INOX: Metalurgia Física

Efeito da temperatura na estrutura e na estabilidade de ligas Fe - 18 Cr - (0 a 60) Ni

Effect of the temperature on the structure and stability of Fe - 18 Cr -(0 to 60) Ni alloys

Resumo

O material estudado consiste de uma série de ligas com composição base (% em peso) de 18Cr - 0,01C - 0,2Si - 0,4Mn e teores de níquel variando de zero a 60%. Analisou-se a microestrutura por microscopia ótica das ligas no estado recozido e após deformação à temperatura ambiente, 350 e 700°C, de modo a simular as altas temperaturas alcançadas na usinagem dessas ligas. Foram também gerados diagramas de equilíbrio das ligas por termodinâmica computacional (Thermocalc) para se prever o comportamento dessas ligas em uma larga faixa de temperaturas. As condições teóricas de equilíbrio termodinâmico do sistema foram comparadas às microestruturas observadas, indicando que a fase CFC nas ligas com teor de níquel entre 10% e 30% em peso está, na realidade, em uma condição metaestável à temperatura ambiente. Foi observada transformação martensítica induzida por trabalho a frio na liga com 10% Ni, validando os cálculos computacionais.

Palavras-chave: Aços inoxidáveis, ligas à base de níquel, microestrutura, usinabilidade, termodinâmica computacional.

Abstract

The material studied consists of a series of alloys with a basic composition (weight %): 18Cr - 0.01 C - 0.2 Si - 0.4 Mn, and levels of nickel varying from zero to 60%. Alloys in the annealed condition and after deformation at room temperature, 350 and 700°C to simulate the high temperatures achieved during machining were observed by optical microscopy. Equilibrium diagrams were generated by computational thermodynamics (Thermocalc) to predict the behavior of these alloys in a wide range of temperatures. The theoretical thermodynamic equilibrium conditions of the system were compared to the observed microstructures, indicating that the CFC phase in alloys with nickel content between 10% and 30% is, in fact, in a metastable condition at room temperature. Martensitic transformation induced by cold work in the alloy with 10% Ni was observed, validating the computer calculations.

Keywords: Stainless steel, nickel-based alloys, microstructure, machinability, computational thermodynamics.

1. Introdução

O sistema Fe-Cr-Ni engloba materiais de alto valor agregado, como alguns aços de alta liga e as ligas especiais à base de níquel (Dieter, 1986 e ASM, 1992). Os principais representantes das ligas de composição básica Fe-Cr (sem adição

Franco de Castro Bubani

Faculdade de Engenharia Mecânica da UNICAMP, Campinas, SP E-mail: franco@fem.unicamp.br

Célia Cristina Moretti Decarli

Faculdade de Engenharia Mecânica da UNICAMP, Campinas, SP E-mail: cdecarli@fem.unicamp.br

Gabriela Lujan Brollo

Faculdade de Engenharia Mecânica da UNICAMP, Campinas, SP E-mail: gbrollo@fem.unicamp.br

Edison Henrique Barreto

Faculdade de Engenharia Mecânica da UNICAMP, Campinas, SP E-mail: edison_qld@yahoo.com.br

Anselmo Eduardo Diniz

Faculdade de Engenharia Mecânica da UNICAMP. Campinas. SP E-mail: anselmo@fem.unicamp.br

Paulo Roberto Mei

Faculdade de Engenharia Mecânica da UNICAMP, Campinas, SP E-mail: pmei@fem.unicamp.br de níquel) são os aços inoxidáveis ferríticos. Os principais representantes das ligas Fe-Cr-Ni são os aços inoxidáveis austeníticos e as superligas à base de níquel. As superligas à base de níquel possuem adições de outros elementos para a obtenção de resistência mecânica satisfatória a temperaturas elevadas. Nas ligas estudadas no presente trabalho, todas com teor de cromo fixo em 18%, a variação do teor de níquel entre 0% e 60% levou a composições base de aços inoxidáveis ferríticos, aços inoxidáveis austeníticos e ligas à base de níquel.

Os diagramas de fases no equilíbrio são valiosas ferramentas no estudo das possíveis fases que ocorrem em um material. Seu uso, entretanto, apresenta algumas limitações importantes. A rigor, na maioria dos sistemas, o equilíbrio não é atingido em uma escala de tempo compatível com o processamento do material. Os diagramas de fase no equilíbrio também ignoram as fases metaestáveis, as quais, freqüentemente, têm propriedades interessantes e importância tecnológica e científica. Por todas essas considerações, o diagrama de fases deve ser usado com cuidado e bom senso para prever o comportamento e a microestrutura de ligas comerciais.

A análise do sistema Fe-Cr-Ni permite observar que o níquel expande o campo austenítico. Na ausência

de níquel, o sistema não apresentará austenita à temperatura ambiente. Na medida em que o teor de níquel aumenta, passa-se a ter austenita, numa condição metaestável, sendo que a quantidade mínima de níquel necessária para que o material apresente uma estrutura essencialmente austenítica à temperatura ambiente depende, entre outros fatores, do teor de cromo. É possível induzir transformação martensítica na austenita metaestável tanto por deformação, quanto por resfriamento criogênico. Na medida em que se adiciona mais níquel ao sistema, a fase austenítica torna-se, progressivamente, mais estável, sendo que acima de determinado teor de níquel a fase austenítica não apresentará transformação martensítica (ASM, 1988).

Vários estudos sobre a transformação martensítica no sistema Fe-Cr-Ni estão disponíveis na literatura. Estudos mais antigos focaram, principalmente, na cristalografia das fases formadas a partir da austenita, nos mecanismos e na ordem da transformação (Kato, 1975; Sato, 1980; Dash, 1963; Suzuki, 1967 e Umemoto, 1984).

Duas fases martensíticas distintas podem ser formadas a partir da austenita, no sistema Fe-Cr-Ni: a martensita ε , que possui estrutura hexagonal compacta, e a martensita α ', que possui estrutura cúbica de faces centradas. Trabalhos mais recentes estudaram a microestrutura submetida a grandes deformações a frio (Wang, 2007), o comportamento termodinâmico do sistema (Tomiska, 2004), a formação, a morfologia e as propriedades das fases martensíticas (Müller, 2006 e Akturk, 2006).

2. Materiais e métodos

As ligas foram produzidas pela Villares Metals. As ligas foram forjadas e laminadas em temperaturas na faixa de 1150 a 1180°C, recozidas a 1050°C por 1 hora e resfriadas em água. O material foi entregue na forma de barras de seção circular, com diâmetro de 54 mm, cuja composição é apresentada na Tabela 1.

Foram preparadas quatro amostras para cada liga: uma no estado recozido e 3 outras retiradas próximas aos locais de ruptura de corpos-de-prova após ensaios de tração na temperatura ambiente, 350 e 700°C. As amostras deformadas foram seccionadas em um plano paralelo ao eixo de tração.

Os diagramas de equilíbrio foram calculados com o software Thermocalc for Windows, utilizando o banco de dados FEDAT. Para demonstrar os efeitos dos elementos de liga no sistema Fe-Cr-Ni, foi elaborado um diagrama para cada liga, de acordo as composições da Tabela 1.

	с	Si	Mn	Cr	Ni	Мо	Р	s	N
0Ni	0,012	0,24	0,43	18,1	0,0	0,18	0,100	0,0100	0,0036
10Ni	0,016	0,22	0,40	18,0	10,2	0,11	0,011	0,0035	0,0300
20Ni	0,014	0,21	0,41	18,0	20,0	0,09	0,010	0,0031	0,0280
30Ni	0,013	0,22	0,44	18,0	30,2	0,07	0,007	0,0027	0,0310
40Ni	0,015	0,21	0,45	18,0	40,2	0,05	0,007	0,0026	0,0050
50Ni	0,012	0,20	0,44	18,1	50,0	0,03	0,006	0,0023	0,0050
60Ni	0,01	0,21	0,46	17,8	60,2	0,02	0,006	0,0017	0,0050

Tabela 1 - Composição das ligas utilizadas no trabalho (% em peso).

46 REM: R. Esc. Minas, Ouro Preto, 63(1): 045-050, jan. mar. 2010

3. Resultados e discussão 3.1 Simulação por termodinâmica computacional

A simulação realizada pelo programa Thermocalc mostrou que as seis ligas contendo níquel poderiam ser, adequadamente, representadas por apenas três diagramas de equilíbrio, pois a composição das ligas 10Ni e 20Ni levou a diagramas, praticamente, idênticos, assim como à composição das ligas 40Ni, 50Ni e 60Ni. São apresentados, na Figura 1, os 3 diagramas em função da temperatura e da fração de níquel, que possuem diferenças significativas: o diagrama 1 corresponde às ligas 10Ni e 20Ni, o diagrama 2 corresponde à liga 30Ni e o diagrama 3 corresponde às ligas 40Ni, 50Ni e 60Ni, que apresentam menores teores de nitrogênio.

Há a presença, nos três diagramas, de campos de precipitação de carbonetos (M₂₃C₆ e M₇C₃) até 900°C. Todos os diagramas apresentam, também, a fase sigma em temperaturas inferiores a 750°C. Os diagramas 1 e 2 são muito semelhantes, exceto para temperaturas em torno de 800°C com teores de níquel acima de 40%, onde há a presença de um campo de austenita + M_7C_3 no diagrama 1 (marcado com o número 15) e a ausência desse campo no diagrama 2. O diagrama 3 apresenta uma diminuição de regiões onde há a ocorrência de nitretos em relação aos diagramas 1 e 2. No diagrama 3, a presença de nitretos está restrita para teores de níquel acima de, aproximadamente, 30% e temperaturas de até 700°C, enquanto nos diagramas 1 e 2 a presença de nitretos abrange uma maior faixa de temperaturas e teores de níquel, ocorrendo nitretos em temperaturas até cerca de 850°C, para 50%Ni.

As estruturas previstas no diagrama para temperaturas da ordem de 600°C dificilmente são obtidas na prática, devido à dificuldade de se atingirem as condições de equilíbrio nessas temperaturas, que exigiriam tempos muito longos, incompatíveis com os processos reais de produção. Em todos os diagramas, observa-se que a T_{liquidus} diminui, ligeiramente, com o aumento do teor de níquel, de 1500°C, em 0%Ni, para, aproximadamente, 1400°C, para 70%Ni, teor de níquel máximo no diagrama.

3.2 Microestrutura

Estado recozido: a observação da microestrutura das ligas (Figura 2) mostrou que, devido à impossibilidade de se atingir o equilíbrio para baixas temperaturas, as estruturas das ligas à temperatura ambiente observadas correspondem, na realidade, às estruturas previstas no diagrama de equilíbrio para temperaturas mais elevadas, da ordem de 900°C. A liga 0% Ni apresentou estrutura totalmente ferrítica. Todas as demais ligas (10 a 60% Ni) apresentaram estrutura austenítica. Esse resultado demonstra o efeito do níquel como elemento estabilizador da fase CFC nas ligas à temperatura ambiente. Conforme o teor de níquel aumentou, houve arredondamento progressivo dos grãos e diminuição da presença de maclas. A alteração no formato dos grãos e a diferença na presença de maclas estão associadas com a energia de falha de empilhamento, que aumenta com a elevação no teor de níquel, para o sistema Fe-Cr-Ni.

Não foi possível identificar por microscopia ótica a presença de carbonetos e nitretos, como previsto no diagrama de equilíbrio.

Após deformação a frio: A deformação a frio causou o alongamento dos grãos de todas as ligas, no sentido de aplicação da deformação. A liga 10Ni, após a deformação a frio, apresentou austenita e martensita α ', a qual já tinha sido identificada em trabalho anterior por difração de raios X (Bubani, 2007). A liga 20Ni também apresentou alterações estruturais após deformação a frio, com o aparecimento de maclas no interior dos grãos, provocadas pela deformação, porém dados anteriores de difração de raios X não indicaram a presença de martensita. As demais ligas (30Ni, 40Ni, 50Ni e 60Ni) permaneceram com as mesmas estruturas apresentadas no estado recozido, não se observando modificações estruturais significativas. Esse resultado indica que a fase CFC está estável nessas ligas. Além disso, a estrutura dessas ligas no estado após deformação a frio é a mesma esperada no equilíbrio, prevista pelos diagramas, sendo composta apenas pela fase CFC, com a presença de carbonetos e nitretos.

Após deformação a 350 e a 700°C: Observa-se precipitação nos contornos de grão de todas as ligas austeníticas ensaiadas a 700°C e, em algumas ligas, até mesmo separação nos contornos de grão (ligas 30Ni, 40Ni, 50Ni e 60Ni). Isso indica que houve forte precipitação nos contornos de grão durante os ensaios a 700°C, fragilizando as ligas austeníticas e levando-as à fratura intergranular. O tempo total de aquecimento no ensaio de tração a 700°C foi de, aproximadamente, 2 horas, suficiente para provocar essa precipitação em contorno de grão austenítico. Esse fenômeno não foi observado na liga ferrítica (0Ni). A 350°C, a precipitação não pôde ser tão nitidamente observada. As alterações estruturais observadas nas ligas 10Ni e 20Ni após deformação a frio não são observadas após deformação a 350 e a 700°C, o que sugere que a temperatura de 350°C já é suficiente para impedir a formação de martensita.

4. Conclusões

No estado recozido, a liga 0%Ni apresentou estrutura totalmente ferrítica. Todas as demais ligas (10 a 60%Ni) apresentaram estrutura austenítica. Conforme o teor de níquel aumentou, houve arredondamento progressivo dos grãos e diminuição da presença de maclas. Não foi possível identificar por microscopia ótica a presença de carbonetos e nitretos, como previsto no diagrama de equilíbrio.

A liga 10Ni, após a deformação a frio, apresentou martensita α ', a qual

Figura 1 - Diagramas de equilíbrio do sistema Fe-Cr-Ni obtidos por Thermocalc.

48 REM: R. Esc. Minas, Ouro Preto, 63(1): 045-050, jan. mar. 2010

Franco de Castro Bubani et al.

Figura 2 - Microestrutura das ligas nos estados (esquerda para direita): 1) Recozido; 2) Após deformação a frio; 3) Após deformação a 350 °C; 4) Após deformação a 700 °C. Ataque: Liga 0Ni = Marble. Ligas 10 a 60 Ni = eletrolítico com ácido oxálico em água a 10%.

REM: R. Esc. Minas, Ouro Preto, 63(1): 045-050, jan. mar. 2010 49

já havia sido identificada em trabalho anterior por difração de raios X. A liga 20Ni também apresentou alterações estruturais após deformação a frio, com o aparecimento de maclas no interior dos grãos, provocadas pela deformação, porém dados anteriores de difração de raios X não indicaram a presença de martensita. As demais ligas (30Ni, 40Ni, 50Ni e 60Ni) permaneceram com as mesmas estruturas apresentadas no estado recozido, não se observando modificações estruturais significativas.

Após deformação a 350 e a 700°C houve precipitação nos contornos de grão de todas as ligas austeníticas ensaiadas a 700°C e, em algumas ligas, até mesmo separação nos contornos de grão (ligas 30Ni, 40Ni, 50Ni e 60Ni). Esse fenômeno não foi observado na liga ferrítica (0Ni). A 350°C, a precipitação não pôde ser tão nitidamente observada. As alterações estruturais observadas nas ligas 10Ni e 20Ni após deformação à frio não foram observadas após deformação a 350 e a 700°C, o que sugere que a temperatura de 350°C já é suficiente para impedir a formação de martensita nessas ligas.

5. Referências bibliográficas

- AKTURK, S., DURLU, T.N. Formation and magnetic properties of butterfly-shaped martensite in an Fe-Ni-Cr alloy. *Materials Science and Engineering A*, v. 438-440, p. 292-295, 2006.
- ASM International Handbook Committee. *Metals Handbook*, v. 9, Metallography and Microstructures, 9 ed., Metals Park, ASM Intl, 1992. 1627p.
- ASM International Handbook Committee. *Metals Handbook*, v. 3, Phase Diagrams, 9 ed. Metals Park, ASM Int., 1988. 978p.
- BUBANI, B., DECARLI, C. C. M., MARQUES, D. C., BARBOSA, A. C., DINIZ, A. E., MEI, P. R.. Efeitos da adição de níquel em ligas ferro-cromo. Parte I: Propriedades mecânicas. *REM- Revista Escola de Minas*, Ouro Preto, v. 60, n.1, p. 149-154, jan. mar. 2007.
- DASH J., OTTE, H. M. The Martensite Transformation in Stainless Steel. *Acta Metallurgica*, v. 11, p. 1169-1178, 1963.
- DIETER, G. E. Mechanical Metallurgy. (3. ed.). New York: McGraw-Hill, 1986. 751p.
- KATO M., MORI, T. Stress-Induced Martensite in Single Crystals of an Fe-23Ni-5Cr Alloy, *Acta Metallurgica*, v. 24, p. 853-860, 1975.
- MÜLLER, L., KLEMRADT, U., FINLAYSON, T. R. Time-dependent phenomena in athermal martensitic transformations. *Materials Science and Engineering A*, v. 438-440, p. 122-125, 2006.
- SATO, A., KASUGA, H., MORI, T. Effect of external stress on the γ → ε → α martensitic transformation examined by a double tensile deformation. *Acta Metallurgica*, v. 28, p. 1223-1228, 1980.
- SUZUKI, T., KOJIMA, H., SUZUKI, K., HASHIMOTO, T., ICHIHARA, M. An experimental study of the martensite nucleation and growth in 18/8 stainless steel. *Acta Metallurgica*, v. 25, p. 1151-1162, 1977.
- TOMISKA, J. The system Fe-Ni-Cr: revision of the thermodynamic description. *Journal* of Alloys and Compounds, v. 379, p. 176-187, 2004.
- UMEMOTO, M., HYODO, T., MAEDA, T., TAMURA, I. Electron microscopy studies of butterfly martensite. *Acta Metallurgica*, v. 32, p. 1191-1203, 1984.
- WANG, H. S., YANG, J. R., BHADESHIA, H. K. D. H. Characterization of severely deformed austenitic stainless steel wire. *Materials Science and Technology*, v. 21, p. 1323-1328, 2007.

Artigo recebido em 22/06/2009 e aprovado em 19/01/2010.

Rem

Δ

tem novo endereço eletrônico para submissão de artigos:

http://submission.scielo.br/index.php/rem/index

www.rem.com.br