
versão impressa ISSN 0101-7438 / versão online ISSN 1678-5142

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 227

PRACTICAL COMPARISON OF APPROXIMATION ALGORITHMS FOR
SCHEDULING PROBLEMS

Eduardo Candido Xavier *
Flávio K. Miyazawa
Instituto de Computação
Universidade Estadual de Campinas (UNICAMP)
Campinas – SP
para@ic.unicamp.br
fkm@ic.unicamp.br

* Corresponding author / autor para quem as correspondências devem ser encaminhadas

Recebido em 07/2003; aceito em 06/2004
Received July 2003; accepted June 2004

Abstract

In this paper we consider an experimental study of approximation algorithms for scheduling problems
in parallel machines minimizing the average weighted completion time. We implemented
approximation algorithms for the following problems: P|rj|ΣCj, P||ΣwjCj, P|rj|ΣwjCj, R||ΣwjCj and
R|rj|ΣwjCj. We generated more than 1000 tests over more than 200 different instances and present some
practical aspects of the implemented algorithms. We also made an experimental comparison on two
lower bounds based on the formulations used by the algorithms. The first one is a semidefinite
formulation for the problem R||ΣwjCj and the other one is a linear formulation for the problem
R|rj|ΣwjCj. For all tests, the algorithms obtained very good results. We notice that algorithms using
more refined techniques, when compared to algorithms with simple strategies, do not necessary lead to
better results. We also present two heuristics, based on approximation algorithms, that generate
solutions with better quality in almost all instances considered.

Keywords: approximation algorithms; practical analysis; scheduling.

Resumo

Neste artigo consideramos um estudo experimental de alguns algoritmos aproximados para problemas
de escalonamento em máquinas paralelas onde se deve minimizar o tempo de término ponderado das
tarefas. Foram implementados algoritmos aproximados para os seguintes problemas: P|rj|ΣCj, P||ΣwjCj,
P|rj|ΣwjCj, R||ΣwjCj and R|rj|ΣwjC j . Foram gerados mais de 1000 testes sobre mais de 200 instâncias
diferentes e com isso apresentamos aspectos práticos dos algoritmos implementados. Também fizemos
um estudo experimental sobre dois limitantes inferiores baseados em formulações usadas pelos
algoritmos. A primeira é uma formulação semidefinida para o problema R||ΣwjCj e a outra é uma
formulação linear para o problema R|rj|ΣwjCj. Em todos os testes os algoritmos obtiveram resultados
muito bons. Notamos que algoritmos usando técnicas mais refinadas, quando comparados com
algoritmos que usam estratégias simples, não necessariamente geram soluções melhores. Também
apresentamos duas heurísticas, baseadas nos algoritmos aproximados, que geram soluções de melhor
qualidade em quase todas as instâncias consideradas.

Palavras-chave: algoritmos de aproximação; análise prática; escalonamento.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296617482?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

228 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

1. Introduction

In this paper, we consider an experimental study of approximation algorithms for scheduling
problems. For all problems considered, a set of jobs must be scheduled, under some
restrictions, in a set of machines minimizing the average weighted completion time. All these
problems are NP-hard [S97] and we consider polynomial time approximation algorithms. We
have implemented some approximation algorithms to schedule jobs on parallel machines and
study their computational performance.

Given a polynomial time algorithm A and an instance I for a minimization problem, we
denote by A(I) the value of the solution returned by A when applied to the instance I, and we
denote by OPT(I) the value of an optimal solution to I. We say that an algorithm A has an
approximation factor α, or is an α-approximation, if A(I)/OPT(I) ≤ α, for all instances I.
When the algorithm A is probabilistic and the inequality E[A(I)]/OPT(I) ≤ α is valid, where
E[A(I)] is the expected value of the solution returned by algorithm, we say that A is a
probabilistic α-approximation algorithm.

Given a polynomial time algorithm Aε , for fixed ε > 0, and an instance I for some problem
P, we say that Aε is a polynomial time approximation scheme (PTAS) for a minimization
problem if for any ε>0 and any instance I we have Aε(I)≤(1+ε)OPT(I). If the algorithm is
also polynomial time in 1/ε we say that Aε is a fully polynomial time approximation scheme
(FPTAS).

For all problems considered, we denote by J = {1,…,n} the set of jobs and M={1,…m} the set
of machines. For the case where the machines are unrelated, we denote by pij the processing
time of the job j when executed on machine i. When all machines are identical, we denote
this processing time by pj. For some problems, there is a release date rj, for each job j, which
is a time where the job j cannot be scheduled before. The value wj is the importance weight
of finishing the job j earlier and the completion time of the job is denoted by Cj.

Since we consider several scheduling problems, we use the notation α|β|γ, introduced by
Graham, Lawler, Lenstra & Rinnooy Kan [GLLR79], to denote each problem. In the
following, we detail the terms used in this paper under this notation. The term α corresponds
to the machine environment, P for identical machines or R for unrelated machines. The term
β tell us some restrictions about jobs, if they have release dates, rj , if the schedule is
preemptive (i.e., jobs can be interrupted and continued later), pmtn, etc. Finally the term γ
indicates the objective function we want to minimize.

All problems we consider are non-preemptive, although algorithms for preemptive problems
are used to find intermediate solutions.

There are many papers describing approximation algorithms for scheduling problems, but
few consider practical performance analysis. In [HS01], Hepner & Stein presented an
implementation of a PTAS for the problem 1|rj|ΣCj. Savelsbergh et al. [SUW98] also
presented an experimental study of approximation algorithms for the problem 1|rj|ΣwjCj and
a variant of this problem when the average weighted flow time is minimized, i.e. problem
1|rj|Σwj(Cj–rj). Recently, Vredeveld & Hurkens [VH02] presented an experimental
comparison of approximation algorithms for the problem R||ΣwjCj and some dominance
relations between linear and quadratic formulations for this problem. Baev et al. [BME02]
presented a practical comparison for the problem P|prec|ΣwjCj where the jobs have

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 229

precedence constraints. They also show how algorithms for this problem can be used in the
scheduling phase in profile-based program compilation. They used some instances extracted
from the SPECint95 compiler benchmark and showed that the best solutions are within 5.7%
of optimal.

We implemented algorithms for the following problems: P|rj|ΣCj, P||ΣwjCj, P|rj|ΣwjCj,
R||ΣwjCj and R|rj|ΣwjCj. For the problem P|rj|ΣCj we implemented the algorithm developed
by Phillips et al. [PSW98]. This algorithm is combinatorial and is based on a heuristic for the
preemptive case. For the problem P||ΣwjCj we implemented the algorithm of Kawaguchi &
Kyan [KK86], that is based on a list scheduling heuristic. For the problems P|rj|ΣwjCj and
R|rj|ΣwjCj we implemented algorithms of Schulz & Skutella [SS02]. The algorithm for the
first problem is combinatorial and the algorithm for the second problem is based on a
solution of a linear program. Both algorithms are probabilistic. Finally, for the problem
R||ΣwjCj we implemented the algorithm developed by Skutella [S98] that is based on a
solution of a semidefinite program.

We chose to implement these algorithms because they are well known approximation
algorithms, with good time complexity and good approximation factors. Also, the set of
algorithms chosen, treat problems that have common cases and this permits to compare them.
Some problems we consider are particular cases of others. So, implemented algorithms for
more general problems are also compared with algorithms for more restricted problems.
There are other approximation algorithms for some of these problems like the polynomial
time approximation schemes for parallel machines presented by Afrati et al. [Afrati et al.,
1999]. These schemes appear to have only theoretical interest, since their running times are
given by high degree polynomials. In fact, most of these schemes require an enumeration
step that is intolerable in practice.

To our knowledge, this paper is the first to consider a practical comparison of approximation
algorithms for scheduling problems with parallel machines and release dates (problems
P|rj|ΣCj and R|rj|ΣwjCj). We also consider a practical study of two formulations that provide
lower bounds for the problem R||ΣwjCj. Notice that Vredeveld & Hurkens [VH02], also
studied these formulations presenting dominance relations among them, but they considered
an exponential size linear formulation. In this paper we consider the same formulation with a
small modification which leads to a formulation of polynomial size.

All algorithms are implemented in C. For the algorithms that require solutions of linear or
quadratic programs we use the Xpress-MP library, of Dash Optimization [D02]. Based on the
practical results, we propose a simple modification on the algorithm presented by Schulz &
Skutella [SS02] for the problem R|rj|ΣwjCj and on the algorithm of Kawaguchi & Kyan
[KK86]. In the tests we considered, we show that these heuristics obtain solutions with better
quality.

The paper is organized as follows. In section 2 we describe the implemented algorithms and
give some insight of how they work. In section 3 we compare two lower bounds for the
problem R||ΣwjCj with different number of machines. In section 4 we present the
computational results of the implemented algorithms.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

230 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

2. Algorithms

In this section we describe the algorithms and the way they are implemented. We do not
show how their approximation factors are obtained. The interested reader can find more
details about the approximation results of these algorithms in the references.

2.1 Algorithm PSW for the problem P|rj|ΣCj

The algorithm of this section, which we denote by PSW, was developed by Phillips et al.
[PSW98]. The algorithm PSW finds a solution in two phases. In the first phase, it obtains an
approximate solution for the preemptive version of this problem and in the second phase it
uses an algorithm that converts the preemptive schedule to a non-preemptive one. The
preemptive version of this problem is already NP-hard, and a solution is generated by a
2-approximation algorithm. The algorithm that converts the preemptive schedule to a
non-preemptive one, produces a new schedule that is at most three times worse than the
preemptive schedule. This leads to a 6-approximation algorithm for the problem P|rj|ΣCj
(see [PSW98]).

The algorithm for the preemptive schedule is based on the following idea: at any time,
execute m jobs with the shortest remaining amount of work. The time complexity of the
implemented algorithm, which we denote by Preemptive, is O(n(logn + m)).

Once this preemptive schedule is generated, the algorithm generates a list Mi , for each
machine i, of jobs ordered by their preemptive completion times. For each machine i, the
algorithm PSW generates a non-preemptive schedule with jobs in the order specified by Mi ,
under the condition that no job starts before its release date. The time complexity of the
implemented algorithm is O(nlogn +m) plus the time complexity to generate the preemptive
schedule.

2.2 Algorithm KK for the problem P||ΣwjCj

The algorithm of this section is an extension of the optimal algorithm for the problem
1||ΣwjCj. The problem 1||ΣwjCj can be solved optimally with the following algorithm
developed by Smith [S56]: order jobs in non-decreasing order of pj/wj and schedule the jobs
in this order. The approximation algorithm for the parallel machine case is an extension:
order jobs in non-decreasing order of pj/wj and schedule jobs in this order every time a
machine becomes free. Kawaguchi & Kyan [KK86] have shown that this algorithm generates
schedules with a factor of (2 +1)/2 of the optimal. The implemented algorithm, which we
denote by KK, has time complexity O(nlogn + nlogm).

2.3 Algorithm SZSK for the problem P|rj|ΣwjCj

The algorithm SZSK is a probabilistic 2-approximation algorithm and was developed by
Schulz & Skutella [SS02]. For each instance, the algorithm SZSK is executed 100 times and
the best generated schedule is returned. In our experiments, we observed that more
executions leads to very small improvements. The algorithm is related to the linear
formulation for a single machine problem presented below. We have variables yjt, for each
job j and for each time interval (t, t+1] that a job can run. We also have variables Cj, that

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 231

represent the finishing time of job j. The constant T is an upper bound for the completion
time of any job. The relaxed linear program, denoted by LPS, is the following:

 Min
j J∈
∑ wjCj

(LPS) T
t rj=∑ yjt = pj ∀ j ∈ J,

j J∈∑ yjt ≤ 1 t = 0,…,T,

 Cj = pj /2 + 1/pj
T

t rj=
∑ yjt (t+1/2) ∀ j ∈ J,

 yjt = 0 ∀ j ∈ J and t = 0,...,rj -1,
 yjt ≥ 0 ∀ j ∈ J and t = rj ,…,T.

The linear program (LPS) can be solved using a combinatorial algorithm [SS02]. Suppose
we have only one machine that is m times faster than the machines considered. Consider the
processing times of the jobs to be m times smaller. Construct a preemptive schedule for this
single machine with the new processing times using the following rule: at any time, generate
a preemptive schedule on the new single machine by scheduling, among the available jobs,
the one with the smallest ratio pj /wj . The resulting schedule corresponds to an optimal
solution for the formulation. Each variable yjt receives value 1 if job j is processed during
time [t-1,t) in the generated schedule.

Notice that the algorithm Preemptive is easily modified to solve this formulation and can be
implemented to run in O(nlogn). After this, we construct a schedule based on probabilistic
assignments. We choose for each job j, a variable αj uniformly distributed from the interval
[0,1]. Then, we consider the probabilistic finishing time, i.e., the first time in the schedule
where the total amount of work done is pjαj. We denote this value by Cj(αj). The algorithm
SZSK attributes each job j uniformly and independently to one of the m machines. For each
machine the algorithm schedules jobs in nondecreasing order of values Cj(αj). The time
complexity of the algorithm SZSK is O(nlogn + m).

2.4 Algorithm SK for the problem R||∑wjCj

The algorithm of this section, which we denote by SK, is a probabilistic 2-approximation
algorithm based on a semidefinite formulation. The algorithm was presented by Skutella
[S98] and uses a quadratic program. This program has binary variables aij, such that a job j
is to be processed in machine i, if and only if, aij = 1, and variables Cj that represent the
finishing time of job j. We also have a function 〈i that specifies the execution order of a job
pair j,k in machine i. The job j must be processed before k in machine i if wj/pij ≥ wk/pik .
The quadratic program is the following:

 Min
j J∈∑ wjCj

 Cj =
1

m
i=∑ aij(pij+

k j〈
∑ ai kpi k) ∀ j ∈ J

 aij ∈ {0,1} ∀ i ∈ M ∀ j ∈ J.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

232 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

Skutella have shown that this formulation is equivalent to the following quadratic
formulation:

 Min cTa + ½ aTDa

 ∑=

m

i 1
aij = 1 ∀ j ∈ J,

 a ≥ 0,

where a ∈ℜ mn is a vector of all variables aij lexicographically ordered with respect to the
natural order 1,2,…,m of the machines, and then for each machine i, the jobs are ordered
according to 〈i. The vector c ∈ℜ mn is given by cij = wjpij and D = (d(ij)(hk)) is a symmetric
(mn × mn)-matrix given by: (i) 0 if i ≠ j or j = k; (ii) wj pik if i = h and k 〈i j; (iii) wkpij
if i = h and j 〈i k.

This problem can be solved in polynomial time if, and only if, matrix D is positive
semidefinite. This motivates the construction of a new formulation, which we call QSP:

 Min ½ cTa + ½ aT(D+diag(c))a
(QSP)

1

m
i=∑ aij = 1 ∀ j ∈ J,

 a ≥ 0,

where (D +diag(c)) is positive semidefinite and diag(c) is a diagonal matrix with the
vector c.

Given a solution for QSP, each job j is assigned to machine i with probability aij and in
each machine i the execution order is given by the function 〈i. In our implementation, this
assignment is performed 100 times and the algorithm returns the best generated schedule.
For the special case of identical parallel machines, the optimal solution of the above
formulation is given by aij = 1/m. In this case, we implemented a combinatorial algorithm
attributing each job to a machine with probability 1/m. This combinatorial algorithm is
denoted by SK-C. The time complexity of the algorithm is O(nlogn + m) plus the time
complexity to solve the semidefinite program QSP.

2.5 Algorithm SZSK2 for R|rj|∑wjCj

The algorithm for the problem R|rj|ΣwjCj is also a probabilistic algorithm, and was presented
by Schulz and Skutella [SS02]. The algorithm, denoted by SZSK2, is based on the solution
of a linear formulation and is a generalization of the algorithm SZSK. The formulation uses
an upper bound T on the completion time of any job and uses variables Cj , representing the
finishing time of each job j, and variables yijt that indicates if job j is being executed in
machine i at time interval (t,t+1] for each time interval. The formulation has exponential size,
but it can be made of polynomial size with a small loss in the objective function, using
interval times that increase exponentially in their size. In this case, we have binary variables
yijl indicating the execution of job j in machine i at interval Il = ((1+β)l-1,(1+β)l]. The size of
an interval Il is denoted by |Il|. For simplicity, we denote (1+β)l by βl. The relaxed
formulation, denoted by LPSS, is the following:

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 233

 Min
1

n
j=∑ wjCj

(LPSS)

1
m
i=∑ 0

L
l=∑ (yijl|Il|)/pij = 1 ∀j ∈ J,

j J∈∑ yijl ≤ 1 ∀i ∈ M and l=0,…,L,

 Cj =
1

m
i=∑ 0

L
l=∑ ((yijl|Il|/pij)βl-1 + ½ yijl|Il|) ∀ j ∈ L,

 yijl = 0 ∀i ∈ M, ∀j ∈ J, βl ≤ rij -1,
 yijl ≥ 0 ∀i ∈ M, ∀j ∈ J, l=0,…,L.

The algorithm solves the linear program LPSS and assign each job j to a machine-interval
pair (i, Il) at random with probability (yijl |Il |)/pij. The jobs assigned to a machine i are
scheduled in non-decreasing order of intervals assignment. If there is more than one job
assigned to the same pair (i, Il), the algorithm schedules them in the order of their values j.
For a given ε>0, setting β =ε /2 this algorithm has a probabilistic (2+ε)-approximation factor.
As in the algorithm SK, the probabilistic assignment step is executed 100 times and the best
generated schedule is returned. The time complexity of this algorithm is O(nmlog(1+ε)T +
nlogn) plus the time complexity to solve the linear program LPSS. Since this algorithm is
executed with different values of ε, we denote by SZSK2ε the algorithm SZSK2 with the given
value of ε. That is, the algorithm SZSK20.1 is the algorithm SZSK2 with value of ε = 0.1.

2.6 Two Heuristic Algorithms

In this section we present a new algorithm denoted by HE1 for the problem R|rj|ΣwjCj. It is a
simple modification of the algorithm SZSK2. We also present an extended heuristic of the
algorithm KK for the problem P|rj|ΣwjCj, denoted by HE2.

In [HP83], Hariri and Potts presented a simple heuristic algorithm for problem 1|rj|ΣwjCj
used to find an upper bound for a branch and bound algorithm. The algorithm is as follows:

1. Let S be the set of all (unsequenced) jobs, H=0 and k=0 and find T=minj∈S{rj }.
2. Let the set S´ = { j | j∈S, rj ≤ T} and find a job i∈S´ such that wi/pi = maxj∈S´´{wj /pj }.
3. Let k = k+1 and sequence job i at position k; let T = T +pi , H = H+wiT and S = S-{i}.
4. If S=∅, then stop with the sequence generated having H as its cost. Otherwise let

T=max{T, minj∈S{rj }} and go to step 2.

In the algorithm SZSK2, the jobs are assigned to pairs machine-interval and them executed
in each machine by the order of interval assignments. In the algorithm HE1, the assignment
step is performed as in the algorithm SZSK2, but the jobs assigned to a machine i are
scheduled using the algorithm of Hariri and Potts.

The algorithm HE2 is an extended heuristic of algorithm KK: every time a machine becomes
free, execute among the available jobs, the one with smallest ratio pj /wj . Notice that without
the presence of release dates, this algorithm is essentially algorithm KK.

Notice that we cannot guarantee approximation factors for these two heuristics. Since we changed
the way the schedules are generated, some properties of the schedule are lost. These properties are
essential in the analysis of their approximation factor. To prove that these heuristics have
approximation factors is not a trivial step and an entire paper can be devoted to this subject.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

234 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

3. Study of Two Lower Bounds

In this section we present an experimental comparison of two formulations that provide
lower bounds for the implemented algorithms. The first formulation is the semidefinite
formulation QSP used in the algorithm SK, and the second is a linear formulation LPSS used
in the algorithm SZSK2. For problems that consider jobs with release dates we used the
lower bounds provided by the linear program LPSS. For problems without release dates we
performed a computational study to determine which formulation gives lower bounds with
better quality. We notice that Vredeveld & Hurkens [VH02] proved that the formulation
LPSS with unit time interval gives better lower bounds than the formulation QSP. But in this
case, the formulation LPSS has exponential size and the time required to solve the instances
may be very high. We performed tests with LPSSε and formulation QSP for ε∈{0.3,0.1}. In
this case, where ε>0 in the formulation LPSS, it is not true that LPSS gives better bounds.
For the most generic problem R||ΣwjCj, we consider three cases: R2||ΣwjCj, R5||ΣwjCj and
R7||ΣwjCj. We also tried to study the case R10||ΣwjCj but we could not solve integer
instances of this problem in a reasonable amount of time (two hours). We performed five
tests with 100 jobs for each case. The processing times of jobs were taken uniformly from
the interval [1,100] and wj was uniformly chosen from the interval [1,10]. We notice that the
quality of the lower bound increases using ε=0.1 when compared with the solutions with
ε=0.3, but QSP provides better lower bounds. We tried to solve the instances with the
formulation LPSS with smaller values of ε, but when ε→0, the number of time intervals
increases in such a way that is better to consider unit time intervals. The use of the ε>0 in the
formulation LPSS is justified since we are comparing lower bounds obtained in polynomial
time. We present the results obtained in at most two hours.

The lower bounds of these two formulations are compared with the value of an integer
solution, which we obtained from the integral solutions of program QSP. The results of these
tests can be seen in Table 1.

Table 1 – Comparison between formulations QSP and LPSS.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 235

We also performed computational tests to compare the lower bounds for the problem
P||ΣwjCj. In this case, we could solve only instances up to 20 jobs with 2 machines, and 15
jobs with 5 machines. The next theorem, proved by Skutella [S98], helps us to understand
the hardness to obtain integer solutions for instances of this problem.

Theorem 3.1 For instances of Pm||ΣwjCj , an optimal vector solution a of the quadratic
program QSP is ai j=1/m for all i , j. This optimum solution is unique if all ratios pj /wj , are
different and positive.

In all instances, the solution of the quadratic program is exactly the one provided in the
theorem. Since the Xpress solver finds the optimal integer solution using a branch and bound
tree, the number of nodes is exponential. We could not solve these kind of problems even if
we use an upper bound provided by our approximation algorithms. We could solve only
instances with 20 jobs for the problem P2||ΣwjCj and instances with 15 jobs for the problem
P5||ΣwjCj. The results of our tests are presented in Table 2.

Table 2 – Comparison between formulations QSP and LPSS.

In all generated tests, the lower bounds provided by the formulation QSP are better than the
lower bounds provided by the formulation LPSS. Also notice that when ε=0.1, the difference
is not so large. We do not use smaller values of ε since the increase in the computational time
to solve such formulations is high (more than two hours of computational processing).

4. Practical Analysis of the Implemented Algorithms

In this section we present the results of our tests. Since some problems are particular cases of
others, we performed several different tests. Each subsection is reserved for one case. Before
presenting the computational results for each problem, we describe the procedure to generate
each test. For each test, we generate 100 jobs with processing times uniformly chosen from
the interval [1,100] and wj chosen from the interval [1,10]. When the problem require release
dates, the data is generated using the same approach used by Hariri & Potts [HP83]. The
release dates are uniformly chosen from the interval [0,E[p]nγ]. This simulates the arrival of
n jobs from a stable queue according to a Poisson process with parameter γ [HS01]. The time

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

236 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

in all tables is given in seconds. The ratio in the table corresponds to V/LB, where V is the
value found by the algorithm and LB is a lower bound for the optimal solution. We
performed tests with 2, 5, 7 and 10 machines. As was done in [HS01], we generated five
different instances for each test problem, so the results in each line of the tables corresponds
to the mean of five tests. The algorithms were tested on an AMD Athlon 1.2GHz with 800
MB of RAM under Linux 2.4.2-2 kernel.

4.1 Tests for the problem P||ΣwjCj

In this problem we used the algorithms KK, SZSK, SK-C, SZSK2 and HE1. We do not use
the algorithm HE2 here because without the presence of release dates this algorithm
generates the same solutions of the algorithm KK. The Table 3 presents the results of these
tests. The LB column corresponds to the optimal fractional solution of the quadratic
formulation QSP.

The algorithms obtained very good results for all tested instances. The algorithm KK is the
most simple and obtained the best results generating solutions with values less than 0.7% of
the lower bounds, besides the other algorithms use more advanced ideas. As we can see, the
ratio grows when we use more machines. For algorithm KK the increase is very small. For
the other ones the growth is more representative. We believe that with more jobs per
machine the ratios obtained tends to decrease. This can be seen in graphics 1, 2, 3 and 4. We
will describe more about this behavior in the next subsection.

Table 3 – Comparison for the problem P||ΣwjCj.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 237

4.2 Tests for the problem P|rj|ΣCj

To solve this problem we used the algorithms PSW, SZSK, SZSK2, HE1 and HE2. Although
the algorithm SZSK is the combinatorial version of the algorithm SZSK2 for identical
machines, we also included the algorithm SZSK2 in the comparisons. The algorithms SZSK2
and HE1 were executed with parameter ε=0.3 and ε=0.1 . We perform different tests using
different values of γ to generate the release dates. We used γ=0.2 , γ=0.4 and γ=0.6 . The LB
column has the values of the optimal solutions of the linear program LPSS, with ε=0.1 . It is
interesting to notice that this lower bound may be far away from the optimum, since the
value of an optimal integer solution for the program LPSS is already a lower bound for the
original problem P|rj|ΣCj. The Tables 4, 5 and 6 present the results obtained for these tests.

Table 4 – Comparison for the problem P|rj|ΣCj with γ =0.2.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

238 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

Table 5 – Comparison for the problem P|rj|ΣCj with γ = 0.4.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 239

Table 6 – Comparison for the problem P|rj|ΣCj with γ = 0.6.

The algorithm HE2 generates the best schedules in all tests. Notice that the algorithm HE1
obtain better results when we have few machines and small values of γ. The algorithms PSW
and HE1 are the second best in all cases. For all tests, the algorithm PSW generates solutions
that are at most 12% of the lower bound although its approximation factor is 6. The
algorithm SZSK2 obtained better results than the algorithm SZSK for all cases, except when
we have big values of γ and more machines, as we can see in Table 6. Analyzing the
fractional solution of the linear program used by the algorithm SZSK2, we observed that the
solver obtained solutions where almost all variables for some machines have null values.
Consequently, the generated schedule have some machines that are almost unused. The
algorithm SZSK is the combinatorial version of SZSK2, but the jobs are attributed to all
machines uniformly. This also explains why the algorithm HE1 when compared to the
algorithm PSW, get better results using two machines than 7 and 10 machines. Based on this
observation we try to solve the linear program LPSS under the algorithm HE1 with an
increase in the number of jobs per machine. Notice that the algorithm HE1 is based on the
algorithm SZSK2 and we can expect the same behavior in both algorithms. We performed

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

240 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

several tests that can be seen in Tables 7, 8, 9 and 10. The interesting point to note is that
when we get a ratio of approximately 60 jobs per machine, the algorithm HE1 produces
better schedules. The solution of the linear program has a better attribution when this
happens. We also present some graphics (Figures 1, 2, 3 and 4) that summarize these results.
As we mentioned in the previous subsection, the algorithms get better results when we use
more jobs per machine. This can be easily verified in these graphics. But it is important to
note that when we compare the execution time, the algorithm PSW have a much better
performance since it is a combinatorial algorithm, and the algorithm HE1 have to solve large
linear programs. Notice that we could not solve all instances of the problem with a given
ε=0.3 in algorithm HE1. For example, in the tests with ten machines we used ε=0.8 and the
time to solve the corresponding linear program LPSS is very high. With such values, the
lower bound provided by the linear program becomes worse and the ratios obtained for these
tests are worse than the ones for the previous tests. We believe that the solutions obtained are
closer to the optimum and better ratios could be obtained with better lower bounds.

Table 7 – Comparison between PSW and HE1 with 2 machines.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 241

Table 8 – Comparison between PSW and HE1 with 5 machines.

Table 9 – Comparison between PSW and HE1 with 7 machines.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

242 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

Table 10 – Comparison between PSW and HE1 with 10 machines.

Figure 1 – Solution quality of the algorithms PSW and HE1 for 2 machines.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 243

Figure 2 – Solution quality of the algorithms PSW and HE1 for 5 machines.

Figure 3 – Solution quality of the algorithms PSW and HE1 for 7 machines.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

244 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

Figure 4 – Solution quality of the algorithms PSW and HE1 for 10 machines.

4.3 Tests for the problem P|rj|ΣwjCj

For the problem P|rj|ΣwjC we used the algorithms SZSK, SZSK2 and HE1. Remember that
the algorithm SZSK is the combinatorial version of the algorithm SZSK2 for identical
machines. The algorithms SZSK2 and HE1 were executed with parameter ε∈{0.1, 0.3} and
the tests were produced with release dates generated with parameter γ∈{0.2, 0.4, 0.6}. The
Tables 11, 12 and 13 present the results obtained for these tests. The lower bounds (LB) were
obtained from the optimal fractional solutions of the linear program of the algorithm SZSK2
with ε=0.1. Remember that this lower bound may be far away from the optimum, since the
value of an optimal integer solution for the program LPSS is already a lower bound for the
original problem P|rj|ΣwjC.

The behavior of the algorithms is essentially the same in all tests, except that algorithm
SZSK has a bad quality performance in the tests with two and five machines. Algorithm
SZSK have a worse quality performance than algorithm SZSK2, but it is much faster than it.
The algorithm HE1 is the one that produces the best schedules.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 245

Table 11 – Comparison for the problem P|rj|ΣwjCj with γ = 0.2.

Table 12 – Comparison for the problem P|rj|ΣwjCj with γ = 0.4.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

246 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

Table 13 – Comparison for the problem P|rj|ΣwjCj with γ = 0.6.

4.4 Tests for the problem R||ΣwjCj

In this problem we use the algorithms SK, SZSK2 and HE1. For the tests in Table 14 we
chose pij uniformly from the interval [1,100]. In the tests presented in Table 15 the
processing times were chosen from different intervals to give the idea that we have machines
with different speeds. Using two machines the processing times were chosen from the
interval [1,50] for the first machine and from [50,100] for the second machine. Using five
machines the processing times were chosen from intervals, [1,20],[20,40],…,[80,100]. Using
seven machines the processing times were chosen from intervals, [1,15],[15,30],…,[90,100].
In the tests with ten machines, the processing times were chosen from intervals
[1,10],[10,20],…,[90,100]. We use ε=0.1 and ε=0.3 in the algorithms SZSK2 and HE1. The
LB column corresponds to the fractional solution found by the quadratic formulation QSP of
the algorithm SK.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 247

Table 14 – Comparison for problem R||ΣwjCj.

Table 15 – Comparison for problem R||ΣwjCj.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

248 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

We also present another set of tests based on the approach of Vredeveld & Hurkens [VH02].
The instances of the test in Table 16 were generated to give a machine correlation different
from the approach described for the tests in Table 15. The instances were generated with
each processing time pij taken uniformly in [α i ,α i+10] where αi is an integer from the
uniform distribution in [1,100]. This approach is called Machine Correlation. The instances
of the tests in Table 17 were made to give the idea that a job have two favorite machines to
execute. For each job j, two machines ij1 and ij2 were randomly chosen, where the processing
time of j in these two machines is uniformly chosen in [β j ,β j+4], where β j is an integer from
the uniform distribution in [15,25]. The processing times of j in the other machines were
drawn from the uniform distribution in [60,90]. This approach is called Favorite Machines.

Table 16 – Instance set Machine Correlation for the problem R||ΣwjCj.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 249

Table 17 – Instance set Favorite Machines for the problem R||ΣwjCj.

As we can see, all algorithms produces schedules very close to the optimal. For all tests, the
algorithms produced solutions with values that are at most 3% of the lower bound except for
the algorithm SK that generated a solution with value 7% of the lower bound. In general, the
algorithm HE1 generates better schedules. Another point, is that although the semidefinite
program QSP generates fractional solutions that are closer to the optimal, the algorithm SK
generates the worst schedules even if compared with the algorithm SZSK20.3.

4.5 Comparison for the problem R|rj|ΣwjCj

For the problem R|rj |ΣwjCj, we used the algorithms SZSK2 and HE1. The results for these
tests are presented in Table 18. The processing times were uniformly chosen from the
interval [1,100] and the release dates were generated with γ=0.2. The LB is the optimal
fractional solution of the linear program LPSS with ε=0.1. We emphasize that this lower
bound may be far away from the optimal solution, since an optimal integer solution to LPSS
is already a relaxation for the problem R|rj |ΣwjCj.

We also made another set of tests with instances of type Machine Correlation and instances
of type Favorite Machines. The tests can be seen in Tables 19 and 20. The algorithm HE1
obtained the best results in all tests. The hardest instances are for the set Machine
Correlation (Table 19), where the algorithm HE1 obtained schedules that are at most 10% of
the lower bound and the algorithm SZSK2 obtained schedules that are at most 15% from the
lower bound.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

250 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

Table 18 – Comparisons for the problem R|rj|ΣwjCj.

Table 19 – Instance set Machine Correlation for the problem R|rj|ΣwjCj.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 251

Table 20 – Instance set Favorite Machines for the problem R|rj|ΣwjCj.

5. Conclusion

We present computational results for some approximation algorithms for scheduling
problems on parallel machines. As expected, the practical solutions yield ratios that are much
better than the approximation factors of the presented algorithms. We also notice that
algorithms with more refined techniques do not necessarily lead to better results. In fact, for
the problems P||ΣwjCj and P|rj |ΣCj algorithms PSW and KK obtained the best results even
when compared to algorithms with advanced ideas. We also notice that the solutions
provided by the algorithm SK is worse than the solutions provided by the algorithm SZSK2
despite the semidefinite program generates fractional solutions with better quality. Finally,
we present two heuristics that get better results in almost all cases considered, although for
problem P|rj |ΣCj the processing time of algorithm HE1 is much bigger than the processing
time of algorithm PSW.

Acknowledgements

This research was partially supported by FAPESP project 01/04412-4, CAPES and CNPq
(Proc. 664107/97-4, 470608/01-3, 464114/00-4, 478818/03-3, 300301/98-7).

References

[Afrati et al., 1999] Afrati, F.; Bampis, E.; Chekuri, C.; Karger, D.; Kenyon, C.; Khanna, S.;
Milis, I.; Queyranne, M.; Skutella, M.; Sviridenko, M. & Stein, C. (1999).
Approximation schemes for minimizing average weighted completion time with release
dates. Proceedings of the 40th Annual IEEE Symposium on Foundations of Computer
Science (FOCS’99), 32-44.

[BME02] Baev, I.D.; Meleis, W.M. & Eichenberger, A. (2002). An Experimental Study of
Algorithms for Weighted Completion Time Scheduling. Algorithmica, 33, 34-51.

Xavier & Miyazawa – Practical comparison of approximation algorithms for scheduling problems

252 Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004

[D02] Dash Optimization (2002). Xpress-MP Release 13. Xpress-MP Manual.

[GLLR79] Graham, E.L.; Lawler, E.L.; Lenstra, J.K. & Rinnooy Kan, A.H.G. (1979).
Optimization and approximation in deterministic sequencing and scheduling: a survey.
Annals of Discrete Mathematics, 5, 287-326.

[HP83] Hariri, A.M.A. & Potts, C.N. (1983). An algorithm for single machine sequencing
with release dates to minimize total weighted completion time. Discrete Applied
Mathmatics, 5, 99-109.

[HS01] Hepner, C. & Stein, C. (2001). Implementation of a PTAS for Scheduling with
Release Dates. In: 3rd Workshop on Algorithm Engineering and Experiments (ALENEX
2001). Lecture Notes in Computer Sciense, 2513, 202-215.

[KK86] Kawaguchi, T. & Kyan, S. (1986). Worst Case Bound of an LRF Schedule for the
Mean Weighted FlowTime Problem. SIAM J. Computing, 15(4), 1119-1129.

[PSW98] Phillips, C.; Stein, C. & Wein, J. (1998). Minimizing Average Completion time in
the Presence of Release Dates. Mathematical Programming B, 82, 199-223.

[SUW98] Savelsbergh, M.W.P.; Uma, R.N. & Wein, J.M. (1998). An experimental study of
LP-based approximation algorithms for scheduling problems. Proceedings of the 9th
Annual ACM/SIAM Symposium on Discrete Algorithms, 453-462.

[SS02] Schulz, A.S. & Skutella, M. (2002). Scheduling Unrelated Machines by Randomized
Rounding. SIAM Journal on Discrete Mathematics, 15(4), 450-469.

[S98] Skutella, M. (1998). Semidefinite Relaxations for Parallel Machine Scheduling.
Proceedings of the 39th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’98), 472-481.

[S97] Sipser, M. (1997). Introduction to the Theory of Computation. PWS Publishing
Company.

[S56] Smith, W.E. (1956). Various optimizers for single-stage production. Naval Res. Logist.
Quart., 3, 58-66.

[VH02] Vredeveld, T. & Hurkens, C. (2002). Experimental Comparison of Approximation
Algorithms for Scheduling Unrelated Paralell Machines. INFORMS Journal on
Computing, 14(2), 175-189.

