
Herein, we present a novel strategy to analyse and 

characterize proteins using protein molecular electro-

static surfaces. Our approach starts by calculating a 

series of distinct molecular surfaces for each protein 

that are subsequently flattened out, thus reducing 3D 

information noise. RGB images are appropriately 

scaled by means of standard image processing tech-

niques whilst retaining the weight information of each 

protein’s molecular electrostatic surface. Then homo-

geneous areas in the protein surface are estimated 

based on unsupervised clustering of the 3D images, 

while performing similarity searches. This is a compu-

tationally fast approach, which efficiently highlights 

interesting structural areas among a group of proteins. 

Multiple protein electrostatic surfaces can be combined 

together and in conjunction with their processed im-

ages, they can provide the starting material for protein 

structural similarity and molecular docking experi-

ments.  
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3D structural analysis of proteins using electrostatic surfaces based on 

image segmentation 

Introduction 

 
It is worth noting that more than 90% of drugs tested 

on humans fail due to unpredicted toxicities and insuf-

ficient bioavailability properties (Kola & Landis 

2004). Moreover, the mission of scientists in the post-

genomic era has reached unprecedented heights that 

are impossible to meet using even state-of-the-art bio-

informatics tools. Extra effort and funds are currently 

being invested to improve and speed-up the processing 

potential of many computer-based tools that reign in 

the field of structural bioinformatics. However, the 

underlying principle for the majority of these tools re-

mains the same; all structural comparisons are being 

made mostly on a protein primary sequence identity/

similarity basis. On the contrary, there are few, more 

advanced tools that perform structural similarities us-

ing the actual 3D information, based on the spatial co-

ordinates of atoms within the protein structure (MOE 

CCG). Even though using spatial data to compare pro-

teins is a huge leap ahead compared to the sequence-

based approaches, such methodologies are slow and 

quite impractical to use in large-scale real-life experi-

ments. 

 Exploring the 3D space of multiple enzymes 

that are treated as fully flexible entities requires im-

mense processing capabilities and infrastructure. Evo-

lutionary relationships of proteins, protein structure–

function predictions and comparative modeling should 

all be based on searches and databases containing 

structural information. There are many examples of 

protein function annotation, where sequence based 

searches are insufficient (Dobson et al. 2004). For in-

stance, most RNA viruses, even though they can be 

evolutionary linked, share very low sequence identities 

among homologous proteins. This is due to the fact 

that RNA viruses are highly mutagenic (Vlachakis 

2009). Homologous proteins are more conserved in 

their structures than primary amino acid sequences 

(Illergard et al. 2009). Even though long studies have 

been carried out in areas such as structural flexible 

alignment and this problem has long ago been identi-

fied, it has not been yet satisfactorily addressed 

(Dobson et al. 2004, Illergard et al. 2009, Kolodny et 

al. 2005). The same applies to the metagenomic data, 

where scientists are struggling to keep up with the in-
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creasing volume of biological information.  

 Being able to annotate a series of genes based 

on a sequence that can then be blasted against dedi-

cated databases for hits in regards to their theoretical 

structural features, or to perform ultra-fast comparison 

among diverse structures of proteins, would greatly 

speed up the annotating bottleneck that bioinformatics 

currently impose on the fields of genomics and pro-

teomics. It has been estimated that the unprocessed 

generated data per sequencing machine can be of the 

order of at least 30 Gb per day, which can scale up by 

a relevant factor in the case of mapped/processed data. 

There is a clear requirement for fast and efficient 

analysis of whole-genome / proteome sequencing data 

in the upcoming era of personalized medicine 

(Vlachakis et al. 2012). Due to the continuous im-

provements in sequencing technologies and proteomic 

methodologies, the current scaling of available storage 

capabilities and throughput analysis is limited com-

pared to the scaling of the data generation rate. The 

induced lag between storage and processing potential 

and the corresponding requirements already poses 

problems for researchers and companies in the bioin-

formatics field. Therefore, well-defined algorithms 

offer a better scaling to analyze the ever increasing 

data (Krissinel 2012). 

 

Why study electrostatic surfaces? 

Undisputedly, the biological information contained in 

three dimensional structures is invaluable when study-

ing or comparing proteins (Balatsos et al. 2012). Al-

beit, it poses a heavy burden when it comes to process-

ing high throughput tasks (i.e. similarity searches). On 

these grounds, there is need for new methodologies 

that simplify the demanding and complex processes 

behind 3D protein structural comparisons (Sellis et al. 

2009, Vlachakis et al. 2013a). 

 In an ideal scenario, all the information avail-

able within a 3D structure would be translated into a 

computer-friendly dataset which could be handled and 

processed in a much faster and more efficient manner, 

while at the same time the highest possible level of 

information detail  would be retained. The whole proc-

ess should be pipelined and optimized accordingly, so 

that it meets the current bioinformatics analysis needs 

and purposes (Vlachakis et al. 2012).  

 However, the vast amount of information 

available in a protein structure poses several barriers in 

how all this information can be expressed and utilized. 

A backbone analysis, for instance, is very useful for 

comparing protein structures; it does not however pro-

vide any significant insight regarding protein-protein 

molecular interactions via their solvent-exposed outer 

surfaces (Vangelatos et al. 2009). This type of infor-

mation could help describe proteins’ functions and in-

teractions with other molecules more realistically 

(Yang et al. 2012). 

 Additionally, evolution can affect two proteins 

by altering their physicochemical properties and struc-

tural characteristics, thus promoting either a tighter or 

weaker molecular function and interaction pattern (Via 

et al. 2000). This is not necessarily directly related to 

the structural alterations of those proteins. Despite 

maintaining their original overall structural differ-

ences, they might share a significant resemblance in 

their surface regions, thus being able to catalyze simi-

lar chemical reactions (Bork et al. 1993). Such pro-

teins have probably gone through divergent or conver-

gent evolution. During convergent evolution, structur-

ally different proteins with distinct functional similari-

ties may develop similar electrostatic surface proper-

ties and characteristics (Sellis et al. 2012). Subse-

quently, proteins that are not homologous might share 

similar binding sites (Palaiomylitou et al. 2008). In 

divergent evolution, the surface characteristics of two 

proteins are well-preserved in order to perform the 

same functions even though each protein may undergo 

several mutations during evolution (Kauvar & Villar, 

1998, Russell et al. 1998). Having said that, a search 

or comparison among different sequences or even 

structures might not reveal any conservation (i.e. local 

sites) based on mutual surface characteristics. 

 Previously we have used the information on 

protein molecular surfaces to compute a two-point cor-

relation function in harmonic space, thus reducing the 

initial three-dimensional information to a one-

dimensional representation of the proteins’s structure 

(Carvalho et al. 2013). In this study, we attempt to re-

duce the three dimensional information available in 3D 

protein structures via image processing in order to 

achieve higher efficiency both in terms of data storage 

and computational processing power. Herein, the ulti-

mate aim is to focus on the heavily weight areas of the 

protein images and report similarity scores between 

protein structures, and thus enable a computationally 

fast scan of the protein structure data before taking into 

account their functional details. Our working example 

is the comparison of two protein families. Namely, we 

use a set of viral helicase and polymerase proteins. In 

particular, we demonstrate that by means of image pre-

processing and image segmentation techniques the cor-

relation structures between the two protein families are 

indicative of their origin. 

 

Methods 
 

For the purposes of this study, we will focus on the 

shape, size and charges of each protein, which can be 
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displayed using vacuum electrostatic potential surfaces 

(Brylinski & Skolnick 2010). The first task of our ap-

proach will be to calculate a set of fine-grid electro-

static surfaces of each protein structural entry available 

in the RCSB PDB protein database. Then the 3D sur-

faces are scaled and cross normalized to be comparable 

between them, using techniques currently adopted in 

image manipulation. Each image’s size will be propor-

tional to the size of the protein, whereas grooves, chan-

nels and shapes features will be represented accord-

ingly scaled (Figure 1). For instance, the negative and 

positive charges of the electrostatic surface will be rep-

resented with blue and red colour respectively, 

whereas white colour signifies neutral charge. The fi-

nal part of the analysis is the actual scanning and filter-

ing of the 3D data for similarity or shape/size comple-

mentarity patterns that may be of biological interest. 

Instead of exploring all the computationally demand-

ing 3D conformational space of large protein structures 

when performing docking experiments, we are com-

paring the 3D raster image fingerprints (Figure 2) of 

the given protein structures, focusing only on the 

highly charged areas of the proteins considered whilst 

retaining the original 3D structural information 

(Vlachakis et al. 2013b). 

 Energy minimization of all PDB structures 

was done in MOE using the Amber99 (MOE CCG) 

forcefield as implemented into the same package. The 

energy minimization was set to reach the RMSD gradi-

ent of 10-4, in order to ensure that any residual geomet-

rical stereochemical strain has been removed. The 

model was subsequently solvated with simple point 

charge (SPC) water using the truncated octahedron box 

extending to 7 Å from the model and molecular dy-

namics were performed for 200 nanoseconds, at 300K/ 

1 atm with a 2 femtosecond step size, using the NVT 

ensemble in a canonical environment (NVT stands for 

number of atoms, volume and temperature that remain 

constant throughout the molecular simulation). The 

results of the molecular dynamics simulation were col-

lected into a database by MOE and can be further ana-

lyzed. Upon the energy minimization of the protein 

structures, their electrostatic potential surfaces were 

calculated by solving the nonlinear Poisson–
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Figure 1. RGB structural plots for the proteins examined. A) RGB plots for 1A1V, 8OHM and 1NB7 proteins, respectively.  

B) The new protein derived by adding the RGB images of 1A1V and 8OHM proteins. The reference protein is presented after 

we employed three methodologies: a threshold of 50 to RGB intensities, K-means algorithm with K=3, and spectral clustering 

together with K-means algorithm (K=3).  

A 

B 



Boltzmann equation using the finite difference method 

as implemented in the Pymol Software (DeLano 

2002). The potential was calculated on grid points per 

side (65, 65, 65) and the grid fill by solute parameter 

was set to 80%. The dielectric constants of the solvent 

and the solute were set to 80.0 and 2.0, respectively. 

An ionic exclusion radius of 2.0 Å, a solvent radius of 

1.4 Å and a solvent ionic strength of 0.145 M were 

applied. Default molecular, atomic and residue charges 

and atomic radii were used for this calculation. 

 

Results and Discussion  
 

Data preprocessing 

For the purposes of this study we consider as input of 

the analysis the images of the 3D protein electrostatic 

surfaces derived from the Pymol software, which are 

originally preprocessed using standard image manipu-

lation techniques. The analysis is conducted in de-

creased size raster RGB images, which focus on the 

highly charged, either blue or red, regions of the mo-

lecular surface. In Figure 1A we can observe the pro-

teins considered from the helicase (1A1V, 8OHM) and 

polymerase family (1NB7). Images are scaled, aver-

aged and normalized so that electrostatic charge colour 

intensities have the same variances across images and 

colour layers. Subsequently, RGB images are rendered 

into raster images (Figure 2), which allow us to further 

emphasize on their highly charged areas and study 

their 3D similarity structure. It is worth noting that the 

data preprocessing produces raster images of the same 

grid or size (namely 25x29x3). The charge intensity 

information lost by this procedure is negligible for the 

purposes of this study, because the scope of the analy-

sis is to solely focus on the heavily charged areas 

(colored in blue and red) of the protein structure which 

serve as a protein signature and consequently as a prior 

criterion for similarity searches. 

 

Unsupervised Image Segmentation 
In this study we describe our initial results from 3D 

protein structure image segmentation by means of 

spectral clustering (Ng et al. 2001). The primary goal 

of the image segmentation is to estimate clusters of 

data points where within each cluster data are highly 

correlated and uncorrelated with the data in the re-

maining clusters. Data could then be summarized by 

specifying the number, size and properties of the esti-

mated image clusters. There are many ways to parti-

tion an image, such as adaptive thresholding algo-

rithms, local intensity gradient methods and hierarchi-

cal clustering (Theodoridis & Kountroumbas 2003, 

Freixenet et al. 2002). Here we consider spectral clus-

tering, which is an unsupervised classification method-

ology often used in image analysis (Liu et al. 2010, 

Tung et al. 2010). By employing spectral clustering to 

preprocessed RGB images, we demonstrate that we are 

able to effectively estimate their colouring homogene-

ity and, thus, to classify them in the two protein fami-

lies considered. The novelty in this case lies in analyz-

ing the 2D electrostatic representation of the projected 

3D protein structural surfaces. 

 Spectral clustering makes use of the top eigen-

vectors of the similarity matrix calculated among the 

data points to further reduce dimensionality (Ng et al. 

2001). The flexibility behind spectral clustering, as 

with other clustering techniques, is that the similarity 

matrix between any two data points, or a neighborhood 

of data points, could be defined in many ways depend-

ing on the data analyzed and the similarity measure 

used; an example is the Euclidean distance and the ker-

nel function of the Euclidean distance. Furthermore, by 
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Figure 2. Raster images of the reference protein. Three methodologies are employed: a threshold of 50 to all intensities, K-

means algorithm with K=3, and spectral clustering together with K-means algorithm (K=3). The raster grid is 25x29x3 in all 

cases. 



relying on the similarity between pair-wise or any 

other combination of data, we take into account the 

underlying interactions in the data. For this particular 

application the similarity statistic used is a Gaussian 

kernel of the difference between raster data points 

(Burt & Anderson 1983) with variance equal to 0.025, 

which has been empirically derived by similarly ma-

nipulated protein images. The weighted Laplacian 

similarity matrix is considered. Statistical analysis has 

been conducted using R 3.0.1 (R Core Team 2013). 

 Spectral clustering is combined with the K-

means algorithm (K=3), and the image segmentation 

results are compared to the segmentation produced 

when we impose a threshold of 50 to all RGB intensity 

values, as well as employing the K-means algorithm 

alone. The K-means algorithm is selected as a base-

line algorithm widely applied to partitioning problems. 

In Figure 2, we show an example of combining two 

segmented proteins from the same family, 1A1V and 

8OHM, where we employ thresholding, K-means and 

spectral clustering with K-means, respectively. The 

three methodologies are applied separately to both of 

the two proteins before their two images are added. By 

adding the two images we only keep the commonly 

charged areas of the proteins. In that way, we form a 

reference protein, which is indicative to the structural 

characteristics of the protein family. 

 Figure 2 shows the reference protein’s raster 

image with a 25x29x3 raster grid, generated from the 

segmented image shown in Figure 1B, where the red 

and blue areas correspond to highly charged areas. In 

Table 1, we present the Pearson correlation coeffi-

cients between the reference protein and the three pro-

teins considered here. More specifically, the first col-

umn shows the correlation coefficients between the 

preprocessed images as shown in Figure 1A. We can 

observe that the three proteins are not significantly 

correlated with the reference protein, which is now 

produced by adding the two proteins as in Figure 1A. 

This is irrespective to the protein family. The remain-

ing columns of Table 1 show the similarity coefficients 

for the raster images produced under the three method-

ologies mentioned above, namely thresholding, K-

means and spectral clustering. We can observe that for 

all three methodologies, the reference protein is highly 

correlated to the first two proteins and uncorrelated 

with the 1NB7 protein; however spectral clustering 

seems to better distinguish the two protein families. 

Finally, results are reported for the HCV_1HEI protein 

(last row of Table 1). The HCV_1HEI protein belongs 

to the helicase family and is expected to be highly cor-

related to the reference protein. We can observe a simi-

lar correlation pattern to the 1A1V and 8OHM pro-

teins, which is a promising result for the generalization 

of the methodology presented here, as these two pro-

teins also belong to the helicase family, while 1NB7 is 

a polymerase protein.  

 

Conclusions 
 

We have implemented a novel workflow methodology 

for the segmentation of the protein structure images 

focusing on the shape, size and electrostatic charge of 

the protein. By means of unsupervised image segmen-

tation we were able to distinguish the highly charged 

areas in the protein’s image, and form a reference pro-

tein. Our goal was to search for structural molecular 

similarities between electrostatic surfaces in the pro-

tein domain. In this paper we have concentrated on 

establishing the advantages in producing a reference 

protein that describes the common structural character-

istics of a protein family, which will then serve as a 

baseline for the classification of other proteins. The 

preliminary results presented here show that there is 

scope for extending the suggested methodology to a 

wider pool of protein data. We believe that our meth-

odology will serve as a first search criterion for protein 

similarities, as the dimensionality of the data is consid-

erably decreased allowing for time-inexpensive 

searches.  
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