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We review the main results we have obtained in the area of high-energy elastic hadron scattering and presented
in this series of Workshops on Hadron Interactions. After an introduction to some basic experimental and
theoretical concepts, we survey the results reached by means of four approaches: analytic models, model-
independent analyses, eikonal models and nonperturbative QCD. Some of the ongoing researches and future
perspectives are also outlined.

1 Introduction
“QCD nowadays has a split personality. It em-
bodies hard and soft physics, both being hard
subjects and the softer the harder.”

Yuri Dokshitzer (2001) [1]

Despite the great success of QCD as the field theory of
hadronic interactions, there still remains some open ques-
tions and one of them is related to the hadron-hadron scat-
tering at high-energies and small momentum transfer (soft
diffraction).

The region of high energies is characterized by scatter-
ing of particles with center of mass energy

√
s > 10 GeV

∼ 10 mp (the proton mass). From the experimental point
of view, diffractive processes are associated with a slow in-
crease of the total cross sections, the diffraction pattern in
the differential cross section, and rapidity gaps in the plots
of pseudo rapidity versus azimuthal angle. In the theoreti-
cal context, diffraction means that the initial and final states
in the scattering process have the same quantum numbers
and, therefore, the exchanged “object” has the vacuum quan-
tum numbers (Pomeron). The soft diffractive processes are
generally classified as double diffraction dissociation, single
diffraction dissociation and elastic scattering. Introductory
reviews on the area can be found in Refs. [2-7].

High-energy elastic hadron scattering is the simplest soft
diffractive process and, at the same time a topical prob-
lem in high-energy physics. Being associated with long
distance phenomena perturbative QCD can not be applied.
On the other hand, the standard non-perturbative approach
starts with the ground state (vacuum), proceeds with bound
states (mesons, barions) and eventually reaches the scatter-
ing states. However, it is obvious that the vacuum is a non-
trivial problem. Moreover, even assuming some vacuum
concept, to treat only one gluon field it is necessary to take
into account more than 30 invariants, and all that becomes a
typical problem of statistical physics, with specific technical
approaches, such as Monte Carlo simulation (lattice QCD).

Although bound states may be described, the point is that,
presently, we do not know how to calculate elastic scattering
amplitudes from a pure nonperturbative QCD formalism.

At this stage, phenomenology certainly plays an impor-
tant role in the search for connections between experimental
data, model descriptions, and the possible development of
new calculational schemes in the underlying theory (QCD).
Here, however, we are faced with another kind of problem,
namely, the wide variety of model descriptions, based on
different ideas and approaches, not always giving enough
support for the development of novel calculational schemes
well founded on QCD.

Based on the above facts, our main strategy in the in-
vestigation of the elastic sector is to search for model inde-
pendent information that may be extracted from the experi-
mental data, through approaches that have well established
bases on the General Principles, theorems and bounds from
axiomatic quantum field theory (the analytic approach). Si-
multaneously, we attempt to construct phenomenological
models, in agreement with the above Principles and con-
nected, in some way, with the underlying dynamics of QCD.

In this review, it is presented some results we have ob-
tained in the area of elastic scattering in the last years, with
focus on high-energy proton-proton (pp) and antiproton-
proton (p̄p) elastic scattering. The manuscript is organized
as follows. In Sec. 2 we recall some basic experimental and
theoretical concepts, defining also our notation. In Secs. 3,
4, 5, and 6 we present the main results we have obtained
throughout the analytic approach, model independent analy-
ses, eikonal models and nonperturbative QCD, respectively.
In Sec. 7 we discuss some perspectives in the area, from both
experimental and theoretical points of view. A summary and
some final remarks are the contents of Sec. 8.

2 Basic concepts
In this section we recall the physical quantities that charac-
terize the elastic scattering and shortly review some princi-
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ples, high-energy theorems, and the main formulas associ-
ated with two basic pictures, usually referred as s-channel
(geometrical/optical picture) and t-channel (exchange pic-
ture) [3-7].

2.1 Physical Quantities
In elastic scattering, the connection between experimental
data and theory is done by means of the invariant scattering
amplitude, expressed in terms of two Mandelstam variables,
generally the center-of-mass (c.m.) energy squared s and the
four-momentum transfer squared t = −q2: F = F (s, t).
It is expected that spin effects decrease as the energy in-
creases (for some recent results see [8]), and neglecting spin,
the physical quantities that characterize the elastic scattering
process are the differential cross section,

dσ

dt
(s, t) =

π

k2
|F (s, t)|2, (1)

where k is the c.m. momentum, the elastic integrated cross
section,

σel(s) =
∫ 0

−∞

dσ

dt
(s, t)dt,

the total cross section (Optical Theorem),

σtot(s) =
4π

k
Im F (s, 0), (2)

the inelastic cross section

σinel(s) = σtot(s) − σel(s),

the ρ parameter,

ρ(s) =
Re F (s, 0)
Im F (s, 0)

, (3)

and the slope parameter,

B(s) =
d

dt

[
ln

dσ

dt
(s, t)

]
t=0

. (4)

The corresponding experimental data have been ana-
lyzed and compiled by the Particle Data Group and can be
found in Ref. [9] and quoted references. In what follows we
shall be mainly interested in pp and p̄p data in the regions:
13.8 GeV ≤ √

s ≤ 1.8 TeV and 0.01 GeV2 ≤ q2 ≤ 9.8
GeV2. In a particular analysis we shall also use the pp data
at

√
s = 27.5 GeV, in the region 5.5 GeV2 ≤ q2 ≤ 14.2

GeV2. Some treatment of cosmic-ray information on pp to-
tal cross sections at

√
s = 6 - 40 TeV is also presented.

In Fig. 1 it is displayed the experimental information
available on pp and p̄p total cross sections from accelera-
tors and cosmic-ray experiments. From that plot, it is clear

that the mathematical description of the increase of the total
cross sections at the highest energies is an open problem. As
we shall discuss, the study of the effects of the discrepant
points at the highest energies is one of our goals. Fig. 2
shows the typical diffractive pattern that characterizes the
differential cross section. We note that the data cover the
region corresponding to 10 decades. In Fig. 3 it is displayed
the slope parameter from pp and p̄p scattering as function of
the energy and determined in the region of small momentum
transfer. In what follows we shall refer to these three figures
as indicative of the empirical behavior of the quantities in-
volved.
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Figure 1. Total cross sections on pp and p̄p from accelerator and
cosmic-ray experiments (for complete list of references and tables
see [10]).
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Figure 2. Differential cross section data and the diffractive pattern
from pp elastic scattering at

√
s = 52.8 GeV.
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Figure 3. The slope parameter as function of the energy and deter-
mined in the interval 0.01 < |t| < 0.20 GeV2.

2.2 Principles, theorems and high-energy
bounds

For our purposes, we recall some principles and theorems
from axiomatic quantum field theories [11]. The basic Prin-
ciples are: Lorentz Invariance, Unitarity (related with the
conservation of probability), Analyticity (related to causal-
ity) and Crossing (connecting particle-particle and particle-
antiparticle interactions). Analyticity and crossing allow the
connections between real and imaginary parts of the scatter-
ing amplitude by means of dispersion relations.

Several rigorous theorems and bounds may be deduced
from the basic Principles and axiomatic quantum field the-
ory. Among them, the Froissart-Martin bound concerns the
increase of the total cross section stating that

σtot ≤ C log2 s

s0
as s → ∞. (5)

The Pomeranchuk Theorem treats the difference be-
tween cross sections for particle-particle (ab) and particle-
antiparticle scattering (ab̄). The original form was deduced
when it was believed that the cross section decreased to a
constant value, and in this case σab

tot = σab
tot as s → ∞. Af-

ter the discovery of the rising of the cross section, Grunberg
and Truong obtained the generalized or revised form of the
Pomeranchuk Theorem, stating that

σab
tot − σab̄

tot

σab
tot + σab̄

tot

→ 0 or
σab

tot

σab
tot

→ 1 as s → ∞,

and this means that, if the Froissart-Martin bound is reached,
then

∆σ ≡ σab
tot − σab

tot ≤ C
σab

tot + σab
tot

log s
≤ C log s. (6)

By expressing the cross sections in terms of crossing
even (+) and odd (−) contributions,

σ±(s) =
σab

tot ± σab̄
tot

2
,

we have |∆σ| = |σab
tot − σab

tot| = 2σ− . Therefore,
∆σ ≡ σab

tot − σab
tot → 0 if and only if σ− → 0. This

possible odd contribution is named Odderon and the case
of even dominance at asymptotic energies is associated with
the Pomeron.

2.3 Basic pictures
Nearly all the phenomenological models, able to describe
the experimental data on elastic hadron scattering, are based
on the Optical/Geometrical Picture (s-channel) and/or the
Exchange Picture (t-channel). The corresponding formulas
may be obtained from the Partial Waves representation of
the scattering amplitude,

F (k, θ) =
i

2k

∞∑
l=0

(2l + 1)
[
1 − e2iδl

]
Pl(cos θ),

where δl is the phase shift. In what follows, we outline the
main steps and formulas in both pictures.

2.3.1 Optical/Geometrical Picture

From the partial wave representation, one considers the
high-energy limit and the semi-classical approximation, so
that the discrete angular momentum l may be replaced by
the continuum impact parameter b,

l = kb − 1
2
.

In turn, the discrete phase shifts δl are replaced by the con-
tinuum eikonal function of b and s, χ(s, b) and

∞∑
l=0

... →
∫ ∞

0

db...

The scattering amplitude in this Eikonal Representation,
with azimuthal symmetry assumed, reads

F (s, q) = ik

∫ ∞

0

bdbJ0(qb)[1 − eiχ(s,b)]. (7)

The quantity

1 − eiχ(s,b) ≡ Γ(s, b) (8)

is named Profile function. From Unitarity this function is
related to the probability that an inelastic event takes place
at b and s, the Inelastic Overlap function:

Ginel(s, b) = |Γ(s, b)|2 − 2ReΓ(s, b). (9)
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Since in the Eikonal representation

Ginel(s, b) = 1 − e−2Imχ(s,b), (10)

for Im χ(s, b) ≥ 0 we have Ginel(s, b) ≤ 1, which implies
in an automatically unitarized representation.

2.3.2 Exchange Picture

In this picture, from the partial wave representation, one
considers the analytic continuation of the amplitude to com-
plex angular momentum. In the asymptotic limit (s → ∞)
and with symmetry connecting the crossed channels one ar-
rives at the Watson-Sommerfeld-Gribov-Regge representa-
tion for the scattering amplitude, expressed as a sum over
the poles of the amplitude (the Regge poles), as outlined in
what follows.

As it is known at high energies the number of partial
waves is large, and one way to circumvent that is to trans-
form the sum of partial waves into a complex integral, and
then use the residues theorem to obtain a new sum, but in-
volving only the number of residues:

∞∑
l=0

... →
∮

C

g(l)dl →
N∑

m=0

Res g(l)|l=lm
.

Detailed calculation allows one to obtain the following
representation for the scattering amplitude,

F (k, θ) =
N∑

i=1

βi(k)Pαi(k)(− cos θ)
sin παi(k)

+ BI(k, θ),

where BI(k, θ) is called the Background integral. By con-
sidering the high-energy limit (then BI → 0) and crossing
(exchange four-momenta p → ⇔ ← −p̄) we can replace
the crossing channel variable (θ̄ ↔ s)

cos θ̄ = 1 − 2s

4m2 − t
→ ∝ −s as s → ∞,

also,

Pl(x) →
[
2lΓ(l + 1/2)√

πΓ(l + 1)

]
xl for x → ±∞,

and grouping all the s-independent quantities in a function
K(t) we have

Pα(t)(− cos θ̄) = K(t)sα(t) for s → ∞.

Rearranging the terms we arrive at a descending asymp-
totic series in powers of s, with leading contribution:

F (s, t) = γ(t)ξ(t)sα(t), (11)

where γ(t) is the residue function, ξ(t) the signature factor
and α(t) = α(0) + α′t the trajectory function. This last
function connects the spin and masses through the Chew-
Frautschi plot, as exemplified in Fig. 4. In this picture
the interaction of the colliding particles is basically inter-
preted in terms of exchanges of Regge poles (also Regge
cuts) and the Pomeron (an ad hoc trajectory with intercept
nearly above 1). We note that, as constructed, the exchange
picture is intended for asymptotic energies.
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Figure 4. The Chew-Frautschi plot for some mesons and reso-
nances.

3 Analytic approach

The Analytic Approach for elastic hadron-hadron scattering
is based on general principles and theorems from Quantum
Field Theory. It is characterized by analytical parametriza-
tions for the imaginary part of the forward amplitude, to-
gether with the use of dispersion relation techniques. The
central point is the simultaneous investigation of the total
cross section (imaginary part of the scattering amplitude,
Eq. (2)) and the ρ parameter (connected with the real part of
the amplitude, Eq. (3)).

For particle-particle and particle-antiparticle interac-
tions, dispersion relations are consequences of the principles
of Analyticity and Crossing. In this context, they correlate
real and imaginary parts of crossing even (+) and odd (−)
amplitudes, which in turn are expressed in terms of the scat-
tering amplitudes for a given process and its crossed chan-
nel, for example, a + b and a + b̄:

Fab = F+ + F−, Fab̄ = F+ − F−. (12)

At high energies, the standard singly subtracted integral
dispersion relations, with poles removed, are given by
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Re F+(s) = K +
2s2

π
P

∫ +∞

s0

ds′
1

s′(s′2 − s2)
Im F+(s′)

(13)
and

Re F−(s) =
2s

π
P

∫ +∞

s0

ds′
1

(s′2 − s2)
Im F−(s′), (14)

where K is the subtraction constant and, for pp and p̄p scat-
tering, s0 = 2m2 ∼ 1.8 GeV2.

In this section we review some results obtained through
this approach. We start with the replacement of the above in-
tegral forms by derivative operators (Derivative Dispersion
Relations) and then we discuss the use of analytic models
(Reggeons, Pomeron, Odderon) for parametrizations involv-
ing the total cross section and the ρ parameter, the deter-
mination of bounds for the soft Pomeron intercept, and the
practical role of the subtraction constant.

In what follows we are mainly concerned with the pp and
p̄p elastic scattering, since for particle and antiparticle inter-
actions they correspond to the highest energy interval with
available data and are the only set including the cosmic-ray
information on total cross sections (pp scattering). As com-
mented before, the experimental data available on the total
cross sections (Figure 1) are characterized by discrepant ex-
perimental information at the highest energies, and one of
our aims is to investigate the effects of these discrepancies
in the context of the analytic models. This concern perme-
ates all the discussion in this Section.

3.1 Derivative Dispertion Relations

The use of dispersion relations in the investigation of scat-
tering amplitudes may be traced back to the end of fifties,
when they were introduced in the form of Integral Disper-
sion Relations (IDR). Despite the important results that have
been obtained since then, one limitation of the integral forms
is their non-local character: in order to obtain the real part
of the amplitude, the imaginary part must be known for all
values of the energy. Moreover, the class of functions that
allows analytical integration is limited.

In the last years, we have investigated the applicability of
Derivative Dispersion Relations (DDR) in place of integral
forms [12, 13, 14, 10, 15, 16]. In Reference [16] we present
a recent review on different results and statements related to
this replacement, and a discussion connecting these differ-
ent aspects with the corresponding assumptions and classes
of functions considered in each case.

In particular, we have shown that for the class of func-
tions which are entire in the logarithm of the energy (as
is the case of analytic models at high energies) it is possi-
ble to expand the integrand in the above formulas and by
considering a high-energy approximation, represented by
s0 = 2m2 → 0, to integrate term by term. In that case,
as demonstrated in detail in [16], the derivative dispersion
relations with one subtraction reads

Re F+(s)
s

=
K

s
+ tan

[
π

2
d

d ln s

]
Im F+(s)

s
, (15)

Re F−(s)
s

= tan
[
π

2

(
1 +

d
d ln s

)]
Im F−(s)

s
, (16)

where the series expansion is implicit in the tangent opera-
tor. From this deduction one arrives to three formal results:
(1) the subtraction constant is preserved when the IDR are
replaced by DDR and, therefore, in principle, can not be
disregarded in fit procedures; (2) except for the subtraction
constant, the DDR with entire functions in the logarithm
of the energy do not depend on any additional free para-
meter; (3) the only approximation involved in the replace-
ment concerns the lower limit in the IDR (13-14), namely
s0 = 2m2 → 0, which represents a high-energy approxima-
tion. In the next two subsections we discuss some uses of the
DDR with analytical models, and in the third subsection we
return to the replacement of IDR by DDR, investigating the
important role of the subtraction constant from a practical
point of view.

3.2 Basic Models
In this Subsection we make use of two basic and well known
parametrizations for the total cross sections and investigate
the effects of the discrepancies in the experimental informa-
tion from cosmic-ray experiments.

3.2.1 Ensembles

In the cosmic-ray region, 6 TeV <
√

s ≤ 40 TeV, the dis-
crepancies on the total cross section information are due to
both experimental and theoretical uncertainties in the deter-
mination of σpp

tot from p-air cross sections. The situation has
been recently reviewed in detail in [10], where a complete
list of references, numerical tables and discussions are pre-
sented.

From Fig. 1 we see that, despite the large error bars in the
cosmic-ray region, we can identify two distinct sets of esti-
mations: one corresponding to the results by the Fly’s Eye
Collaboration (Fly’s Eye) together with those by the Akeno
Collaboration (Akeno); the other set associated with the re-
sults by Gaisser, Sukhatme, and Yodh (GSY) together with
with those by Nikolaev (Nikolaev). Taken separately these
two sets suggest different scenarios for the increase of the
total cross section, as previously discussed in [13, 17, 18].

Based on these considerations, it is important to inves-
tigate the behavior of the total cross section by taking into
account the discrepancies that characterize the cosmic ray
information. To this end, in [10] we have considered two
ensembles of data and experimental information, as follows:

• Ensemble I: p̄p and pp accelerator data + Akeno +
Fly’s Eye;

• Ensemble II: p̄p and pp accelerator data + Nikolaev +
GSY.
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To some extent, ensemble I represents a kind of high-
energy standard picture and ensemble II a nonstandard one.

3.2.2 Analytic Models

With analytical parametrizations for pp/p̄p total cross sec-
tions, the connections with the ρ parameter, Eq. (3), are
obtained by defining the associated crossing even and odd
quantities,

σ±(s) =
σpp

tot ± σp̄p
tot

2
, (17)

using the high-energy normalization for the Optical Theo-
rem,

σtot(s) ∼ Im F (s, 0)
s

, (18)

and the DDR given by Eqs. (15) and (16).
In [10] we have considered two different parametriza-

tions for the total cross sections, one introduced by Don-
nachie and Landshoff [19] and other by Kang and Nicolescu
[20]. The main difference concerns the asymptotic limits,
which allow the dominance of an even amplitude (Pomeron)
or the odd amplitude (Odderon), respectively. In this way,
we may contrast these possibilities with the standard and
non-standard pictures represented by Ensembles I and II.

The Donnachie-Landshoff (DL) parametrization for the
total cross sections is expressed by

σpp
tot(s) = Xsε + Y s−η, σp̄p

tot(s) = Xsε + Zs−η, (19)

where the first contribution is associated with a single
Pomeron exchange (universal) and the second one with
Reggeon exchange. With the procedure explained above,
we obtain the analytical connections with the ρ parameter
for pp and p̄p scattering:

ρpp(s)σpp
tot(s) =

K

s
+

[
X tan

(πε

2

)]
sε

+
[
(Y − Z)

2
cot

(πη

2

)
− (Y + Z)

2
tan

(πη

2

)]
s−η,

ρpp(s)σpp
tot(s) =

K

s
+

[
X tan

(πε

2

)]
sε

+
[
(Z − Y )

2
cot

(πη

2

)
− (Y + Z)

2
tan

(πη

2

)]
s−η.

From the above formulas, since η > 0, this model pre-
dicts that, asymptotically (s → ∞),

∆σ = σpp
tot(s) − σpp

tot(s) → 0,

∆ρ = ρp̄p(s) − ρpp(s) → 0.

The parametrization for the total cross sections intro-
duced by Kang and Nicolescu (KN), under the hypothesis
of the Odderon, is given by

σpp
tot(s) = A1 + B1 ln s + k ln2 s,

σpp
tot(s) = A2 + B2 ln s + k ln2 s +

2R

s1/2
,

and the connections with ρ read

ρpp(s)σpp
tot(s) =

K

s
+

π

2

(
B1 + B2

2

)

+
(

πk +
A2 − A1

π

)
ln s +

(
B2 − B1

2π

)
ln2 s − 2R

s1/2
,

ρpp(s)σpp
tot(s) =

K

s
+

π

2

(
B1 + B2

2

)

+
(

πk − A2 − A1

π

)
ln s −

(
B2 − B1

2π

)
ln2 s.

Differently from the previous case, this model predicts
that the difference between the two cross sections is given
by

∆σ = (A2 − A1) + (B2 − B1) ln s + 2Rs−1/2

→ ∆A + ∆B ln s (asymptotically),

so that, if ∆A �= 0 and/or ∆B �= 0, the total cross section
difference may increase and σpp

tot may even become greater
than σp̄p

tot, depending on the values and signs of ∆A and
∆B, which is formally in agreement with the theorems of
Sec. 2.B. Moreover, if ∆A and ∆B are sufficiently small,
so that we may replace σp̄p

tot ≈ σpp
tot ≡ σtot(s), then, asymp-

totically,

∆ρ = ρpp − ρpp ∼ − 1
πσtot(s)

{
∆A ln s + ∆B ln2 s

}
.

This means that, depending on the fit results, there may be
a change of sign in ∆ρ, with ρpp becoming greater than ρpp

at some finite energy. Therefore, the case of a crossing ei-
ther in σtot or ρ is a sign of the odderon contribution in the
imaginary or real part of the amplitude, respectively.

3.2.3 Fits and Results

We have performed 16 different fits through the program
CERN-MINUIT. In these fits we have used both ensembles
I and II and both the DL and KN models. For each of these
four possibilities we have performed global and individual
fits to σtot and ρ and, in each case, we either considered the
subtraction constant K as a free fit parameter, or assumed
K = 0.

All the results are presented and discussed in detail in
Ref. [10]. Our main conclusions are the following: (1)
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Despite the small influence from different cosmic-ray esti-
mations, the results allow to extract an upper bound for the
soft Pomeron intercept: 1 + ε = 1.094; (2) although global
fits present good statistical results, in general, this procedure
constraints the rise of σtot; (3) the subtraction constant as a
free parameter affects the fit results at both low and high en-
ergies; (4) independently of the cosmic-ray information used
and the subtraction constant, global fits with the Odderon
parametrization predict that, above

√
s ≈ 70 GeV, ρpp(s)

becomes greater than ρp̄p(s), and this result is in complete
agreement with all the data presently available. That result
is displayed in Fig. 5 and we can infer ρpp = 0.134 ± 0.005
at

√
s = 200 GeV and 0.151 ± 0.007 at 500 GeV (BNL

RHIC energies).
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Figure 5. Simultaneous fits to σtot(s) and ρ(s) through the KN
parametrization with K = 0 and ensembles I (dotted curves for pp
and dashed for p̄p) and II (solid curves for pp and dot-dashed for
p̄p) [10].

3.3 Non-degenerate Meson Trajectories

The DL parametrization referred above assumes degenera-
cies between the secondary reggeons, imposing a common
intercept for the C = +1 (a2, f2) and the C = −1 (ω, ρ) tra-
jectories (see Fig. 4). More recently, analysis treating global

fits to σtot and ρ have indicated that the best results are ob-
tained with non-degenerate meson trajectories. In this case
the forward scattering amplitude is decomposed into three
reggeon exchanges, F (s) = FIP(s)+Fa2/f2(s)+τFω/ρ(s),
where the first term represents the exchange of a single
soft Pomeron, the other two the secondary Reggeons and
τ = +1 (−1) for pp (p̄p) amplitudes. Using the notation
αIP(0) = 1 + ε, α+(0) = 1 − η+ and α−(0) = 1 − η− for
the intercepts of the Pomeron and the C = +1 and C = −1
trajectories, respectively, the total cross sections, Eq. (18),
for pp and p̄p interactions are written as

σtot(s) = Xsε + Y+ s−η+ + τY− s−η− (20)

and the connection with the ρ parameter by means of DDR
is similar to that displayed in the last subsection.

Making use of this parametrization, in this section
we present the determination of extrema bounds for the
Pomeron intercept [15] and a practical analysis on the re-
placement of IDR by DDR together with a discussion on the
role of the subtraction constant [16].

3.3.1 Extrema Bounds for the Pomeron Intercept

In order to analyze the extrema effects in the soft Pomeron
intercept due to discrepancies in the experimental data, we
performed a detailed analysis including the highest and the
lowest values of the total cross section from both accelera-
tors and cosmic-ray experiments.

As it is well known, in the accelerator region, the con-
flict concerns the results for σp̄p

tot at
√

s = 1.8 TeV reported
by the CDF Collaboration and those reported by the E710
and the E811 Collaborations (Fig. 1). In the cosmic-ray re-
gion, as we have discussed, the highest predictions for σpp

tot

concern the result by Gaisser, Sukhatme, and Yodh together
with those by Nikolaev. In order to treat the lowest esti-
mations in the cosmic-ray region, we consider the results
obtained by Block, Halzen, and Stanev (BHS), by means
of a QCD-inspired model. As discussed in [10], the reason
for this choice is that, although the extracted σpp

tot(s) shows
agreement with the Akeno results, it is about 17 mb below
the Fly’s Eye value at 30 TeV and therefore may be consid-
ered as a extreme lower estimate. All the numerical tables
and references can be found in [10].

In this case we have considered the following ensembles
of experimental information. First we only consider accel-
erator data in two ensembles with the following notation:

• Ensemble I: σpp
tot and σp̄p

tot data (10 ≤ √
s ≤ 900 GeV)

+ CDF datum (
√

s = 1.8 TeV);

• Ensemble II : σpp
tot and σp̄p

tot data (10 ≤ √
s ≤ 900

GeV) + E710/E811 data (
√

s = 1.8 TeV).

Ensemble I represents the faster increase scenario for
the rise of σtot from accelerator data and ensemble II the
slowest one. These ensembles are then combined with the
highest and lowest estimations for σpp

tot from cosmic-ray ex-
periments, namely, the Nikolaev and the Gaisser, Sukhatme,
and Yodh (NGSY) results and the Block, Halzen, and Stanev
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(BHS) results, respectively. These new ensembles are de-
noted by

• I + NGSY

• II + BHS

As in the previous analysis, we have considered both in-
dividual fits to σtot, and simultaneous fits to σtot and ρ, ei-
ther in the case where the subtraction constant is considered
as a free fit parameter or assuming K = 0.

From this analysis, in the case of only accelerator data,
we could infer the following upper and lower values for the
Pomeron intercept: αIP(0) = 1.098 ± 0.004 (global fits to
ensemble I, with K = 0) and αIP(0) = 1.085 ± 0.004 (in-
dividual fit to σtot from ensemble II), with bounds 1.102
and 1.081, respectively. Adding the cosmic-ray informa-
tion, we inferred the following upper and lower values:
αIP(0) = 1.104 ± 0.005 (individual fit to σtot from ensem-
ble I + NGSY) and αIP(0) = 1.085 ± 0.003 (global fits to
ensemble II + BHS and K as a free fit parameter or individ-
ual fit to σtot from this ensemble), with bounds 1.109 and
1.082, respectively. Therefore we may infer the following
extrema bounds for the soft Pomeron intercept:

αupper
IP (0) = 1.109, αlower

IP (0) = 1.081.

Figure 6 shows the total cross sections with parametrization
(20) and the above extrema bounds, together with the exper-
imental information available.

Figure 6. Fastest and slowest increase scenarios for the rise of the
total cross section through parametrization (20) and allowed by the
experimental information available: fits to ensembles I + NGSY
(solid) and II (dashed) [21].

Extensions of these extrema bounds for the pomeron in-
tercept to meson-p, gamma-p and gamma-gamma scattering
have been discussed in [21]. By means of global fits to total
cross section data it is shown that these bounds are in agree-
ment with the bulk of experimental data presently available,

and extrapolations to higher energies indicate different be-
haviors for the rise of the total cross sections.

We have also obtained new constrained bounds for the
Pomeron intercept from spectroscopy data (Chew-Frautschi
plots) and have extended the analysis to baryon-p, meson-p,
baryon-n, meson-n, gamma-p and gamma-gamma scatter-
ing [22]. It is also presented tests on factorization and quark
counting rules with both extrema and constrained bounds
(asymptotic energy region). In particular, at 14 TeV (CERN
LHC) the extrema and constrained bounds allow to infer
σtot = 114 ± 25 mb and 105 ± 10 mb, respectively. [22].

3.3.2 IDR, DDR and the Subtraction Constant

As commented before, we have shown in Ref. [16] that for
entire functions in the logarithm of the energy the only ap-
proximation involved in the replacement of IDR by DDR
concerns the lower limit s0 in the IDR: the high-energy
condition is reached by assuming that s0 = 2m2 → 0 in
Eqs. (13-14). In that paper we have investigated the practi-
cal applicability of the DDR and IDR in the context of the
Pomeron-reggeon parametrizations, with both degenerate
and non-degenerate higher meson trajectories. By means of
global fits to σtot(s) and ρ(s) data from pp and p̄p scattering,
we have tested all the 16 important variants that could affect
the fit results, namely the number of secondary reggeons,
energy cutoff (5 and 10 GeV), effects of the high-energy
approximation connected with the subtraction constant and
the analytic approach using both DDR and IDR with fixed
s0. Our results led to the conclusion that the high-energy ap-
proximation and the subtraction constant affect the fit results
at both low and high energies. This effect is a consequence
of the fit procedure, associated with the strong correlation
among the free parameters.

A striking novel result concerns the practical role of
the subtraction constant. We have shown that, with the
Pomeron-reggeon parametrizations, once the subtraction
constant is used as a free fit parameter, the results obtained
with the DDR and with the IDR (with finite lower limit,
s0 = 2m2) are the same up to 3 significant figures in the
fit parameters and χ2/DOF . This conclusion, as we have
shown, is independent of the number of secondary reggeons
(DL or extended parametrization) or the energy cutoff (

√
s

= 5 or 10 GeV). In Table 1 we display the fit results with the
extended parametrization and cutoff at 10 GeV.

4 Model Independent Analysis
This kind of analysis is characterized by model independent
parametrizations of the experimental data involved and the
extraction of empirical or semi-empirical information that
can contribute with the development of phenomenological
models and the underlying theory. In this section we re-
view some results we have obtained in the investigation of
pp and p̄p differential cross section data (unconstrained and
constrained fits, as will be explained) and the correlations
between the experimental data on total cross section and the
slope parameter (Eq. (4)).
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TABLE 1. Simultaneous fits to σtot and ρ through the extended
parametrization,

√
smin = 10 GeV (154 data points), with K as

a free parameter and using IDR with lower limit s0 = 2m2 and
DDR [16].

IDR with s0 = 2m2 DDR
X 19.57 ± 0.79 19.58 ± 0.78
Y+ 66.0 ± 6.7 66.0 ± 6.6
Y− -29.2 ± 4.0 -29.2 ± 4.0
ε 0.0897 ± 0.0033 0.0897 ± 0.0033

η+ 0.380 ± 0.033 0.380 ± 0.033
η− 0.520 ± 0.025 0.520 ± 0.024
K -14 ± 48 104 ± 58

χ2/DOF 1.10 1.10

4.1 Differential Cross Section
Several authors have investigated elastic hadron scattering
by means of parametrizations for the scattering amplitude
and fits to the differential cross section data, Eq. (1). The
extraction of the Profile, Eikonal and Inelastic Overlap func-
tions in the b-space (impact parameter) and, in some special
cases, the Eikonal in the q2-space, has led to important and
novel results related with geometrical aspects (radius, cen-
tral opacity), differences between charge distributions and
hadronic matter distributions, existence or not of eikonal
zeros in the q2-space and, more recently, connections with
pomerons, reggeons and nonperturbative QCD aspects. In
Ref. [23] we present a review and a critical discussion on
the main results concerning this kind of analysis and also a
wide list of references to outstanding works.

The basic input in all these analyses is the parametriza-
tion of the scattering amplitude as a sum of exponentials in
q2 (as empirically suggested by the diffractive pattern shown
in Fig. 2) and fits to the differential cross section data. This
parametrization allows analytical expressions for the Fourier
transform of the amplitude, providing also analytical expres-
sions for the quantities of interest in the b-space.

In the next two subsections we review the results we
have obtained by means of unconstrained fits (fit parameters
completely free, without extracted dependences on the en-
ergy) [23, 24], and discuss some research in course related to
constrained fits (including dependences on the energy which
are based on empirical information) [27].

4.1.1 Unconstrained Fits and the Eikonal

In the high energy region,
√

s >10 GeV, differential cross
section data are available at

√
s = 13.8, 19.5, 23.5, 30.7,

44.7, 52.8 and 62.5 GeV for pp scattering and at
√

s = 13.8,
19.4, 31, 53, 62, 546 and 1800 GeV for p̄p scattering. Data
from pp scattering also exists at

√
s = 27.5 GeV and 5.5

≤ q2 ≤ 14.2 GeV2 (but not on σtot and ρ), and as we shall
show, that set plays a fundamental role in our analyse. See
[23] for a complete list of references.

As discussed in [23] two main problems are typical of
model independent analysis of the differential cross sec-
tions:

(1) Experimental data are available only over finite re-
gions of the momentum transfer (which in general are small,
q2 < 7 GeV2) and the Fourier transform demands integra-
tion from q2 = 0 to infinity. This means that any fit is biased
by extrapolations and although some extrapolated curves
may look unphysical, they can not be excluded on mathe-
matical grounds.

(2) The exponential parametrization allows analytical
determination of the quantities in the b-space (profile, in-
elastic, eikonal functions) and also the statistical uncertain-
ties, by means of error propagation from the fit parameters.
However, in this case, the translation of the eikonal from b-
space to the q2-space can not be analytically performed and
neither the error propagation (through standard procedures).
As a consequence, the unavoidable uncertainties from the fit
extrapolations can not, in principle, be taken into account.

In what follows we review a model independent ap-
proach able to minimize the above two problems.

- Fit Procedure
In order to treat problem (1) we have used the follow-

ing procedure [24]. Since it is known that for large t the
experimental data do not depend on the energy at 13.8 GeV
≤ √

s ≤ 62 GeV and that there exist data at
√

s = 27.5
GeV in the region 5.5 GeV2 ≤ q2 ≤ 14.2 GeV2, we have
selected two ensembles of pp and p̄p differential cross sec-
tion data:

• Ensemble I: experimental data at each energy;
• Ensemble II: Ensemble I + data at

√
s = 27.5 GeV.

For the scattering amplitude we have introduced the
following model independent analytical parametrization for
both real and imaginary parts:

F (s, q) = {µ
2∑

j=1

αje
−βjq2} + i{

n∑
j=1

αje
−βjq2}, (21)

µ =
ρ(s)

α1 + α2

n∑
j=1

αj . (22)

With the experimental ρ value at each energy the fits
to the differential cross section data have been performed
through the CERN-MINUIT routine and the validity or not
of ensemble II is checked by means of the MINUIT output
and standard statistical interpretation of the fit results (DOF,
confidence levels).

For pp scattering we have found that the data at
√

s =
13.8 GeV are not compatible with ensemble II. In the case
of p̄p scattering none of the data sets are compatible with
ensemble II. Therefore, in what follows, ensemble II (data
at
√

s = 27.5 GeV added) corresponds only to pp scattering
at 6 energies: 19.5, 23.5, 30.7, 44.7, 52.8 and 62.5 GeV.

From the error matrix (variances and covariances),
χ2/DOF and confidence intervals, we infer the best values
for the parameters and corresponding errors ∆αj , ∆βj . By
means of standard error propagation, the uncertainties in the
free parameters, ∆αj , ∆βj , (j = 1, 2, ...) have been propa-
gated to the scattering amplitude, and then to the differential
cross section, providing
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dσ

dq2
± ∆

(
dσ

dq2

)
. (23)

By adding and subtracting the corresponding uncertainties
we may estimate the confidence region associated with all
the extrapolations, which cannot be excluded on statistical
grounds. A typical result with ensembles I and II is illus-
trated in Fig. 7, for pp scattering at

√
s= 23.5 GeV. We see

that, as expected, the effect of adding the experimental data
at

√
s= 27.5 GeV (when statistically justified) is to reduce

drastically the uncertainty region. That result will be funda-
mental in the extraction of the empirical information on the
eikonal, as shown in what follows.
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Figure 7. Regions of uncertainties (limited by the solid lines) in fits
to pp differential cross section data, Eq. (23), at

√
s = 23.5 GeV

with ensembles I (below) and II (above) [23].

- Eikonal in the momentum transfer space
By means of the Fourier transform, Eqs.(7-8), the para-

metrization (21-22) provides analytical expressions for the
real and imaginary parts of the Profile function, ΓR(s, b) and
ΓI(s, b), and also the associated uncertainties. From the fit
results, together with error propagation, we have found that

Γ2
I(s, b)

[1 − ΓR(s, b)]2
� 1,

and therefore, the imaginary part of the eikonal may be ap-
proximated by

χI(s, b) ≈ ln
1

1 − ΓR(s, b)
(24)

and the uncertainty ∆χI determined directly from ∆ΓR

through propagation.
The next step is to go to the momentum transfer space

and concerns problem (2): the Fourier transform can not be
performed analytically and therefore also the error propa-
gation. For this reason we used a semi-analytical method

as follows. Expanding the above equation, we express the
remainder of the series as

R(s, b) = ln[
1

1 − ΓR(s, b)
] − ΓR(s, b) (25)

and then fit the numerical points (MINUIT) by a sum of
Gaussians in the impact parameter space:

Rfit(s, b) =
6∑

j=1

Aje
−Bjb2 . (26)

A typical result is displayed in Fig. 8.
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Figure 8. Typical parametrization for the generated remainder
R(s, b) by means of Eq. (26) [23].

With this, the errors ∆Aj and ∆Bj may be propagated
determining ∆Rfit(s, q) and then χI(s, q) ± ∆χI(s, q). In
order to check the results and approximations, we performed
also numerical integration through the NAG routine.
- Results

One of the main results extracted from this analysis is
the statistical evidence of eikonal zeros in the momentum
transfer space, first presented in [24]. In order to investigate
the position of the zeros and, mainly, to determine the un-
certainties in its values, we consider the expected behavior
of χI at large q2, namely χI ∼ q−8. In Fig. (9) we show a
typical plot of the quantity q8χI(s, q) as function of q2. The
shaded areas correspond to the uncertainties obtained from
error propagation. This example shows clearly the role and
the effect of data at large values of the momentum transfer.
In fact, within the uncertainties, ensemble I does not allow
to infer a zero, but with ensemble II, we find statistical evi-
dence for the change of sign.



110 Brazilian Journal of Physics, vol. 35, no. 1, March, 2005

0.0 4.0 8.0 12.0 16.0 20.0
 |t| (GeV

2
)

-0.5

0.0

0.5

1.0

1.5

 t
4 χ I (

G
eV

6 )

-0.5

0.0

0.5

1.0

(a)

0.0 4.0 8.0 12.0 16.0 20.0
 |t| (GeV

2
)

-0.5

0.0

0.5

1.0

1.5

 t
4 χ I (

G
eV

6 )

(a)

Figure 9. The eikonal in the transfer momentum space (multiplied
by t4) for pp at

√
s = 30.7 GeV with ensemble I (above) and II

(below) [23].

From plots like that we can determine the positions of
the zeros and the associated errors from the extrems of the
uncertainty region (in general not symmetrical). The po-
sition of the zero can also be obtained from the numerical
method, but without uncertainties.

In Figure 10 it is shown the position of the zeros as
function of the energy determined by means of both the
semi-analytical (with uncertainties) and numerical (without
uncertainties) methods. Despite the systematic difference
on the values with these methods, we may conclude that
the position of the zero decreases as the energy increases.
Roughly, q2

0 : 8.5 → 6.0 GeV2 as
√

s : 20 → 60 GeV.
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Figure 10. Position of the eikonal zero in the momentum transfer
space as function of the energy [23].

- Discussion
As reviewed in [23], there has been previous indica-

tion of eikonal zeros in the momentum transfer space, but
without associated uncertainties. Our first statistical evi-
dence, published in 1997, indicated the position of the zero
at q2

0 = 7±2 GeV2 [24]. In 2000, experiments performed at
the Jefferson Laboratory, on electron-proton scattering, have
indicated an unexpected decrease of the ratio between the
electric and magnetic proton form factors as the momentum
transfer increases from 0.5 to 5.6 GeV2. Moreover, extrap-
olations from empirical fits indicate a change of sign (zero)
in this ratio, just at q2 ≈ 7.7 GeV2. Since for pp/p̄p scatter-
ing the eikonal is connected with the hadronic matter form
factor (see Sec. 5, Eq. (38)), the above results on the po-
sition of the zeros suggest novel and important insights on
possible correlations between hadronic and electromagnetic
interactions. We discuss that subject in [25], calling atten-
tion to the possibility of hadronic form factors depending on
the energy.

We have also obtained the value of the imaginary part of
the Eikonal at zero momentum transfer, that is, the central
opacity. The results are displayed in Fig. 11. As discussed in
[26], one naive way to test these results is with the Glauber
model for the scattering involving hadrons A and B, and the
Optical Theorem at the elementary level. In that case, the
elementary cross section may be expressed by

σelem(s) =
4π

NANB
χI(s, q = 0),

where NA and NB are the number of constituents in hadrons
A and B, respectively. If we take NA = NB = 3 we obtain
σelem ∼ 6 mb at the ISR region, a result in agreement with
other estimations.
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Figure 11. Imaginary part of the eikonal at zero momentum trans-
fer, as function of the energy, from analysis on pp and p̄p scattering
[23].

In Ref. [23] we discuss the applicability of our results in
the phenomenological context, outlining some connections
with nonperturbative QCD and presenting a critical review
on the main results concerning “model-independent” analy-
ses.

4.1.2 Constrained Fits and Energy Dependence

Despite the results obtained with the parametrization dis-
cussed in the last subsection, due to the fit procedure, we do
not have the dependence on the energy of the free parame-
ters αi, βi. Presently, we are investigating that subject and
we review here some preliminary results [27].

The energy dependence has been introduced according
to some empirical information: the increase of the total cross
section and of the slope parameter with ln2 s and ln s, re-
spectively (see Figs 1 and 3). Let us consider the standard
exponential parametrization for the imaginary part of the
amplitude, normalized as

Im F (s, q2)
s

=
n∑

i=1

αi exp[−βiq
2]. (27)

At q2 = 0, from the optical theorem, Eq. (18), we expect
a dependence of the parameters αi with ln2 s, and the slope
represented by the parameters βi with ln s. These are the
central choices in our approach. In order to treat pp and p̄p
scatterings, in agreement with Analyticity and Crossing, we
introduce crossing even and odd amplitudes and make use
of the derivative dispersion relations, Eqs. (15) and (16), to
connect real and imaginary parts of the amplitudes involved.

Specifically, for the imaginary part of the scattering am-
plitude we consider the parametrizations

Im Fpp(s, q2)
s

=
n∑

i=1

αi(s) exp[−βi(s)q2], (28)

Im Fp̄p(s, q2)
s

=
n∑

i=1

ᾱi(s) exp[−β̄i(s)q2], (29)

and, based on the above arguments, we introduce the follow-
ing general dependences on the energy

{
αi(s) = Ai + Bi ln(s) + Ci ln2(s)
βi(s) = Di + Ei ln(s)

(30)

for pp scattering and

{
ᾱi(s) = Āi + B̄i ln(s) + C̄i ln2(s)
β̄i(s) = D̄i + Ēi ln(s)

(31)

for p̄p scattering, where i = 1, 2, ...n. Defining the crossing
even (+) and odd (-) amplitudes,

Im F+(s, q2) =
Im Fpp(s, q2) + Im Fp̄p(s, q2)

2
, (32)

Im F−(s, q2) =
Im Fpp(s, q2) − Im Fp̄p(s, q2)

2
. (33)

the corresponding real parts can be determined by means of
the leading terms of the DDR, Eqs. (15-16), and so the cor-
responding real parts of the pp and p̄p amplitudes. With
these analytic amplitudes we obtain the differential cross
section:

dσ

dq2
=

1
16πs2

|Re F (s, q2) + i Im F (s, q2)|2. (34)

In order to treat simultaneous fits to pp and p̄p data we
have considered only sets available at nearly the same en-
ergy, namely

√
s ∼ 19.5, 31, 53 and 62 GeV. As a prelim-

inary test we make use of data at the diffraction peak, out-
side the Coulomb-nuclear interference region, 0.01 GeV2 <
q2 ≤ 0.5 GeV2, and the data providing the optical point,

dσ(s, q2 = 0)
dq2

=
σtot(1 + ρ2)

16π
. (35)

We have performed simultaneous fits to the experimen-
tal data through the MINUIT program. For this ensemble
we used only two exponentials for the imaginary part of the
amplitude, obtaining good reproduction of all the data an-
alyzed, as shown in Fig. 12. In Ref. [27] we also display
the predictions for the differential cross sections at the RHIC
energies. We are presently investigating the extension of the
analysis to the region of higher momentum transfer.
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Figure 12. Differential cross section at the diffraction peak: fit re-
sults and experimental data (displaced by a factor of 10) [27].

4.2 Total Cross Sections and Slopes
Another important quantity that characterizes the elastic
hadron-hadron scattering is the slope parameter, defined in
Eq. (4). In practice it may be determined by means of fits to
the hadronic differential cross section data in the region of
small momentum transfer, with the parametrization

dσ

dt
=

[
dσ

dt

]
t=0

e−B|t|, (36)

and, in general, it is connected with ρ and σtot through
fits in the region of Coulomb interference [2]. The slope
and the total cross section are also important quantities in
the determination of σpp

tot from σp−air (cosmic-ray experi-
ments) but, as commented before, the procedure is strongly
model dependent. One reason is associated with the use of
the Glauber multiple diffraction formalism, in which σtot(s)
and B(s) take part in the parametrization of the elastic am-
plitude,

F pp(s, t) ∝ σpp
tot(s) exp

{
B(s)t

2

}
. (37)

As commented in [10] and [28], different models predict
different relations between σtot(s) and B(s) and that is mir-
rored in the final value of the cross section, contributing to
the discrepancies already discussed.

Based on the above observations, we have investigated
the possibility to extract an empirical correlation between
the experimental data on σtot(s) and B(s), from pp and p̄p
scatterings.

For the slope parameter, we have selected the data above
the region of Coulomb-nuclear interference and below the
“break” in the hadronic slope at the diffraction peak (local-
ized at |t| ∼ 0.2 GeV2 at the ISR and Collider energies),
namely 0.01 < |t| < 0.20 GeV2 (Fig. (3)). In this region,
the differential cross section data are well fitted by a single
exponential and therefore there is no change in the slope as-
sociated with the t-dependence. For each energy we have
compiled the corresponding data on the total cross section.

Once more, the choice for a parametrization was based
on the empirical observation that at high energies B(s) in-
creases with the logarithm of s. Since the Kang-Nicolescu
parametrization for the total cross section is expressed in
terms of ln s (Sec. 3.B.2), we replaced this dependence by
the slope parameter:

σpp
tot(s) = c1 + c2B + c3B

2,

σpp
tot(s) = c1 + c2B + c3B

2 + c4e
−B/2, (38)

where ci, i = 1, 2, 3, 4 are free fit parameters. That is a
strictly mathematical choice, having nothing to do with the
physics or model concept behind the Kang-Nicolescu para-
metrization.

Fits to the experimental data have been performed with
the CERN-MINUIT program and the results are displayed
in Fig. 13. It is expected that extrapolations to cosmic-ray
energies may be useful in the determination of the pp to-
tal cross section from p-air cross section, allowing to con-
nect σtot − B in an almost model independent way. We are
presently investigating this subject.

In Ref. [28] we also made use of the Donnachie-
Landshoff parametrization, which predicts a faster increase
of the total cross section as function of the slope parameter.
Moreover, in [28] we also present a critical discussion on
the recent measurement of the slope parameter at the BNL
RHIC, at 200 GeV, by the pp2pp Collaboration. We call
attention to the fact that the combination B = 16.3 ± 1.8
GeV−2 and σtot = 51.6 mb, indicated by the pp2pp analy-
sis, is in disagreement with the general trend for the behav-
iors of σtot and B. If this “peer” is correct, new physics
is necessary. Using the above B value as input in our para-
metrizations, the corresponding values of the total cross sec-
tions show agreement with the σtot versus B data. However,
these inferred values for σtot indicate new physics when
plotted as function of the energy. We conclude that if this
measurement is correct and represents an hadronic quantity,
its high value may indicate a “break” in the slope near 0.02
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GeV2, a phenomenon that was never observed in both pp
and p̄p scattering, at

√
s ≤ 62.5 GeV and

√
s ≤ 1.8 TeV,

respectively and therefore, once more, new physics is nec-
essary.
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Figure 13. Total cross sections in terms of the slope, and the para-
metrization (38) [28].

5 Eikonal Models

It is expected that the eikonal function in the momentum
transfer space, χ(s, q), may be connected with some mi-
croscopic aspects of the underlying field theory (elementary
interactions, form factors, structure functions) and, as men-
tioned before, it corresponds to a unitarized scheme con-
nected with the experimental data. Eikonal models are char-
acterized by different choices for χ(s, q). In what follows
we discuss our results and researches through two eikonal
models (geometrical and QCD-based)

5.1 Geometrical Model - Inelastic Channel

In this subsection we review the description of p̄p multi-
plicities distributions (inelastic channel) from models for
the elastic channel in the context of the geometrical picture
(contact interactions).
- Elastic and Inelastic Channels

Through the Unitarity and the Inelastic Overlap Func-
tion, defined in Sec. 2.C, we can connect elastic and inelas-
tic scattering. This is done by expressing the topological
cross section for producting an even number n of charged
particles at s in terms of Gin:

σn(s) =
∫

d2b σn(s, b) =
∫

d2b Gin(s, b)
[

σn(s, b)
Gin(s, b)

]
.

If n(s) and < n >(s) are the hadronic and averaged
multiplicities, respectively, by introducting the KNO vari-
able Z = n(s)/ < n >(s), the hadronic multiplicity distrib-
ution may be expressed by

Φ(s, Z) =< n >(s)
σn(s)
σin(s)

=

∫
d2bGin(b,s)

r(b,s) ϕ( Z
r(b,s) )∫

d2b Gin(b, s)
,

where ϕ is the elementary multiplicity distribution and
r(b, s) =< n >(b,s) / < n >(s) the elementary multiplicity
function.

In Ref. [29], in the context of the geometrical pic-
ture, the elementary contact interaction process was based
on e+e− scattering data. In this approach we express

r(s, b) = ξ(s)χγ
I (s, b),

where

ξ(s) =
∫

d2b Gin(s, b)∫
d2b Gin(s, b)χγ

I (s, b)

and the power γ is determined by fitting the average multi-
plicity from e+e− scattering data through a power law para-
metrization:

< n >e+e−= A[
√

s]γ .

The elementary distribution ϕ(Z/r(b, s)) is represented
by a Gamma distribution and determined also by fits to
e+e− data.

With inputs for Gin(s, b) and/or χI(s, b), obtained from
fits to elastic scattering data, we have no free parameter and
the hadronic multiplicity distribution as function of Z and s
may be inferred.
- Elastic-channel inputs and results

In Ref. [29] we made use of three inputs from the elastic
sector. Two are based on the Multiple Diffraction Formal-
ism, in which the eikonal in the momentum transfer space is
expressed by

χ(b, s) = C

∫
qdqJ0(qb)GAGBf, (39)

where GA and GB are the hadronic form factors, f the el-
ementary (constituent - constituent) amplitude and C does
not depend on the transferred momentum. In this case we
made use of the parametrizations used by Chou and Yang
and also by Menon and Pimentel. Both present good de-
scriptions of the experimental data in the elastic channel.
The other input corresponds to the Short Range Expansion
of the inelastic overlap function, introduced by Henzi and
Valin,

Gin(b, s) = P (s) exp{−b2/4B(s)}k(x, s),

with k being expanded in terms of a short-range variable
x = b exp{−(εb)2/4B(s)}, i.e.
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k(x, s) =
N∑

n=0

δ2n(s)

[
ε exp{1/2}√

2B(s)
x

]2n

.

With particular parametrizations excellent agreement
with experimental data on pp and pp elastic scattering is
achieved, allowing to infer the black-edge-large (BEL) be-
havior.

In Ref. [29] a detailed discussion is presented on several
variants from the elastic channel and parametrizations from
e−e+ scattering. In particular, the results for the multiplici-
ties distributions, with the BEL inelastic overlap function, at√

s = 52.6 and 546 GeV are displayed in Fig. 14, together
with the experimental data. The prediction shows that the
violation of the KNO scaling is well described.
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Figure 14. Scaled multiplicity distribution for inelastic pp data at√
s = 52.6 GeV and p̄p data at 546 GeV, compared with the model

predictions [29].

5.2 QCD-inspired models
In this section we outline some research in course with the
eikonal approach in connection with some QCD concepts.
As we shall discuss the main point concerns the gluon-gluon
contributions to the hadronic cross sections which we have
investigated either from a dynamical gluon mass approach
or by introducting the momentum scale in the gluonic distri-
bution functions. After a review on the basic formalism we
outline some aspects of both approaches.

5.2.1 Basic formalism

The formalism was introduced by Afek, Leroy, Margolis and
Valin [30] and developed by several authors, including (for
our purposes) Durand, Pi [31], Block, Gregores, Halzen and
Pancheri [32].

Originally, the point was to separate contributions from
soft (S) and semi-hard (SH) inelastic processes by express-
ing

Ginel(s, b) = 1 − P̄SP̄SH

= 1 − e−2Re χS(s,b)e−2Re χSH(s,b),

where P̄S is the probability of NO soft inelastic process
and P̄SH the probability of NO semi-hard inelastic process.
Therefore, that indicated an additive contribution in the
eikonal: χ(s, b) = χS(s, b) + χSH(s, b).

In the recent version by Block et al. [32] different el-
ementary contributions from quarks and gluons have been
introduced: the gluon-gluon contribution comes from the
parton model, the quark-quark from regge parametrization
and the quark-gluon by phenomenological inputs. In what
follows we shortly review the main formulas.

The normalization for the eikonal reads

F (s, q) = ik

∫ ∞

0

bdbJ0(qb)
[
1 − eiχ(s,b)

]
,

χ(s, b) = Re χ(s, b) + i Im χ(s, b).

For pp and p̄p scattering the crossing even and odd con-
tributions are expressed by χpp̄ = χ+ + χ− and χpp =
χ+ − χ−. The odd eikonal is assumed not to contribute at
the asymptotic energies and is parametrized by

χ−(s, b) = C−m0√
s
eiπ/4w(b, µodd).

Analyticity (generation of real and imaginary parts) for
the even part is assumed as given by the prescription

χ+(s, b) ⇒ χ+(se−iπ/2, b) =
= Re χ+(s, b) + iIm χ+(s, b).
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The even eikonal is expressed as a sum of three contri-
butions, from quark-quark (qq), quark-gluon (qg) and gluon-
gluon (gg) interactions,

χ+(s, b) = χqq(s, b) + χqg(s, b) + χgg(s, b),

which individually factorize in s and b,

χij(s, b) = iσij(s)w(b, µij),

where i, j = q, g.
The impact parameter distribution function for each

process comes from convolution involving dipole form fac-
tors (Chou-Yang Model):

wii(b, µii) =
∫

d2�b′ρi(|�b′|ρi(|�b −�b′|),

ρ(b) =< G(q) >=<
1

(1 + q2/µ2)2
>,

where the angular brackets denote the symmetrical two-
dimensional Fourier transform. Therefore,

wii(b) =
1
8

µ2
ii

12π
[µiib]3K3(µiib),

and for i �= j it is assumed that

µij =
√

µiiµjj .

The elementary cross sections for each process are in-
troduced as follows. The quark-quark contribution is para-
metrized as a constant plus a Regge (even) term,

σqq(s) = C + C+
R

m0√
s

and the quark-gluon term as

σqg(s) = Cqg log
s

s0
.

The gluon-gluon contribution is considered as the re-
sponsible for the increase of the total cross section at the
highest energies and is calculated through the parton model
approach,

σgg(s) = cgg

∫ 1

0

dτFgg(τ)σ̂gg(ŝ), (40)

with

Fgg =
∫ 1

0

∫ 1

0

dx1dx2fg(x1)fg(x2)δ(τ − x1x2), (41)

where fg(xi) is the gluon distribution function, τ = ŝ/s,
and the symbolˆdenotes the elementary process. In [32] the
elementary cross section is given by

σ̂gg(ŝ) =
9πα2

s

m2
0

θ(ŝ − m2
0), (42)

implying a cutoff m0 for the particle production threshold
and it is assumed the following simple parametrization for
the gluon distribution function

fg(x) = Ng
(1 − x)5

x1+ε
,

Ng =
1
2

(6 − ε)(5 − ε)...(1 − ε)
5!

. (43)

The model has 6 fixed parameters, m0, ε, µqq, µgg , µodd,
αs and 6 free parameters, determined from fits to pp and
pp̄ forward scattering data, namely σtot(s), ρ(s) and B(s)
above 15 GeV [32]. We have shown that the model applies
only to forward and small momentum transfer regions [33].

In the next two sections we shall discuss two researches
in course concerning the determination of the contribution
from gluon-gluon interactions, Eqs. (39-42).

5.2.2 Dynamical gluon mass

The possibility that the gluon propagator may be regular-
ized by a dynamically generated gluon mass [34] has re-
cently provided important phenomenological description of
several processes [35]. The approach allows to calculate the
contribution for the elementary gg cross section Eq. (42)
and the main point is the association of the mass scale with
the dynamical gluon mass. The basic ingredients are the ex-
pressions for the dynamical gluon mass,

M2
g (ŝ) = m2

g

[
ln[(ŝ + 4mg

2)/Λ2
QCD]

ln[(4mg
2)/Λ2

QCD]

]−12/11

,

and the associated running coupling constant

αs(ŝ) =
4π

β0 ln
[
(ŝ + 4M2

g (ŝ))/Λ2
QCD

] ,

where β0 = 11− 2
3nf and nf is the number of flavors. Pre-

liminary tests with these contributions, in the context of the
model described in the last subsection, have shown that the
experimental data on σtot(s), ρ(s) and B(s) are well de-
scribed [36], as exemplified in Fig. (15). We are presently
investigating the contributions from the other elementary
processes, qq and qg.
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Figure 15. Description of the total cross sections through the QCD-
based model with dynamical gluon mass m0 = 500, 600 and 700
MeV [36].

5.2.3 Momentum Scale

Presently, we are attempting to improve the descriptions of
the QCD-inspired models by taking into account the mo-
mentum transfer scale in the gluon distribution functions.
The point is to replace the simple choice in Eq. (42), by
distribution functions with the Q2 dependence, namely

fg(xi) → fg(xi, Q
2).

That can be implemented, following the approach by
Durand and Pi [31], by introducing the differential cross sec-
tion

σ̂gg(ŝ) =
∫

d|t̂|dσ̂gg

d|t̂| (ŝ, t̂),

with

dσ̂gg

d|t̂| (ŝ, t̂) =
9πα2

s

2
[
3
ŝ2

+
t̂

ŝ3
+

t̂2

ŝ4
+

1
t̂2

+
1
ŝt̂

− t̂

ŝ(ŝ + t̂)2
]

and by considering Q2 = |t̂|.
The novel input concerns the updated determinations of

the gluon distribution functions (CETEQ6), parametrized by
means of Chebyshev polynomials. Presently, the implemen-
tation in the QCD-inspired approach is being developed.

6 Nonperturbative QCD
As commented before the difficulties associated with high-
energy soft processes arise from the fact that perturbative

QCD can not be applied and presently we do not know how
to calculate even the elastic hadron-hadron scattering ampli-
tudes from a pure nonperturbative QCD formalism. How-
ever, progresses have been achieved through the approach
introduced by Landshoff and Nachtmann [37], developed by
Nachtmann [38] and connected with the Stochastic Vacuum
Model (SVM) (introductory reviews may be found in [39]).
In particular, through this formalism and in some restricted
kinematic conditions, it is possible to connect the gluon two-
point correlation function with elementary (quark-quark)
scattering amplitude.

In this section we review the results we have obtained
for these amplitudes with correlators determined from lattice
QCD and also in the context of the Constrained Instantons.

6.1 Stochastic Vacuum Model
The approach has its origins in the attempts by Landshoff
and Nachtmann to connect soft high-energy processes with
nonperturbative properties of the QCD vacuum, as for ex-
ample, the gluon condensate introduced by Shifman, Vain-
stein and Zakharov [40]. In the first version [37] quarks
couple with Abelian gluons. The non-Abelian version was
developed by Nachtmann in the context of QCD and us-
ing the eikonal method for high energy interactions [38].
The scattering amplitude is calculated by means of a func-
tional integral approach and is connected to a correlation
function of two lightlike Wegner-Wilson loops. These cor-
relation functions can be evaluated through the Stochastic
Vacuum Model, in which the low frequency contributions
to the functional integral of QCD are described in terms of
a stochastic process by means of a cluster expansion [41].
The model incorporates the gluon condensate concept and
assumes that the correlation of two field strengths decreases
rapidly with distance; due to an effective chromomagnetic
monopole condensate, the QCD vacuum acts as a dual su-
perconductor.

In this formalism the low frequencies contributions in
the functional integral of QCD are described in terms of a
stochastic process, by means of a cluster expansion. The
most general form of the lowest cluster is the gauge invari-
ant two-point field strength correlator [41, 42]

< FC
µν(x)FD

ρσ(y) >=

= δCDg2 < FF >

12(N2
c − 1)

{(δµρδνσ − δµσδνρ)κD(z2/a
2
) +

+
1
2
[∂µ(zρδνσ − zσδνρ) +

+ ∂ν(zσδµρ − zρδµσ)](1 − κ)D1(z2/a
2
)},

where z = x − y is the two-point distance, a is a charac-
teristic correlation length, κ a constant, g2 < FF > the
gluon condensate and Nc the number of colours (C,D =
1, ..., N2

c − 1). The two scalar functions D and D1 describe
the correlations and they play a central role in the application
of the SVM to high energy scattering. Once one has infor-
mation about D and D1, the SVM leads to the determination
of the elementary quark-quark scattering amplitude, which
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constitutes important input for models aimed to construct
hadronic amplitudes. The main formulas are as follows.

The elementary amplitude f in the momentum transfer
space is expressed in terms of the elementary profile γ by

f(q2) =
∫ ∞

0

bdbJ0(qb)γ(b). (44)

In the Nachtmann approach the no-colour exchange parton-
parton (loop-loop) amplitude can be written as

γ = 〈Tr[Pe−ig
R

loop1dσµνFµν(x;w) − 1]

Tr[Pe−ig
R

loop2dσρσFρσ(y;w) − 1]〉,

where 〈〉 means the functional integration over the gluon
fields (the integrations are over the respective loop areas),
and w is a common reference point from which the integra-
tions are performed. In the SVM by taking the Wilson loops
on the light-cone the leading order contribution to the am-
plitude is given by

γ(b) = ηε2(b), (45)

where η is a constant depending on normalizations and

ε(b) = g2

∫ ∫
dσµνdσρσTr〈Fµν(x; w)Fρσ(y;w)〉.

After a two-dimensional integration, ε(b) can be ex-
pressed in terms of the correlation functions by

ε(b) = εI(b) + εII(b), (46)

where

εI(b) = κ〈g2FF 〉
∫ ∞

b

db′(b′ − b)F−1
2 [D(k2)](b′), (47)

εII(b) = (1 − κ)〈g2FF 〉F−1
2 [

d

dk2
D1(k2)](b). (48)

For D = D or D = D1 we have D(k2) = F4[D(z2)], where
Fn denotes a n-dimensional Fourier transform.

With the above formalism, once one has inputs for the
correlation functions D(z) and D1(z), the elementary am-
plitude in the momentum transfer space, Eq. (43), may,
in principle, be evaluated through Eqs. (44-47). It is im-
portant to stress that, as constructed, the formalism is in-
tended for small momentum transfer (q2 � O(1) GeV2)
and asymptotic energies s → ∞. Despite of these limita-
tions, the investigation of soft high energy scattering at the
energies presently available has led to satisfactory results
[42, 43, 44].

6.2 Elementary Amplitudes
In this section we review the results we have obtained
from inputs for the above correlators from lattice QCD
[46, 47]. We also comment the research in course in the
semi-classical context of Instantons [48].

6.2.1 Correlators from Lattice QCD

Numerical determinations of the above correlation func-
tions, in limited interval of physical distances, exist from
lattice QCD in both quenched approximation (absence of
fermions) and full QCD (dynamical fermions included)
[49].

With the procedure described above (see [46] for all the
calculational details), the elementary scattering amplitude in
the momentum transfer space can be determined in numer-
ical form. In order to obtain analytical expressions, suit-
able for investigating distinct contributions and also for phe-
nomenological uses, we have parametrized these numerical
points through a sum of exponentials in q2:

f(q2)
f(0)

=
n∑

i=1

αie
−βiq

2
. (49)

The results are displayed in Fig. (16) from both quenched
approximation and full QCD, together with the correspond-
ing exponential components.
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Figure 16. Elementary amplitudes from quenched and full QCD
and the exponential components through parametrization (48) [47].

Our main conclusions are the following [47]: (1) the
amplitudes decrease smoothly as the momentum transfer in-
creases and they do not present zeros; (2) the decreasing
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is faster when going from quenched approximation to full
QCD (with decreasing quark masses), and this effect is as-
sociated with the increase of the correlation lengths; (3) the
dynamical fermions generate two contributions in the region
of small momentum transfer, which are of the same order at
q2 ∼ 1 GeV2 (only one contribution is present in the case of
quenched approximation).

We understand that result (3) may suggest some kind of
change in the dynamics at the elementary level, near q2 ∼ 1
GeV2 and at asymptotic energies. If that is true, some signal
could be expected at the hadronic level. One possibility is
that this effect can be associated with the position of the dip
(or the beginning of the “shoulder”) in the hadronic (elas-
tic) differential cross section data. The asymptotic condition
embodied in our result indicates that q2 ∼ 1 GeV2 seems to
be in agreement with the limit of the shrinkage of the diffrac-
tion peak, empirically verified when the energy increases in
the region 23 GeV ≤ √

s ≤ 1.8 TeV.

6.2.2 Correlators from the Instanton Approach

By means of the stochastic vacuum formalism we also
presently investigate the elementary amplitudes using cor-
relators determined in the context of the constraint instan-
ton approach, developed by A. Dorokhov and collaborators
[50]. The basic picture is that of an instanton field dominat-
ing at small distances and decreasing exponentially at large
distances in the physical vacuum.

In Ref. [48], we make use of suitable parametrizations
for the correlators and investigate the effects of the contribu-
tions from the short and long range correlations in the deter-
mination of the full correlator. Denoting those contributions
as DI(z) and DL(z), respectively, we introduce a dimen-
sionless parameter α ≡ ηgρc in terms of the driven parame-
ter ηg and the size parameter ρc [48]. Since ηg is correlated
with the relative contribution of each kind of correlator, we
consider two extreme cases: 1) equal contributions (weights
0.5 and 0.5), corresponding to α = 1.0; 2) almost pure in-
stanton contribution (weights 0.99 and 0.01), corresponding
to α = 0.1.

In the lack of information on the long range compo-
nent, and for our purpose, we consider parametrization in
a Gaussian form [48]

DL(z) = exp{−(2/2.5)2z2}.

For the short range case, α = 0.1, we introduce the para-
metrization,

DI(z) = 0.7119 exp{−(2.403|z|)2}
+ 0.2899 exp{−(1.485|z|)2}
− 9.456 × 10−3 exp{−1.277|z|}.

The full correlator is then determined by

D(z) = 0.99DI(z) + 0.01DL(z). (50)

For the long range case, α = 1.0, the parametrization
takes the form

DI(z) = 0.80084 exp{−(2.3025|z|)2}
− 3.3846 × 10−2 exp{−(0.97119|z|)2}
+ 0.24225 exp{−2.7706|z|},

and for the full correlator we have

D(z) = 0.5DI(z) + 0.5DL(z). (51)

With the Eqs. (49) and (50) we can calculate the ele-
mentary amplitude through the steps indicated in Sec. 6.A.
The results are displayed in Fig. (17).
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Figure 17. Elementary amplitudes from the constrained instanton
approach.

A central result is that if the contribution from the long
range correlator is small, that is, an almost purely instan-
ton case, the corresponding elementary amplitude presents
a minimum. In terms of the associated differential cross
section, this implies a diffractive pattern in the momentum
transfer space, a result already indicated in some phenom-
enological approaches [45, 46]. In the case of equal weights
the amplitude decreases monotonically with the momentum
transfer.

We conclude that in the context of the instanton ap-
proach, the balance between the contributions of the short
and long range correlators is a crucial point for the deter-
mination of the behavior of the elementary amplitudes. Fur-
ther investigation along this line can bring new important in-
sights on the connection between instanton correlators and
the physical quantities which characterize the high-energy
hadronic scattering.

7 Perspectives and Outlook
In this section we outline some perspectives in the area of
high-energy elastic hadron scattering from both experimen-
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tal and theoretical point of views. Certainly, some ideas may
be biased by our own knowledge and our own personal view.

7.1 Experiments

From the experimental point of view the perspectives are
very optimistic due to the new generation of experiments
with both accelerators and cosmic-ray observatories. Let us
quickly summarize some projects in development.

The upgrade of the Fermilab Tevatron machine, together
with upgrades and new devices in the CDF (Collider Detec-
tor Facility) and D0 detectors, are going to provide improved
investigations on p̄p collisions at

√
s ∼ 2 TeV. Although the

main purpose of the experiment concerns hard diffraction,
it will be possible to investigate elastic scattering in both
high and low q2 regions, the slope parameter, total cross
section and single diffraction. Of topical importance for
soft physics, the new determination of the total cross section
shall possibly bring a solution for the puzzle represented by
the discrepant results around 2 TeV (E710/E811 and CDF).

At the Relativistic Heavy Ion Collider (RHIC) in the
Brookhaven National Laboratory, pp collisions are presently
being investigated at energies never reached before:

√
s :

50− 500 GeV. The experiment “Total and Differential Cross
Sections and Polarization Effects in pp Elastic Scattering at
RHIC” (pp2pp) plans to investigate both elastic scattering
and diffraction dissociation (single and double), in addition
to spin effects. This will provide the first opportunity for di-
rect comparison between pp and p̄p scattering at the highest
collider energies.

Although in a bit longer term, at the CERN Large
Hadron Collider (LHC), the TOTEM experiment (Total
Cross Section, Elastic Scattering and Diffraction Dissoci-
ation at the LHC) is specifically planned to study soft dif-
fractive physics in pp collisions at

√
s ∼ 16 TeV. In partic-

ular, diffraction dissociation, total cross section and elastic
scattering at large values of the momentum transfer will be
investigated, up to q2 = 10 − 15 GeV2. That will certainly
allow discrimination and selection of various models and ap-
proaches, giving fundamental information at large momen-
tum transfer; for example, showing the existence or not of
structures. Moreover, this experiment will probably provide
a final answer on the possible differences between pp and
p̄p total cross sections and the correct power γ in the lnγ s
dependence of σtot(s).

The most energetic event detected in cosmic-ray experi-
ments had Elab = 3 × 1020 eV, corresponding to an energy
of 50 Joules! Goals of the Auger project are the measure-
ment of arrival direction and the energy and mass composi-
tion of cosmic rays above Elab = 1019 eV. For pp collisions
this means

√
s above 140 TeV, nearly 10 times the LHC en-

ergy. In addition to the astrophysical importance of the ex-
periment, the measurement of the longitudinal development
of showers will provide severe tests on hadronic interaction
models. As a consequence, among others, the puzzles con-
cerning the extraction of pp cross section from p − air pro-
duction cross section may receive better insights, allowing
more precise determinations and at energies possibly never
to be reached by accelerator machines.

7.2 Theory

Elastic hadron scattering (and soft diffractive processes in
general) is a long distance phenomena and therefore we ex-
pect and look for a theoretical treatment via non-perturbative
QCD. Despite all the difficulties mentioned along this man-
uscript, we understand that two approaches deserve special
attention.

One of them concerns the approach by Nachtmann and
the Stochastic Vacuum Model (Sec. 6.A) [38, 39]. Although
under restrictive kinematic conditions (momentum transfer
of the order or below 1 GeV2, and asymptotic energies,
s → ∞) the formalism has provided interesting results in
the investigation of the physical quantities that character-
ize the elastic pp and p̄p scattering [42, 44], in special the
works by Ferreira and Pereira, connecting experimental ob-
servables and QCD parameters [43]. Attempts to implement
the energy dependence in pure QCD grounds may be an im-
portant task for the near future.

The other approach is associated with evidences for fi-
nite gluon propagator and running coupling in the infrared
region and that is the case in some classes of solutions of the
nonperturbative Schwinger-Dyson equations. In particular,
in the solution proposed by Cornwall [34] the gluon acquires
a dynamical mass leading to a freezing of the coupling con-
stant in the infrared region. As referred before, Natale and
collaborators [35] have discussed several phenomenological
tests, reaching interesting results which have permitted the
development of the formalism and the selection of adequate
basic inputs. That opens a new way to investigate long dis-
tance phenomena with a finite calculational approach.

We also understand that the connections between soft
and semi-hard processes, typical of QCD-based models in
the eikonal context, may bring new insights for the develop-
ment of adequate calculational schemes in the nonperturba-
tive treatment of high-energy elastic collisions.

8 Summary and Final Remarks

Despite its simplicity, elastic hadron scattering constitutes a
topical problem in high-energy Physics. Although the bulk
of experimental data can be efficiently described in differ-
ent phenomenological contexts, we are still facing the lack
of a treatment and of a reasonable understanding of these
processes based exclusively on QCD.

Our main strategy in investigating elastic scattering has
been to look for descriptions based on the high-energy prin-
ciples and theorems from Axiomatic Quantum Field Theory
and, simultaneously, attempting to extract “empirical” infor-
mation from all the experimental data available. Tests of dis-
crepant data and their influence on the extracted information
play a central role. In that way we hope to get feedbacks for
theoretical development in nonperturbative and semi-hard
QCD. We can summarize our main recent results as follows.

In the context of the Analytic Approach, we have inves-
tigated the effects of discrepant experimental information
on the total cross sections in both accelerator and cosmic-
ray energy regions. By means of analytical fits, we have
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obtained extrema bounds for the soft Pomeron intercept,
namely αupper

IP (0) = 1.109 and αlower
IP (0) = 1.081. We

have also obtained novel constrained bounds for the inter-
cept from spectroscopy data (fitted Regge trajectories from
Chew-Fautschi plots) and extended the analysis to several
reactions. That information on the Pomeron bounds may be
important for phenomenological developments and projects
for new experiments. We have also shown that the presence
of the Odderon in the real part of the elastic hadronic am-
plitude is not forbidden by the bulk of experimental data on
σtot and ρ. In particular, the fit with the Kang-Nicolescu
parametrization has indicated a crossing in ρ(s), with ρpp

becoming greater than ρp̄p above
√

s = 70 GeV. That para-
metrization predicts ρpp(

√
s = 200GeV) = 0.134 ± 0.005

(RHIC regions). Detailed investigation on the applicability
of DDR have shown that, once the subtraction constant is
used as a free fit parameter, the DDR is equivalent to the
IDR with finite lower limit (s0 = 2m2). That result was
obtained for the class of entire functions in the logarithm of
the energy (typical of analytic models).

In the context of Model Independent Analyses, we have
investigated the correlations between the experimental data
on total cross section and the slope parameter. The para-
metrization introduced is based on the empirical behavior of
these quantities and extrapolations to cosmic-ray energies
may be useful in the determination of proton-proton total
cross sections from proton-air cross sections. By means of
a novel model independent fit procedure to the differential
cross section data, we have found statistical evidence for
eikonal zero in the momentum transfer space and that the
position of the zeros decreases as the energy increases. The
zero position shows agreement with the result recently ob-
tained for the electromagnetic form factor and inferred from
elastic electromagnetic e−p scattering (polarization transfer
experiments). Since our analysis concerns only hadronic in-
teractions the results may bring new insights in the investi-
gation of electromagnetic and hadronic form factors. We are
also treating analytic fits with free parameters depending on
the energy so as to develop a model independent predictive
approach.

In the context of Eikonal Models we have obtained con-
nections between the elastic and inelastic channel by means
of the geometrical picture, and correlating pp and p̄p scat-
tering with contact interactions simulated by e−e+ distri-
butions and multiplicities. With the class of QCD-based
or QCD-inspired models we have developed novel gluonic
contributions by means of two approaches. One is based in
solutions of the Schwinger-Dyson equations characterized
by the dynamical gluon mass. The other one is intended to
take into account the Q2- scale in updated gluonic distrib-
ution functions. Certainly, the two approaches are not in-
dependent, and we presently investigate their simultaneous
implementation.

In the context of the Stochastic Vacuum Model, we have
obtained novel results for the elementary scattering ampli-
tudes, making use of correlators determined either from lat-
tice QCD or from constrained instantons. In both cases the
elementary amplitudes present no zeros (change of sign in
the momentum transfer space). In the context of eikonal

models, in which the eikonal is expressed in terms of the el-
ementary amplitudes and form factors, Eq. (38), this result
corroborates the interpretation of the zero in the hadronic
form factor, and therefore, its dependence on the energy.
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rianópolis, 1998, edited by E. Ferreira, F.F. de Souza Cruz,
and S.S. Avancini (World Scientific, Singapore, 1999) p. 326.
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