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Theoretical analysis of formation energy and geometry was done to compare the relative stabilities of 
modified carbon nanostructures representative fragments. Structure and energies of formation were calculated 
at semiempirical level of theory. Depending of B-N pair localization on the molecular structures the formation 
enthalpy decreases. B-N substitution in tubular structures at low concentration decreases the energy when the 
tubes have small diameters. Our results are in according to experimental works which have shown that boron 
and nitrogen are met at region of defects in B

X
C

Y
N

Z
 nanostructures.
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1. Introduction

Carbon nanotubes are considered ideal candidates to the 
development of nanoelectromechanical (NEMS) devices due the 
outstanding electronic properties which depend only on their 
diameter and chirality1. Researchers have been done to improve 
growth techniques of carbon nanotubes pure and structurally 
perfects. On the other hand, the scientific literature has shown a 
special interest in the development of experimental techniques which 
could control the growing of branching and/or doping structures. 
Boron and nitrogen atoms are considered as natural candidates to 
the doping process2-10.

New growth techniques of Y, L, T, H or multi-branching11-20 
junctions constituted by nanotubes with the same chirality (or not) 
made researches about intermolecular junctions which increase 
the possibilities to built nanodevices based on carbon nanotubes 
(Figure 1).

Theoretically, nanojunctions can be produced through introduction 
of topological defects in the tubular structure. Pentagonal, heptagonal, 
and octagonal rings are examples of this type of defect. According 
to Euler rule, it is necessary 12 pentagons to close one hexagonal 
network. However, if we introduce one heptagon, the number of 
pentagons increases to 13. Moreover, if pentagonal and heptagonal 
rings are separated by one or more hexagons, we can create 
nanojunctions with different shapes1.

Some studies have shown that heteroatoms (as boron and 
nitrogen) are met in defective regions of tubes21. In the case of 
nitrogen doping nanotubes, there are two results due the inclusion 
of this heteroatom: (i) the lone pair repulsion decreases the bond 
angle between nitrogen and carbon atoms which brings on structural 
stabilization; (ii) one pentagon with nitrogen simulates a carbon 
hexagon due the extra electron in the nitrogen atom which stabilizes 
the electronic structure of joint region22-23.

Emission mechanisms, conduction, and rectification processes 
are not understood if they are measure from carbon nanostructures. 
Relationship between morphology and electronic properties show 

controversial experimental results which difficult the development 
of new nanodevices based on nanostructures24-30.

In this sense, we made a comparative study of the energy involved 
in the carbon atom substitution in B

X
N

Y
C

Z
 nanojunctions fragments 

to propose some rules about the localization of nitrogen and boron 
atoms in nanojunctions regions of defects.

In the following section we describe the model systems and the 
theory employed in this study. Next we present a discussion of the 
results. A final section contains the conclusions.

2. Computational Details

Different semiempirical or hybrid calculations (e.g. ONION)31 
have been used to nanotube geometry description. Ab initio 
calculations in Hartree-Fock (HF) 32 or Density Functional (DFT) 33 
level have been used for low dimension structrures.

 In this work, the geometry of pure or doped nanotube fragments 
were fully optimized through semi-empirical quantum chemical 
methods Austin Method 1 (AM1)34 and Parametric Method 3 (PM3)35. 
These semi-empirical methods are derived from the Hartree-Fock 
theory. The advantages of semiempirical calculations are that they 
are much faster than ab initio calculations, and can be used for large 
organic molecules. The disadvantage of semiempirical calculations 
is that some properties cannot be predicted reliably. In the case of 
the properties analyzed in this study, both semiempirical methods 
(AM1 and PM3) are very reliable to predict molecular geometries 
and heats of formation of carbon materials. AM1 and PM3 error 
in heats of formation is about 8.0 Kcal.mol–1[36], with respect to 
the experimental values. Average error in bond length varies from 
0.04 Å to 0.05 Å[36].

Carbon nanojunctions fragments analyzed in this work are shown 
in Figure 2. The dangling bonds at the ends of the model molecules 
were saturated with hydrogen (H) atoms. Initially, we calculate the 
geometries and heats of formation of carbon nanojunction fragments. 
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Figure 2. Model molecules geometries calculated through AM1 semiempirical 
method. In this picture carbon atoms (C) are in gray color and hidrogen atoms 
(H) are in white color (It was considered structures constituted by one pentagon 
and five hexagons (PENT), seven hexagonal rings (HEXA), one heptagon and 
seven hexagons (HEPT), and one octagonal ring rounded by hexagons (OCT)).

Figure  1. Examples of nanojunctions: a) Y
(8,0)

 formed by three (8,0) 
semiconducting nanotubes and connected by six pentagons and six octagons; 
b) T

(10,0)(5,5)
 formed by one metal (5,5) and one semiconducting (10,0) 

nanotubes. This T-junction has in your defect region four heptagonal rings.

These model molecules were then doped with a Boron-Nitrogen pair 
(BN-pair) and the geometries were re-optimized. Nitrogen (N) and 
boron (B) atoms were systematically placed substituting carbons in 
pentagonal, hexagonal, heptagonal, and octagonal rings. For these 
substitutions, we adopted the following criteria: (i) adjacent B-B or 
N-N atoms should not be substituted; (ii) the substitution of even 
number of atoms is preferable because a closed shell system is 
formed. The results of heat of formation after BN-pair substitution 
are shown in Table 2. These calculations were performed within the 
quantum chemical packages GAMESS37 and Gaussian03[38].

3. Results and Discussions

3.1. Structural properties and enthalpy of formation

Model molecules are depicted in Figure  2. The selected 
molecules have five, six, seven and eight-membered rings which 
are rounded by hexagonal rings.

These fragments have been taken because they are met in some 
nanojunctions described in the literature38-41. After geometry and 
formation energy calculations of pure carbon nanostructures, a 
systematic substitution of carbon atoms by BN-pair was done.

The objective of this study was to identify some rules about 
the localization of nitrogen and boron atoms in nanojunctions 
regions of defects. In this sense, we analyzed the theoretical results 
of the energy associated to BN-pair incorporation. This energy 
was calculated as the difference in formation enthalpy of BN-pair 
doped and pure carbon systems divided by the number of BN-pairs. 
Comparing theoretical results of the enthalpies of formation before 
and after the substitution of carbon atoms, we concluded that some 
BN-pair distributions are more desirable than other. In the case 
of small fullerenes some works have suggested some low energy 
configurations42,43.

Results for the heat of formation calculated through AM1 
semiempirical method are shown in Table 1.

In Table 1 fragments constituted by one pentagon rounded by 
five hexagons are called PENT; HEPT corresponds to a seven-
membered ring rounded by seven hexagons; model molecules 
with one octagonal ring is called OCT; and model molecules with 
seven hexagonal rings are called HEXA. Numbers from one to six 
corresponds to different BN-pair positions. Equivalents substitutions, 
due the model molecules symmetry, were avoided.

At first, we analyzed the geometry of optimized structures. Model 
molecules have high curvatures, with exception of ones in the HEXA 
group. These results are in according to the defective regions met in 
nanojunctions. Non-hexagonal rings join nanotubes with different 
chiralities creating different branched structures.

Our analysis of enthalpy of formation for molecules doped with 
one BN-pair showed that most probable site of these atoms is in 
the join region of nanojunctions. As closer as boron and nitrogen 
are one another, lower is that energy (see PentBN_6, PentBN_5, 
HeptBN_6 in Figure 1 and Table 1). In the case of bonded boron and 
nitrogen atoms, the better position is nitrogen in the central region 
and boron in the peripheral region of model molecule. In the case 
of two BN-pairs, non-carbon atoms need to be located in the central 
region of defect. Our theoretical results for some model molecules 
show that the heat of formation decreases with the inclusion of more 
BN-pairs (compare PentBN_5 with Pent2BN_5, and OctBN_3 with 
with Oct2BN_3).

Since the discovery of B
X
C

Y
N

Z
 nanotubes in 199444, several 

experimental45-57 and theoretical58-66 works have been done to 
understand of the properties of this new material. Theoretical studies 
have revealed that the electronic properties of B

X
C

Y
N

Z
 nanotubes 

are unrestricted by geometrical structure and can be controlled by 
simply varying the chemical composition61,67,68.

Golbert et  al. reported that multiwalled BN nanotubes have 
preferentially zigzag type chirality along their circumference based 
on their diffraction patterns4. Other theoretical calculations were 
performed for the zigzagged form of B

X
C

Y
N

Z
 nanostructures69,70. 

Therefore, we adoptade only zigzag nanotubes (6,0), (7,0), (8,0), 
and (9,0) to analyze substitution of BN-pair in tubular structures 
(Figure 3). In these calculations, BN concentrations are lower than 1%.

Our previous works showed that incorporation of nitrogen zigzag 
nanotubes stabilizes some geometries22,23. In the case of carbon atoms 
substitution by boron and nitrogen atoms, our theoretical results 
showed that BN-pair substitution depends on the tube diameter. 
Stressed small diameter tubes are more easily doped by BN-pair 
than the larger ones. Differently of other works71, our theoretical 
results show that the relative positions of boron and nitrogen in the 
tubular wall are not important to the formation energy. Results about 
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Table 1. Results to Heat of Formation and dipole moment to fragments studied in this work (Figure 1). In this Table molecules constituted by one pentagon 
rounded by five hexagons are called PENT; HEPT corresponds to a seven-membered ring rounded by seven hexagons; model molecules with one octagonal 
ring is called OCT; and model molecules with seven hexagonal rings are called HEXA.

Molecule Heat of formation 
(Kcal.mol–1)

Dipole 
(Debye)

Molecule Heat of formation 
(Kcal.mol–1)

Dipole 
(Debye)

HEPT PENT

Hept C 160.136 0.000 Pent C 156.557 2.796

Hept BN1 202.453 5.251 Pent BN1 180.063 4.689

Hept BN2 157.108 1.014 Pent BN2 199.436 5.426

Hept BN3 159.145 1.951 Pent BN3 161.618 3.122

Hept BN4 208.971 4.461 Pent BN4 377.646 7.642

Hept BN5 146.694 1.444 Pent BN5 149.483 4.456

Hept BN6 145.486 2.513 Pent BN6 141.036 2.377

Hept 2BN1 188.383 3.168 Pent 2BN1 124.440 2.836

Hept 2BN2 155.618 2.229 Pent 2BN2 – –

Hept 2BN3 270.580 9.639 Pent 2BN3 – –

Hept 2BN4 220.832 1.492 Pent 2BN4 210.028 3.072

Hept 2BN5 210.685 7.781 Pent 2BN5 129.411 1.960

Hept 2BN6 – – Pent 2BN6 142.334 3.718

Pent 2BN7 216.457 8.044

Pent 2BN8 231.519 7.103

HEXA OCT

Hexa C 96.227 0.000 Oct C 219.678 0.000

Hexa BN1 142.897 5.706 Oct BN1 274.777 8.281

Hexa BN2 151.738 5.658 Oct BN2 274.398 3.920

Hexa BN3 102.802 1.894 Oct BN3 213.489 0.923

Hexa BN4 94.520 1.698 Oct BN4 204.497 1.333

Hexa BN5 92.434 0.990 Oct BN5 262.622 4.047

Hexa 2BN1 74.201 1.660 Oct BN6 274.614 5.286

Hexa 2BN2 69.479 2.368 Oct 2BN1 276.609 1.058

Hexa 2BN3 89.861 0.000 Oct 2BN2 207.666 1.010

Hexa 2BN4 89.028 0.000 Oct 2BN3 186.432 0.000

Hexa 2BN5 118.708 3.454 Oct 2BN4 300.946 4.457

Hexa 2BN6 79.305 0.000 Oct 2BN5 192.072 2.604

Oct 2BN6 180.021 1.418

Oct 2BN7 213.435 3.883
Numbers from one to six corresponds to different BN-pair positions.

Figure 3. Longitudinal view of zig-zag carbon nanotubes. From left to right: nanotubes (6,0), (7,0), (8,0), (9,0), and (10,0), respectively. All structures were 
optimized through semiempircal method AM1 (see text).
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Table 2. Results for Heat of Formation calculated before and after BN-pair 
substitution.

Nanotube Heat of formation 
(Kcal.mol–1)

Heat of formation 
(Kcal.mol–1)

AM1 PM3

(6,0) 1542.84 1360.98

(6,0) BN1 1516.73 1314.85

(6,0) BN2 1516.70 1314.83

(6,0) BN3 2822.67 –

(6,0) BN4 1516.70 1314.83

(7,0) 1456.89 1273.41

(7,0) BN1 1469.34 1267.22

(7,0) BN2 1469.38 1267.05

(7,0) BN3 1469.39 1266.85

(7,0) BN4 – –

(8,0) 1459.47 1269.42

(8,0) BN1 1441.04 –

(8,0) BN2 1457.87 –

(8,0) BN3 – –

(8,0) BN4 1444.19 1233.36

(8,0) BN5 1457.96 –

(9,0) 1447.61 1249.69

(9,0) BN1 1450.23 1229.75

(9,0) BN2 1450.23 1230.34

(9,0) BN3 1450.72 1230.14

(9,0) BN4 1450.88 1229.58

(9,0) BN5 – 1230.37

(10,0) – 1232.85

(10,0) BN1 – 1233.04

(10,0) BN2 – 1233.05

(10,0) BN3 – 1232.71

(10,0) BN4 – 1232.92

(10,0) BN5 – 1233.38

BN-pair energy substitution to zigzag nanotubes at concentration 
higher than 1% have been analyzed (Table 2).

4. Conclusions
In this theoretical work, it has been analyzed the geometry 

and enthalpy of formation of zig-zag nanotubes and representative 
fragments of the join region in nanojunctions, through quantum 
chemical methods.

The geometry of carbon nanotubes has not yet experimentally 
measured. AM1 results to tubular structures are in according to 
currently accepted bond lengths in the order of 1.43 Å (average 
error of 0.04 Å). This result show that AM1 semiempirical method 
is adequate to geometry calculations to nanotube, nanojunctions, 
and model molecules analyzed in this work.

After our calculations we can conclude that: (i) the BN-pair 
substitution decrease the heat of formation of small diameter tubes. 
The relative positions of boron and nitrogen in the tubular wall are 
not important to the results of formation energy; (ii) the heat of 
formation to the fragments depends on the BN-pair localization in 
the non-hexagonal rings. Non-carbon atoms need to be closer, and 
the energy decreases with the inclusion of more BN-pairs.
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