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ABSTRACT 
 
Gaseous ethanol may be recovered from the effluent gas mixture of the sugar cane fermentation process using a 
staged absorption column. In the present work, the development of a nonlinear controller, based on a neural 
network inverse model (ANN controller), was proposed and tested to manipulate the absorbent flow rate in order to 
control the residual ethanol concentration in the effluent gas phase. Simulation studies were carried out, in which a 
noise was applied to the ethanol concentration signals from the rigorous model. The ANN controller outperformed 
the dynamic matrix control (DMC) when step disturbances were imposed to the gas mixture composition. A security 
device, based on a conventional feedback algorithm, and a digital filter were added to the proposed strategy to 
improve the system robustness when unforeseen operating and environmental conditions occured. The results 
demonstrated that ANN controller was a robust and reliable tool to control the absorption column. 
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INTRODUCTION 
 
Gas-liquid absorption columns are largely 
employed in chemical industry separation units. In 
the bioethanol production, a column is used to 
recover the evaporated alcohol from the sugar 
fermentation process, increasing the overall 
process productivity and improving the plant 
safety. 
The principal fuel used in Brazil as a petroleum 
substitute for road transportation vehicles is 
bioethanol. As bioethanol has a number of 
advantages over the conventional fuels, its demand 
is increasing. Some of these advantages are: 
bioethanol is biodegradable and far less toxic than 

fossil fuels; it reduces greenhouse gas emissions 
and comes from a renewable resource. 
The amount of alcohol evaporated from the 
fermentation processes depend on the 
concentration and temperature of the fermentation 
broth, and also on the especific features of 
fermentation tanks. In order to recover this waste 
alcohol, the vapor containing mostly ethanol and 
carbon dioxide is collected at the top of the tanks 
and fed to an absorption column (Sherwood, 
1975). Absorption process nonlinearities and 
environment variations are such that a fixed 
parameter conventional feedback controller cannot 
adequately achieve satisfactory performance (Palú 
et al, 2004). 
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Several linear control applications for absorption 
columns are found in the literature. Palú et al 
(2004) studied the application of a linear dynamic 
matrix control (DMC) to a staged absorption 
column. In the studied system, bioethanol is 
separated from carbon dioxide in a nine stage 
column. The residual alcohol concentration in the 
waste gas is the controlled variable. The DMC 
outperformed the PI conventional controller. 
Najim and Ruiz (1995) presented first principles 
modeling and a long-range predictive control of an 
absorption packed column. This equipment was 
used to decrease the concentration of CO2 in a gas 
mixture below a desired value. A solution of 
diethanolamine (DEA) was used as the absorbent. 
The flow rate of the absorbent and the 
concentration of CO2 were selected, respectively, 
as manipulated and controlled variables. An 
extended horizon control policy, based on the 
minimization of a quadratic criterion function of 
the input and output tracking errors, was used for 
the feedback control. The simulation studies 
highlighted the applicability of this adaptive 
control algorithm to packed columns. 
Nunes et al (2003) developed a rigorous method 
for analyzing the stability of unconstrained 
multivariable predictive controllers, using 
polynomial operators and coprime matrix 
factorizations. The technique permits deriving 
explicit expressions for the closed-loop transfer 
functions that describe the relevant system 
dynamics. Therefore, the closed-loop poles can be 
determined by finding the roots of two 
characteristic polynomial equations, hence 
allowing the complete characterizations of the 
asymptotic stability of the system. The controllers 
require the specification of a large number of 
tuning parameters, including prediction and 
control horizons for every input and output signal 
as well as the elements of input and output 
weighing matrices. The proposed stability analysis 
tools lend significant support to the tuning task 
because the sets of parameters that produce 
unstable poles can be identified and rejected. 
Through a simulator, this technique was 
successfully applied to control a multistage gas-
liquid absorption column.  
Modeling of an absorption column performance 
using feedforward neural network was presented 
by Roj and Wilk (2004). The input and output data 
for training of the neural network were obtained 
from a rigorous model of a sieve plate absorption 
column. The results obtained from the neural 

network models were then compared with the 
results obtained from the simulation calculations. 
The results showed that relatively simple neural 
network models can be used to model the column 
steady state behavior. 
Meleiro et al (2005) used neural networks for the 
control of the fermentation step of an alcohol 
production process. The internal model of the non-
linear predictive controller was represented by two 
Functional Link Networks (FLN). This structure 
presented the advantages of fast training and 
guaranteed convergence. The performance of the 
proposed controller was evaluated for servo and 
regulatory problems, and in both cases, it showed 
satisfactory results. 
An off-line smoothing algorithm in the monitoring 
system for the partial hydrolysis of cheese whey 
proteins using enzymes, which used penalized 
least squares, was implemented by Pinto et al 
(2005). Different algorithms for on-line signals 
filtering were compared: artificial neural networks, 
moving average and smoothing algorithm. The 
filters based on neural networks were implemented 
in the on-line pH control system, promoting a 
smoother control action and did not affect the 
inference system. 
In order to set a satisfactory real time control for 
the ethanol concentration in a staged absorption 
column, neural modeling was employed in the 
present work. The main contribution was the 
development of a nonlinear controller, based on a 
dynamic inverse artificial neural network model, 
and its application to a staged absorption column 
used in the bioethanol production process. 
Simulation studies were performed, in which noise 
was introduced to ethanol concentration signals 
from a rigorous model.  A security device, based 
on a conventional feedback algorithm, was added 
to the proposed strategy in order to achieve a 
robust controller when unforeseen operating and 
environmental conditions occur. 

 
 

MATERIAL AND METHODS 
 
Process description 
The gas mixture (CO2 + ethanol) from the sugar 
cane fermentation tanks is fed to the bottom and 
the absorbent liquid to the top of the column. The 
two streams flow countercurrently. A distillation 
column supplies the absorbent water stream 
containing some alcohol (around 100 ppm).  
The absorption column is composed of nine 
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stages, and operates at 40 ºC and 1 atm. The 
column processes 61.9 mol/s of the gas mixture in 
order to reduce the alcohol concentration from 
approximately 10000 ppm to 200 ppm. The former 
concentration depends on the fermentation broth 
conditions and also on specific features of the 
fermentation tanks. As it varies, it is a disturbance 
to the absorption process and the absorbent flow 
rate must be manipulated to keep the expected 
ethanol recovery.  

 
Absorption column dynamic modeling 
For the simulation studies, a mathematical model 
was obtained from the global mass balances for 
each stage, equilibrium equations and the Francis 
equation for hydrodynamic calculation. For the 
operating conditions previously described, the 
ethanol solubility in water was calculated by the 

equation Y = 1.0682 X, based on the Van Laar 
equation for vapor pressure data of isothermal 
systems (Sherwood, 1975). This is the equilibrium 
equation used, in which X is the alcohol molar 
fraction in the liquid phase and Y is the alcohol 
molar fraction in the gas phase. 
• The following assumptions were considered: 
• Just one component is transferred between 

phases; 
• Isothermal absorption; 
• Ideal stages; 
• The mass transfer does not modify gas and 

liquid flow rates; 
• Constant pressure; 
• Negligible gas hold-up. 
The parameters involved in the absorption column 
model are listed in Table 1. 

 
 
Table 1 - Absorption column parameters. 

Parameter Value 
T = Temperature 40 ºC 
P = Pressure 1 atm 
Ap = Plate area 210 cm2 
hv = Weir height 8 cm 
LW = Weir length 8.3 cm 
N = Number of ideal stages 9 
G = Gas flow rate 61.9 mol/s 
L0 = Initial absorbent flow rate 98.25 mol/s 
X0 = Ethanol concentration in the inlet absorbent 100 ppm 

 
 
The dynamic model, used on the computational 
simulations is described here. 
The Equation 1 represents the global mass balance 
at the n stage: 
 

nn
n LL

dt

dM −= −1  (1) 

 

Where: 
M = Liquid molar mass at each stage. 
L = Absorbent flow rate at each stage. 
 

Global mass balance at n stage, for the absorbed 
component.  
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−+−= +−−  (2) 

 

The Equation 3 is employed to calculate the 
average specific molar mass for a binary mixture. 
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The hold up at each stage is given by the Francis 
Equation: 
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Where: 
ρn = Average specific molar mass of the mixture 
(mols/cm3) 
c = Constant (cm-1/3s2/3) 
The output liquid flow for each stage is obtained 
from the Equation 5. 
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Neural network 
Theory 
Artificial neural networks (ANNs) are 
mathematical models composed of several 
neurons, arranged in different layers (input, hidden 
and output), interconnected by a complex network. 
According to Equation (6), the neuron is 
responsible for the summation of all signals from 
previous layer neurons, yj (amplified or weakened 
by weight values, wk,j) and a value called bias, bk. 
A transfer function, f - such as hyperbolic tangent, 
sigmoid or linear function – is used for the 
activation of the neuron output, yk. 
 

( ) 
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The multi-layer feedforward network, which is the 
most suitable topology for empirical modeling and 
engineering applications, was used in this work. 
 
Training the ANN 
The training procedure requires a set of the 
process inputs and outputs. During the training 
process, the weights and biases are iteratively 
adjusted to minimize an objective function. The 
conventional training algorithm – backpropagation 
- moves the network parameters towards the 
direction of the negative gradient (Demuth and 
Baele, 2002). The Levenberg-Marquardt 
optimization is a very useful alternative method of 
training.  However, both the methods could lead to 
data overfitting, if carelessly implemented. 
One of the most important methods for improving 
the generalization and to avoid overfitting is called 
regularization. This involves modifying the 
objective function, which usually computes only 
the sum of the squared errors (SSE) of the training 
set. In the regularization method, a term that 
consists of the mean of the sum of the squared 
weights (SSW) is added to the SSE calculation in 
the objective function (Equation 7) 
 

F = β. SSE + α. SSW (7) 
 

in which β and α are fitted parameters (Demuth 
and Baele, 2002). 
According to Hagan and Foresse (1997), using this 
objective function coupled with the Levenberg-
Marquardt algorithm will cause the network to 
have smaller weights and this will force the 
network response to be smoother and less likely to 
overfit. Another important feature of this 
algorithm is that it provides a measure of how 
many network parameters (weights and biases) are 
being effectively used by the network. This 
effective number of parameters is called γ and is 
different from the total number of parameters in 
the network, N. The best number of neurons of the 
hidden layer could be found when the effective 
number of parameters remains the same no matter 
the increase in the number of hidden neurons. 
 
Normalization of the data set 
Neural network training is more efficient when a 
preprocessing normalization is carried out for 
input and target output variables. Then, before 
network training, the data set was normalized in 
the range [–1,1], as follows: 
 

1
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2
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min −
−

−
=

xx

xx
xn  (8) 

 

in which xn is the normalized value for the 
variable, and xmin and xmax are the minimum and 
maximum of each variable ‘x’. 
 
Absorption column control 
The main goal of the control system was to reduce 
the ethanol concentration in the effluent gas phase 
to 200 ppm (set point) by manipulating the 
absorbent flow rate. Sample time was set to three 
seconds - approximately 15% of the time constant 
of the process. Figure 1 shows the proposed 
control scheme for the absorption column.
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Figure 1 - Absorption column control scheme. 
 
 
ANN controller 
The proposed strategy, based on an inverse neural 
network model, was successfully employed by 
Fileti et al. (2006) to control an industrial 
steelmaking process. The controller design may be 
split into two distinct steps: 
• Neural modeling and network training: 

Definition of the input/output variables. A data 
set is presented to the network that extracts the 
process information required to create a black-
box model of the operational environment. This 
knowledge is stored into the network 
parameters (weights and biases). This first step 
should be repeated every time the data set is 
updated; 

• Control action determination: The trained 
neural network receives current values of the 
input variables and computes the control 
action to be implemented. 

 
Neural modeling and data set 
The nonlinear control strategy (AIC-102) is based 
on a dynamic ANN composed of five input 
variables and one output variable. A moving

window of the main input variable measurements 
(AT-101 and AT-102) is employed to calculate the 
future control action. Table 2 shows the variables 
involved. 
Operating data were obtained through a 
computational program based on the rigorous 
mathematical model previously described (see 
2.1.1). Step disturbances on the gas mixture 
composition (between –10% and +10% of the 
original ethanol concentration) were imposed. 
Both, open and closed loop simulations were 
carried out. Dynamic matrix control was the 
strategy used in the closed loop simulations to 
change the absorbent flow rate and capture the 
process dynamics. The training and validation sets 
contained 800 and 500 input/output relations, 
respectively.  
Different network architectures were tested, in 
which the number of hidden layers and their 
neurons were modified. Performance indexes as 
the Sum of Square Error (SSE), Average Square 
Error (ASE) and the Hagan and Foresse criterion 
(1997) were employed in the search for the best 
architecture. 
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Table 2 - Input and output variables used for neural modeling. 
Input Output 

Current absorbent flow rate (L0|k) 
Current ethanol concentration in the effluent gas phase 
(Y1|k) 
Past ethanol concentration in the effluent gas phase (Y1|k-1) 
Desired ethanol concentration in the effluent gas phase, 
one-step-ahead (Y1sp|k+1) 
Current ethanol concentration in the gas mixture (YN+1|k) 

 
 
 
One-step-ahead absorbent flow rate (L0|k+1) 

 
 
Feedback action 
The success of the proposed nonlinear control 
strategy depends on the neural network efficiency. 
As mentioned before, during the training 
procedure, the neural network captures the process 
dynamics in the operating range employed. 
However, if the ANN must work on a different 
operating condition, the error probability 
increases. 
Sometimes, the environmental and process 
conditions may reach values unexpected by the 
network. Therefore, a security device based on a 
feedback control was coupled to the ANN control 
strategy. If this controller performance decreased 
to a critical limit, the device was activated (AY-
101). This critical limit was arbitrarily defined as 
5% of the absolute error. In case of error 
measurement above the critical limit, a PID 
controller (AIC-101) droved the absorbent flow 
rate manipulation.  
To test this arrangement, disturbances on the 
absorbent ethanol concentration were imposed to 
the process. This kind of disturbance was not taken 
into account for the network training purpose. 
 
Noisy signal and filter implementation 
In order to approximate simulation to real world, 
noisy signals were added to the measurements of 
ethanol concentrations (Y1 and YN+1). This noise 
was the product of a random number between 0 
and 1 and a sine function with high frequency and 
controlled amplitude.  The noise was applied only 
to the tests of the control system performance and 
not during the network training. 
After analyzing the control system behavior with 
noisy input data, another test was done: the input 
data was filtered. The filter used was composed of 
a weighed sum of the input variable at different 
sample times. Current time k, besides the previous 
sample times, k-1, k-2,…, k-NA were used. NA 

represents the last sample time before k, that is 
used in the sum. The filtered variable value was 
obtained by Equation (9). 
 

NAkNAkkFiltered
YYYY

−+−
+++= 1121 ... ααα  (9) 

 
in which: 
 

Filtered
Y  = Filtered variable. 

 Y = Variable supposed to be filtered. 

 αi = Filter  parameter,  1
1

1
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i
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RESULTS AND DISCUSSION 
 
Assessment of the neural network 
Many arrangements were tested to find an ANN 
architecture that provided a satisfactory 
performance without high computational effort. 
Table 3 and 4 showed the SSE and ASE parameter 
values for both data sets used (training and 
validation) when the ANN architecture was 
changed.  
It was observed that when using more than five 
neurons in the hidden layer and more than one 
hidden layer, there were no significant changes on 
the SSE and ASE values. Therefore, architectures 
with more than one hidden layer should be 
eliminated, because it would cause just an increase 
on computational effort.  
Furthermore, according to the Hagan and Foresse 
criterion (1997), the best number of neurons in the 
hidden layer is reached when the effective number 
of network parameters remains the same, no 
matter the increase in the number of neurons. This 
criterion pointed out the architecture of  5–9–1 as 
the best network and was the adopted topology. 
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Table 3 - SSE and ASE values for different ANN architectures (Training set) 
Training set 

Architecture 
SSE (mol2/s2) ASE*  

5 – 4 – 1 12.080 * 10-7 1.4748 * 10-9 
5 – 5 – 1 23.570 * 10-7 2.8785 * 10-9 
5 – 6 – 1 9.8429 * 10-7 1.2018 * 10-9 
5 – 7 – 1 9.9674 * 10-7 1.2170 * 10-9 
5 – 8 – 1 9.9988 * 10-7 1.2208 * 10-9 
5 – 9 – 1 9.9907 * 10-7 1.2199 * 10-9 
5 – 10 – 1 9,9913 * 10-7 1.2199 * 10-9 
5 – 11 – 1 9.9493 * 10-7 1.2148 * 10-9 
5 – 12 – 1 9.9971 * 10-7 1.2206 * 10-9 
5 – 13 – 1 9.9984 * 10-7 1.2208 * 10-9 
5 – 14 – 1 9.9973 * 10-7 1.2207 * 10-9 
5 – 15 – 1 9.9985 * 10-7 1.2192 * 10-9 

5 – 5 – 5 – 1 9.9898 * 10-7 1.2197 * 10-9 
5 – 6 – 6 – 1 9.9942 * 10-7 1.2203 * 10-9 

* (mol2/[s2] . [input-output data number] . [neuron number in the output layer])  
 
 
Table 4 - SSE and ASE values for different ANN architectures (Validation set) 

Validation set 
Architecture 

SSE (mol2/s2) ASE* 
5 – 4 – 1 2.0437 4.1879 * 10-3 
5 – 5 – 1 2.0489 4.1985 * 10-3 
5 – 6 – 1 2.0515 4.2038 * 10-3 
5 – 7 – 1 2.0650 4.2315 * 10-3 
5 – 8 – 1 2.1112 4.3262 * 10-3 
5 – 9 – 1 2.0425 4.1854 * 10-3 
5 – 10 – 1 2.0850 4.2725 * 10-3 
5 – 11 – 1 2.1511 4.4079 * 10-3 
5 – 12 – 1 2.0380 4.1762 * 10-3 
5 – 13 – 1 2.0632 4.2278 * 10-3 
5 – 14 – 1 2.0862 4.2750 * 10-3 
5 – 15 – 1 2,1559 4.4178 * 10-3 

5 – 5 – 5 – 1 2.0544 4.2098 * 10-3 
5 – 6 – 6 – 1 2.1215 4.3473 * 10-3 

* (mol2/[s2] . [input-output data number] . [neuron number in the output layer]) 
 
 
Performance of the ANN controller versus 
DMC  
Table 5 compares the performance of the ANN 
controller and the DMC strategy (Palú, 2004). Step 
disturbances were imposed to the gas mixture 
composition, YN+!.   
The ANN controller provided smaller ISE 
(integral of square error) values, which mean that 
the controlled variable remained closer to the set 
point than that obtained under the DMC strategy. 
The parameter ISE was expressed in square 
concentration (ppm2) and consequently presented 

small values. The controllers used similar amounts 
of the absorbent to carry out the task. 
Figures 2a and 2b showed the behavior of the 
controlled variable, Y1, and the manipulated 
variable, L0, when a step disturbance of 8.6% was 
imposed to the ethanol concentration in the feed 
mixture, YN+1.  
According to Figure 2a, the ANN controller 
outperformed the DMC strategy because the 
controlled variable behavior presented smaller 
overshoot and the response time decreased from 
125 to 90 seconds.  
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Table 5 - Performance comparison between ANN control and DMC strategy 

YN+1 Disturbance (%) ISE (ppm2) Amount of absorbent 
(mol) 

Control technique  

1.6380 * 10-08 29474.40 Open loop 
3.3900 * 10-11 29133.16 DMC  

 
-8.3 

 1.6600 * 10-11 29125.54 ANN  
7.1953 * 10-09 29474.40 Open loop 
1.700 * 10-11 29251.39 DMC 

 
-5.5 

6.8700 * 10-12 29246.36 ANN  
1.0448 * 10-09 29474.40 Open loop  
2.1000 * 10-12 29556.37 DMC  

 
+2.1 

8.8500 * 10-13 29558.17 ANN 
1.7561 * 10-08 29474.40 Open loop 
3.4000 * 10-11 29800.94 DMC  

 
+8.6 

1.5000 * 10-11 29808.09 ANN  
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Figure 2 - Performance comparison between ANN controller and DMC: (a) controlled variable 
and (b) manipulated variable. 
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Security device (feedback action) 
Figure 3 showed the controlled variable behavior 
when the system was submitted to a step 
disturbance of 30% in the ethanol concentration of 
the liquid absorbent (X0). As this kind of 
disturbance was not taken into account for network 

training purpose, the ANN control performance 
decreased below the critical limit. As expected, the 
security device (PID controller) was activated. An 
off-set was observed when this device was not 
present. The PID controller was tuned for this 
specific situation and eliminated the off-set.

 
 

195

205

215

225

0 50 100 150 200 250 300 350 400

Time (s)

(p
pm

)

Set point

Y1 (ANN control with security device

Y1 (ANN control without security device)
 

 
Figure 3 - Performance comparison between ANN controller with and without the security device 

(PID: Kc=22000 ppm.s/mol, τI=10400 s τD=60 s ).  
 
 
Noisy data, filter implementation and the ANN 
controller performance  
Figure 4a and 4b show the noisy signal of the gas 
phase ethanol concentration, Y1|k, and the 

respective filtered variable, 
Filtered

Y . Without the 

filter action, the input variable presented 
oscillation band amplitude of 3 ppm, except 
initially when a step disturbance of 10% was 
imposed to YN+1. The amplitude of this input 
variable decreased to 0.5 ppm, when the digital 
filter was applied. 
The αi and NA (Equation 10) were determined 
through a trial-and-error procedure. Observing the 
controlled variable overshoot and oscillation band, 
the best results were obtained when 15 sample 
times before k were used (NA=15). The αi  
(i=1,2…, NA) values employed were: α1 = 0.20, α2 
= 0.10, α3 = 0.05, α4 = 0.05, α5 = 0.05, α6 = 0.05, 
α7 = 0.05, α8 = 0.05, α9 = 0.05,  α10 = 0.05, α11 = 
0.05, α12 = 0.05, α13 = 0.05, α14 = 0.05, α15 = 0.05 
and α16 = 0.05. 

Figure 5 showed the process response when the 
ANN controller was fed with noisy data: noisy 
signals between +1 ppm and -1 ppm were added to 
the ethanol concentrations of the gas phase (Y1|k, 
Y1|k-1 and YN+1|k). Furthermore, a step disturbance 
of 10% was imposed to YN+1 at initial time. 
Control system without filtering were compared to 
the control system in which the input variables 
were filtered before their presentation to the ANN 
control. 
In spite of that the ANN controller did not get the 
controlled variable stabilization in the first case 
(without filter), its oscillation band was reduced to 
half of the noisy signal employed: 2 ppm to 1 ppm. 
For the second case, the ANN controller 
performance was even better because the filter 
decreased the oscillation by 75%. 
The security device was not required and the ANN 
controller was considered robust to deal with this 
kind of data distortion. 
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Figure 4 - ANN input variable, Y1|k (a) distorted by the noisy signal and (b) filtered. 
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Figure 5 - Controlled variable behavior when filter are employed or not. 
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CONCLUSIONS 
 
The main contribution of this work is the 
development and the application of a nonlinear 
controller, based on an inverse neural network 
model, to an absorption column. This column 
recovered the bioethanol evaporated from a 
fermentation process. The nonlinear behavior of 
the process challenged the control system design 
and suggested that conventional techniques did not 
work properly. The ANN controller developed 
provided a satisfactory control, in spite of the 
system characteristics. 
Many ANN architectures were tested. According 
to the Hagan and Foresse criterion (1997), a 5–9–1 
network was chosen and the parameters sum of 
square error and average square error confirmed 
the choice. Therefore, this was the architecture 
employed in the ANN controller. 
The proposed controller outperformed the DMC 
strategy (Palú, 2004) because the controlled 
variable behavior presented smaller overshoot and 
the response time decreased from 125 to 90 
seconds. Furthermore, the ANN controller 
superiority was also noted through the integral of 
the square error criterion that became smaller 
under ANN control. 
When disturbances not predicted on the training 
procedure were inserted, the ANN controlled 
performance decreased below a critical limit. 
Therefore a PID controller implementation as a 
security device was necessary. This arrangement 
worked very successfully. 
The robustness of the ANN controller was also 
tested for situations in which the gas concentration 
variables were distorted by the noisy signal. The 
controlled variable oscillation amplitude was 
reduced to half of the noisy amplitude applied to 
ANN input variables. When a digital filter was 
applied to these data, the results were even better, 
because the oscillation was reduced to almost 75% 
of original noisy amplitude.  
The present work demonstrated that the nonlinear 
controller based on an inverse neural network 
model was very useful to control the absorption 
column studied. This control technique proved to 
be successful when the operating conditions were 
the same that was employed for training purposes.

In addition, the ANN controller worked properly 
when the ANN input variables were distorted by a 
noisy signal. The security device implemented 
turned the control system more robust when 
unexpected environmental and operating 
conditions occurred.  
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RESUMO 
 
Deseja-se recuperar o etanol perdido por 
evaporação durante o processo de fermentação da 
cana-de-açúcar. Para tanto, faz-se uso de uma 
coluna de absorção. O controle da concentração de 
etanol no efluente gasoso da coluna é realizado 
pela manipulação da vazão de solvente, sendo esta 
determinada pelo controlador não linear proposto, 
baseado em um modelo inverso de redes neurais 
(controlador ANN). Foram feitas simulações 
adicionando-se um sinal de ruído a medida de 
concentração de etanol na fase gasosa. Quando 
perturbações degrau foram inseridas na mistura 
gasosa afluente, o controlador ANN demonstrou 
desempenho superior ao controle por matriz 
dinâmica (DMC). Um dispositivo de segurança, 
baseado em um controlador feedback 
convencional, e um filtro digital foram 
implementados à estratégia de controle proposta 
para agregar robustez no tratamento de distúrbios 
ocorridos no ambiente operacional. Os resultados 
demonstraram que o controlador ANN é uma 
ferramenta robusta e confiável no controle de uma 
coluna de absorção. 
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