
Current treatment options for castration-resistant pros-

tate cancer (CRPC) are limited. In this study, a high-

throughput screen of 4910 drugs and drug-like mole-

cules was performed to identify antiproliferative com-

pounds in androgen ablated prostate cancer cells. The 

effect of compounds on cell viability was compared in 

androgen ablated LNCaP prostate cancer cells and in 

LNCaP cells grown in presence of androgens as well 

as in two non-malignant prostate epithelial cells 

(RWPE-1 and EP156T). Validation experiments of 

cancer specific anti-proliferative compounds indicated 

pinosylvin methyl ether (PSME) and tanshinone IIA as 

potent inhibitors of androgen ablated LNCaP cell pro-

liferation. PSME is a stilbene compound with no previ-

ously described anti-neoplastic activity whereas tanshi-

none IIA is currently used in cardiovascular disorders 

and proposed as a cancer drug. To gain insights into 

growth inhibitory mechanisms in CRPC, genome-wide 

gene expression analysis was performed in PSME- and 

tanshinone IIA-exposed cells. Both compounds altered 

the expression of genes involved in cell cycle and ster-

oid and cholesterol biosynthesis in androgen ablated 

LNCaP cells. Decrease in androgen signalling was 

confirmed by reduced expression of androgen receptor 

and prostate specific antigen in PSME- or tanshinone 

IIA-exposed cells. Taken together, this systematic 

screen identified a novel anti-proliferative agent, 

PSME, for CRPC. Moreover, our screen confirmed 

tanshinone IIA as well as several other compounds as 

potential prostate cancer growth inhibitors also in an-

drogen ablated prostate cancer cells. These results pro-

vide valuable starting points for preclinical and clinical 

studies for CRPC treatment. 
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High-throughput cell-based compound screen identifies pinosylvin methyl 

ether and tanshinone IIA as inhibitors of castration-resistant prostate 

cancer 

androgens are produced in cancer cells (Locke et al. 

2008, Taichman et al. 2007). Thus, AR and its co-

regulators are potent drug targets for CRPC treatment. 

Recently, novel promising anti-androgens and chemo-

therapeutic agents such as Enzalutamide, have been 

developed to target CRPC (Aragon-Ching 2012, Ber-

ruti et al. 2012, Dhingra et al. 2013, Schrader et al. 

2013). Although these anti-androgens and chemothera-

peutics have shown significant increase in patient sur-

vival by lengthening survival time by several months, 

there is a need for better treatment options to further 

improve the outcome of patients suffering from CRPC. 

 We have previously applied high-throughput 
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Introduction 
 

Androgen deprivation, surgery and radiation therapy 

are the main treatment options for prostate cancer pa-

tients. However, hormonal therapy is not curative and 

leads to the development of castration-resistant pros-

tate cancer (CRPC). The median survival time for 

CRPC is around 2 years (Tannock et al. 2004). Several 

mechanisms underlying CRPC development have been 

described: androgen receptor (AR) overexpression sen-

sitizing cancer cells to low levels of androgens, AR 

mutations enabling non-androgenic ligands to activate 

the receptor and intra-tumoral steroidogenesis in which 
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screening to systematically explore most currently 

marketed drugs and drug-like molecules for their effi-

cacy against a panel of prostate cells (Iljin et al. 2009). 

Here, we performed a cell-based viability screen with a 

library of 4910 drug-like small molecule compounds in 

LNCaP prostate cancer cells grown either in presence 

or in absence of androgens (Culig et al. 1999). The 

androgen-independent derivative of the androgen-

dependent LNCaP prostate cancer cell line used in this 

study had been previously generated by long-term an-

drogen deprivation (Culig et al. 1999). The screening 

results from LNCaP cells were compared to the previ-

ous cell viability results in non-malignant prostate 

epithelial cells RWPE‑1 and EP156T to identify can-

cer-selective compounds (Iljin et al. 2009). Out of the 

growth inhibitory compounds identified in LNCaP 

cells, pinosylvin methyl ether (PSME) and tanshinone 

IIA were chosen for further analysis due to their cancer 

selective anti-proliferative effect in androgen ablated 

prostate cancer cells. 

 

Materials and Methods 
 

Cells  
Parental (LNCaP-par) and androgen ablated LNCaP 

(LNCaP-abl) prostate carcinoma cell lines were ob-

tained from Zoran Culig (Culig et al. 1999) and grown 

in RPMI‑1640 medium containing 10% FBS (LNCaP-

par) or 10% charcoal:dextran stripped FBS (LNCaP-

abl) supplemented with 1% glutamate and 1% penicil-

lin-streptomycin.  

 

Compounds 

Tanshinone IIA was purchased from Apin Chemicals 

Ltd. (Abingdon, UK) and pinosylvin methyl ether was 

purchased from Gentaur (London, UK). Both com-

pounds were dissolved in DMSO. 

   

High‑throughput screening (HTS) 

A high-throughput compound screening was per-

formed twice in LNCaP-par and LNCaP-abl cells us-

ing cell viability as the endpoint. The results were 

compared to the ones from our previous screen per-

formed in non-malignant RWPE-1 and EP156T cells 

with the same compound libraries and concentrations 

used in this study (Iljin et al. 2009). Briefly, 4910 

compounds, including experimental compounds, most 

of the existing Food and Drug Administration–

approved drugs, kinase and phosphatase inhibitors as 

well as natural products, were screened with at least 

two different concentrations. The cell viability was 

determined after a 3‑day incubation (1500 cells per 

well in 384-well format) with the compounds using a 

CellTiter-Glo (CTG) fluorescent cell viability assay 

(Promega, Inc.). The compounds that qualified as hits 

inhibited cell viability (loess‑score) by at least three 

standard deviations from the median of the controls. 

 

Cell viability and apoptosis assays 
Cell viability and apoptosis assays were performed on 

384-well plates (Falcon) by plating 2,000 cells per well 

in 35 μl of their respective growth media and left to 

attach overnight. Next, compound dilutions were 

added to the cells, plates were incubated for 48 hours 

and cell viability was determined using CellTiter-Blue 

(CTB) or CTG cell viability assay (Promega, Inc.) ac-

cording to the manufacturer’s instructions. Induction 

of caspase-3 and 7 activities was detected with ho-

mogenous Apo-ONE assay (Promega, Madison, WI). 

The fluorometric signal from CTB (excitation FITC 

485 nm, emission FITC 535 nm) or luminescence sig-

nals (700 nm) from CTG and apoptosis assays were 

quantified using Envision Multilabel Plate Reader 

(Perkin-Elmer, Massachusetts, MA). 

 

Gene expression analysis using bead-arrays 

Ablated and parental LNCaP cells were grown into 

approximately 70% confluence and treated with PSME 

or tanshinone IIA for 24 h before harvesting. Total 

RNA was extracted using RNeasy (Qiagen) according 

to the manufacturer’s protocol and the integrity of the 

RNA was monitored prior to hybridization using a 

Bioanalyzer 2100 (Agilent, Santa Clara, CA) accord-

ing to manufacturer’s instructions. 500 ng of purified 

RNA was amplified with the TotalPrep Kit (Ambion, 

Austin, TX) and the biotin labelled cRNA was hybrid-

ized to Sentrix HumanRef-8 vs.3 Expression Bead-

Chips (Illumina, San Diego, CA) while the arrays were 

scanned with the BeadArray Reader (Illumina). 

 

Statistical analysis of gene expression data 

The raw gene expression data were quantile-

normalized and analyzed with the R / Bioconductor 

software as previously described (Gentleman et al. 

2004, He et al. 2014). Differentially expressed genes 

from microarray hybridizations were identified using 

the significance analysis of microarrays program 

(SAM), with a false discovery rate set to zero and a 

minimum fold change of > 1.4. Hierarchical clustering 

and multidimensional scaling with principal coordi-

nates analysis was performed to visualize the distribu-

tion of prostate cell lines based on their compound re-

sponses. The functional gene ontology and pathway 

annotations were analyzed for differentially expressed 

genes (R>0.5 and p<0.001) using Ingenuity Pathway 

Analysis (IPA) Software (Ingenuity Systems Inc., Red-

wood City, CA, USA).  
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Quantitative reverse transcriptase PCR 

Reverse transcription using 500 ng of total RNA was 

performed with Applied Biosystem´s cDNA synthesis 

kit. TaqMan gene expression probes and primers from 

the Universal Probe Library (Roche Diagnostics, 

Espoo, Finland) were used to study androgen receptor 

(AR), prostate specific antigen (PSA) and β-actin 

mRNA expression. Primer sequences are listed in Sup-

plementary Table 1. Real-time quantitative PCR was 

performed using ABI Prism 7900 (Applied Biosys-

tems, Foster City, CA). Quantitation was carried out 

using the ΔΔCT method with the RQ manager 1.2 soft-

ware (Applied Biosystems). β-actin was used as an 

endogenous control. Average expression of the control 

samples was considered for the calculation of the fold 

changes. Two to four replicate samples were studied 

for quantitation of mRNA expression.  

 

Western blot analysis 

LNCaP-par and LNCaP-abl cells were plated at 70 % 

confluency and left to attach over night before treat-

ments with indicated compounds. 10 µg of total pro-

tein was denatured at 95 °C for 5 min in Laemmli 

buffer, separated on 10 % precast SDS-polyacrylamide 

gel (Lonza, Basel Switzerland) and transferred to Pro-

tran nitrocellulose transfer membrane (Schleicher & 

Schuell, Niedersachsen, Germany). Western blot 

analysis was performed using specific antibodies 

against AR (1:1000 dilution, mouse monoclonal, Lab-

vision, Fremont, CA), prostate specific antigen (PSA, 

1:1000, rabbit polyclonal, DakoCytomation, Den-

mark), and β-actin (1:4000 dilution, mouse-

monoclonal, Becton Dickinson, Franklin Lakes, NJ). 

Signal was detected with 1:4000 dilutions of appropri-

ate HRP-conjugated secondary antibodies (all from 

Invitrogen Molecular Probes, Carlsbad, CA) followed 

by visualization with the enhanced chemiluminescence 

reagent (Amersham Biosciences, Little Chalfont, UK).  

 

Results 
 

Identification of selective antineoplastic compounds 

for castrate-resistant prostate cancer 

To identify novel selective antineoplastic compounds 

and to explore targetable molecular pathways for cas-

trate-resistant prostate cancer, we carried out a cell-

based high-throughput screen (HTS) in LNCaP cells 

grown in absence (LNCaP-abl) and presence (LNCaP-

par) of androgens. Altogether, the effect of 4910 mar-

keted drugs and small molecule compounds on cell 

viability was measured after 3-day incubation with 

compounds. Cell viability results were compared to the 

results from previous screens performed in RWPE‑1 

and EP156T non-malignant prostate epithelial cells 

(Iljin et al., 2009). The anti-proliferative hit com-

pounds inhibited cell viability (loess‑score) by at least 

three standard deviations from the median of the con-

trols. To visualize the distribution of prostate cell lines 

based on their compound responses, hierarchical clus-

tering and multidimensional scaling with principal 

component analysis was performed. The results indi-

cated that normal epithelium-derived cell lines formed 

one group and the prostate cancer cell lines formed 

another group where separate clusters could be found 

for LNCaP –abl and LNCaP-par cells (Figure 1A and 

B).  

 In total, 44 cancer cell selective anti-

proliferative compounds qualified as hits in both inde-

pendent LNCaP-abl screens (Supplementary Table 2). 

Most of these compounds reduced cell viability also in 
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Figure 1. The distribution of prostate cells based on their 

compound responses demonstrated by using (A) hierarchical 

clustering and (B) multidimensional scaling with principal 

component analysis. Normal epithelium-derived cell lines 

formed one group and LNCaP prostate cancer cells grown in 

presence (LNCaP-par) and absence of androgens (LNCaP-

abl) formed separate clusters.  
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LNCaP-par cells at least in one of the two screens. 

These compounds included drugs such as methotrexate 

and methotrexate hydrate, currently used in prostate 

cancer chemotherapy (Straus et al. 1982) as well as 

Jun N-terminal kinase inhibitor (SP600125) and PI3-

kinase inhibitors (LY294002 and Wortmannin) previ-

ously shown to induce apoptosis in prostate cancer 

cells (Bennett et al. 2001, Lin et al. 1999, Tyagi et al. 

2003). In addition, hypericin, an Hsp90 and HIF-1α 

degradator, known to reduce prostate cancer cell 

growth in vitro and in vivo (Barliya et al. 2011, Co-

lasanti et al. 2000, Xie et al. 2001), was identified 

among LNCaP-abl anti-proliferative hits. Moreover, 

aldehyde dehydrogenase (ALDH) inhibitor disulfiram, 

antibiotic monensin, fungicide thiram and HDAC in-

hibitor tricostatin A (TSA), that we previously identi-

fied as cancer-selective compounds using a panel of 

cultured prostate cells, also inhibited the viability of 

LNCaP-abl prostate cancer cells (Iljin et al. 2009). 

Furthermore, HDAC inhibitor SAHA, previously 

shown to inhibit ERG-positive prostate cancer cell 

growth (Bjorkman et al. 2008), reduced LNCaP-abl 

cell proliferation as well. Interestingly, one of the anti-

proliferative agents identified in both LNCaP-abl and 

LNCaP-par screens was microtubule polymerization 

interfering agent Nocodazole. It has been shown to 

block nuclear translocation of AR and ablate dihydro-

testosterone induced PSA expression in LNCaP cells 

(Zhu et al. 2010). Altogether, identification of these 

compounds among our hits indicate that drugs with 

known antiproliferative effects in prostate cancer cells, 

including AR targeting agents, are also able to reduce 

the viability of both LNCaP-par and LNCaP-abl cells 

in our screen. This suggests that targeting AR is a po-

tent way to also reduce LNCaP-abl cell viability. 

 

Different molecular pathways are targeted by 

LNCaP-abl-selective compounds 

We chose the seven most potent LNCaP-abl selective 

anti-proliferative compounds for further validation 

based on the HTS results. The cell viability results for 

these compounds, AA-816, harmine, tanshinone IIA, 

pinosylvin methyl ether, 2,3-dimethoxy-1,4-

naphthoquinone (Alexan), cytosine-1-beta-D-

arabinofuranoside hydrochlorid (Cytarabine) and 

ZM449829 in LNCaP-abl, LNCaP-par and non-
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Figure 2. The normalized cell viability (loess score) values presented for seven cancer cell selective anti-proliferative hit com-

pounds identified in both high-throughput screens performed in androgen ablated (LNCaP-abl) cells. For comparison, the cor-

responding cell viability results are presented also for LNCaP cells grown in the presence of androgens (LNCaP-par) as well as 

for two non-malignant prostate epithelial cells (EP156T and RWPE-1).  
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malignant prostate epithelial cells (RWPE1 and 

EP156T) are presented in Figure 2. Interestingly, 

analysis of known mechanisms of action for these 

compounds indicated that they target different molecu-

lar pathways. For example, AA-816 is a 5-

lipoxygenase inhibitor that blocks arachidonic acid 

induced prostate cancer cell proliferation (Steele et al. 

1999) whereas harmine, a natural compound in me-

dicinal plants (Peganum harmala and Eurycoma longi-

folia), regulates VEGF, tissue inhibitor metalloprote-

ase (TIMP), matrix metalloproteases MMP-2 and 

MMP-9 and interleukin 2 (IL-2) expression in breast 

cancer cells, induces apoptosis in hepatocellular carci-

noma cells as well as sensitizes breast cancer cells to 

mitoxantrone and camptothecin (Cao et al. 2011, Chen 

et al. 2005, Dai et al. 2012, Hamsa & Kuttan 2010, Li 

et al. 2011). Harmine has also been patented as an an-

drogen receptor inhibitor (US Patent 8119660). Other 

LNCaP-abl-selective hit compounds identified in our 

screen included the DNA damaging agent Alexan that 

has been used as a tool to study the effect of reactive 

oxygen species (Morgan 1995), a chemotherapy agent 

cytarabine that has been studied in phase II trials for 

treatment of castration-resistant prostate cancer (Dhani 

et al. 2012) as well as ZM 449829, a Janus kinase 

(JAK) and epidermal growth factor receptor (EGFR) 

inhibitor (Luo & Laaja 2004). 

 

PSME, tanshinone IIA and cytarabine are the most 

effective anti-proliferative hits in LNCaP-abl cells 

To investigate the antiproliferative effect of the seven 

selected compounds in more detail, we first deter-

mined the EC50 values for each of the compounds in 

both LNCaP-abl and LNCaP-par cells. The results 

confirmed that all seven compounds inhibited LNCaP-

abl cell viability (Table 1). However, only PSME, tan-

shinone IIA and cytarabine inhibited LNCaP-abl cell 

growth at low nanomolar concentrations. Since cytara-

bine is already in clinical trials for androgen independ-

ent prostate cancer, we selected PSME and Tanshinone 

IIA for further analyses.  

 

PSME and tanshinone IIA induce apoptosis in 

LNCaP-abl cells 

Next, we determined whether the observed decrease in 

cell viability in response to PSME and tanshinone IIA 

exposure in LNCaP-abl cells is due to induction of 

apoptosis. Caspase 3 and 7 activities were determined 

in response to 24-hour PSME or tanshinone IIA expo-

sure using an ApoONE assay (Promega). The results 

indicated that PSME and tanshinone IIA induce cas-

pase 3 and 7 activities at 10 µM concentrations in 

LNCaP-abl cells (Figure 3A and B).  

 

PSME and Tanshinone IIA effects on AR and PSA 

To find out whether PSME or tanshinone IIA affect 

AR and prostate specific antigen (PSA) expression, 

LNCaP-abl and LNCaP-par cells were exposed to 
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Compound 
LNCaP-par 

EC50 (nM) 

LNCaP-abl 

EC50 (nM) 

AA-816 >10 000 5300 

Harmine >10 000 4950 

Tanshinone IIA 360 440 

2,3-Dimethoxy-1,4-

naphthoquinone (Alexan) 
4500 2460 

Cytosine-1-beta-D-

arabinofuranoside Hydrochlorid 

(Cytarabine) 
5200 320 

ZM 449829 >10 000 2100 

Pinosylvin methyl ether 

(PSME) 
>1000 250 

Table 1. EC50 values of seven compounds in LNCaP-abl 

and LNCaP-par cells. The high-throughput screen identified 

these compounds among cancer cell selective anti-

proliferative hits in LNCaP-abl cells. 

Figure 3. Apoptosis assay to measure induction of caspase 3 and 7 activity in PSME- and tanshinone IIA-exposed LNCaP-abl 

cells.  
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Figure 4. Analysis of PSME- and tanshinone IIA-induced effects on androgen receptor (AR) and prostate specific antigen 

(PSA) expression in LNCaP cells grown in androgen ablation (AA) or in presence of androgens (par). (A) Analysis of AR and 

PSA mRNA expression by quantitative PCR. (B) Analysis of AR and PSA protein expression using Western blot analysis. β-

actin was used as an endogenous control. 



1 µM concentration of compounds for 24 or 48 hours. 

Results from quantitative RT-PCR indicated that in-

stead of a decrease, a small increase in AR mRNA ex-

pression was seen in response to PSME and tanshinone 

IIA at the 24-hour time point in both LNCaP-abl and 

LNCaP-par cells (30% and 18% increase in LNCaP-

abl cells, p < 0.05 and 22% and 38% increase in 

LNCaP-par cells, p < 0.05, respectively). At the 48-

hour time point, PSME induced a statistically signifi-

cant increase in AR mRNA expression in LNCaP-par 

cells (30% increase, p<0.01) whereas in LNCaP-abl 

cells, AR mRNA expression was not altered compared 

to vehicle control. A similar change was observed in 

AR mRNA expression in response to 48-hour tanshi-

none IIA exposure in LNCaP-par cells (55% increase, 

p<0.01). Surprisingly, however, a significant decrease 

in PSA mRNA expression in response to PSME and 

tanshinone IIA was seen in both LNCaP-abl and 

LNCaP-par cells at both 24-hour and 48-hour time 

points; PSME reduced PSA mRNA expression by 35% 

and 40% and tanshinone IIA by 60 % and 80 % at both 

time points in LNCaP-abl and LNCaP-par cells, re-

spectively (Figure 4A).  

 To find out whether PSME and tanshinone IIA 

induce similar alterations in AR and PSA expression at 

protein level, protein lysates were prepared and ran on 

SDS-PAGE gels followed by Western blot analysis. 

The results indicated that PSME reduced both AR and 

PSA protein expression in both LNCaP-abl and 

LNCaP-par cells at the 48-hour time point (Figure 4B) 

whereas tanshinone IIA-reduced AR protein expres-

sion was only seen after a 48-hour exposure in LNCaP

-abl cells. Interestingly, the PSME-induced decrease in 

AR expression was stronger in LNCaP–abl cells as 

compared to the LNCaP-par cells, indicating that dif-

ferences in AR protein expression may at least partly 

explain the PSME-induced increase in sensitivity seen 

in LNCaP-abl cells, compared to the sensitivity in 

LNCaP-par cells. Results from tanshinone IIA-

exposed LNCaP cells further support this hypothesis as 

a decrease in AR protein expression was only seen in 

tanshinone IIA-sensitive LNCaP-abl cells at the 48 

hour timepoint. 

 

PSME and tanshinone IIA alter the expression of 

genes involved in multiple cellular processes 

To gain further insights into PSME and tanshinone IIA 

induced alterations in prostate cancer cells and to bet-

ter understand the differential sensitivity of LNCaP-abl 

and LNCaP- par cells to the compounds, genome‑wide 

gene expression analysis of PMSE and tanshinone IIA-

exposed LNCaP‑abl and LNCaP-par cells was per-

formed. The gene expression in PSME and tanshinone 

IIA vs. DMSO- (vehicle control) exposed cells (24 

hours) were compared and the most significantly al-

tered biological processes were determined using the 

Ingenuity Pathway Analysis software. The analysis of 

PSME and tanshinone IIA modulated pathways indi-

cated that the most differentially expressed genes in 

response to PSME or tanshinone IIA were involved in 

steroid and cholesterol metabolism (p-values of 1,10E-

06 to 1,64E-03) as well as cell cycle regulation and 

stress response pathways (p-values of 1.81E-09 to 

2.79E-04) (Supplementary Table 3). Moreover, cellu-

lar processes such as cellular movement and develop-

ment were altered both in response to PSME and tan-

shinone IIA, indicating that these compounds may 

contribute to multiple biological processes in addition 

to cell viability and apoptosis. 

 Our results from AR mRNA expression analy-

sis indicated that AR mRNA levels did not decrease in 

response to PSME or tanshinone IIA exposure in 

LNCaP cells, indicating that the decrease in AR pro-

tein expression is likely to be controlled by other 

means than by direct regulation of AR transcription. 

Also, there was no clear relationship between AR and 

PSA protein levels in response to PSME and tanshi-

none IIA exposure, indicating that AR signalling 

measured by PSA does not directly correlate with AR 

protein expression. To get clues on putative modula-

tors of AR signalling, we focussed our analysis on 

lipid metabolism-related changes in PSME- and tan-

shinone IIA-exposed LNCaP-abl cells. Indeed, lipid 

metabolism related changes were identified in both 

tanshinone IIA- and PSME-exposed cells, as evi-

denced by altered expression of aldo-keto reductases 

AKR1C2, AKR1C3 and AKR1C4 in response to 

PSME, and Methylsterol Monooxygenase 1 (MSMO1/ 

SC4MOL), Squalene Monooxygenase (SQLE), ATP-

Binding Cassette Sub-Family G Member 1 (ABCG1) 

and proprotein convertase subtilisin kexin 9 (PCSK9) 

in response to tanshinone IIA in LNCaP-abl cells. In-

terestingly, similar results were not seen in LNCaP-par 

cells where most enriched pathways included cell cy-

cle regulation and stress pathways (Supplementary 

Table 3). Previous studies have indicated that MSMO1 

and SQLE are involved in cholesterol metabolism and 

also ABCG1 expression is regulated by cholesterol and 

plays an important role in macrophage lipid homeosta-

sis (Kennedy et al. 2005, Out et al. 2008, Souchek et 

al. 2014, Vaughan & Oram 2005). PCSK9 is a recently 

discovered protein, whose high activity results in hy-

percholesterolemia and has been suggested as a novel 

drug target for invasive cancers (Seidah 2013). PSME- 

induced changes in lipid metabolism were linked to 

reduced aldo-keto reductase expression (AKR1C2, 

AKR1C3 and AKR1C4) in LNCaP-abl cells (Figure 

5A). Aldo-keto reductases are enzymes involved in 
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steroidogenesis and catalyze the conversion of alde-

hydes and ketones to their corresponding alcohols by 

utilizing NADH and/or NADPH as cofactors (Figure 

5B). Aldo-keto reductases also regulate testosterone 

levels in prostate cancer (Penning & Byrns 2009) and 

aldo-keto reductase AKR1C3 is a known cofactor of 

the androgen receptor (AR) and inducer of AR signal-

ing in prostate cancer (Yepuru et al. 2013). Taken to-

gether, analysis of tanshinone IIA- and PSME-induced 

changes in LNCaP-abl cells using genome-wide gene 

expression profiling revealed alterations in multiple 

biological processes and provided insights into tanshi-

none IIA- and PSME-induced changes in steroido-

genesis.  

 

Discussion 
 

Prostate cancer remains the most common cancer in 

the western male population. Although several novel 

drugs improving prostate cancer patient survival have 

been identified, there is no cure for prostate cancer 

patients suffering from a castration-resistant disease. 

Here, we utilized a cell-based high-throughput chemi-

cal biology screen to identify anti-proliferative com-

pounds for castration-resistant prostate cancer (CRPC) 

and to explore the key targetable molecular pathways 

in CRPC. As a model, we used parental (par) and an-

drogen ablated (abl) LNCaP cells and compared drug 

effects into those in non-malignant RWPE-1 and 

EP156T prostate cells screened previously (Iljin et al. 

2009). A total of 44 cancer-selective anti-proliferative 

hits were identified in LNCaP-abl cells and out of 

these, 12 compounds were found to be already, either 

in clinical use, in clinical trials or preclinical studies in 

prostate cancer, validating the functionality of our 

screen. Seven most potent anti-proliferative com-

pounds were selected for further validation and two of 

these, pinosylvin methyl ether (PSME) and tanshinone 

IIA, were identified as potent inhibitors of LNCaP-abl 

cell viability. 

 Tanshinone IIA is a compound originally ex-

tracted from Danshen (Radix Salviae Miltiorrhizae). It 

has been used in traditional Chinese medicine for car-

diovascular diseases. In addition to our results in pros-

tate cancer cells, Tanshinone IIA has been shown to 

have anti-neoplastic potential in leukemic, breast, co-

lon and hepatocellular carcinoma cells (Cheng & Su 

2010, Chiu & Su 2010, Jiao & Wen 2011, Su & Lin 

2008, Wang et al. 2005). Recently, tanshinone IIA was 

also shown to reduce prostate cancer cell growth in PC

-3 and LNCaP cells both in vitro and in vivo (Won et 

al. 2010, Won et al. 2012, Zhang et al. 2012). Our re-

sults indicate that tanshinone IIA inhibits also andro-

gen ablated LNCaP cell proliferation at nanomolar 

concentrations, suggesting that this compound may 

also have therapeutic potential in CRPC. 

 Pinosylvin methyl ether (PSME) is a stilbene 

compound that is isolated from green alder (Bryant et 

al. 1983). It has a similar structure to resveratrol, a 

widely studied antineoplastic compound studied in 

different cancers (ElAttar & Virji 1999, Hsieh & Wu 

1999, Jang et al. 1997, Jang & Pezzuto 1999, Lu & 

Serrero 1999). However, although resveratrol was 

among the screened compounds, it did not come up as 

an anti-proliferative hit in our screen. To our knowl-

edge PSME has not been previously studied nor pro-
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Figure 5. Analysis of aldo-keto reductase (AKCR) mRNA 

expression and steroidogenesis pathway alterations in  

PSME-exposed LNCaP abl cells. (A) Gene expression al-

terations in aldo-ketoreductase AKR1C2-4 mRNA levels in 

LNCaP-abl cells. Relative AKR1C2, AKR1C3 and 

AKR1C4 mRNA expression is presented as fold change to 

vehicle exposed cells. (B) AKRC enzymes in steroid hor-

mone metabolism pathway. Green: downregulation of 

AKR1C3 and AKR1C4 gene expression. 

file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_36#_ENREF_36
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_51#_ENREF_51
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_24#_ENREF_24
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_24#_ENREF_24
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_11#_ENREF_11
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_11#_ENREF_11
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_12#_ENREF_12
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_27#_ENREF_27
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_42#_ENREF_42
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_42#_ENREF_42
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_47#_ENREF_47
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_48#_ENREF_48
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_48#_ENREF_48
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_49#_ENREF_49
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_52#_ENREF_52
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_8#_ENREF_8
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_8#_ENREF_8
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_18#_ENREF_18
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_23#_ENREF_23
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_23#_ENREF_23
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_25#_ENREF_25
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_26#_ENREF_26
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_32#_ENREF_32
file:///C:/Users/Batman/Downloads/178-588-1-ED.doc#_ENREF_32#_ENREF_32


posed as an anti-proliferative compound in any cancer.  

 Importantly, both tanshinone IIA and PSME 

decreased AR protein expression as well as PSA 

mRNA and protein expression in LNCaP-abl cells. 

Genome-wide gene expression analyses indicated that 

in addition to cell cycle regulation, both tanshinone 

IIA and PSME may modulate multiple biological proc-

esses such as the steroid / cholesterol metabolism. In-

terestingly, the expression of aldo-keto reductases 

AKR1C2, AKR1C3 and AKR1C4 was decreased in 

castration-resistant LNCaP cells in response to PSME 

exposure. Aldo-keto reductases induce steroidogenesis 

and AKR1C3 is a biomarker and therapeutic target for 

CRPC (Adeniji et al. 2013, Hamid et al. 2012). Re-

cently, other pinosylvin derivatives have been pro-

posed to be potential AKR1C3 inhibitors, in a virtual 

screening of a fragment library (Brozic et al. 2012). 

This further supports our hypothesis of PSME as a 

novel AKR1C3 inhibitor. Thus, PSME is of interest 

while developing novel treatment options for CRPC 

targeting AKR1C3-induced AR signalling.  

 Taken together, this systematic screen identi-

fied a novel anti-proliferative agent, PSME, for CRPC. 

PSME reduces androgen signaling and intracellular 

steroidogenesis evidenced by downregulation of AR 

and PSA protein levels and aldo-keto reductase expres-

sion in CRPC cells in vitro. Moreover, our screen con-

firmed tanshinone IIA as well as several other com-

pounds as potential prostate cancer growth inhibitors 

in androgen ablated prostate cancer cells. These results 

provide interesting starting points for the design of 

preclinical and clinical approaches for CRPC treat-

ment. 
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