
Cell-penetrating peptides (CPPs) represent a noninva-

sive method for delivering functional biomolecules 

into living cells. We have recently shown that the Ep-

stein-Barr virus transcriptional factor ZEBRA contains 

a protein transduction domain, named Z9 or minimal 

domain (MD). Only few of currently identified CPPs 

including MD are able to rapidly cross the mammalian 

cell membrane without being entrapped into en-

dosomal compartments, even when fused to cargo 

macromolecules. In this work, a series of MD deletion 

mutants has been engineered and their cellular uptake 

has been analyzed by confocal microscopy and FACS. 

We identified a domain MD11 (8 amino acids shorter 

than MD) able to enter mammalian cells via a mainly 

endocytosis-independent mechanism. All the other 

generated truncated forms exhibited reduced cellular 

uptake and penetrated into cells through endocytic 

mechanisms. These results have highlighted the role of 

the MD11 C-terminal region as essential for efficient 

cellular entry and endosomal escape  and open new 

perspectives for the use of this CPP as carrier for de-

livering biologically active macromolecules with 

therapeutic potential. 
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Study on the internalization mechanism of the ZEBRA cell penetrating 

peptide 

Introduction 
 

Many therapeutic targets have been found located 

within cells but the effective transport of hydrophilic 

active molecules such as proteins or peptides across 

the cellular plasma membrane has represented a seri-

ous obstacle for many decades. A promising approach 

that seems to be the solution for overcoming the cellu-

lar barrier, has emerged with the discovery of the cell-

penetrating peptides (CPPs), also referred to as protein 

transduction domains. Generally, CPPs are defined as 

relative short peptides with the ability to gain access to 

the cell interior and promote the intracellular delivery 

of conjugated cargoes (Langel  2006). Since the dis-

covery of the first CPP from the HIV TAT protein 

(Frankel & Pabo 1988, Green & Loewenstein 1988), a 

variety of transducing peptides has been identified, 

including both naturally occurring domains and syn-

thetically derived sequences. Well known examples 

include the penetratin peptide (Derossi et al. 1994), 

VP22 (Elliott & O'Hare 1997), pVEC (Elmquist et al. 

2001), polyarginine (Mitchell et al. 2000), Transportan 

(Pooga et al. 1998), etc. The common feature of CPPs 

is their typically high content in basic arginine and ly-

sine residues, leading to a positive net charge of the 

peptides, which is considered to be crucial for initial 

membrane interaction through binding to negatively 

charged phospholipids and glycosaminoglycans 

(Ziegler 2008). The number of applications using 

CPPs is increasing, and so far more than 300 studies 

from in vitro to in vivo have been reported (Heitz et al. 

2009). Indeed, the interest for CPPs is mainly due to 

their low cytotoxicity and to the fact that there is no 

limitation for the type of cargo. CPPs have been used 

to improve delivery of cargoes that vary greatly in size 

and nature, including small molecules, oligonucleo-

tides, plasmid DNA, peptides, proteins, nanoparticles, 

virus and lipid-based formulations (Zorko & Langel 

2005). Despite the similarities among CPPs, the trans-

location mechanisms may vary considerably. The two 

main pathways suggested for cellular uptake are direct 

penetration and endocytosis (Madani 2011). However, 

the impact of these two mechanisms on the biological 

function of the transported cargo is different. Contrary 

to direct penetration, during endocytosis, the cargo can 

be entrapped and consecutively partially degraded into 

endosomal compartments, thus leading to the loss of 

its activity. This aspect represents the main limitation 
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towards the therapeutic use of CPPs as delivery sys-

tems for biologically active drugs. When conjugated to 

cargo molecules, the cellular uptake of most widely 

used CPPs such as penetratin, TAT, pVEC and trans-

portan is shown to proceed through an endocytic path-

way (Eiriksdottir et al. 2010, Lundin et al. 2008, 

Saalik et al. 2004). In a previous study, we identified a 

novel cell-penetrating peptide able to cross the cell 

membranes in an endocytosis-independent mechanism 

even when fused to cargoes, as shown with eGFP and 

β-galactosidase reporter proteins (Rothe et al. 2010). 

This CPP derives from the Epstein-Barr virus (EBV) 

ZEBRA transcription factor. A reductionist study of 

full-length ZEBRA protein has allowed us to identify 

the amino acid region (named as Minimal Domain, 

MD) implicated in cellular uptake (Rothe et al. 2010). 

The region required for internalization spans residues 

170-220 from the ZEBRA protein and contains two 

contiguous domains: a positively charged domain 

(DNA-binding domain, DBD) and a hydrophobic leu-

cin-rich domain (dimerization domain, DIM). The 

DBD is believed to mediate cell surface binding of the 

MD to the negatively charged heparan sulfate pro-

teoglycans while the DIM domain facilitates transloca-

tion through the lipid bilayer by hydrophobic interac-

tions (Rothe et al. 2010). 

 In the present study, we aimed at reducing the 

size and the hydrophobicity of the transduction domain 

and at describing the amino acid sequence required for 

its cellular uptake. We produced MD truncations in 

fusion to the eGFP reporter protein and evaluated the 

ability of these constructions to translocate through the 

membrane of HeLa cells. We identified a MD shorter 

peptide (MD11) able to enter mammalian cells with 

high efficiency by an endocytosis-independent mecha-

nism. Further trimming of the DIM domain from the 

MD11 peptide led to a decrease in the translocation ef-

ficiency and to an alteration of the uptake mechanism. 

The results presented here reveal the role of the whole 

DIM domain as necessary for endocytosis-independent 

cell internalization. This import mechanism is an at-

tractive requisite for developing MD11-mediated up-

take of macromolecules in therapeutic applications and 

strengthens this delivery system compared to most oth-

ers. 

 

Materials and Methods 
 

Cloning, expression and purification of the MDx-

eGFP fusion proteins 

The cloning, the expression and the purification of the 

free eGFP and the recombinant fusion proteins MDx-

eGFP were performed as described in Rothe and 

Lenormand (2008). Briefly, the DNA fragments en-

coding for the MD deletion mutants were generated by 

PCR and ligated upstream of the 5’-end of eGFP gene 

into pET15b expression plasmid, bearing a His6-tag 

sequence. The generated MD truncations are schemati-

cally depicted in Figure 1A. The fusion recombinant 

proteins were produced in E. coli BL21 (DE3) cells by 

inducing the expression with 0.5mM Isopropyl β-D-1-

thiogalactopyranoside (IPTG) at OD600nm of 0.8 for 

18h at 16°C. In order to recover the proteins of inter-

est, the bacterial cultures were centrifuged at 5000g for 

15 min and the cell pellets were sonicated in 20mM 

Tris/HCl pH 7.4, 500mM NaCl, 10% glycerol, 2mM 

DTT, 10mM imidazole (5mL per gram wet pellet) sup-

plemented with a complete protease inhibitor cocktail 

(Roche). As all the MDx-eGFP were produced with a 

hexahistidine tag, the soluble fractions were purified 

onto nickel sepharose HisGraviTrap columns (GE 

Healthcare) by gravity-flow and eluted in the same 

buffer by a stepwise increase (at 100, 175, 250 and 

500mM) of imidazole content. MDx-eGFP proteins 

were separated onto a 15% SDS-polyacrylamide gel 

electrophoresis and analyzed by Coomassie blue stain-

ing or by Western-blotting using an anti-His tag anti-

body HRP-coupled (Sigma, 1:10000 dilution). Prior to 

their use for cellular uptake experiments, purified 

eGFP and MDx-eGFP proteins were dialyzed against 

PBS and 25mM HEPES/KOH pH7.0, 150mM NaCl 

and 10% glycerol respectively using a MWCO 8000 

SpectraPorTM dialysis tubing (Spectrum Laboratories). 

The yield of the purified His-tagged proteins was 

quantified by BCA Protein Assay Kit according to the 

manufacturer’s instructions (Pierce). 

 Helical wheel projections of the peptides were 

generated using online program available at http://

rzlab.ucr.edu/scripts. Primary sequence analysis was 

performed using EMBOSS bioinformatics programs 

and the GRAVY index was calculated using Prot-

Param tool at ExPASy Proteomics Server. 

 

Cell culture 

HeLa cells were maintained in DMEM (PAA, GE 

Healthcare) supplemented with 10% heat-inactivated 

fetal bovine serum (PAA, GE Healthcare), 100 units/

mL penicillin and 50µg/mL streptomycin (Gibco). 

Cells were cultured at 37°C in a humidified 5% CO2 

atmosphere incubator. 

 

Confocal microscopy  
HeLa cells (5 x 104 cells/well) were seeded onto an 8-

well Lab-TekTM chambered coverglass (Nunc) in com-

plete cell culture media 24h before treatment. After 

removal of the medium, the cell layers were rinsed 

twice with DPBS and subsequently exposed at 37°C 

for 4 hours to 0.3µM of recombinant proteins in fresh 
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Figure 1. A) Amino-acid sequence of ZEBRA MD cell-penetrating peptide (aa 170-220) and scheme of the deletion mutants. 

Amino acids are designated with one-letter code and numbered according to the full-length ZEBRA protein sequence. Basic 

amino acids are shown in red, whereas hydrophobic amino acids in blue. B) Recombinant fusion proteins, containing each pep-

tide fused to the N-term of eGFP, were separated on a 15% SDS-polyacrylamide gel and visualized by Coomassie Blue staining 

and detected by Western blotting using anti-His antibody. 



serum-free medium. Thereafter, the incubation solu-

tions were removed and the cells were washed three 

times with DPBS. Living cell preparations were ob-

served with a LSM 710 confocal scanning laser micro-

scope (Carl Zeiss, Jena, Germany), using a 63×, NA 

1.2, C-apochromat water-immersion objective (Carl 

Zeiss). The experiment was carried out at 488nm exci-

tation and fluorescence was collected with a 510-560 

nm filter. 16 successive optical slices were captured 

along the cell z axis, with a step of 1μm. For localiza-

tion study, cells were also fixed for 15 minutes in 4% 

paraformaldehyde at room temperature and then 

stained with 10µM Nile Red. The images were ac-

quired with 488nm for eGFP and 633nm for Nile Red 

excitation and fluorescence was collected between 502 

– 541 and 580 – 668nm filters respectively. 

 

Cellular uptake assays 

For transduction experiments, 1.5 x 105 HeLa cells/

well were cultured on 12-well plates until 70% of con-

fluence. Cells were washed twice with DPBS and incu-

bated with 0.3µM of recombinant proteins in fresh se-

rum-free culture medium for 4 hours at 37°C. After 

incubation, cells were trypsinized with 0.5% trypsin/

EDTA solution (PAA, GE Healthcare) for 10 min at 

37°C to remove the extracellular bound proteins. The 

trypsin was then neutralized by adding complete me-

dium and the cells were washed twice with DPBS. 

 For endocytic inhibition experiments, cells 

were first pre-incubated for 30 minutes with different 

endocytic inhibitors at the following concentrations: 

50µg/mL nystatin, 100nM wortmannin and 5mM 

methyl-β-cyclo-dextrin (Sigma). After pre-incubations 

with the endocytic inhibitors, the recombinant proteins 

were added to cell cultures in the presence of drugs 

and treated as indicated above. 

 Cell-associated fluorescence was detected us-

ing a FACS Canto II BD Biosciences flow cytometer. 

We used a 488nm laser for excitation and 530/30 

bandpass filters for emission. The results are reported 

as the mean fluorescence intensity from living cells 

gate of 30000 events recorded and analyzed with the 

FACSDiva software. 

 Differences between samples and treatments 

were evaluated by variance analysis (two-tails, paired 

values) followed by the least-significant difference 

test. A difference was considered to be statistically 

significant with p < 0.05. 

 

Preparation and observation of lipid vesicles 

Giant unilamellar vesicles (GUVs) were created by 

sucrose hydration method (Akashi et al. 1996). Three 

different lipid compositions were used in order to ob-

tain fluid (100% PC), rigid (SM:Chol 50:50 % molar 

ratio) and semi-fluid (PC:SM:Chol 33:33:33 % molar 

ratio) GUVs. 50µg of lipid mixtures in chloroform 

were deposited in an 8-well Lab-TekTM chambered 

coverglasses and dried under nitrogen. The dried film 

was hydrated overnight at 4°C with 25mM HEPES/

KOH pH7.4, 250mM sucrose. After re-hydration, 1µg 

of MD-eGFP was added to GUV solution. The lipid 

component was labeled with Nile Red dye (10µM), 

and CSLM images were acquired as described above. 

 

Results 
 

Design and expression of MD analogs 

The ZEBRA MD protein transduction domain (amino 

acids 170-220) consists of 14 basic residues (Lys and 

Arg) and 15 hydrophobic residues, mainly located at 

the C-terminal dimerization domain (Figure 1A) 

(Rothe & Lenormand 2010). To better understand the 

specific contribution of the different amino acids in the 

internalization process, we designed a series of itera-

tive MD truncation mutants. An initial deletion was 

realized by removing the first eight amino acid resi-

dues located upstream of the basic region at the N-

terminus of the MD, resulting in a sequence named as 

MD11 (Figure 1A). In transduction experiments on 

HeLa cells, recombinant proteins containing MD11 

fused to the fluorescent reporter protein eGFP were 

able to penetrate with the same efficiency as MD 

(Rothe & Lenormand, unpublished data). Thus, we 

decided to further optimize this CPP (MD11) by reduc-

ing its size and increasing its hydrophilicity. We engi-

neered six truncations by removing from a minimum 

of five to a maximum of nineteen amino acids from the 

hydrophobic C-terminus (Figure 1A). In addition, we 

produced two more truncations containing either only 

the basic (MD18) or the hydrophobic (MD19) region. 

We then expressed each peptide fused to the N-

terminal end of eGFP. The his-tagged recombinant 

fusion proteins were produced using an E. coli expres-

sion system and purified by nickel affinity chromatog-

raphy. The purity of the MDx-eGFP proteins was ana-

lyzed by Coomassie blue staining and by western-

blotting using an anti-his antibody (Figure 1B). Re-

combinant proteins were pure at around 85%. 

 A crystallographic study has revealed that the 

DNA-bound ZEBRA protein (residues 175-245) is an 

extended bZIP helix (Petosa et al. 2006). With the use 

of the helical wheel projections, the sequences of the 

MD truncations were examined (Figure 2). The wheels 

for all deletions have both a polar and a hydrophobic 

character. In each helix, there are two spatially organ-

ized regions of polar residues interrupted by a few hy-

drophobic residues. The exact content in polar and non

-polar residues for each truncation is summarized in 
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Figure 2. Helical wheels projections of MD11 and its truncated analogs. The projections were realized using the online program 

available at http://rzlab.ucr.edu/scripts. The hydrophilic residues are presented as circles, hydrophobic residues as diamonds, 

potentially negatively charged as triangles, and potentially positively charged as pentagons. The most hydrophobic residues are 

presented in green, and the amount of green is decreasing proportionally to the hydrophobicity (with zero hydrophobicity coded 

as yellow). Hydrophilic residues are coded red, and the amount of red is decreasing proportionally to the hydrophilicity. The 

charged residues are light blue. The peptide length, the amino acid composition, and the GRAVY index of each peptide are 

indicated in the Table 1. The parameters were calculated using EMBOSS and ExPASy bioinformatics programs. 



the Table 1. In all cases, except for MD19, the peptides 

are net positively charged. The shortening and deletion 

of the DIM domain affect both charge and hydropho-

bicity contributions: the non-polar and negative amino 

acid content is reduced and the hydrophilicity 

(negative GRAVY value, (Kyte & Doolittle 1982)) of 

the peptides is increased.  

 

Confocal microscopy 

The transduction ability of MD deletions was investi-

gated by confocal microscopy on living HeLa cells 

after 4 hours treatment with 0.3µM of each recombi-

nant protein according to results reported in Rothe et 

al. (2010). The cellular uptake and the intracellular 

distribution of the recombinant proteins were checked 

by direct visualization of the intracellular eGFP fluo-

rescence. As expected, no fluorescence signal was de-

tected on HeLa cells incubated with free eGFP (Figure 

3). Except for MD19, Z-stack analysis of treated cells 

confirmed that MD11 and most of its analogs main-

tained the cell penetrating ability (Figure 3). The de-

gree of intracellular fluorescence accumulation varied 

between the different MDx constructions (Figure 3). To 

better delineate cell contours and evaluate the interac-

tion of the recombinant cell-penetrating proteins with 

membranes, cells were also fixed and the membrane 

lipids stained with the fluorescent dye Nile Red 

(Figure 4). Overlapping green and red images resulted 

in yellow signals demonstrating the co-localization of 

MD11, MD14-MD17 eGFP fusion proteins with mem-

brane lipids (Figure 4). 

 

Cellular uptake assays 

To quantify the cellular uptake of MD11 and its trun-

cated forms, FACS analysis was performed after a four

-hour incubation of living HeLa cells with 0.3µM of 

each fusion protein. The extra-bound fluorescent pro-

teins were removed by trypsin digestion. All peptides 

were found to penetrate into cells, but the new derived 

MD11 peptides differed remarkably in efficiency of 

penetration (Figure 5A). No improvement of uptake 

was observed when the number of MD11 amino acid 

residues was further reduced. Indeed, the maximum 

efficiency of internalization was observed in HeLa 

cells incubated with MD11-eGFP.  

 To evaluate the internalization mechanism of 

MD11 and its truncations, we measured their uptake 

efficiency in living cells in presence of three endocyto-

sis inhibitors. Nystatin was employed to inhibit the 

caveolae-mediated endocytosis, wortmannin to inhibit 

macropinocytosis, and MβCD to disrupt the import 

through lipid rafts. The presence of nystatin and wort-

mannin did not interfere with MD11-eGFP internaliza-

tion (Figure 5B), indicating no participation of the re-

ceptor-mediated endocytosis in its uptake process. In-

cubation with MβCD caused a 30% decreased uptake 

of MD11-eGFP. Thus, the endocytotic pathway contrib-

uted only partially to the MD11-eGFP cellular uptake 
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Figure 3. Confocal laser scanning microscopy images of living HeLa cells incubated for 4 hours with 0.3µM of free eGFP and 

MDx-eGFP fusion proteins. 16 successive optical slices were captured along the cellular z-axis with a step of 1µm. The pre-

sented images correspond to the middle plan of cellular z-axis sectioning.  



under the applied conditions but did not account for 

the majority of the internalized fusion protein. In con-

trast, a strong decrease in the uptake of MD12-19 trunca-

tions was observed when the three analyzed endocyto-

sis pathways were inhibited, indicating that the main 

internalization routes of these peptides were both re-

ceptor- and lipid raft- mediated endocytosis. Thus, 

MD11 is the shortest CPP derived from the EBV ZE-

BRA transcription factor with the highest internaliza-

tion efficiency through a mainly endocytosis-

independent mechanism. 

 

Confocal imaging of MD11 peptide-lipid interaction 

To further examine the interactions of MD11 with lip-

ids, we incubated the fusion protein MD11-eGFP with 

lipid vesicles of different composition and rigidity. 

Kinetics of protein-lipid interactions, membrane rigid-

ity and changes in membrane morphology can be eas-

ily evaluated by microscopy imaging because of the 

giant vesicle’s size. Fluid vesicles were prepared using 

phosphatidylcholine (PC 100%), rigid and semi-fluid 

vesicles were obtained by mixing sphingomyelin and 

cholesterol (SM, Chol 50:50% molar ratio) and PC, 

SM, Chol (33:33:33% molar ratio) respectively. The 

Nile Red dye (2µg/ml) was used to stain the lipids. 

MD11-eGFP fusion protein was incubated with vesicles 

for 1, 2.5, 3.5, 4.5 and 24 hours at 37°C, and the pro-

tein-lipid interaction was monitored by confocal laser 

scanning microscopy. All the vesicles were homoge-

nously stained with the red dye. We noticed a time-

dependent accumulation of green fluorescent signal 

(eGFP) surrounding the vesicle membranes in all the 

tested conditions. By overlapping the two fluorescent 

signals (red from the Nile red and green from the 

eGFP), it is possible to evaluate the interaction of pep-

tide-lipid that results in a yellow staining of the vesicle 

membranes. After 3.5 h incubation, three different pat-

terns of co-localization were observed (Figure 6, 

“merge” panel). A strong co-localization of MD11 pep-

tide was recorded on semi-fluid and rigid vesicles con-

taining both SM and Chol (Figure 6B and 6C). Any 

interaction was observed between MD11 and PC fluid 

vesicle membranes (Figure 6A), even after 24 hours 

(data not shown). Curiously, a heterogeneous interac-

tion of MD11 in restricted clusters of semi-fluid vesi-
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Figure 4. Intracellular localization of MDx-eGFP in HeLa cells. Confocal microscopy images of fixed HeLa cells after a 4- 

hour incubation with 0.3µM of free eGFP and MDx-eGFP fusion proteins. MDx-eGFP signals are shown in green and the cellu-

lar lipid component in red. The showed images correspond to the central plane of cellular z-axis sectioning.  
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Figure 5 FACS cellular uptake of MD11 and its truncated analogs. A) HeLa cells were incubated with 0.3µM of different pep-

tides fused to eGFP for 4h at 37°C. The data are expressed as mean fluorescence intensity (MFI) of eGFP positive cells and the 

values indicated are the mean±s.d. of four independent experiments. *p < 0.05 MD11-eGFP versus each MD(12-19)-eGFP  

B) Uptake of MD11 and its truncated analogs in presence of endocytosis inhibitors. HeLa cells were pre-treated with 50µg/mL 

nystatin, 0.1µM wortmannin or 5mM MβCD for 30min at 37°C. 0.3µM of recombinant proteins were incubated with cells for 

4h at 37°C. The data are expressed as % of eGFP positive cells and the values indicated are the mean±s.d. of two independent 

experiments. All fluorescence values have been normalized assuming as 100% the number of fluorescent cells incubated with 

the MD11-eGFP without inhibitors. *p < 0.05, MD(11-19)-eGFP without inhibitors versus the same MD in presence of different 

inhibitors. 



cles was observed after one hour incubation (data not 

shown). 

 

Discussion 
 

Increasing efforts are currently being made for devel-

oping CPPs as delivery systems for therapeutic macro-

molecules. In this context, the identification of their 

cellular uptake mechanisms is essential for optimiza-

tion of appropriate strategies. The majority of CPPs is 

internalized via endocytosis when coupled to cargo 

molecules (Eiriksdottir et al. 2010, Lundin et al. 2008, 

Saalik et al. 2004). This aspect represents a great limit 

because payload molecules can be entrapped and de-

graded into endosomal vesicles, with the consequent 

loss of their biological activity. Due to a potential deg-

radation of the CPP-coupled molecule, this internaliza-

tion mechanism does not represent a method of choice 

for the cellular transfer of therapeutic cargoes. There-

fore, identification of new CPPs endowed with direct 

translocation mechanism is necessary. Recent protein 

complementation assays have been developed to con-

firm the cellular uptake of cargoes mediated by CPPs 

and the endosomal escape of biologically active mole-

cules (Milech et al. 2015).  

 We have recently shown that EBV ZEBRA 

protein contains a 51 amino acid- sequence (residues 

170-220, MD) able to transduce across mammalian 

cellular membranes by an endocytosis-independent 

mechanism (Rothe et al. 2010). MD peptide contains 

two regions: the basic DBD and the adjacent leucin-

rich DIM domain. Previous results indicated that the 

presence of both domains could be essential for MD 

cellular uptake (Rothe et al. 2010). Furthermore, enzy-

matic activity has been detected even in cells trans-

duced with MD fused to high-molecular weight pro-

tein, such as β-galactosidase (116kDa) (Rothe et al. 

2010). This evidence prompts us toward further inves-
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Figure 6. Confocal 

i m a g i n g  o f 

MD 1 1 eGFP -GUV 

interaction after 

3.5h treatment. 

MD11-eGFP was 

incubated with A) 

fluid (100% PC), B) 

rigid (SM:Chol 

50:50 % molar ra-

tio) and C) semi-

fluid (PC:SM:Chol 

33:33:33% molar 

ratio) GUVs. MD11-

eGFP signal is 

shown in green and 

the lipids in red. The 

co-localization of 

the peptide on lipid 

m e m b r a n e s  i s 

shown in the merge 

panel. 



tigations to explore the employment of MD as carrier 

of therapeutic macromolecules. The identification of a 

shorter MD peptide able to enter cells by an endocyto-

sis-independent mechanism is suitable for developing 

efficient drug delivery strategies. For this purpose, dif-

ferent MD truncations have been designed with the 

aim to reduce the carrier size and preserve its mecha-

nism of internalization. The direct translocation of hy-

drophilic cargoes to intracellular compartments repre-

sents a great advantage for therapeutic applications as 

they can be directly delivered into cells in an active 

state without being entrapped and degraded in en-

dosomes/lysosomes. As the presence of a cargo may 

influence the internalization process, MD peptides 

were fused to the eGFP reporter protein and their cel-

lular uptake was investigated by confocal microscopy 

and FACS analysis.  

 Starting from an eight amino acid shorter pep-

tide (MD11), six different peptides were produced by 

reducing the C-terminal end, and two were generated 

by isolation of DBD (MD18) and the DIM (MD19) do-

mains. All DIM-deleted peptides possess protein trans-

duction properties, even though the highest efficiency 

has been observed in cells incubated with the original 

MD11-eGFP protein. Unlike the DIM domain (MD19), 

the peptide containing only DBD domain (MD18) can 

pass through the cell membranes, indicating that the 

cationic charges may play an important role in the up-

take mechanism. To quantify the peptide cellular up-

take, FACS analysis was performed. In agreement with 

qualitative data obtained by confocal microscopy, size 

reduction of the DIM domain induces a decrease in 

translocation efficiency. Fluorescence values normal-

ized to the highest recorded signal of MD11 show a 

decrease of about 70% for all DIM-deleted peptides 

and the absence of internalization for MD19-eGFP 

(DIM domain only). 

 We can first explain these results considering 

that the decrease in length of DIM domain could entail 

structural modifications of MD11 helix affecting its 

penetrating activity. Secondly, as shown for TAT pep-

tide (Hoyer et al. 2012), MD11 could penetrate into 

cells in dimer form and the reduction of the DIM se-

quence might prevent this process inducing a decrease 

in the internalization efficiency. 

 Curiously, the loss in uptake is not directly 

linked to the number of removed amino acids. In fact, 

we observe that the deletion of five or seven residues 

(MD12 and MD13 respectively) induces a lower cyto-

plasmic accumulation than the uptake mediated by 

MD16 and MD17. The analysis of the primary se-

quences shows that, similarly to MD11, both MD16 and 

MD17 possess a repeated motif at C-terminal end. This 

motif is composed of two or three successive hydro-

phobic residues (Leu or Ala) followed by a basic (Lys) 

and/or a polar (Gln or Ser) residue. Probably, the pres-

ence of this motif is involved in the interaction with 

hydrophobic membrane lipids and may regulate the 

cellular uptake. These pieces of evidence highlight that 

the length of the MD helix and its polar character play 

a key role in the internalization process. 

 To check the impact of chain length reduction 

on internalization mechanism, we investigated the up-

take of MD11 and its derived peptides in presence of 

endocytosis inhibitors. Inhibition of caveolae-mediated 

endocytosis and macropinocytosis does not affect 

MD11-eGFP uptake, whereas the internalization of all 

MD11 deleted forms is strongly impaired. This loss of 

endocytosis-independent mechanism is also suggested 

by the presence of vesicles-like structures in cytoplasm 

of HeLa target cells incubated with MD16 and MD17 

fusion proteins (Figure 4). These results demonstrate 

that (i) the MD11-mediated cellular import is neither 

based on caveolae-mediated endocytosis nor on 

macropinocytosis and (ii) the deletion of DIM domain 

induces a switch from a non-endocytic to an endocytic 

pathway. Future optimizations of MD11-derived CPPs 

need to take into account that all the residues of the 

DIM domain are required to guarantee the endocytosis

-independent internalization.  

 To elucidate the roles of lipids in MD11-

membrane interactions, we used fluid (PC), rigid (SM, 

Chol) and semi-fluid (PC, SM, Chol) vesicles. We 

show that MD11 peptide strongly interacts with sphin-

gomyelin and cholesterol, but not with phosphatidyl-

coline. These evidences well correlate with FACS data 

on living cells indicating that the depletion of choles-

terol by MβCD treatment can have an impact on the 

MD11 entry. Since SM and cholesterol are both in-

volved in lipid raft formation (Simons et al. 1997), we 

suggest that MD11 may interact with lipid-raft mem-

brane domains during internalization. However, any 

significant accumulation in vesicles’ lumen has been 

detected after MD11-eGFP incubation. Our findings are 

in agreement with results on other CPPs such as R12-

HA, Pep-1 and MPG, that are known to enter cells in 

endocytic-independent manner, and are not able to 

translocate and accumulate in artificial vesicles 

(Deshayes et al. 2004, Henriques et al. 2004, Hirose et 

al. 2012). These studies have established that direct 

translocation is strongly dependent on the presence of 

a negative membrane potential, and is modulated by 

the lipid composition, the membrane curvature and the 

local peptide concentration (Henriques et al. 2004, Hi-

rose et al. 2012, Terrone et al. 2006). Furthermore, 

artificial membranes represent a simplified system 

compared to biological membrane, and a combination 
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of different methods is necessary to fully clarify the 

MD11 entry mechanism. 

 Recent studies have reinforced the notion that 

a characteristic for direct translocation of CPPs is the 

presence of a hydrophobic moiety and have proved 

that this process occurs at specific locations of the 

plasma membrane (Hirose et al. 2012, Palm-Apergi et 

al. 2012). The attachment of a hydrophobic peptide tag 

deriving from human influenza hemagglutinin greatly 

accelerates the direct penetration of dodeca-arginine 

(R12) cationic peptide (Hirose et al. 2012). The hydro-

phobicity of the coupled peptide stimulates dynamic 

morphological alterations in the plasma membrane, 

which allow the permeation through the lipid bilayer 

(Hirose et al. 2012). Since the DIM domain of the 

MD11 is hydrophobic, we believe that it acts in a simi-

lar way and can stimulate the internalization in an en-

docytosis-independent manner. It was previously dem-

onstrated that the amino acid Leu217 located into the 

DIM domain was required for the homodimerization of 

ZEBRA and may avoid heterodimirezation of ZEBRA 

with other bZIP proteins (Petosa et al. 2006). The de-

crease of cellular uptake with our deletion mutant 

MD12-eGFP indicates that the removal of Leu217 

amino acids may impact first, on the dimerization of 

ZEBRA and then, on the transduction capacities of the 

mutant.  Other CPPs such as Antennapedia (Antp) or 

30Kc19 have a dimerization propensity at the plasma 

membrane for stimulating the internalization process 

(Derossi 1994, Park et al. 2014). Like these CPPs, the 

hydrophobic environment of the DIM domain is im-

portant for the cellular uptake. According to these 

pieces of evidence, we believe that the charged DBD 

domain is involved in the initial interaction with the 

bilayer while the hydrophobic domain is crucial for its 

insertion. 

 In conclusion, with the present study we dem-

onstrate that the MD11 C-terminal DIM domain con-

tributes to the internalization but doesn’t act as a driv-

ing force in this process and that it regulates the MD11 

endosomal escape. We recently provided the first proof 

of concept that it can be used as carrier of therapeutic 

active molecules both in mammalian cells (Marchione 

et al. 2015) and in yeast cells (Marchione et al. 2014), 

demonstrating its promising potential for the develop-

ment of new therapeutic strategies.  
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