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Abstract 
 
In this paper we consider an experimental study of approximation algorithms for scheduling problems 
in parallel machines minimizing the average weighted completion time. We implemented 
approximation algorithms for the following problems: P|rj|ΣCj, P||ΣwjCj, P|rj|ΣwjCj, R||ΣwjCj and 
R|rj|ΣwjCj. We generated more than 1000 tests over more than 200 different instances and present some 
practical aspects of the implemented algorithms. We also made an experimental comparison on two 
lower bounds based on the formulations used by the algorithms. The first one is a semidefinite 
formulation for the problem R||ΣwjCj and the other one is a linear formulation for the problem 
R|rj|ΣwjCj. For all tests, the algorithms obtained very good results. We notice that algorithms using 
more refined techniques, when compared to algorithms with simple strategies, do not necessary lead to 
better results. We also present two heuristics, based on approximation algorithms, that generate 
solutions with better quality in almost all instances considered. 
 
Keywords:  approximation algorithms; practical analysis; scheduling. 
 
 

Resumo 
 
Neste artigo consideramos um estudo experimental de alguns algoritmos aproximados para problemas 
de escalonamento em máquinas paralelas onde se deve minimizar o tempo de término ponderado das 
tarefas. Foram implementados algoritmos aproximados para os seguintes problemas: P|rj|ΣCj, P||ΣwjCj, 
P|rj|ΣwjCj, R||ΣwjCj and R|rj|ΣwjC j . Foram gerados mais de 1000 testes sobre mais de 200 instâncias 
diferentes e com isso apresentamos aspectos práticos dos algoritmos implementados. Também fizemos 
um estudo experimental sobre dois limitantes inferiores baseados em formulações usadas pelos 
algoritmos. A primeira é uma formulação semidefinida para o problema R||ΣwjCj e a outra é uma 
formulação linear para o problema R|rj|ΣwjCj. Em todos os testes os algoritmos obtiveram resultados 
muito bons. Notamos que algoritmos usando técnicas mais refinadas, quando comparados com 
algoritmos que usam estratégias simples, não necessariamente geram soluções melhores. Também 
apresentamos duas heurísticas, baseadas nos algoritmos aproximados, que geram soluções de melhor 
qualidade em quase todas as instâncias consideradas. 
 
Palavras-chave:  algoritmos de aproximação; análise prática; escalonamento. 
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1. Introduction 

In this paper, we consider an experimental study of approximation algorithms for scheduling 
problems. For all problems considered, a set of jobs must be scheduled, under some 
restrictions, in a set of machines minimizing the average weighted completion time. All these 
problems are NP-hard [S97] and we consider polynomial time approximation algorithms. We 
have implemented some approximation algorithms to schedule jobs on parallel machines and 
study their computational performance. 

Given a polynomial time algorithm A and an instance I for a minimization problem, we 
denote by A(I) the value of the solution returned by A when applied to the instance I, and we 
denote by OPT(I) the value of an optimal solution to I. We say that an algorithm A has an 
approximation factor α, or is an α-approximation, if A(I)/OPT(I) ≤ α, for all instances I. 
When the algorithm A is probabilistic and the inequality E[A(I)]/OPT(I) ≤ α is valid, where 
E[A(I)] is the expected value of the solution returned by algorithm, we say that A is a 
probabilistic α-approximation algorithm. 

Given a polynomial time algorithm Aε , for fixed ε > 0, and an instance I for some problem 
P, we say that Aε is a polynomial time approximation scheme (PTAS) for a minimization 
problem if for any ε>0 and any instance I we have Aε(I)≤(1+ε)OPT(I). If the algorithm is 
also polynomial time in 1/ε we say that Aε  is a fully polynomial time approximation scheme 
(FPTAS). 

For all problems considered, we denote by J = {1,…,n} the set of jobs and M={1,…m} the set 
of machines. For the case where the machines are unrelated, we denote by pij the processing 
time of the job j when executed on machine i. When all machines are identical, we denote 
this processing time by pj. For some problems, there is a release date rj, for each job j, which 
is a time where the job j cannot be scheduled before. The value wj is the importance weight 
of finishing the job j earlier and the completion time of the job is denoted by Cj. 

Since we consider several scheduling problems, we use the notation α|β|γ, introduced by 
Graham, Lawler, Lenstra & Rinnooy Kan [GLLR79], to denote each problem. In the 
following, we detail the terms used in this paper under this notation. The term α corresponds 
to the machine environment, P for identical machines or R for unrelated machines. The term 
β tell us some restrictions about jobs, if they have release dates, rj , if the schedule is 
preemptive (i.e., jobs can be interrupted and continued later), pmtn, etc. Finally the term γ 
indicates the objective function we want to minimize. 

All problems we consider are non-preemptive, although algorithms for preemptive problems 
are used to find intermediate solutions. 

There are many papers describing approximation algorithms for scheduling problems, but 
few consider practical performance analysis. In [HS01], Hepner & Stein presented an 
implementation of a PTAS for the problem 1|rj|ΣCj. Savelsbergh et al. [SUW98] also 
presented an experimental study of approximation algorithms for the problem 1|rj|ΣwjCj and 
a variant of this problem when the average weighted flow time is minimized, i.e. problem 
1|rj|Σwj(Cj–rj). Recently, Vredeveld & Hurkens [VH02] presented an experimental 
comparison of approximation algorithms for the problem R||ΣwjCj and some dominance 
relations between linear and quadratic formulations for this problem. Baev et al. [BME02] 
presented a practical comparison for the problem P|prec|ΣwjCj where the jobs have 
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precedence constraints. They also show how algorithms for this problem can be used in the 
scheduling phase in profile-based program compilation. They used some instances extracted 
from the SPECint95 compiler benchmark and showed that the best solutions are within 5.7% 
of optimal. 

We implemented algorithms for the following problems: P|rj|ΣCj, P||ΣwjCj, P|rj|ΣwjCj, 
R||ΣwjCj and R|rj|ΣwjCj. For the problem P|rj|ΣCj we implemented the algorithm developed 
by Phillips et al. [PSW98]. This algorithm is combinatorial and is based on a heuristic for the 
preemptive case. For the problem P||ΣwjCj we implemented the algorithm of Kawaguchi & 
Kyan [KK86], that is based on a list scheduling heuristic. For the problems P|rj|ΣwjCj and 
R|rj|ΣwjCj we implemented algorithms of Schulz & Skutella [SS02]. The algorithm for the 
first problem is combinatorial and the algorithm for the second problem is based on a 
solution of a linear program. Both algorithms are probabilistic. Finally, for the problem 
R||ΣwjCj we implemented the algorithm developed by Skutella [S98] that is based on a 
solution of a semidefinite program. 

We chose to implement these algorithms because they are well known approximation 
algorithms, with good time complexity and good approximation factors. Also, the set of 
algorithms chosen, treat problems that have common cases and this permits to compare them. 
Some problems we consider are particular cases of others. So, implemented algorithms for 
more general problems are also compared with algorithms for more restricted problems. 
There are other approximation algorithms for some of these problems like the polynomial 
time approximation schemes for parallel machines presented by Afrati et al. [Afrati et al., 
1999]. These schemes appear to have only theoretical interest, since their running times are 
given by high degree polynomials. In fact, most of these schemes require an enumeration 
step that is intolerable in practice. 

To our knowledge, this paper is the first to consider a practical comparison of approximation 
algorithms for scheduling problems with parallel machines and release dates (problems 
P|rj|ΣCj and R|rj|ΣwjCj). We also consider a practical study of two formulations that provide 
lower bounds for the problem R||ΣwjCj. Notice that Vredeveld & Hurkens [VH02], also 
studied these formulations presenting dominance relations among them, but they considered 
an exponential size linear formulation. In this paper we consider the same formulation with a 
small modification which leads to a formulation of polynomial size. 

All algorithms are implemented in C. For the algorithms that require solutions of linear or 
quadratic programs we use the Xpress-MP library, of Dash Optimization [D02]. Based on the 
practical results, we propose a simple modification on the algorithm presented by Schulz & 
Skutella [SS02] for the problem R|rj|ΣwjCj and on the algorithm of Kawaguchi & Kyan 
[KK86]. In the tests we considered, we show that these heuristics obtain solutions with better 
quality. 

The paper is organized as follows. In section 2 we describe the implemented algorithms and 
give some insight of how they work. In section 3 we compare two lower bounds for the 
problem R||ΣwjCj with different number of machines. In section 4 we present the 
computational results of the implemented algorithms. 
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2. Algorithms 

In this section we describe the algorithms and the way they are implemented. We do not 
show how their approximation factors are obtained. The interested reader can find more 
details about the approximation results of these algorithms in the references. 

 
2.1 Algorithm PSW for the problem P|rj|ΣCj 

The algorithm of this section, which we denote by PSW, was developed by Phillips et al. 
[PSW98]. The algorithm PSW finds a solution in two phases. In the first phase, it obtains an 
approximate solution for the preemptive version of this problem and in the second phase it 
uses an algorithm that converts the preemptive schedule to a non-preemptive one. The 
preemptive version of this problem is already NP-hard, and a solution is generated by a 
2-approximation algorithm. The algorithm that converts the preemptive schedule to a 
non-preemptive one, produces a new schedule that is at most three times worse than the 
preemptive schedule. This leads to a 6-approximation algorithm for the problem P|rj|ΣCj 
(see [PSW98]). 

The algorithm for the preemptive schedule is based on the following idea: at any time, 
execute m jobs with the shortest remaining amount of work. The time complexity of the 
implemented algorithm, which we denote by Preemptive, is O(n(logn + m)). 

Once this preemptive schedule is generated, the algorithm generates a list Mi , for each 
machine i, of jobs ordered by their preemptive completion times. For each machine i, the 
algorithm PSW generates a non-preemptive schedule with jobs in the order specified by Mi , 
under the condition that no job starts before its release date. The time complexity of the 
implemented algorithm is O(nlogn +m) plus the time complexity to generate the preemptive 
schedule. 

 
2.2 Algorithm KK for the problem P||ΣwjCj 

The algorithm of this section is an extension of the optimal algorithm for the problem 
1||ΣwjCj. The problem 1||ΣwjCj can be solved optimally with the following algorithm 
developed by Smith [S56]: order jobs in non-decreasing order of pj/wj and schedule the jobs 
in this order. The approximation algorithm for the parallel machine case is an extension: 
order jobs in non-decreasing order of pj/wj and schedule jobs in this order every time a 
machine becomes free. Kawaguchi & Kyan [KK86] have shown that this algorithm generates 
schedules with a factor of ( 2 +1)/2 of the optimal. The implemented algorithm, which we 
denote by KK, has time complexity O(nlogn + nlogm). 

 
2.3 Algorithm SZSK for the problem P|rj|ΣwjCj 

The algorithm SZSK is a probabilistic 2-approximation algorithm and was developed by 
Schulz & Skutella [SS02]. For each instance, the algorithm SZSK is executed 100 times and 
the best generated schedule is returned. In our experiments, we observed that more 
executions leads to very small improvements. The algorithm is related to the linear 
formulation for a single machine problem presented below. We have variables yjt, for each 
job j and for each time interval (t, t+1] that a job can run. We also have variables Cj, that 
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represent the finishing time of job j. The constant T is an upper bound for the completion 
time of any job. The relaxed linear program, denoted by LPS, is the following: 

  Min 
j J∈
∑ wjCj 

(LPS) T
t rj=∑ yjt =  pj   ∀  j ∈ J, 

 
j J∈∑  yjt ≤  1   t = 0,…,T, 

  Cj = pj /2 + 1/pj 
T

t rj=
∑ yjt (t+1/2)  ∀ j ∈ J, 

  yjt =  0   ∀ j ∈ J  and  t = 0,...,rj -1, 
  yjt  ≥  0  ∀ j ∈ J  and  t = rj ,…,T. 

The linear program (LPS) can be solved using a combinatorial algorithm [SS02]. Suppose 
we have only one machine that is m times faster than the machines considered. Consider the 
processing times of the jobs to be m times smaller. Construct a preemptive schedule for this 
single machine with the new processing times using the following rule: at any time, generate 
a preemptive schedule on the new single machine by scheduling, among the available jobs, 
the one with the smallest ratio pj /wj . The resulting schedule corresponds to an optimal 
solution for the formulation. Each variable yjt receives value 1 if job j is processed during 
time [t-1,t) in the generated schedule. 

Notice that the algorithm Preemptive is easily modified to solve this formulation and can be 
implemented to run in O(nlogn). After this, we construct a schedule based on probabilistic 
assignments. We choose for each job j, a variable αj uniformly distributed from the interval 
[0,1]. Then, we consider the probabilistic finishing time, i.e., the first time in the schedule 
where the total amount of work done is pjαj. We denote this value by Cj(αj ). The algorithm 
SZSK attributes each job j uniformly and independently to one of the m machines. For each 
machine the algorithm schedules jobs in nondecreasing order of values Cj(αj ). The time 
complexity of the algorithm SZSK is O(nlogn + m). 

 
2.4 Algorithm SK for the problem R||∑wjCj 

The algorithm of this section, which we denote by SK, is a probabilistic 2-approximation 
algorithm based on a semidefinite formulation. The algorithm was presented by Skutella 
[S98] and uses a quadratic program. This program has binary variables aij, such that a job j 
is to be processed in machine i, if and only if, aij = 1, and variables Cj that represent the 
finishing time of job j. We also have a function 〈i that specifies the execution order of a job 
pair j,k in machine i. The job j must be processed before k in machine i if wj/pij ≥ wk/pik . 
The quadratic program is the following: 

  Min 
j J∈∑ wjCj 

 Cj = 
1

m
i=∑ aij(pij+

k j〈
∑ ai kpi k ) ∀ j ∈ J 

 aij  ∈ {0,1}   ∀ i ∈ M   ∀ j ∈ J. 
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Skutella have shown that this formulation is equivalent to the following quadratic 
formulation: 

  Min cTa + ½ aTDa 

 ∑=

m

i 1
aij = 1 ∀ j ∈ J, 

      a ≥ 0, 

where a ∈ℜ mn is a vector of all variables aij lexicographically ordered with respect to the 
natural order 1,2,…,m of the machines, and then for each machine i, the jobs are ordered 
according to 〈i. The vector c ∈ℜ mn is given by cij = wjpij and D = (d(ij)(hk)) is a symmetric 
(mn × mn)-matrix given by: (i) 0 if i ≠ j or j = k; (ii) wj pik if i = h and k 〈i  j; (iii) wkpij 
if  i = h  and  j 〈i  k. 

This problem can be solved in polynomial time if, and only if, matrix D is positive 
semidefinite. This motivates the construction of a new formulation, which we call QSP: 

  Min ½ cTa + ½ aT(D+diag(c))a 
(QSP) 

 
1

m
i=∑ aij =  1 ∀ j ∈ J, 

             a  ≥  0, 

where (D +diag(c)) is positive semidefinite and diag(c) is a diagonal matrix with the 
vector c. 

Given a solution for QSP, each job j is assigned to machine i with probability aij and in 
each machine i the execution order is given by the function 〈i. In our implementation, this 
assignment is performed 100 times and the algorithm returns the best generated schedule. 
For the special case of identical parallel machines, the optimal solution of the above 
formulation is given by aij = 1/m. In this case, we implemented a combinatorial algorithm 
attributing each job to a machine with probability 1/m. This combinatorial algorithm is 
denoted by SK-C. The time complexity of the algorithm is O(nlogn + m) plus the time 
complexity to solve the semidefinite program QSP. 

 
2.5 Algorithm SZSK2 for R|rj|∑wjCj 

The algorithm for the problem R|rj|ΣwjCj  is also a probabilistic algorithm, and was presented 
by Schulz and Skutella [SS02]. The algorithm, denoted by SZSK2, is based on the solution 
of a linear formulation and is a generalization of the algorithm SZSK. The formulation uses 
an upper bound T on the completion time of any job and uses variables Cj , representing the 
finishing time of each job j, and variables yijt that indicates if job j is being executed in 
machine i at time interval (t,t+1] for each time interval. The formulation has exponential size, 
but it can be made of polynomial size with a small loss in the objective function, using 
interval times that increase exponentially in their size. In this case, we have binary variables 
yijl indicating the execution of job j in machine i at interval Il = ((1+β)l-1,(1+β)l]. The size of 
an interval Il is denoted by |Il|. For simplicity, we denote (1+β)l by βl. The relaxed 
formulation, denoted by LPSS, is the following: 
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  Min 
1

n
j=∑ wjCj 

(LPSS) 
 

1
m
i=∑ 0

L
l=∑ (yijl|Il|)/pij =  1  ∀j ∈ J, 

              
j J∈∑  yijl ≤  1  ∀i ∈ M   and   l=0,…,L, 

   Cj = 
1

m
i=∑ 0

L
l=∑ ( (yijl|Il|/pij)βl-1 + ½ yijl|Il| )    ∀ j ∈ L, 

   yijl =  0 ∀i ∈ M,  ∀j ∈ J,  βl ≤ rij -1, 
   yijl ≥  0 ∀i ∈ M,  ∀j ∈ J,  l=0,…,L. 

The algorithm solves the linear program LPSS and assign each job j to a machine-interval 
pair (i, Il) at random with probability (yijl |Il |)/pij. The jobs assigned to a machine i are 
scheduled in non-decreasing order of intervals assignment. If there is more than one job 
assigned to the same pair (i, Il ), the algorithm schedules them in the order of their values j. 
For a given ε>0, setting β =ε /2 this algorithm has a probabilistic (2+ε )-approximation factor. 
As in the algorithm SK, the probabilistic assignment step is executed 100 times and the best 
generated schedule is returned. The time complexity of this algorithm is O(nmlog(1+ε)T + 
nlogn) plus the time complexity to solve the linear program LPSS. Since this algorithm is 
executed with different values of ε, we denote by SZSK2ε the algorithm SZSK2 with the given 
value of ε. That is, the algorithm SZSK20.1 is the algorithm SZSK2 with value of ε = 0.1. 
 
2.6 Two Heuristic Algorithms 

In this section we present a new algorithm denoted by HE1 for the problem R|rj|ΣwjCj. It is a 
simple modification of the algorithm SZSK2. We also present an extended heuristic of the 
algorithm KK for the problem P|rj|ΣwjCj, denoted by HE2. 

In [HP83], Hariri and Potts presented a simple heuristic algorithm for problem 1|rj|ΣwjCj 
used to find an upper bound for a branch and bound algorithm. The algorithm is as follows: 

1. Let S be the set of all (unsequenced) jobs, H=0 and k=0 and find T=minj∈S{rj }. 
2. Let the set S´ = { j | j∈S, rj ≤ T} and find a job i∈S´ such that wi/pi = maxj∈S´´{wj /pj }. 
3. Let k = k+1 and sequence job i at position k; let T = T +pi , H = H+wiT and S = S-{i}. 
4. If S=∅, then stop with the sequence generated having H as its cost. Otherwise let 

T=max{T, minj∈S{rj }} and go to step 2. 

In the algorithm SZSK2, the jobs are assigned to pairs machine-interval and them executed 
in each machine by the order of interval assignments. In the algorithm HE1, the assignment 
step is performed as in the algorithm SZSK2, but the jobs assigned to a machine i are 
scheduled using the algorithm of Hariri and Potts. 

The algorithm HE2 is an extended heuristic of algorithm KK: every time a machine becomes 
free, execute among the available jobs, the one with smallest ratio pj /wj . Notice that without 
the presence of release dates, this algorithm is essentially algorithm KK. 

Notice that we cannot guarantee approximation factors for these two heuristics. Since we changed 
the way the schedules are generated, some properties of the schedule are lost. These properties are 
essential in the analysis of their approximation factor. To prove that these heuristics have 
approximation factors is not a trivial step and an entire paper can be devoted to this subject. 
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3. Study of Two Lower Bounds 

In this section we present an experimental comparison of two formulations that provide 
lower bounds for the implemented algorithms. The first formulation is the semidefinite 
formulation QSP used in the algorithm SK, and the second is a linear formulation LPSS used 
in the algorithm SZSK2. For problems that consider jobs with release dates we used the 
lower bounds provided by the linear program LPSS. For problems without release dates we 
performed a computational study to determine which formulation gives lower bounds with 
better quality. We notice that Vredeveld & Hurkens [VH02] proved that the formulation 
LPSS with unit time interval gives better lower bounds than the formulation QSP. But in this 
case, the formulation LPSS has exponential size and the time required to solve the instances 
may be very high. We performed tests with LPSSε and formulation QSP for ε∈{0.3,0.1}. In 
this case, where ε>0 in the formulation LPSS, it is not true that LPSS gives better bounds. 
For the most generic problem R||ΣwjCj, we consider three cases: R2||ΣwjCj, R5||ΣwjCj and 
R7||ΣwjCj. We also tried to study the case R10||ΣwjCj but we could not solve integer 
instances of this problem in a reasonable amount of time (two hours). We performed five 
tests with 100 jobs for each case. The processing times of jobs were taken uniformly from 
the interval [1,100] and wj was uniformly chosen from the interval [1,10]. We notice that the 
quality of the lower bound increases using ε=0.1 when compared with the solutions with 
ε=0.3, but QSP provides better lower bounds. We tried to solve the instances with the 
formulation LPSS with smaller values of ε, but when ε→0, the number of time intervals 
increases in such a way that is better to consider unit time intervals. The use of the ε>0 in the 
formulation LPSS is justified since we are comparing lower bounds obtained in polynomial 
time. We present the results obtained in at most two hours. 

The lower bounds of these two formulations are compared with the value of an integer 
solution, which we obtained from the integral solutions of program QSP. The results of these 
tests can be seen in Table 1. 
 

Table 1 – Comparison between formulations QSP and LPSS. 
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We also performed computational tests to compare the lower bounds for the problem 
P||ΣwjCj. In this case, we could solve only instances up to 20 jobs with 2 machines, and 15 
jobs with 5 machines. The next theorem, proved by Skutella [S98], helps us to understand 
the hardness to obtain integer solutions for instances of this problem. 

Theorem 3.1  For instances of Pm||ΣwjCj , an optimal vector solution a of the quadratic 
program QSP is ai j=1/m  for all i , j. This optimum solution is unique if all ratios pj /wj , are 
different and positive. 

In all instances, the solution of the quadratic program is exactly the one provided in the 
theorem. Since the Xpress solver finds the optimal integer solution using a branch and bound 
tree, the number of nodes is exponential. We could not solve these kind of problems even if 
we use an upper bound provided by our approximation algorithms. We could solve only 
instances with 20 jobs for the problem P2||ΣwjCj and instances with 15 jobs for the problem 
P5||ΣwjCj. The results of our tests are presented in Table 2. 
 

Table 2 – Comparison between formulations QSP and LPSS. 

 
 
In all generated tests, the lower bounds provided by the formulation QSP are better than the 
lower bounds provided by the formulation LPSS. Also notice that when ε=0.1, the difference 
is not so large. We do not use smaller values of ε since the increase in the computational time 
to solve such formulations is high (more than two hours of computational processing). 

 

4. Practical Analysis of the Implemented Algorithms 

In this section we present the results of our tests. Since some problems are particular cases of 
others, we performed several different tests. Each subsection is reserved for one case. Before 
presenting the computational results for each problem, we describe the procedure to generate 
each test. For each test, we generate 100 jobs with processing times uniformly chosen from 
the interval [1,100] and wj chosen from the interval [1,10]. When the problem require release 
dates, the data is generated using the same approach used by Hariri & Potts [HP83]. The 
release dates are uniformly chosen from the interval [0,E[p]nγ]. This simulates the arrival of 
n jobs from a stable queue according to a Poisson process with parameter γ [HS01]. The time 
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in all tables is given in seconds. The ratio in the table corresponds to V/LB, where V is the 
value found by the algorithm and LB is a lower bound for the optimal solution. We 
performed tests with 2, 5, 7 and 10 machines. As was done in [HS01], we generated five 
different instances for each test problem, so the results in each line of the tables corresponds 
to the mean of five tests. The algorithms were tested on an AMD Athlon 1.2GHz with 800 
MB of RAM under Linux 2.4.2-2 kernel. 

 
4.1 Tests for the problem P||ΣwjCj 

In this problem we used the algorithms KK, SZSK, SK-C, SZSK2 and HE1. We do not use 
the algorithm HE2 here because without the presence of release dates this algorithm 
generates the same solutions of the algorithm KK. The Table 3 presents the results of these 
tests. The LB column corresponds to the optimal fractional solution of the quadratic 
formulation QSP. 

The algorithms obtained very good results for all tested instances. The algorithm KK is the 
most simple and obtained the best results generating solutions with values less than 0.7% of 
the lower bounds, besides the other algorithms use more advanced ideas. As we can see, the 
ratio grows when we use more machines. For algorithm KK the increase is very small. For 
the other ones the growth is more representative. We believe that with more jobs per 
machine the ratios obtained tends to decrease. This can be seen in graphics 1, 2, 3 and 4. We 
will describe more about this behavior in the next subsection. 
 

Table 3 – Comparison for the problem P||ΣwjCj. 

 
 



Xavier & Miyazawa  –  Practical comparison of approximation algorithms for scheduling problems 

Pesquisa Operacional, v.24, n.2, p.227-252, Maio a Agosto de 2004 237 

4.2 Tests for the problem P|rj|ΣCj 

To solve this problem we used the algorithms PSW, SZSK, SZSK2, HE1 and HE2. Although 
the algorithm SZSK is the combinatorial version of the algorithm SZSK2 for identical 
machines, we also included the algorithm SZSK2 in the comparisons. The algorithms SZSK2 
and HE1 were executed with parameter ε=0.3 and ε=0.1 . We perform different tests using 
different values of γ to generate the release dates. We used γ=0.2 , γ=0.4 and γ=0.6 . The LB 
column has the values of the optimal solutions of the linear program LPSS, with ε=0.1 . It is 
interesting to notice that this lower bound may be far away from the optimum, since the 
value of an optimal integer solution for the program LPSS is already a lower bound for the 
original problem P|rj|ΣCj. The Tables 4, 5 and 6 present the results obtained for these tests. 

 
Table 4 – Comparison for the problem P|rj|ΣCj with γ =0.2. 
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Table 5 – Comparison for the problem P|rj|ΣCj with γ = 0.4. 
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Table 6 – Comparison for the problem P|rj|ΣCj with γ = 0.6. 

 
 
The algorithm HE2 generates the best schedules in all tests. Notice that the algorithm HE1 
obtain better results when we have few machines and small values of γ. The algorithms PSW 
and HE1 are the second best in all cases. For all tests, the algorithm PSW generates solutions 
that are at most 12% of the lower bound although its approximation factor is 6. The 
algorithm SZSK2 obtained better results than the algorithm SZSK for all cases, except when 
we have big values of γ and more machines, as we can see in Table 6. Analyzing the 
fractional solution of the linear program used by the algorithm SZSK2, we observed that the 
solver obtained solutions where almost all variables for some machines have null values. 
Consequently, the generated schedule have some machines that are almost unused. The 
algorithm SZSK is the combinatorial version of SZSK2, but the jobs are attributed to all 
machines uniformly. This also explains why the algorithm HE1 when compared to the 
algorithm PSW, get better results using two machines than 7 and 10 machines. Based on this 
observation we try to solve the linear program LPSS under the algorithm HE1 with an 
increase in the number of jobs per machine. Notice that the algorithm HE1 is based on the 
algorithm SZSK2 and we can expect the same behavior in both algorithms. We performed 
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several tests that can be seen in Tables 7, 8, 9 and 10. The interesting point to note is that 
when we get a ratio of approximately 60 jobs per machine, the algorithm HE1 produces 
better schedules. The solution of the linear program has a better attribution when this 
happens. We also present some graphics (Figures 1, 2, 3 and 4) that summarize these results. 
As we mentioned in the previous subsection, the algorithms get better results when we use 
more jobs per machine. This can be easily verified in these graphics. But it is important to 
note that when we compare the execution time, the algorithm PSW have a much better 
performance since it is a combinatorial algorithm, and the algorithm HE1 have to solve large 
linear programs. Notice that we could not solve all instances of the problem with a given 
ε=0.3 in algorithm HE1. For example, in the tests with ten machines we used ε=0.8 and the 
time to solve the corresponding linear program LPSS is very high. With such values, the 
lower bound provided by the linear program becomes worse and the ratios obtained for these 
tests are worse than the ones for the previous tests. We believe that the solutions obtained are 
closer to the optimum and better ratios could be obtained with better lower bounds. 

 
Table 7 – Comparison between PSW and HE1 with 2 machines. 
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Table 8 – Comparison between PSW and HE1 with 5 machines. 

 
 

Table 9 – Comparison between PSW and HE1 with 7 machines. 
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Table 10 – Comparison between PSW and HE1 with 10 machines. 

 
 

 

Figure 1 – Solution quality of the algorithms PSW and HE1 for 2 machines. 
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Figure 2 – Solution quality of the algorithms PSW and HE1 for 5 machines. 

 

 

Figure 3 – Solution quality of the algorithms PSW and HE1 for 7 machines. 
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Figure 4 – Solution quality of the algorithms PSW and HE1 for 10 machines. 

 

4.3 Tests for the problem P|rj|ΣwjCj 

For the problem P|rj|ΣwjC we used the algorithms SZSK, SZSK2 and HE1. Remember that 
the algorithm SZSK is the combinatorial version of the algorithm SZSK2 for identical 
machines. The algorithms SZSK2 and HE1 were executed with parameter ε∈{0.1, 0.3} and 
the tests were produced with release dates generated with parameter γ∈{0.2, 0.4, 0.6}. The 
Tables 11, 12 and 13 present the results obtained for these tests. The lower bounds (LB) were 
obtained from the optimal fractional solutions of the linear program of the algorithm SZSK2 
with ε=0.1. Remember that this lower bound may be far away from the optimum, since the 
value of an optimal integer solution for the program LPSS is already a lower bound for the 
original problem P|rj|ΣwjC. 

The behavior of the algorithms is essentially the same in all tests, except that algorithm 
SZSK has a bad quality performance in the tests with two and five machines. Algorithm 
SZSK have a worse quality performance than algorithm SZSK2, but it is much faster than it. 
The algorithm HE1 is the one that produces the best schedules. 
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Table 11 – Comparison for the problem P|rj|ΣwjCj  with γ = 0.2. 

 
 

Table 12 – Comparison for the problem P|rj|ΣwjCj  with γ = 0.4. 
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Table 13 – Comparison for the problem P|rj|ΣwjCj  with γ = 0.6. 

 
 

4.4 Tests for the problem R||ΣwjCj 

In this problem we use the algorithms SK, SZSK2 and HE1. For the tests in Table 14 we 
chose pij uniformly from the interval [1,100]. In the tests presented in Table 15 the 
processing times were chosen from different intervals to give the idea that we have machines 
with different speeds. Using two machines the processing times were chosen from the 
interval [1,50] for the first machine and from [50,100] for the second machine. Using five 
machines the processing times were chosen from intervals, [1,20],[20,40],…,[80,100]. Using 
seven machines the processing times were chosen from intervals, [1,15],[15,30],…,[90,100]. 
In the tests with ten machines, the processing times were chosen from intervals 
[1,10],[10,20],…,[90,100]. We use ε=0.1 and ε=0.3 in the algorithms SZSK2 and HE1. The 
LB column corresponds to the fractional solution found by the quadratic formulation QSP of 
the algorithm SK. 
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Table 14 – Comparison for problem R||ΣwjCj. 

 
 

Table 15 – Comparison for problem R||ΣwjCj. 
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We also present another set of tests based on the approach of Vredeveld & Hurkens [VH02]. 
The instances of the test in Table 16 were generated to give a machine correlation different 
from the approach described for the tests in Table 15. The instances were generated with 
each processing time pij taken uniformly in [α i ,α i+10] where αi is an integer from the 
uniform distribution in [1,100]. This approach is called Machine Correlation. The instances 
of the tests in Table 17 were made to give the idea that a job have two favorite machines to 
execute. For each job j, two machines ij1 and ij2 were randomly chosen, where the processing 
time of j in these two machines is uniformly chosen in [β j ,β j+4], where β j  is an integer from 
the uniform distribution in [15,25]. The processing times of j in the other machines were 
drawn from the uniform distribution in [60,90]. This approach is called Favorite Machines. 

 
Table 16 – Instance set Machine Correlation for the problem R||ΣwjCj. 
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Table 17 – Instance set Favorite Machines for the problem R||ΣwjCj. 

 
 
As we can see, all algorithms produces schedules very close to the optimal. For all tests, the 
algorithms produced solutions with values that are at most 3% of the lower bound except for 
the algorithm SK that generated a solution with value 7% of the lower bound. In general, the 
algorithm HE1 generates better schedules. Another point, is that although the semidefinite 
program QSP generates fractional solutions that are closer to the optimal, the algorithm SK 
generates the worst schedules even if compared with the algorithm SZSK20.3. 

 
4.5 Comparison for the problem R|rj|ΣwjCj 

For the problem R|rj |ΣwjCj, we used the algorithms SZSK2 and HE1. The results for these 
tests are presented in Table 18. The processing times were uniformly chosen from the 
interval [1,100] and the release dates were generated with γ=0.2. The LB is the optimal 
fractional solution of the linear program LPSS with ε=0.1. We emphasize that this lower 
bound may be far away from the optimal solution, since an optimal integer solution to LPSS 
is already a relaxation for the problem R|rj |ΣwjCj. 

We also made another set of tests with instances of type Machine Correlation and instances 
of type Favorite Machines. The tests can be seen in Tables 19 and 20. The algorithm HE1 
obtained the best results in all tests. The hardest instances are for the set Machine 
Correlation (Table 19), where the algorithm HE1 obtained schedules that are at most 10% of 
the lower bound and the algorithm SZSK2 obtained schedules that are at most 15% from the 
lower bound. 
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Table 18 – Comparisons for the problem R|rj|ΣwjCj. 

 
 

Table 19 – Instance set Machine Correlation for the problem R|rj|ΣwjCj. 
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Table 20 – Instance set Favorite Machines for the problem R|rj|ΣwjCj. 

 
 

5. Conclusion 

We present computational results for some approximation algorithms for scheduling 
problems on parallel machines. As expected, the practical solutions yield ratios that are much 
better than the approximation factors of the presented algorithms. We also notice that 
algorithms with more refined techniques do not necessarily lead to better results. In fact, for 
the problems P||ΣwjCj and P|rj |ΣCj algorithms PSW and KK obtained the best results even 
when compared to algorithms with advanced ideas. We also notice that the solutions 
provided by the algorithm SK is worse than the solutions provided by the algorithm SZSK2 
despite the semidefinite program generates fractional solutions with better quality. Finally, 
we present two heuristics that get better results in almost all cases considered, although for 
problem P|rj |ΣCj the processing time of algorithm HE1 is much bigger than the processing 
time of algorithm PSW. 
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