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A Concise Total Synthesis of (R)-Fluoxetine, a Potent and Selective Serotonin
Reuptake Inhibitor
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(R)-Fluoxetina, um inibidor potente e seletivo da recaptação da serotonina, foi sintetizada em seis
etapas, 50% de rendimento total e 99% de excesso enantiomérico a partir do benzaldeído via alilação
catalítica assimétrica empregando-se o sistema catalítico desenvolvido por Maruoka e colaboradores.

(R)-Fluoxetine, potent and selective serotonin reuptake inhibitor, has been synthesized in six
steps, 50% overall yield and 99% ee from benzaldehyde via catalytic asymmetric allylation with
Maruoka´s catalyst.
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Introduction

The anti-depressants drugs with a 3-aryloxy-3-phenyl-
propylamine sub-structure (for example, fluoxetine,
atomoxetine and nisoxetine) are among the most important
pharmaceuticals for the treatment of psychiatric disorders
and metabolic problems.1,2 In addition, several members
of this class have shown promise for the treatment of
alcoholism, chronic pain and eating disorders such as
obesity and bulimia.3-5

Fluoxetine (1) (Figure 1), a selective serotonin reuptake
inhibitor (SSRI), is widely used in clinical practice for the
treatment of depression. In fact, the selective serotonin
reuptake inhibitors, and particularly fluoxetine (1), have
become first line drugs in the pharmacotherapy of patients
with depression, whereas tricyclic antidepressants are now
considered as second-line agents. This is because the drug
possesses tolerability and safety advantages over the
tricyclic agents.6-8 In experimental models of

inflammation, fluoxetine (1) has been shown to exert anti-
inflammatory and pain relieving effects.9-12 Fluoxetine (1)
[trade name Prozac®] is currently marketed in its racemic
form, despite studies showing that the two enantiomers
have different activities and rates of metabolization.3,4

Due to its pharmaceutical importance and to the
different pharmacological profiles of the individual
enantiomers, the development of new strategies for
preparing optically pure fluoxetine (1) has received
growing interest in recent years.13 Several methods of
enantioselective synthesis of both enantiomers of
fluoxetine (1) have been reported and chirality has been
introduced via enantioselective hydroxylation,14

enantioselective epoxidation followed by selective
epoxide opening,15-17 chemical18-23 and enzymatic24-28

reduction of ketones and β-ketoesters, stereoselective
coupling reaction using chiral auxiliary or chiral
catalyst,29,30 as well as enzymatic31,32 or chemical33,34

resolution of benzylic alcohols.
Among the strategies developed for enantiomerically

pure (R)-fluoxetine [(R)-1], Miles and co-workers described
the Ti(OiPr)

4
/(R)-BINOL asymmetric ene reaction of 3-

methylene-2,3-dihydrofuran (prepared in 63% yield from
3-furaldehyde as a 3.5:1 mixture with 3-methylfuran) with
benzaldehyde which afforded (R)-fluoxetine
hydrochloride [(R)-1.HCl] in 6 steps, 56% overall yield
and >97% ee from 3-furaldehyde.30 Recently, Shibasaki
and coworkers carried out the total synthesis of (R)-
fluoxetine (1) in a multigram scale (4 steps, 67% overall
yield, 99% ee) via the catalytic asymmetric epoxidation

Figure 1. Structure of fluoxetine (1).

O

NHMe

CF3

Fluoxetine (1)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositorio da Producao Cientifica e Intelectual da Unicamp

https://core.ac.uk/display/296615176?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


496 de Fátima et al. J. Braz. Chem. Soc.

of N-methyl-trans-cinnamamide, followed by regio-
selective epoxide opening.16

The development of chiral Lewis acids or bases for the
enantioselective catalytic reactions is one of the most
important recent advances in asymmetric synthesis.35,36

Enantioselective catalytic allylation (ECA) is one of the
powerful C-C bond-forming reactions that have attracted
considerable attention in asymmetric synthesis.37 In our
recent studies, we have employed ECA for the highly
stereoselective synthesis of (R)-argentilactone and (R)-
goniothalamin from the propargylic aldehyde 2-octinal
and (E)-cinnamaldehyde, respectively.38-40 Here, we
describe a short and high-yielding enantioselective total
synthesis of fluoxetine hydrochloride [(R)-1.HCl] from
benzaldehyde featuring its enantioselective asymmetric
allylation with the Ti(IV)/(R)-BINOL-based catalyst
developed by Maruoka and coworkers as the key step.41

Results and Discussion

Our approach to the synthesis of fluoxetine
hydrochloride [(R)-1.HCl] centered on the treatment of
benzaldehyde (2) with the in situ generated chiral catalyst
(R,R)-A (Figure 2)41 in CH

2
Cl

2
 at –20 oC for 36 h, followed

by the addition of allyltri-n-butyltin to provide
homoallylic alcohol (R)-1-phenyl-but-3-en-1-ol (3) in 90%
yield {[α]

D
 +53° (c=1.1, benzene), lit.42 [a]

D
 –50.5° (c=1.1,

benzene) for (S)-isomer, 96% ee} (Scheme 2). The
enantiomeric purity of 3 was determined to be >99% ee by
chiral HPLC analysis [Chiralcel OD column; Hex:iPrOH,
98:2, flow rate = 1 mL min-1, λ

max.
 = 257 cm-1, t

R
 = 11.8 min

for (S)-isomer, t
R
 = 17.2 min for (R)-isomer].

The conversion of 3 to (R)-1-phenyl-1,3-propanediol
(4) {[α]

D
 +66° (c=2.4, CH

2
Cl

2
), lit.32 [α]

D
 +65° (c=2.4,

CH
2
Cl

2
)} was carried out by oxidative cleavage according

to the Lemieux-Johnson protocol,43 followed by NaBH
4

reduction of the crude aldehyde (87% overall yield). The
secondary amino functionality was introduced next via
the corresponding mesylate 5 which was regioselectively
prepared in 85% yield via treatment of diol 4 with mesyl
chloride (1.0 equiv.) and Et

3
N at 0 oC. However, for

preparative purposes mesylate 5 was used in the next step
without further purification as it proved to be rather
unstable to chromatography on silica gel and storage. It
was straightforwardly converted to (R)-N-methyl-3-phenyl-
3-hydroxypropylamine (6) in 96% yield upon treatment
with aqueous methylamine under reflux.15 The total
synthesis of (R)-fluoxetine [(R)-1.HCl] was concluded after
nucleophilic aromatic substitution with 4-chloro-
benzotrifluoride by heating it with the sodium salt of
alcohol 6 in DMSO at 80-100 oC. Acidification with HCl(g)
in ethyl ether led to the (R)-fluoxetine hydrochloride [(R)-
1.HCl] {[α]

D
 –14° (c=1, CHCl

3
), lit.23 [α]

D
 –13.8° (c=1,

CHCl
3
)} in 78% yield (Scheme 1).

Figure 2. The µ-oxo bis(binaphthoxy)(isopropoxy)titanium com-
plex (R,R)-A developed by Maruoka and coworkers.41
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Scheme 1. Reagents and conditions: a) (R,R)-A {TiCl
4
 (5 mol%), Ti(OiPr)

4
 (15 mol%), Ag

2
O (10 mol%), (R)-BINOL (20 mol%)}, allyl-n-

tributyltin, CH
2
Cl

2
, 0 oC, 72h (90%, 99% ee); b) OsO

4
, NaIO

4
, ethyl ether: water (1:1, v/v), 2h; c) NaBH

4
, MeOH, 18h (87%, two steps); d) MsCl,

Et
3
N, 0 °C, 3h (85%); e) MeNH

2
 (40% wt.% solution in water), reflux, 3h (96%); f) i) NaH, DMSO, 80 oC for 1h, then 4-chlorobenzotrifluoride,

80 to 100 oC, 1h; ii) HCl
(g)

, ether (78%).
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In summary, (R)-fluoxetine hydrochloride [(R)-1.HCl]
has been synthesized in 6 steps, 50% overall yield and
99% ee from benzaldehyde (2). The route described
centered around the catalyst (R,R)-A developed by
Maruoka and coworkers40 for enantioselective catalytic
allylation reactions (ECA) not only provides one of the
shortest route to (R)-1.HCl but should be amenable for the
preparation of other pharmaceuticals such as atomoxetine
and duloxetine.

Experimental

General

Reagents and solvents are commercial grade and were
used as supplied, except dichloromethane and
tetrahydrofuran which were distilled from calcium hydride.
Chromatographic separations were performed using 70-
230 Mesh silica gel. Thin-layer chromatography was
carried out on Macherey-Nagel precoated silica plates
(0.25 mm layer thickness). IR spectra were obtained on
Nicolet Impact 410 FT (film or KBr). 1H NMR and 13C
NMR data were recorded on a Varian Gemini 2000 (7.0 T)
or Varian Inova (11.7 T) spectrometer. Chemical shifts are
reported in δ [ppm relative to (CH

3
)

4
Si] for 1H NMR and

CDCl
3
 for 13C NMR. For 1H NMR, the chemical shifts were

followed by multiplicity (s, singlet; d, doublet; dd, double
dublet; ddd, double double dublet; t, triplet; q, quartet; m,
multiplet) and coupling constant J reported in Hertz (Hz).
High resolution mass spectra (HRMS) were measured on a
VG Autospec-Micromass spectrometer. HPLC analysis was
performed using Chiralcel OD column; Hex:iPrOH, 98:2,
flow rate = 1 mL min-1, λ

max.
 = 257 cm-1. Optical rotations

were measured at 25 oC with Perkin-Elmer 241 instrument.

(R)-1-Phenyl-but-3-en-1-ol (3)41, 42

Synthesis of chiral bis-Ti(IV) oxide (R,R)-A. To a stirred
solution of TiCl

4
 (25 µL, 0.23 mmol) in CH

2
Cl

2
 (4.6 mL)

was added Ti(OiPr)
4
 (0.2 mL, 0.69 mmol) at 0 oC under

argon. The solution was allowed to warm to room
temperature. After 1h, silver(I) oxide (107 mg, 0.46 mmol)
was added at room temperature, and the whole mixture
was stirred for 5h excluding direct light. The mixture was
diluted with CH

2
Cl

2
 (9.2 mL), and treated with (R)-BINOL

(263 mg, 0.92 mmol) at room temperature for 2h to furnish
chiral bis-Ti(IV) oxide (R,R)-A.

Asymmetric allylation of benzaldehyde. The in situ
generated (R,R)-A was cooled to –15 oC, and treated
sequentially with benzaldehyde (0.48 mL, 4.7 mmol) and
allyl-n-tributyltin (1.8 mL, 5.6 mmol) at –15 oC. The mixture

was allowed to cool to -18 oC (storage in freezer) and stirred
for 24h. The reaction mixture was quenched with saturated
aqueous NaHCO

3
, and extracted with ether. The organic

extracts were dried over MgSO
4
. Evaporation of solvent and

purification of the residue by column chromatography on
silica gel (hexane: ethyl acetate = 7:3 as eluent) gave (R)-1-
phenyl-but-3-en-1-ol (3) as a colorless oil (90% yield). The
enantiomeric purity of the product was determined to be >99%
ee by analytic HPLC analysis [Chiralcel OD column;
Hex:iPrOH, 98:2, flow rate = 1 mL min-1, λ

max.
 = 257 nm,

retention time = 11.8 min for (S)-isomer, retention time = 17.2
min for (R)-isomer] in comparison with the racemic samples.
IR (film) ν

max
/cm-1: 3365, 3078, 3033, 2973, 2897, 1637,

1637, 1448. 1H NMR (300 MHz, CDCl
3
) δ 7.24-7.34 (5H, m),

5.72-5.86 (1H, m), 5.10-5.19 (2H, m), 4.69-4.74 (1H, m), 2.15-
2.53 (2H, m), 2.15 (1H, d, J 2.6 Hz). 13C NMR (75 MHz,
CDCl

3
) δ 143.7, 134.3, 128.2(2C), 127.4, 125.7(2C), 118.2,

73.2, 43.8. [α]
D
 +53° (c=1.1, C

6
H

6
), lit.42 [α]

D
 –50.5° (c=1.1,

C
6
H

6
) for (S)-isomer in 96% ee.

(R)-1-Phenyl-1,3-propanediol (4)15, 32

To a stirred solution of (R)-1-phenyl-but-3-en-1-ol (3) (550
mg, 3.71 mmol) in a mixture of ethyl ether (12 mL) and water
(12 mL) was added OsO

4
 (28 mg, 0.11 mmol) and the mixture

was stirred for 10 min at room temperature. Powdered NaIO
4

(1.75g, 8.16 mmol) was then added over a 40 min period and
stirring was continued for 2h at room temperature. The mixture
was poured into ethyl ether (200 mL) and aqueous layer was
extracted with ethyl ether (3 x 50 mL). The organic layers
were combined and dried with MgSO

4
 and filtered. The crude

hydroxy aldehyde derivative from 3 was used immediately
for the preparation of the diol 4. To crude hydroxy aldehyde
dissolved in THF (23 mL) was added NaBH

4
 (532 mg, 11.13

mmol) at 0 oC. After 12h, the reaction mixture was then treated
with NaHCO

3
 aqueous saturated solution (100 mL), and

extracted with ethyl ether (3 x 100 mL). The organic layers
were combined and dried with MgSO

4
 and filtered. Purification

of the residue by chromatography on silica gel
(dichloromethane: methanol = 9:1 as eluent) gave (R)-1-
phenyl-1,3-propanediol (4) as an oil (491 mg, 87% yield). IR
(film) ν

max
/cm-1: 3350, 3033, 2942, 2882, 1493, 1422, 1342,

1278, 1044. 1H NMR (300 MHz, CDCl
3
) δ 7.27-7.37 (5H, m),

4.96 (1H, dd, J 8.8 and 4.0 Hz), 3.83-3.87 (2H, t, J 7.5 Hz),
2.70 (2H, br s), 1.84-2.08 (2H, m). 13C NMR (125 MHz, CDCl

3
)

δ 144.3, 128.5 (2C), 127.6, 125.6 (2C), 74.4, 61.5, 40.5. [α]
D

+66° (c=2.4, CH
2
Cl

2
), lit.32 [α]

D
 +65° (c=2.4, CH

2
Cl

2
).

(R)-N-Methyl-1-phenyl-3-amino-1-propanol (6)15

To a solution of (R)-1-phenyl-1,3-propanediol (4) (271
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mg, 1.78 mmol) and triethylamine (260 mg, 2.56 mmol) in
dichloromethane (9mL) was added dropwise MsCl (145
µL, 1.87 mmol) under nitrogen at –10 oC, then the mixture
was heated to 0 oC. After stirring at 0 oC for 3h, the mixture
was poured into ice water (10 mL), washed with 20% H

2
SO

4

(7 mL, v/v), saturated aqueous NaHCO
3
 (10 mL), and brine,

and dried over magnesium sulfate. The solvent was
evaporated and the crude reaction mixture was diluted
with methylamine (10 mL, 40% in water) in THF (10 mL)
and then heated at 65 oC for 3 h. After cooling, the solution
was diluted with ether, washed with saturated aqueous
sodium bicarbonate and brine, and dried with anhydrous
potassium carbonate. Concentration to dryness provides
the title compound 6 (476 mg, 81%, 2 steps). IR (film)
ν

max
/cm-1: 3350, 3056, 3026, 2965, 2867, 2807, 1497,

1448, 1388, 1259, 1063, 1033. 1H NMR (300 MHz, CDCl
3
)

δ 7.22-7.34 (5H, m), 4.92 (1H, dd, J 8.5 and 3.3 Hz), 3.70-
3.80 (1H, br s), 2.83-2.91 (2H, m), 2.44 (3H, s), 1.78-1.96
(3H, m). 13C NMR (75 MHz, CDCl

3
) δ 143.7, 134.3,

128.2(2C), 127.4, 125.7(2C), 118.2, 73.3, 43.8. [α]
D
 +36°

(c=1.0, CH
2
Cl

2
), lit.33 [α]

D
 –33.5° (c=1.0, CH

2
Cl

2
) for (S)-

isomer in 95% ee.

(R)-Fluoxetine hydrochloride [(R)-1.HCl ]15, 30

A solution of (R)-N-methyl-3-phenyl-3-hydroxy-
propylamine (6) (123 mg, 0.75 mmol) in DMSO (7 mL)
was added sodium hydride (22 mg, 0.89 mmol) with
cooling. The mixture was heated at 80 oC for 1 h.
p-Chlorobenzotrifluoride was added and the mixture was
heated for 1 h at 80 to 100 oC and cooled. Extractive
isolation with ethyl acetate (3 x 50 mL) afforded the free
base form of 1 which after concentration, pale yellow oil
was obtained. The oil was dissolved in ether and hydrogen
chloride gas was bubbled through the solution until white
precipitate was formed. The title compound (R)-1.HCl was
colleted as a white solid (200 mg, 78%). IR (KBr) ν

max
/cm-1:

2961, 2935, 2799, 2735, 2448, 2448, 1614, 1520, 1324,
1233, 1169, 1101, 1063. 1H NMR (300 MHz, CDCl

3
) δ

9.60 (2H, br s), 7.41 (2H, d, J 8.8 Hz), 7.25-7.34 (5H, m),
6.89 (2H, d, J 8.8 Hz), 4.96 (1H, dd, J 8.0 and 4.8 Hz), 3.04-
3.17 (2H, m), 2.62 (3H, s), 2.39-2.58 (2H, m). 13C NMR
(125 MHz, CDCl

3
) δ 159.6, 139.0, 129.0, 128.4(2C),

126.8(2C), 125.7, 124.7(2C), 123.3(2C), 115.8, 76.9, 46.1,
34.5, 33.0. [α]

D
 –14° (c=1, CHCl

3
), lit.23 [α]

D
 –13.8° (c=1,

CHCl
3
).
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