series representation,
(eq. 1.5b).

From a practical point of view, however, the development into exponentials is numerically inefficient, because the result
depends on differences of large quantities which are almost the same. In addition, it is not easily applicable to the limit kph=0
because of the factors k−q

ph , 1 ≤ q ≤ S + 1. We have, however, calculated some of these integrals for purposes of checking.
The calculations take about 10 times longer than using the power series expansion (eq. 1.5b) of the spherical Bessel function
(discussed below) and precision is not as good. But the results agree to within 1 part in 105, and show that the general formulae
are not in error.

For actual calculations we use the power series expansion (eq. 1.5b) for the spherical Bessel function, truncating the series at
some adequate Qmax, which will depend on kph.
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H(+)
rad = C(k, l)C(k′, l′)(2ik)l(2ik′)l′∑Qmax

q=0 k2q+S
ph b(S)

q

{
(−ik)Γ(M +1)Γ(Λ)Γ(α)−1Γ(Λ−α)−1

∫ 1

0
dttα−1(1− t)Λ−α−1(ζ−2ikt)−M−1

2 F1(α′,M +1,Λ′,z) . . .

+ [ik− (1+ l)−1]Γ(M +1)Γ(Λ)Γ(α)−1Γ(Λ−α)−1
∫ 1

0
dttα−1(1− t)Λ−α−1(ζ−2ikt)−M−1

2 F1(α′ +1,M +1,Λ′ +1,z)
}

H(−)
rad = C(k, l)C(k′, l′)(2ik)l(2ik′)l′∑Qmax

q=0 k2q+S
ph b(S)

q

{
(1+2l)Γ(M)Γ(Λ)Γ(α)−1Γ(Λ−α)−1

∫ 1

0
dttα−1(1− t)Λ−α−1(ζ−2ikt)−M

2 F1(α′,M,Λ′,z)

(−ik)Γ(M +1)Γ(Λ)Γ(α)−1Γ(Λ−α)−1
∫ 1

0
dttα−1(1− t)Λ−α−1(ζ−2ikt)−M−1

2 F1(α′,M +1,Λ′,z) . . .

+ [ik− (1+ l)−1]Γ(M +1)Γ(Λ)Γ(α)−1Γ(Λ−α)−1
∫ 1

0
dttα−1(1− t)Λ−α−1(ζ−2ikt)−M−1

2 F1(α′ +1,M +1,Λ′ +1,z)
}

(2.15)

where, now, we assume k < k′ in order to avoid singular integrands, and define

M = 2+ l + l′ +2q+S
ζ = ik + ik′

z = 2ik′/(ζ−2ikt)

Depending on the exponents, the integrand may result ill-conditioned at the end points t = 0 and t = 1. Then we truncate the
integration, i.e, we integrate in the interval ε < t < 1− ε, with ε ∼10−7.

Appendix 3: Matrix elements of A•A

Now we discuss the matrix elements < final|exp(2ikph • r)|initial >, where final and initial can be bound or unbound energy
eigenstates, with E f inal > Einitial .

If kph = 0 they vanish identically because eigenstates with different energy are orthogonal. We are, of course, interested in the
general case kph > 0.

For 2-photon bound-bound transitions we have

< νλµ|exp(2ikph • r)|nlm > =
∫

drr2dΩ fνλ(r)Yλµ ∗ (θϕ)exp(2ikph • r) fnl(r)Ylm(θϕ)

= ∑
Sσ

4πiSYSσ ∗ (εph)
∫

dΩYλµ ∗ (θϕ)YSσ(θϕ)Ylm(θϕ)
∫

drr2 fνλ(r) jS(2kphr) fnl(r)

= ∑
Sσ

I(b−b)
ang I(b−b)

rad

I(b−b)
ang = 4πiSYSσ ∗ (εph)

∫
dΩYλµ ∗ (θϕ)YSσ(θϕ)Ylm(θϕ)

I(b−b)
rad =

∫
drr2 fνλ(r) jS(2kphr) fnl(r)

(3.1)

The “3Y” angular integral has already been discussed. Using expansion (eq. 1.5a) for jS(u) and the definition (eq. 1.1) of the
bound state radial functions,

I(b−b)
rad = NνλNnl(2/n)l(2/ν)λ[(2kph)S/(2S +1)!!]

∫
drr2+l+λ+S

{
exp(−r/ν)1F1(1+λ−ν,2+2λ,2r/ν)

}
. . .

. . .
{

exp(−2ikphr)1F1(1+S,2+2S,4ikphr)}{exp(−r/n)1F1(1+ l −n,2+2l,2r/n)
}
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(3.2)

The 1F1 related to the bound states are always polynomials in r. Inserting the appropriate sums and then using the integral in
(eq. 1.7f), we get

I(b−b)
rad = NνλNnl(2/n)l(2/ν)λ[(2kph)S/(2S +1)!!] . . .

. . .
ν−λ−1

∑
u=0

n−l−1

∑
v=0

[(2/ν)u(1+λ−ν)u/u!(2+2λ)u][(2/n)v(1+ l −n)v/v!(2+2l)v] . . .

. . .Γ(M +1)ζ−M−1
2 F1(1+S,M +1,2+2S,4ikph/ζ)

M = 2+ l +λ+S +u+ v
ζ = 1/n+1/ν+2ikph

(3.3)

The possible values of λSl are restricted to |λ− l| ≤ S ≤ λ+ l with λ+S + l=even due to the angular integral.
Similarly, we have for a 2-photon bound-free transition

< k′|exp(2ikph • r)|nlm > =
∫

drr2dΩΨk′ ∗ (rθϕ)exp(2ikph • r) fnl(r)Ylm(θϕ)

= ∑
λµ

Yλµ(ε′)∑
Sσ

4πiSYSσ ∗ (εph)
∫

dΩYλµ ∗ (θϕ)YSσ(θϕ)Ylm(θϕ)
∫

drr2ψνλ(r) jS(2kphr) fnl(r)

= ∑
λµ

∑
Sσ

I(b−b)
ang I(b−b)

rad

I(b−free)
ang = 4πiSYλµ(ε’)YSσ ∗ (εph)

∫
dΩYλµ ∗ (θϕ)YSσ(θϕ)Ylm(θϕ)

I(b−free)
rad =

∫
drr2ψνλ(r) jS(2kphr) fnl(r)

(3.4)

I(b−free)
rad = C(k′,λ)Nnl(2/n)l(2ik′)λ[(2kph)S/(2S +1)!!]

∫
drr2+l+λ+Sexp(−r/n− ik′r−2ikphr) . . .

. . .1 F1(1+λ+ i/k′,2+2λ,2ik′r)1F1(1+S,2+2S,4ikphr)1F1(1+ l −n,2+2l,2r/n)
(3.5)

The last 1F1 factor is still a polynomial in (2r/n) and we develop it:

I(b−free)
rad = C(k′,λ)Nnl(2/n)l(2ik′)λ[(2kph)S/(2S +1)!!]

n−l−1

∑
v=0

[(2/n)v(1+ l −n)v/v!(2+2l)v] . . .

. . .

∫
drr2+l+λ+Sexp(−r/n− ik′r−2ikphr)1F1(1+λ+ i/k′,2+2λ,2ik′r)1F1(1+S,2+2S,4ikphr)

(3.6)

In some special cases, the remaining radial integral can be written as a closed analytical expression [13].
In general, the integral is calculated numerically. We replace one of the 1F1 factors with its integral representation and then

integrate in dr, to get

∫
drr2+l+λ+S+vexp(−r/n− ik′r−2ikphr)1F1(1+λ+ i/k′,2+2λ,2ik′r)1F1(1+S,2+2S,4ikphr) =

= Γ(2+2S)Γ(1+S)−2M!
∫ 1

0
dttS(1− t)S(ζ+4ikpht)−M−1

2 F1(1+λ+ i/k′,M +1,2+2λ,2ik′/(ζ+4ikpht))

M = 2+ l +λ+S + v
ζ = 1/n+ ik′ +2ikph

(3.7)

Finally, for 2-photon free-free transitions we have
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< k′|exp(2ikph • r)|k > =
∫

drr2dΩΨ∗
k′(rθϕ)exp(2ikph • r)Ψk(rθϕ)

= ∑
λµ

Yλµ(ε′)∑
Sσ

4πiSY ∗
Sσ(εph)∑

lm
Y ∗

lm(ε) . . .

. . .
∫

dΩY ∗
λµ(θϕ)YSσ(θϕ)Ylm(θϕ)

∫
drr2ψνλ(r) jS(2kphr)ψnl(r)

= ∑
λµ

∑
Sσ

∑
lm

I( f− f )
ang I( f− f )

rad (3.8)

I(free−free)
ang = 4πiSYλµ(ε′)Y ∗

Sσ(εph)Y ∗
lm(ε)

∫
dΩY ∗

λµ(θϕ)YSσ(θϕ)Ylm(θϕ)

I(free−free)
rad =

∫
drr2ψνλ(r) jS(2kphr) fnl(r)

= C(k′,λ)C(k, l)(2ik′)λ(2ik)l
∫

drr2+l+λ+Sexp[−i(k + k′)r] jS(2kphr) . . .

. . .1 F1(1+λ+ i/k′,2+2λ,2ik′r)1F1(1+ l + ik,2+2l,2ikr) (3.9)

Here again we must develop the spherical Bessel function using either an infinite power series (eq. 1.5b) or a finite sum of
exponentials, (eq. 1.5c). In either case the integral is of the type in (eq. 3.7).

We have used both approaches, as a means of internal checking.
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