Quim. Nova, Vol. 31, No. 5, 1067-1072, 2008

COMPORTAMENTO ELETROQUÍMICO DA N-NITROSOTIAZOLIDINA ÁCIDO CARBOXÍLICO SOBRE ELETRODOS DE OURO E MERCÚRIO

Lucia Codognoto

Instituto de Pesquisa e Desenvolvimento, Universidade do Vale do Paraíba, Av. Shishima Hifumi, 2911, 12244-000 São José dos Campos – SP, Brasil

Felix G. R. Reyes

Departametno de Ciência de Alimentos, Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, CP 6121, 13083-970 Campinas - SP, Brasil

Eduardo Winter e Susanne Rath*

Departamento de Química Analítica, Instituto de Química, Universidade Estadual de Campinas, CP 6154, 13084-971 Campinas - SP, Brasil

Recebido em 11/4/07; aceito em 17/12/07; publicado na web em 31/7/08

ELECTROCHEMICAL BEHAVIOR OF N-NITROSOTHIAZOLIDINE CARBOXILIC ACID ON GOLD AND MERCURY ELECTRODES. The electrochemical behavior of N-nitrosothiazolidine carboxylic acid (NTAC) on gold and hanging mercury electrodes, using the cyclic and square wave voltammetries, was studied. Whereas NTAC suffer reduction in a single step on the mercury electrode, two peaks appears on the cyclic voltammograms on the gold electrode, one anodic peak overlaying the gold oxide process at 1.2 V and one cathodic peak at -0.41 V vs Ag/AgCl, KCl 3.0 mol L⁻¹. The cathodic peak depends on the previous oxidation of NTAC at the electrode surface, presents irreversible and adsorption controlled characteristics and it is suitable for quantitative purposes.

Keywords: N-nitrosothiazolidine carboxylic acid; voltammetry; gold electrode.

INTRODUÇÃO

Os compostos N-nitrosos, e em particular as N-nitrosaminas, são considerados potentes carcinógenos, além de apresentarem ação teratogênica e mutagênica em animais de laboratório. As nitrosaminas podem ser encontradas nas mais diversas matrizes, entre essas, alimentos, solos, água, ar, pesticidas, cigarros, produtos de borracha e cosméticos. Nos alimentos podem ser encontradas em diversos produtos, principalmente nos industrializados, como presunto, salsicha, salame e outros produtos cárneos, nos quais são formadas a partir de precursores nitrosáveis do próprio alimento e de agentes nitrosantes.¹⁻³ É importante ressaltar que, devido ao nitrato poder ser reduzido a nitrito na cavidade bucal e, sendo a faixa ótima de pH para a formação de N-nitrosaminas semelhante àquela encontrada no estômago do homem após ingestão de alimentos, a formação de N-nitrosaminas *in vivo* torna-se um assunto de extrema importância.^{4,5}

Para fins analíticos, as N-nitrosaminas são divididas em voláteis e não voláteis. As diferenças nas propriedades químicas e fisicoquímicas desses compostos dificultam o estabelecimento de métodos analíticos de aplicação geral.⁶ Todavia, os métodos cromatográficos têm sido os mais utilizados na determinação de nitrosaminas em matrizes diversas, onde a cromatografia líquida de alta eficiência e a cromatografia gasosa tem sido empregadas para a determinação das nitrosaminas não voláteis e voláteis, respectivamente. Os detectores mais utilizados em ambas as técnicas têm sido o de quimiluminescência (*TEA - Thermal Energy Analyzer*), uma vez que esse é seletivo para compostos que contêm o grupo N-nitroso^{7.9} e o de massas.^{10,11}

Entretanto, as técnicas cromatográficas associadas ao detector de quimiluminescência ou ao espectrômetro de massa requerem alto investimento inicial e, em função disto, poucas indústrias no Brasil controlam seus produtos quanto à presença de nitrosaminas. O Brasil tem inúmeros alimentos típicos, assim como situações diferenciadas de processamento de alimentos que propiciam a formação de N-nitrosaminas (processamento caseiro de bacon, elaboração e comercialização de lingüiças de preparo tipo caseiro). Desta forma, novos métodos de análises para a determinação de nitrosaminas são de grande interesse, principalmente se forem de menor custo, envolverem menor número de etapas no preparo de amostra e menor consumo de solventes. Nesta direção, as técnicas eletroanalíticas surgem como uma alternativa para a determinação de compostos orgânicos e inorgânicos em matrizes diversas.

A determinação eletroquímica de nitrosaminas tem sido realizada de maneira muito tímida, sendo que a maioria dos trabalhos citados na literatura trata da redução eletroquímica destes compostos sobre o eletrodo de mercúrio. Neste sentido, Goicolea *et al.*¹² utilizaram um eletrodo de mercúrio como detector eletroquímico, associado à cromatografia líquida de alta eficiência, para a determinação de N-nitrosopiperidina (NPIP) em cervejas. A fase móvel utilizada foi metanol-acetonitrila-tampão fosfato pH 3,5 (57:38:5 v/v/v) com o detector operando no modo de corrente direta (DC) a potencial de -1250 mV. O limite de detecção obtido foi de 0,2 ng com um desvio padrão relativo de 2,8%.

Em um outro estudo,¹³ foi descrito um método para a determinação de dinitrosopiperazina (DNPZ) em suco gástrico artificial, utilizando a polarografia de pulso diferencial. A DNPZ apresentou um pico catódico em -0,77 V *vs* Ag/AgCl, com processo controlado por difusão. O intervalo de concentração estudado foi de 0,4 a 24 μ g mL⁻¹ e o limite de detecção foi de 0,072 μ g mL⁻¹.

No entanto, um dos principais problemas quanto a utilização do eletrodo de mercúrio (HMDE) para a determinação de nitrosaminas está associado ao fato do sinal analítico observado ser referente à redução do grupo N-nitroso, característico a todas as nitrosaminas. Sendo assim, não há possibilidade da determinação seletiva das mesmas e apenas é possível a determinação de nitrosaminas totais.

Outros estudos encontrados na literatura tratam da determinação eletroanalítica de nitrosaminas utilizando eletrodos quimicamente modificados com polímeros orgânicos e inorgânicos.¹⁴⁻¹⁶ A utilização de voltametria adsortiva de redissolução sobre estes eletrodos pode atingir limites de detecção da ordem de 10⁻¹⁰ mol L⁻¹ para diferentes nitrosaminas.¹⁷ No entanto, um dos problemas observados com a utilização destes materiais eletródicos é que ocorre adsorção das espécies na superfície inibindo a resposta e, conseqüentemente, ocorre uma diminuição da sensibilidade do método proposto.¹⁸

O objetivo deste trabalho foi realizar um estudo comparativo do comportamento eletroquímico da N-nitrosotiazolidina ácido carboxílico (NTAC), que é uma nitrosamina não volátil encontrada principalmente em produtos defumados, sobre os eletrodos de ouro e de mercúrio (HMDE), utilizando a voltametria de onda quadrada (SWV), visando assim desenvolver um método eletroanalítico para a determinação de NTAC.

PARTE EXPERIMENTAL

Reagentes e soluções

A solução estoque de NTAC foi preparada em meio aquoso, na concentração de 1,00x10⁻³ mol L⁻¹. As demais soluções foram preparadas a partir da solução estoque mediante diluição com água.

Como eletrólito suporte foi utilizada uma solução de fosfato de sódio na concentração de 0,10 mol L⁻¹. O pH desta solução foi ajustado, conforme necessário, com NaOH 1,0 mol L⁻¹ ou com H,PO₄ 1,0 mol L⁻¹.

Todas as soluções foram preparadas com água purificada em sistema Milli-Q, procedência Millipore Corporation.

Instrumentação

A célula eletroquímica utilizada para as medidas com o eletrodo de ouro foi uma célula convencional de compartimento único com orifícios para o encaixe dos eletrodos. Os estudos foram realizados utilizando um eletrodo de ouro ($\phi = 1 \text{ mm}$) como eletrodo de trabalho, um eletrodo de Ag/AgCl em KCl 3,0 mol L⁻¹ como referência e um fio de platina como eletrodo auxiliar.

As medidas com o eletrodo de mercúrio (HMDE) foram realizadas em um Sistema Stand 663 VA (Metrohm) contendo um eletrodo de trabalho de gota pendente de mercúrio (área: 0,52 mm²), um eletrodo de referência Ag/AgCl, KCl 3,0 mol L⁻¹ e um eletrodo auxiliar de grafite pirolítico.

Para as medidas eletroquímicas foi utilizado o potenciostato/galvanostato Autolab[®] PGSTAT 30 (Eco Chemie). A aquisição dos dados e o gerenciamento do potenciostato foram realizados por um microcomputador (Dell) e mediante programa computacional GPES.

Todas as soluções tiveram seus valores de pH ajustados utilizando um pH mêtro da Digimed DM-20 (Brasil) e um eletrodo combinado de vidro também da Digimed – Instrumentação analítica. O pHmêtro era diariamente calibrado com soluções tampão comerciais de pH 4 e 7.

RESULTADOS E DISCUSSÃO

A NTAC foi o composto escolhido para este estudo por ser representante do grupo das nitrosaminas não voláteis e também porque não foram encontrados registros na literatura sobre o comportamento eletroquímico desta nitrosamina. O comportamento eletroquímico da NTAC foi estudado sobre os eletrodos de ouro e HMDE.

O eletrodo HMDE foi também utilizado nos estudos, visto que dados da literatura indicam que outras nitrosaminas sofrem redução sobre esta superfície e o sinal observado está relacionado com a redução do grupo N-nitroso, presente em todas as nitrosaminas. Assim, os resultados obtidos com o eletrodo HMDE foram utilizados como parâmetro de comparação para os dados encontrados para a NTAC sobre o eletrodo de ouro.

Estudo do comportamento eletroquímico de NTAC sobre o eletrodo de ouro

Resposta voltamétrica da NTAC sobre o eletrodo de ouro

O voltamograma da NTAC, no intervalo de -0,60 a 1,55 V, apresenta um pico anódico (Ia) em torno de 1,20 V (região da formação dos óxidos de ouro) e um pico catódico (Ic) em -0,45 V (Figura 1).

Foi verificado que os picos Ia e Ic são dependentes entre si e que as intensidades de corrente aumentam proporcionalmente com a concentração de NTAC na célula. Adicionalmente, observou-se que a corrente catódica em -0,45 V (Ic) depende do potencial inicial de varredura. Quando a varredura é iniciada em potenciais menores que 1,2 V, o pico catódico Ic não é registrado. Esses resultados indicam que o composto responsável pelo pico catódico (Ic) é o produto da reação de oxidação da NTAC que permaneceu na dupla camada durante a varredura inversa.

Figura 1. Voltamogramas cíclicos obtidos para o eletrodo de ouro na ausência e na presença de NTAC na concentração de $4,70x10^{-5}$ mol L⁻¹ em Na₂HPO₄ 0,10 mol L⁻¹, pH 3,5 e v = 50 mV s⁻¹ (intervalo de varredura de -0,60 a 1,55 V). Inserção: expansão dos voltamogramas na região de -0,10 a -0,60 V

Para obter maiores informações sobre a influência do potencial inicial de varredura sobre as intensidades de correntes dos picos Ia e Ic foi utilizada a voltametria de onda quadrada com redissolução catódica (CSSWV).

Observa-se na Figura 2 que a intensidade de corrente do pico Ic aumenta em função do potencial aplicado e do tempo de deposição. Para potenciais maiores que 1,0 V a corrente passa a independer do potencial. Esse comportamento pode ser atribuído ao átomo de enxofre da NTAC, uma vez que o mesmo não foi observado para outras nitrosaminas como N-nitrosodimetilamina (NDMA), N-nitrosodietilamina (NDEA), N-nitropiperidina (NPIP) e N-nitrosopirrolidina (NPIR).

Os resultados observados indicam que o enxofre presente na NTAC é oxidado sobre o eletrodo de DDB em 1,2 V e o produto formado fica adsorvido na superfície do eletrodo, sendo então redissolvido na varredura reversa em -0,45 V.

A intensidade de corrente do pico catódico em 1,2 V é dependente da concentração de NTAC, mas uma vez que esse processo redox é sobreposto pela formação de óxido de ouro, não foi obtida uma repetibilidade adequada entre medidas sucessivas para uma mesma

Figura 2. Variação da intensidade da corrente de pico para a NTAC em função do potencial e do tempo de deposição (NTAC 4,70x10⁻⁵ mol L⁻¹ sobre o eletrodo ouro em Na₂HPO₄ 0,10 mol L⁻¹, pH 3,5, $f = 100 \text{ s}^{-1}$, a = 50 mV e $\Delta E_{\pm} = 2 \text{ mV}$)

concentração de NTAC (medidas realizadas na presença de nitrogênio super-seco). Em decorrência deste fato, o sinal em -0,45 V foi o selecionado para fins quantitativos.

Após a obtenção dos valores otimizados do tempo de deposição (20 s) e do potencial de deposição (1,2 V), todas as medidas voltamétricas foram realizadas utilizando a voltametria de onda quadrada com redissolução catódica (CSSWV).

Os voltamogramas de CSSWV para a NTAC apresentaram um comportamento semelhante àqueles obtidos por voltametria cíclica, ou seja, com somente um pico catódico irreversível em torno de -0.45 V vs Ag/AgCl.

Influência do pH do meio

O pico de redissolução catódico observado para a NTAC sobre o eletrodo de ouro é fortemente influenciado pelo pH do meio. Os voltamogramas obtidos para a NTAC em função do pH estão apresentados na Figura 3. A maior intensidade de corrente foi registrada em pH 3,5. Adicionalmente, o potencial de pico sofre variações

Figura 3. Voltamogramas de onda quadrada com redissolução catódica obtidos para a NTAC 1,00x10⁻⁵ mol L⁻¹ sobre o eletrodo ouro em função do pH (Na₂HPO₄ 0,10 mol L⁻¹, E_d = 1,2 V, t_d = 20 s, f = 100 s⁻¹, a = 50 mV e ΔE_s = 2 mV). Inserção: Variação do potencial de pico com o pH para a NTAC

com o aumento do pH, provocando o deslocamento do potencial de pico para regiões mais negativas. O coeficiente angular obtido a partir do gráfico E_p *versus* pH (inserção Figura 3) foi de 52 mV/pH e corresponde a uma transferência de um próton para cada elétron envolvido no processo.¹⁹

Influência dos parâmetros da SWV para a NTAC sobre o eletrodo de ouro

A voltametria de onda quadrada é uma das técnicas voltamétricas de pulso mais rápidas e sensíveis. Os limites de detecção podem ser comparados aos das técnicas cromatográficas. Além disso, a análise de parâmetros característicos desta técnica, como a freqüência e a amplitude da onda quadrada e o incremento de varredura, permite a aquisição de informações quanto à cinética e ao mecanismo do processo eletroquímico em questão.

Por meio da variação da freqüência da onda quadrada para a NTAC sobre o eletrodo de ouro, foi observado que um aumento no valor da freqüência causa um aumento proporcional na intensidade de corrente de pico, de acordo com a Equação: $I_p (\mu A) = 0,193 + 0,020 f (s^{-1})$. No entanto, freqüências acima de 150 s⁻¹ não influenciam de maneira significativa na intensidade do sinal e por este motivo a freqüência de trabalho escolhida foi a de 150 s⁻¹. De acordo com dados da literatura,^{20,21} a intensidade de corrente para sistemas totalmente irreversíveis com processo controlado pela adsorção das espécies varia linearmente com a freqüência de aplicação dos pulsos, o que corrobora os resultados obtidos para a NTAC sobre o eletrodo de ouro.

Sabendo-se que a espécie é adsorvida na superfície do eletrodo e utilizando-se os critérios de diagnósticos disponíveis para a técnica de voltametria de onda quadrada, foi possível determinar o valor de αn para o sistema. De acordo com a teoria da voltametria de onda quadrada, a dependência dos potenciais de pico com o logaritmo da freqüência para reações totalmente irreversíveis com reagentes e/ou produtos adsorvidos é linear e pode ser descrita pela Equação 1:²²

$$\frac{\Delta E_p}{\Delta \log f} = \frac{2,3RT}{\alpha nF} \tag{1}$$

onde: α é o coeficiente de transferência de carga e n o número de elétrons envolvidos na reação eletródica.

A variação do potencial de pico em função do logaritmo da freqüência para a NTAC sobre o eletrodo de ouro apresentou um comportamento linear com um coeficiente angular de 0,0501. Mediante a Equação 1 tem-se que α n é igual a 1,18. Considerando-se α próximo a 0,5, estima-se 2 elétrons envolvidos na etapa de transferência de carga por molécula de NTAC.

Para sistemas redox totalmente irreversíveis a intensidade do sinal analítico na voltametria de onda quadrada sofre grande influência com a variação da amplitude da onda, isto porque a largura de meia onda se mantém constante para amplitudes maiores que 50 mV.

Na Figura 4 estão apresentados os voltamogramas obtidos para a NTAC em função da variação da amplitude da onda quadrada. Verifica-se que para valores de amplitudes até 60 mV o potencial de pico permanece constante e a corrente de pico é linearmente dependente da amplitude. Para amplitudes maiores que 60 mV o potencial de pico é deslocado para valores menores de potencial. Adicionalmente, amplitudes maiores parecem não atuar de modo significativo na sensibilidade para propósitos analíticos. Em função disto, optou-se em trabalhar com amplitude da onda quadrada de 60 mV.

Foi observado que a variação do incremento de varredura no intervalo de 1 a 10 mV não influencia de modo significativo no comportamento da NTAC sobre o eletrodo de ouro. Desta forma, optou-se em trabalhar com um incremento de varredura de 2 mV.

Figura 4. Influência da variação da amplitude da onda quadrada no aspecto geral dos voltamogramas de onda quadrada de redissolução catódica da NTAC (1,20x10⁻⁵ mol L⁻¹, pH 3,5 Na₂HPO₄ 0,10 mol L⁻¹, f = 100 s⁻¹, $\Delta E_s = 2$ mV, $E_d = 1,2$ V, $t_d = 20$ s). Inserção: Variação da corrente de pico em função da amplitude do pulso para a NTAC sobre o eletrodo de ouro

Variação da corrente de pico em função da concentração de NTAC

Estabelecidas as melhores condições para a determinação de NTAC, através do pico catódico em termos de pH (3,5), freqüência da onda quadrada (150 s⁻¹), incremento de varredura (2 mV), amplitude da onda quadrada (60 mV), tempo de deposição (20 s) e potencial de deposição (1,2 V) foi obtida a curva analítica utilizando-se a CSSWV.

A curva analítica foi construída pela adição de alíquotas da solução padrão de NTAC ao eletrólito suporte composto de Na_2HPO_4 0,10 mol L⁻¹, pH 3,5. As medidas foram realizadas em triplicata e para a obtenção da curva analítica foi utilizado o valor médio de corrente de pico para cada nível de concentração. A faixa linear de trabalho foi de 7,0x10⁻⁸ a 2,0x10⁻⁶ mol L⁻¹, com uma linearidade (r) e sensibilidade de 0,9990 e 0,50 A L mol⁻¹, respectivamente.

Para estabelecer o limite de detecção (LOD), ou seja, a detectabilidade da NTAC na célula eletroquímica, foi utilizada a relação entre o desvio padrão da resposta (S_b) e a inclinação da curva analítica (b),²³ conforme a Equação 2:

$$LOD = \frac{3S_b}{b} \tag{2}$$

O limite de detecção obtido para a NTAC foi de $2,1 \times 10^{-8}$ mol L⁻¹ (3,5 µg L⁻¹). A precisão intra-ensaio, expressa como a estimativa do desvio padrão relativo, para uma concentração de $1,0 \times 10^{-6}$ mol L⁻¹ (n = 10) foi de 2,4 %.

Análise da interferência de outras nitrosaminas na determinação de NTAC sobre o eletrodo de ouro

A seletividade do método proposto para a determinação da NTAC foi avaliada quanto à possível interferência de outras nitrosaminas, utilizando-se o eletrodo de ouro e a SWV. As nitroaminas utilizadas para esse estudo foram N-nitroso-dimetilamina (NDMA), N-nitrosodietilamina (NDEA), N-nitropiperidina (NPIP) e N-nitrosopirrolidina (NPIR), uma vez que essas nitrosaminas são freqüentemente encontradas em produtos cárneos curados.

Os resultados obtidos com NDMA, NDEA, NPIP e NPIR mostraram que estas nitrosaminas não são eletroativas no eletrodo de ouro nas condições utilizadas para a determinação eletroanalítica da NTAC. Na Figura 5 é apresentado o comportamento voltamétrico da NTAC, na concentração de 0,2x10⁻⁶ mol L⁻¹, em função da

Figura 5. Voltamogramas de onda quadrada de redissolução catódica obtidos para NTAC 0,20x10⁶ mol L⁻¹ (pH 3,5 Na₂HPO₄ 0,10 mol L⁻¹, f = 150 s⁻¹, ΔE_s = 2 mV, a = 60 mV, E_d = 1,2 V, t_d = 20 s) na presença de outras nitrosaminas. Inserção: Variação da corrente de pico da NTAC em função da adição de NDMA, NDEA, NPIP e NPIR

adição de NDMA, NDEA, NPIP e NPIR. Pode-se observar que não ocorrem mudanças significativas no perfil dos voltamogramas da NTAC e que a corrente de pico se mantém praticamente constante com uma perda de sinal menor que 5% (inserção da Figura 5). Para uma concentração de NTAC de $1,0x10^{-6}$ mol L⁻¹ resultados semelhantes foram observados, indicando que a NTAC pode ser determinada na presença de outras nitrosaminas, utilizando-se a metodologia proposta.

Os resultados obtidos indicam que a CSSWV, usando o eletrodo de ouro, apresenta detectabilidade, precisão e seletividade adequados para ser empregada na determinação de NTAC em alimentos.

Estudo do comportamento eletroquímico de NTAC sobre o eletrodo de mercúrio

O estudo do comportamento eletroquímico da NTAC sobre o eletrodo de gota pendente de mercúrio (HMDE) foi realizado para fins comparativos com o processo redox obtido sobre o eletrodo de ouro.

Na Figura 6 é apresentado um voltamograma cíclico da NTAC sobre o HMDE, sendo que apenas é registrado um pico catódico em torno de -0,99 V com características irreversíveis.

Figura 6. Voltamograma cíclico obtido para a NTAC na concentração de $1,60x10^{-4}$ mol L^{-1} sobre o eletrodo de mercúrio (HMDE) em Na₂HPO₄ 0,10 mol L^{-1} , pH = 3,5 e v = 50 mV s⁻¹

Com o objetivo de se obter informações adicionais sobre o processo redox da NTAC no eletrodo HMDE, foram também realizados estudos dos parâmetros da voltametria de onda quadrada, como a freqüência da onda quadrada (f), a amplitude da onda quadrada (a) e o incremento de varredura (ΔE_c).

Avaliação dos parâmetros da SWV para a NTAC sobre o HMDE

Na Figura 7 é apresentado o comportamento da NTAC sobre o eletrodo de HMDE em função da variação da freqüência da onda quadrada. Observa-se um aumento na intensidade da corrente de pico para freqüências até 300 s⁻¹. Adicionalmente, pode-se verificar (inserção da Figura 7) que a relação da intensidade da corrente de pico é linear com a raiz quadrada da freqüência, o que corrobora com um processo controlado pela difusão das espécies. Estes resultados estão de acordo com os dados da literatura para outras nitrosaminas, onde é observada a redução do grupo N-nitroso para hidroxilamina.¹³

Figura 7. Voltamogramas de onda quadrada obtidos para a NTAC sobre o eletrodo de mercúrio em função da variação da freqüência da onda quadrada $(1,60x10^{-4} \text{ mol } L^{-1} \text{ em Na}_2 \text{HPO}_4 0,10 \text{ mol } L^{-1}, pH = 3,5, a = 50 \text{ mV}, e incremento de varredura de 2 mV). Inserção: Variação da intensidade da corrente de pico com a raiz quadrada da freqüência de aplicação dos pulsos$

A amplitude da onda quadrada foi outro parâmetro avaliado e pode-se observar que para valores superiores a 50 mV, a amplitude não influencia de maneira significativa na intensidade do sinal, o que está de acordo com o previsto para sistemas totalmente irreversíveis.

Para o incremento de varredura (ΔE_s) foi verificado que ocorre um aumento da intensidade da corrente catódica em função do aumento de ΔE_s e o potencial de pico é deslocado para valores mais negativos. Para desenvolvimento da metodologia analítica foi selecionado o valor de ΔE_s de 4 mV.

Variação da corrente de pico em função da concentração de NTAC e análise da interferência de outras nitrosaminas

Estabelecidas as melhores condições voltamétricas para a determinação da NTAC sobre o eletrodo de mercúrio, em termos de freqüência da onda quadrada (300 s⁻¹), incremento de varredura (2 mV) e amplitude da onda quadrada (50 mV), foi construída a curva analítica, a qual foi obtida no intervalo de concentração de $5,0x10^{-6}$ a $5,0x10^{-5}$ mol L⁻¹. Neste intervalo de concentração (faixa linear de trabalho) obteve-se uma sensibilidade de 0,031 A L mol⁻¹ e linearidade (r) de 0,9970.

A avaliação do sinal analítico obtido para a NTAC sobre o eletrodo de mercúrio, na presença de outras nitrosaminas foi realizada e os resultados obtidos encontram-se na Figura 8. Observa-se que ocorre um aumento na corrente de pico da NTAC quando NDMA,

Figura 8. Voltamogramas de onda quadrada obtidos para a NTAC 5,00 10^{-5} mol L⁻¹ na ausência (1) e na presença de outras nitrosaminas (NDMA, NDEA, NPIP e NPIR) 5,0 10^{-5} mol L⁻¹ (2) em Na₂HPO₄ 0,10 mol L⁻¹, pH = 3,5, a = 50 mV, f = 300 s⁻¹ e ΔE_{-} = 4 mV

NDEA, NPIP e NPIR são adicionadas à célula eletroquímica, o que se deve ao fato do sinal observado ser referente à redução do grupo N-nitroso, comum a todas as nitrosaminas.

Desta forma, sobre o eletrodo de mercúrio não foi possível a determinação seletiva da NTAC, sendo possível somente a quantificação de nitrosaminas totais nas condições estudadas. Estes resultados confirmam que o sinal observado para a NTAC sobre o eletrodo de mercúrio é proveniente da redução do grupo N-nitroso e é diferente do processo redox observado no eletrodo de ouro.

Comparação dos resultados obtidos para a NTAC sobre os eletrodos de ouro e mercúrio

Na Tabela 1 estão reunidos os principais resultados obtidos para NTAC sobre os eletrodos de ouro e HMDE, os quais indicam a evidente diferença do comportamento eletroquímico desta nitrosamina sobre as duas superfícies eletródicas estudadas.

Tabela 1	 Parâmetros 	voltamétricos	obtidos	para a	a NTAC	sobre	os
eletrodo	s de ouro e H	MDE					

Parâmetro	Eletrodo de Ouro	HMDE
Intervalo de potencial (V)	-0,60 a 1,55	-0,20 a -1,40
Picos anódicos (V)	1,20	_
Picos catódicos (V)	-0,41	-0,99
Técnica voltamétrica	CSSWV	SWV
Características do	Irreversível	Irreversível
processo eletroquímico	controlado	controlado
	por adsorção	por difusão
Intervalo linear de	7,0x10 ⁻⁸ a 2,0x10 ⁻⁶	5,0x10 ⁻⁶ a 5,0x10 ⁻⁵
concentração (mol L-1)		
Seletividade na presença	Seletivo	Não seletivo
de outras nitrosaminas*		

* NDMA, NDEA, NPIR e NPYR

Sobre o eletrodo HMDE os resultados demonstram que o sinal observado é proveniente da redução do grupo N-nitroso, uma vez que na presença de outras nitrosaminas houve uma sobreposição dos sinais e não foi possível fazer o estudo seletivo da NTAC nas condições estudadas. Adicionalmente, dados da literatura relatados para outras nitrosaminas sobre o eletrodo de mercúrio estão de acordo com o observado para a NTAC e com o mecanismo de redução apresentado no Esquema 1.

Esquema 1. Proposta de mecanismo de redução da NTAC sobre o eletrodo de mercúrio

A resposta voltamétrica da NTAC sobre o eletrodo de ouro depende da oxidação do enxofre, o que está de acordo com dados da literatura,²⁴ que mostram que moléculas contendo enxofre são facilmente oxidadas sobre eletrodos de ouro. O produto de oxidação da NTAC fica adsorvido na superfície do ouro e sofre redução na varredura catódica em -0,45 V, mediante transferência de dois elétrons. O processo é próton dependente.

CONCLUSÕES

Foi observado que o processo redox da NTAC no eletrodo de ouro e no de mercúrio (HMDE) seguem mecanismos diferenciados. Enquanto no eletrodo de mercúrio ocorre a redução do grupo Nnitroso, no eletrodo de ouro a oxidação do enxofre é responsável pela eletroatividade do composto. O produto de oxidação da NTAC sofre adsorção na superfície do eletrodo de ouro e na varredura catódica ocorre redução desta espécie, mediante transferência de dois elétrons, sendo que a corrente de pico é proporcional à concentração de NTAC na célula voltamétrica. Essa diferença no comportamento eletroquímico da NTAC nos dois materiais eletródicos é importante do ponto de vista analítico, pois permite a determinação seletiva da NTAC na presença de outras nitrosaminas, usando o eletrodo de ouro, fato esse que permitiu o desenvolvimento de um método, empregando a voltametria de onda quadrada de redissolução catódica.

O método voltamétrico desenvolvido apresentou detectabilidade e seletividade adequada para a determinação direta de NTAC, assim como, o eletrodo de ouro nestas condições, apresenta potencialidade para ser utilizado como detetor eletroquímico associado a sistemas de cromatografia líquida de alta eficiência para análise de alimentos.

AGRADECIMENTOS

À FAPESP e ao CNPq pelo suporte financeiro. L. Codognoto agradece à FAPESP pela bolsa de estudos recebida (Proc. 03/13547-6).

REFERÊNCIAS

- Douglass, M. L.; Kabacoff, B. L.; Anderson, G. A.; Cheng, M. C.; J. Soc. Cosmet. Chem. 1978, 29, 581.
- 2. Gray, J. I.; Randall, C. J.; J. Food Protection 1979, 42, 168.
- 3. Institute of Food Technologists Scientific Status Summary; *Food Technol.* **1987**, *41*, 127.
- 4. Hotchkiss, J. A.; Addit. Food Res. 1987, 31, 54.
- 5. Mirvish, S. S.; Toxic. Appl. Pharm. 1975, 31, 325.
- 6. Walters, C. L.; Food Addit. Contam. 1992, 9, 441.
- 7. Pensabene, J. W.; Fiddler, W.; J. AOAC Int. 1994, 77, 981.
- Raoul, S.; Gremaud, E.; Biaudet H.; Turesky R. J.; J. Agric. Food Chem. 1997, 45, 4706.
- 9. Andrade, R.; Reyes, F. G. R.; Rath, S.; Food Chem. 2005, 91, 173.
- Zhao, Y. Y.; Boyd, J.; Hrudey, S. E.; Li, X.; *Environm. Sci. Technol.* 2006, 40, 763.
- 11. Munch, J. W.; Bassett, M. V.; J. AOAC Int. 2006, 89, 496.
- Goicolea, M. A.; Balugera, Z. G.; Portela, M. J.; Barrio, R. J.; Anal. Chim. Acta 1995, 305, 310.
- Belal, F.; Walash, M. I.; Ibrahim, F.; Hefnawy, M.; Eid, M.; *Il Fármaco* 2000, 55, 694.
- 14. Gorski, W.; Cox, J. A.; Anal. Chem. 1994, 66, 2771.
- 15. Gorski, W.; Cox, J. A.; J. Electroanal. Chem. 1995, 389, 123.
- Cox, J. A.; Alberr, K. S.; Brockway, C. A.; Tess, M. E.; Gorski, W.; Anal. Chem. 1995, 67, 993.
- Collyer, S. D.; Bradbury, S.; Hatfield, J. V.; Higson, S. P. J.; Electroanalysis 2001, 13, 332.
- Collyer, S. D.; Buther, A. J.; Higson, S. P. J.; *Electroanalysis* 1997, 9, 985.
- 19. Bard, A. J.; Faulkner, L. R.; *Electrochemical Methods: Fundaments and Applications*, John Wiley: New York, 2001.
- Osteryoung, J. G.; O'Dea, J. J. Em *Electroanalytical Chemistry*; Bard, A. J., ed.; Marcel Dekker: New York, 1982, vol. 14, p. 459.
- 21. Souza, D.; Machado, S. A. S.; Avaca, L. A.; Quim. Nova 2003, 26, 81.
- Lovric, M.; Komorsky-Lovric, S.; J. Electroanal. Chem. 1988, 248, 239.
- 23. Long, G. L.; Winefordner, J. D.; Anal. Chem. 1983, 55, 712A.
- Svensmark, B. O.; Em Organic Electrochemistry; Marcel Dekker: New York, 1991, vol. 3, p. 659.