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Location of Ribosomal Genes in the Chromosomes of Anopheles
darlingi and Anopheles nuneztovari (Diptera, Culicidae) from the
Brazilian Amazon
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Fluorescence in situ hybridization of Anopheles darlingi and A. nuneztovari demonstrated nucleolar organizer
region activity at the end of the fourth larval instar, when the nucleolar organizer regions underwent gradual
condensation. The heteromorphic sex chromosomes showed intraindividual size variation in the rDNA blocks
located in the pericentromeric region and this coincided with the location of constitutive heterochromatin
(C-banding).
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Anopheles (Nyssorhynchus) darlingi Root, 1926 and
A. (N.) nuneztovari Gabaldén, 1940 are important vectors
of human malaria parasites. In Brazil, 4. darlingi is the main
vector of malaria, especially in the Amazon region, where
more than 97% of all cases in the country occur (Tadei &
Dutary-Thatcher 2000). In Colombia and Venezuela, the main
vector is A. nuneztovari (Kitzmiller et al. 1973).

Intraspecific variation involving constitutive hetero-
chromatin in mitotic chromosomes is a general phenom-
enon in many groups of animals. Such structural changes
result in the loss or gain of heterochromatin, as occurs in
the chromosomes of Anopheles species in Thailand and
Southeast Asia (Baimai et al. 1996, Baimai 1998). In A.
nuneztovari and A. darlingi, which have karyotypes with
2n = 6 chromosomes, with a pair of submetacentric auto-
somes (1), one pair of metacentric (II) and one pair of sex
heteromorphic (XX/XY) chromosomes (Rafael & Tadei
1998), there is intraspecific variation in the heterochro-
matic blocks located around the centromeric region in the
sex chromosomes and autosomes (Rafael & Tadei 2000).

Based on morphological variations (Faran & Linthicum
1981), geographic distribution, isoenzymes patterns (Rosa-
Freitas et al. 1992, Freitas-Sibajev et al. 1995, Santos et al.
1999, Manguin et al. 1999), behavior, mitochondrial DNA
sequences (Rosa-Freitas et al. 1992, Freitas-Sibajev et al.
1995, Conn et al. 1999), random amplified polymorphic
DNA (RAPD) patterns and internal transcribed spacer 2
(ITS2) region profiles from rDNA markers (Manguin et al.
1999) of different populations, 4. darlingi is considered
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to be a single species. However, comparisons of chromo-
somal variability among A. darlingi populations from
Northern and Southern Brazil have revealed a higher fre-
quency of heterozygous inversions in the northern popu-
lations (Kreutzer et al. 1972, Tadei et al. 1982). In contrast,
environmental and isoenzymatic variations (Fritz et al.
1995, Scarpassa et al. 1999), ITS2 (Fritz et al. 1994, Onyabe
& Conn 1999) and mitochondrial DNA marker (Conn et al.
1998, Scarpassa et al. 2000) analyses have shown impor-
tant geographic interpopulational differences in 4.
nuneztovari, and it is still not clear whether 4. nuneztovari
is a single variable species or a complex of species.

The fixed inversion on the X-chromosome in Brazilian
population of 4. nuneztovari differed from that of Vene-
zuelan and Colombian populations (Kitzmiller et al. 1973).
This fixed inversion, the frequencies of inversions in au-
tosome I, and the presence of a chromocenter were used
by Conn (1990) and Conn et al. (1993) to identify the
cytotypes A, B and C for 4. nuneztovari. Cytotype A
showed one fixed inversion on the X-chromosome (Bra-
zilian Amazon), cytotype B had inversion 2La (Venezuela)
and cytotype C had inversions 2b, 2L¢ and 2L.d (Colom-
bia and Western Venezuela).

Molecular biology and in situ hybridization techniques
have provided powerful tools for gene mapping and for
establishing physical gene maps of polytene and me-
taphase chromosomes in mosquitoes species. As in other
eukaryotes, the ribosomal DNA (rDNA) of mosquitoes is
useful for studying genetic variability and divergences
within and among species. The rDNA consists of
tandemly repeated transcriptional units with highly con-
served genes, and occurs with approximately 500 copies
in the genome of mosquitoes (Collins et al. 1987). The
rRNA genes, which are located in the nucleolar organizer
regions (NORs), have been used as a probe in in situ
hybridization methods to map the NORs in many insects,
including Drosophila of the mulleri/D. arizonensis com-
plex (Bicudo 1982), Ceratitis capitata (Bedo & Webb
1989), Sciara ocellaris (Dessen & Perondini 1991), and
the blow flies Chrysomyia megacephala and C. putoria
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(Parise-Maltempi & Avancini 2001). In mosquitoes, the
rRNA genes are located within and around the hetero-
chromatic regions, especially on the sex chromosomes in
the subfamily Culicinae and in some species of the sub-
family Anophelinae (Marchi & Pili 1994). However, there
are no in situ hybridization studies for 4. darlingi and A.
nuneztovari (both in the subgenus Nyssorhynchus).

In the present study of 4. darlingi and A. nuneztovari
from Manaus (AM) and Macapa (AP) in the Brazilian
Amazon, we investigated the NOR in the polytene chro-
mosomes and the relationship of the NOR to the constitu-
tive heterochromatin (C-banding) in the heteromorphic
sex pair. We also compared the rDNA genes of both spe-
cies using an rDNA probe (pDm 238 — D. melanogaster)
in fluorescence in situ hybridization. The use of this
method to map the ribosomal genes in the chromosomes
of these mosquitoes should allow the identification of
chromosomal signals which may be useful in differentiat-
ing populations of both species. The FISH method should
also be useful to separate the 4. albitarsis complex, such
as A. marajoara, which was incriminated as a primary
malaria vector in Macapa (Conn et al. 2002).

MATERIALS AND METHODS

Mosgquitoes rearing - From July 1998 to August 2000,
individuals of A. darlingi and A. nuneztovari were col-
lected at three locations in the Amazon region: Manaus
(3°08’S, 60°01°W), and Novo Airdo (1°56°S, 61°22°W) at
Manairdo locality, both in the state of Amazonas, and
Macapa (0°02°S, 51°03’W) at Manuarum locality, in the
state of Amapa. Adult females were captured from 18:30
to 20:30 h using oral aspirators while they were feeding
on cattle, resting on stable walls or biting humans. Wild-
caught adults were transported in moist chambers to the
laboratory of malaria vectors at the Instituto Nacional de
Pesquisas da Amazonia. Females were confined individu-
ally in plastic cups for egg laying. The offspring were
reared to the fourth instar larvae and prepupal stage. Mor-
phological identification of the specimens was according
to Forattini (1962) and Faran and Linthicum (1981).

Preparations of polytene chromosomes - Fourth in-
star (early and middle stages) larvae and prepupae of fe-
males A. darlingi and A. nuneztovari were used to pre-
pare polytene chromosomes as described by French et
al. (1962) and Kumar and Collins (1994). In some cases,
during squashing of the salivary glands, the nucleolar
contents and granular and fibrous compounds became
dissociated and were lost. This loss of material, together
with the fact that there were fewer specimens from Novo
Airao than from Manaus, meant that there were fewer slide
preparations from the former location. In all 71 slides con-
taining well-spread polytene chromosomes were selected
for in situ hybridization. In 4. darlingi we analyzed 5, 21
and 18 slides from Novo Airdo, Manaus and Macapa,
respectively. In 4. nuneztovari we analyzed 15 and 12
slides from Manaus and Macapa, respectively.

Preparations of mitotic chromosomes - Mitotic chro-
mosomes in air-dried neuroblast preparations from fourth
instar larvae (early and middle stages) and prepupae (F1)
were examined using the techniques described by Imai et
al. (1988). Thirty-nine treated and fixed slide preparations
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containing 4 to 5 well-spread metaphase plates of A.
darlingi and A. nuneztovari were used in the fluores-
cence in situ hybridization assays. We analyzed 2, 11 and
9 slides of A. darlingi from Novo Airdo, Manaus and
Macapa, respectively; and 7 and 10 slides of 4.
nuneztovari from Manaus and Macapa.

Fluorescence in situ hybridization - FISH of poly-
tene and mitotic chromosomes was done according to
Viegas-Péquignot (1992), using a cloned rDNA probe (pDm
238) from D. melanogaster. Polytene and mitotic chromo-
some preparations were pretreated with RNase (100 pg/
ml) at 37°C for 1 h. The slides were then dipped in 2X SSC
for 2 min, dehydrated in an ethanol series for 2 min in each
concentration, air-dried, denatured in 70% formamide (in
2X SSC) at 70°C for 2 min, and dehydrated in cold 50%,
75% and absolute ethanol. The IDNA probe was labelled
with biotin-14-dATP using standard nick translation
(GIBCO BRL) procedures. The labelled probe was dena-
tured at 100°C for 10 min and added to the slides, which
were then incubated in a humid chamber at 37° C for 36 h.
Excess probe was removed by washing the slides twice in
50% formamide (in 2X SSC) and twice in 2X SSC (5 min per
wash). The slides were subsequently blocked with the
first antibody (antibiotin) in the presence of bovine se-
rum albumin in a moist chamber at 37°C for 45 min. To
detect the fluorescence signals, the slides were washed
in PBT (0.4% of BSA 30% w/v, 0.1% of tween 20 and PBS
buffer 1X) and then incubated with the second antibody
(IgG-FITC - 1:100 v/v in PBT) in a moist chamber at 37°C
for 45 min. After washing in PBT, the slides were counter-
stained with propidium iodide (2 pg/ml), which was then
removed by a quick wash. The slides were mounted with
anti-fading (Vectashield) and examined using Zeiss
Axioplan and Olympus fluorescence microscopes. Pho-
tographs were obtained using 400-ASA color negative
Kodak film.

RESULTS

Polytene chromosomes - The rtDNA probe (pDm 238 -
D. melanogaster) physically mapped the NOR at the proxi-
mal end (5C region) of 58 salivary X-chromosomes of 4.
darlingi from Novo Airdo, Manaus and Macapa. In 4.
nuneztovari, the genes were located in the 3C region of
the right arm and the 4B region of the left arm in 67 X-
chromosomes from Manaus and Macapa. In both spe-
cies, the NOR was associated with the nucleolus through
the presence of chromatin fibers and ribosomal cistrons
protruding from the NOR, the activity of which revealed a
gradual condensation on the X-chromosomes. The rDNA
probe did not map to any other chromosome.

The early fourth instar larvae of 4. darlingi from Novo
Airdo, Manaus and Macapa showed analogous,
decondensed NOR with thin filaments of rDNA (Fig. 1A,
B), whereas in the middle of fourth instar larvae, the NOR
became less active (Fig. 1C). When the larvae reached the
prepupal stage, the NOR became condensed (Fig. 1D).

In early fourth instar larvae of A. nuneztovari from
Macapa and Manaus, the NOR was decondensed and
there were thin rDNA filaments (Fig. 2A). By the middle of
the fourth instar, the NOR had already started to con-
dense (Fig. 2B), and in prepupae, the NOR was almost
totally condensed (Fig. 2C).
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Fig. 1: polytene chromosomes of Anopheles darlingi after fluores-
cence in situ hybridization with an rDNA (pDm 238) probe. Similar
nucleolar organizer region (NOR) activity with different degrees of
condensation was present in the 5C region (arrow) of the X chro-
mosomes in samples from Manaus (A, D), Novo Airdo (B) and
Macapa (C). A, B: larvae at the beginning of the fourth instar
showing decondensed NOR; C: larvae in the middle of the fourth
stage, showing less NOR activity and rDNA filaments dispersed
throughout the nucleolus; D: prepupae, with condensed NOR. Scale:
10 pm

Mitotic chromosomes - The NOR was detected by
FISH in the pericentromeric region of 63 sex chromosomes
of A. darlingi from Novo Airdo, Manaus and Macapa.
Fifty-one nuclei of A. nuneztovari from Manaus and
Macapa. The location of the rRNA genes showed similar
intraindividual variation on the sex pairs and coincided
with the centromeric heterochromatic blocks on these
chromosomes. In both species, the fluorescence signals
were greater in the X, chromosome and smaller in the X,
chromosome. The X, chromosome showed strong sig-
nals in approximately 80% of the nuclei whereas 70% of
the X, chromosome had weak fluorescence signals (Figs
3,4). The Y-chromosome was partially or almost totally

Fig. 2: fluorescence in situ hybridization of Anopheles nuneztovari
polytene chromosomes in fourth instar larvae and prepupae. The
patterns of nucleolar organizer region (NOR) staining correspond-
ing to the stages of condesation at the centromere (3C, 4B regions)
of the X chromosome were analogous in samples from Manaus (A,
B) and Macapa (C). A: larvae at the beginning of the fourth stage
showing a puffed NOR with chromosomal fibers extending from
the nucleolus; B: larvae in the middle of the fourth instar, showing
less NOR activity; C: prepupae, with almost totally condensed NOR.
Scale: 10 um
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Fig. 3: fluorescence in situ hybridization of metaphase chromo-
somes of Anopheles darlingi using an rtDNA (pDm 238) probe.
Analogous intraindividual rDNA gene markings were found in
samples from Manaus (A), Novo Airdo (B) and Macapa (C, D). A,
B: fluorescence signals were larger in the X; chromosomes and
smaller in the X, chromosomes (thin arrows); C: fluorescence sig-
nals were weak in the X, and X, chromosomes (thin arrows); D:
partially mapped Y chromosome (thin arrow). Scale: 10 pm

mapped (Figs 3C, 4C). All interphase nuclei exhibited one
or two nucleoli with fluorescence.

Fig. 5 shows the percentage of ribosomal cistrons
mapped on the sex chromosomes of 4. darlingi (A) from
Novo Airdo, Manaus and Macapa, and 4. nuneztovari
(B) from Manaus and Macapa.

Fig. 4: fluorescence in situ hybridization showing similar intra-
individual variation in the signals of sex chromosomes of Anoph-
eles nuneztovari from Manaus and Macapa. A: large rDNA gene
blocks ain the pericentromeric region of the X; chromosome (ar-
rowhead); these markings were smaller in the X, chromosome (thin
arrow); B: weak fluorescence markings in the X, chromosome (ar-
rowhead) and their absence in the X, chromosome (thin arrow); C:
the entire length of the Y chromosome was mapped (thin arrow).
Scale: 10 um



Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 98(5), July 2003 633
A B
6 — 6 —|
] A. darlingi 1 A. nuneztovari
~~ 4 | —_ ] —
£ = 4
3 =5
N— - — = —
< o
IR - £ .
51 =
Q — Q —] §
— 2 <
2 ; 2 ] )
== Bigi J88 011
Xi X2 Y 1I 111 Xi X2 Y 11 111

Fig. 5: map of the sex chromosomes of Anopheles darlingi (A) from Novo Airdo, Manaus and Macapéa and A. nuneztovari (B) from Manaus
and Macapa based on the pDm 238 probe. Y-axis: average length of the chromosomes. X-axis: sex chromosomes (X, X,, Y) and
autosomes (II, III). The dashed area of the sex chromosomes of A. darlingi (A) corresponds to the average of the percentage of ribosomal
cistrons mapped on the X; (65.0% = 13.3), X, (48.1% + 12.6) and Y (94.2% + 6.4) chromosomes. The dashed area of the sex
chromosomes of A. nuneztovari (B) corresponds to the average of the percentage of ribosomal cistrons of the long (64.8% + 12) and short
(25.7% + 17.8) arms of the X, chromosome, of the long (49.7% + 20) and short (21% + 15.1) arms of the X, chromosome, and of the

Y chromosomes (96.5% =+ 4.2).

DISCUSSION

Active NOR were detected on the polytene X-chromo-
some of A. darlingi and A. nuneztovari in early fourth in-
star larvae. In prepupae, the NOR became condensed and
the nucleolus disappeared. The longest period in the de-
velopment of both species, from eggs to adults, corre-
sponds to the transformation of the fourth instar larvae
into pupae (Santos et al. 1981, Scarpassa & Tadei 1990).
According to these authors, this period may be related to
the levels of the insect hormone ecdysone. The effects of
this moulting hormone on protein and rRNA synthesis in
insects have been shown in cytological studies such as in
Rynchosciara (Amabis 1972). Salivary gland chromosomes
from fourth instar larvae of S. ocellaris treated with ecdys-
one showed very active NOR that were abruptly repressed
when pupation was induced (Dessen & Perondini 1985).
The structural regulatory mechanism of NOR may be in-
fluenced by the functional stage of cells, and this can af-
fect chromatin condensation and nucleolus size, as occurs
in Drosophila (Bicudo 1982), Rynchosciara (Amabis 1972)
and S. ocellaris (Dessen & Perondini 1991). A similar phe-
nomenon probably occurs in Anopheles species, since the
degree of NOR condensation in the salivary gland chro-
mosomes of A. subpictus, the vector of malaria in India
(Chaudhry 1986), varies in fourth instar larvae and pre-
pupae. An analogous situation was reported by Tiepolo et
al. (1974) who observed divergent DNA synthesis in hybrids
of A. atroparvus and A. labranchiae. In A. darlingi and A.
nuneztovari, the differences in the intensity of protein and
RNA synthesis probably reflect the functional stage of the
cells and the effect of hormones such as ecdysone on NOR
transcriptional activity.

The presence of NOR in a single chromosome was
detected using rRNA gene probes in Xenopus (Pardue et

al. 1970), Drosophila of the mulleri/D. arizonensis com-
plex (Bicudo 1982), S. occelaris (Dessen & Perondini 1991),
A. labranchiae and Orthopodomyia pulcripalpis (Marchi
& Pilli 1994). Centromeric heterochromatin occurs at a
single locus in X-chromosomes of A. gambiae and A.
arabiensis (Collins et al. 1987). A. merus, A. melas, and 4.
quadrimaculatus have a second rDNA locus, probably
located on the Y chromosome (Collins et al. 1989). Like-
wise, the D. melanogaster rtDNA probe mapped both the
NOR in a single X chromosome (5C region) of A. darlingi
and the centromere (3C and 4B regions) of A. nuneztovari.
In A. darlingi and A. nuneztovari, the NOR was puffed
and exhibited chromatin fibers and fluorescence grains
protruding from within the nucleolar mass.

The transcriptional activity of RNA genes and varia-
tions in the intensity of NOR staining have been observed
in the X chromosomes of D. hydei (Pardue et al. 1970), D.
mulleri/D. arizonensis (Bicudo 1982) and the medfly C.
capitata (Bedo & Webb 1989). In O. pulcripalpis, 18S
and 28S rRNA probes showed the NOR in the 4C band of
polytene chromosome I and in the nucleolus of polytene
chromosomes of A. labranchiae. The 4C band is associ-
ated with the nucleolus through fibers and grains that
can be seen extending from the band into the nucleolus.
This association may be related to the transcriptional ac-
tivity in the NOR (Marchi & Pili 1994). A similar pattern of
hybridization was observed in 4. darlingi from Novo
Airdo, Manaus and Macapa, and A. nuneztovari from
Manaus and Macapa.

The internal transcribed 2 (ITS2) variant, a spacer which
separates the 18S from 5.8S rDNA sub-units, was ana-
lyzed in A. nuneztovari mosquitoes by Onyabe and Conn
(1999). According to these authors, multiple variants may
be present on a single chromosome of this species, re-
gardless of sex. These authors also suggested that the
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rDNA of 4. nuneztovari may not be exclusively X-linked,
thus resembling that of 4. melas, A. merus, A. quadri-
annulatus (Collins et al. 1989) and 4. quadrimaculatus
(Kumar & Rai 1990). These findings could be tested in the
polytene chromosomes of A. nuneztovari by in situ hy-
bridization, using rDNA-specific probes.

An tDNA (pDm 238 — D. melanogaster) probe was
used to determine the relationship between the NOR and
constitutive heterochromatin (C-banding) in 4. darlingi
and A. nuneztovari. This probe mapped the X (X, and
X,) and Y chromosomes, whose gene sites coincided with
the constitutive heterochromatin (C-banding) in the
pericentromeric region and showed a conspicuous asso-
ciation with the NOR of both species. This gene sites
agree with the data for X acrocentric chromosomes of 4.
darlingi from Manaus and Macapa (Rafael & Tadei 2000).
In these chromosomes, the constitutive heterochromatin
was located in the centromeric region which extended to
1/3 of this chromosome whereas the X, chromosomes
showed fewer signals. In 4. nuneztovari from Manaus,
the intraspecific variations in the heterochromatic block
signals in the submetacentric X, (longer) and the X,
(shorter) chromosomes were the same as those of A.
nuneztovari from Macapa.

Identical ribosomal gene locations were obtained in
the centromeric X chromosome and in the Y chromosome
of D. melanogaster, D. simulans and D. hydei (reviewed
in Bicudo 1985). In 20 species of mosquitoes belonging to
eight genera of the subfamily Culicinae, the rDNA was
located on a single mitotic chromosome which had rRNA
genes dispersed along the length of all three pairs of theese
chromosomes (Kumar & Rai 1990, 1991). In contrast, in
A. petragnani, A. hispaniola (Marchi & Pili 1994), A.
gambiae (Kumar & Collins 1994) and A. stephensi
(Redfern 1981), the rRNA genes were located on the sex
pairs, mainly within heterochromatic regions (C-banding)
or adjacent to them.

As in individuals with different IDNA amounts de-
tected in populations of Anopheles, Culex, Aedes and
Orthopodomyia (Marchi & Pili 1994), the oriental Anoph-
eles species are prone to variations in the content of con-
stitutive heterochromatin in their mitotic chromosomes,
especially in the sex pairs with consequent differences in
size and shape (Baimai et al. 1996, Baimai 1998). In dipteran
insects, constitutive heterochromatin may account for
more than 60% of the length of the X chromosome (Baimai
1998). The fluorescence signals of rDNA around the cen-
tromeric heterochromatic blocks of the sex pairs of 4.
darlingi and A. nuneztovari indicate that the rRNA genes
are more dispersed in X, than in X, chromosomes. The
differences of the fluorescence signals of the sex pairs of
both species suggest intraindividual variation in the dis-
tribution of rDNA copies associated with constitutive
heterochromatin.

Intraspecific variation in the number of copies of IRNA
genes has been reported in mosquitoes (Kumar & Rai
1990, 1991). This polymorphism probably results from re-
combination and unequal crossing-over during the meio-
sis. In Anopheles, the partially homologous X and Y chro-
mosomes may undergo recombination and unequal cross-
ing-over, and this may lead to differences in the arm length
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and heterochromatin content of these chromosomes
(Baimai & Traikpavasin 1987, Marchi & Mezzanotte 1990).
The heterochromatin on eukaryotic chromosomes has a
significant role in the regulation and concerted evolution
ofthe genome and may serve similar functions in the chro-
mosomes of A. darlingi and A. nuneztovari. It is uncer-
tain whether the acrocentric X chromosome of 4. darlingi
originated from the X metacentric chromosome. The meta-
centric-acrocentric chromosomes may originate via
heterochromatinization of the metacentric-acrocentric
arm and their successive loss. In 4. nuneztovari, which
shows polymorphism in the size of the X, (longer) and X,
(shorter) submetacentric chromosomes, similar hete-
rochromatinization may occur. Detailed investigations of
the dynamics of heterochromatin loss, particularly at the
molecular level, and of its evolutionary significance in the
genome of A. darlingi and A. nuneztovari, remain to be
undertaken.
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