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We discuss some formal and practical aspects related to the replacement of Integral Dispersion Relations
(IDR) by derivative forms, without high-energy approximations. We first demonstrate that, for a class of func-
tions with physical interest as forward scattering amplitudes, this replacement can be analytically performed,
leading to novel Extended Derivative Dispersion Relations (EDDR), which, in principle, are valid for any en-
ergy above the physical threshold. We then verify the equivalence between the IDR and EDDR by means of a
popular parametrization for total cross sections from proton-proton and antiproton-proton scattering and com-
pare the results with those obtained through other representations for the derivative relations. Critical aspects on
the limitations of the whole analysis, from both formal and practical points of view, are also discussed in some
detail.
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I. INTRODUCTION

Elastic hadron scattering constitutes a hard challenge for
QCD. The problem concerns the large distances involved
(confinement), which renders difficult the development of
a formal nonperturbative calculational scheme for scattering
states, able to describe soft diffractive processes. At this stage
Analyticity, Unitarity, Crossing and their consequences, still
represent a fundamental framework for the development of
theoretical ideas, aimed to reach efficient descriptions of the
experimental data involved. In this context, dispersion rela-
tions, connecting real and imaginary parts of the scattering
amplitude, play an important role as a useful mathematical
tool, in the simultaneous investigation of particle-particle and
antiparticle-particle scattering.

Dispersion relations in integral form, for hadronic ampli-
tudes, were introduced in the sixties, as consequences of the
Cauchy’s theorem and the analytic properties of the scattering
amplitude, dictated by unitarity [1–3]. However, two kinds of
limitations characterize this integral approach: (1) its nonlocal
character (in order to evaluate the real part, the imaginary part
must be known in all the integration space); (2) the restricted
class of functions that allows analytical integration. Later on
it was shown that, for hadronic forward elastic scattering in
the region of high and asymptotic energies, these integral re-
lations can be replaced by derivative forms [4–6]. Since then,
the formal replacement of integral by derivative relations and
their practical use have been widely discussed in the literature
[7–13], mainly in the seminal papers by Kolář and Fischer
[12, 13]. See Ref. [14] for a recent critical review on the
subject.

Despite the results that have been obtained with the deriva-
tive approach, the high-energy condition (specifically, center-
of-mass energies above 10 - 20 GeV) turns out difficult any

attempt to perform global fits to the experimental data con-
necting information from low and high energy regions. A first
step in this direction appears in Ref. [15], where new repre-
sentations for the derivative relations, extended to low ener-
gies, have been introduced by Cudell, Martynov and Selyugin
and to which we shall refer in what follows. However, a rig-
orous formal extension of the derivative dispersion relations
down to the physical threshold, providing a complete analyti-
cal equivalence between integral and differential approaches,
is still missing and that is the point we are interested in.

In this work, we first demonstrate that, for a class of func-
tions of physical interest as forward elastic scattering am-
plitudes, the integral relations can be analytically replaced
by derivative forms without the high-energy approximation.
Therefore, in principle, for this class of functions, derivative
relations hold for any energy above the physical threshold. We
then check the consistences of the results obtained with the
integral relations and the extended derivative dispersion rela-
tions by means of a simple analytical parametrization for the
total cross sections from proton-proton (pp) and antiproton-
proton ( p̄p) scattering (highest energy interval with available
data). In addition, we compare the results with those obtained
through the standard derivative relations (high-energy condi-
tion) and the derivative representation by Cudell-Matynov-
Selyugin. We shall show that, above the physical threshold,
only the extended relations lead to exactly the same results as
those obtained with integral forms. We proceed with a critical
discussion on the limitations of our analysis from both formal
and practical points of view.

The manuscript is organized as follows. In Sec. II we re-
call the main formulas and some conditions involving the Inte-
gral Dispersion Relations (IDR), the standard Derivative Dis-
persion Relations (sDDR) and the Cudell-Martynov-Selyugin
representations (CMSr); we also present, in certain detail, the
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replacement of IDR by the Extended Derivative Dispersion
Relations (EDDR). In Sec. III we check the consistences and
exemplify the applicability of all these results in simultane-
ous fits to the total cross section and the ratio ρ of the real
to imaginary parts of the forward amplitude, from pp and p̄p
scattering. In Sec. IV we present a critical discussion on all
the obtained results. The conclusions and some final remarks
are the contents of Sec. V.

II. DISPERSION RELATIONS

A. Integral Dispersion Relations (IDR)

First, it is important to recall that Analyticity, Unitarity and
Crossing lead to IDR for the scattering amplitudes in terms
of a crossing symmetric variable. For an elastic process,
m + m → m + m, in the forward direction, this variable cor-
responds to the energy of the incident particle in the labora-
tory system, E [1]. In this context and taking into account
polynomial boundedness, the one subtracted IDR for cross-
ing even (+) and odd (−) amplitudes, in the physical region
(E : m→ ∞), read [1–3]

Re F+(E) = K +
2E2

π
P
∫ +∞

m
dE ′

1
E ′(E ′2−E2)

Im F+(E ′), (1)

Re F−(E) =
2E
π

P
∫ +∞

m
dE ′

1
(E ′2−E2)

Im F−(E ′), (2)

where K is the subtraction constant.
The connections with the hadronic amplitudes for crossed

channels, such as pp and p̄p elastic scattering, are given by
the usual definitions:

Fpp = F+ +F− Fp̄p = F+−F−. (3)

The main practical use of the IDR concerns simultaneous
investigations on the total cross section (Optical Theorem) and
the ratio ρ of the real to imaginary parts of the forward ampli-
tude, which is also our interest here. In terms of the crossing
symmetric variable E these physical quantities are given, re-
spectively, by [3]

σtot =
4π√

E2−m2
Im F(E,θlab = 0), (4)

ρ(E) =
Re F(E,θlab = 0)
Im F(E,θlab = 0)

, (5)

where θlab is the scattering angle in the laboratory system.

B. Standard Derivative Dispersion Relations (sDDR)

Basically, at high energies, the replacement of IDR by
sDDR is analytically performed by considering the limit m→
0 in Eqs. (1) and (2) [5, 14]. It should be recalled that an addi-
tional high-energy approximation is considered in these inte-
gral equations, when they are expressed in terms of the center-
of-mass energy squared s = 2(m2 +mE) and not E [5]. How-
ever, based on a rigorous replacement (discussed in Sec. II D),
we consider the derivative relations in terms of the crossing
symmetric variable E. In this case the sDDR read [5, 12, 14]

Re F+(E) = K +E tan
[

π
2

d
dlnE

]
Im F+(E)

E
, (6)

Re F−(E) = tan
[

π
2

d
dlnE

]
Im F−(E). (7)

Necessary and sufficient conditions for the convergence of
the above tangent series have been established by Kolář and
Fischer, in particular through the following theorem [12]:

Theorem 1 Let f : R1 → R1. The series

tan
[

π
2

d
dx

]
f (x)

converges at a point x ∈ R1 if and only if the series

∞

∑
n=o

f (2n+1)(x)

is convergent.

For example, in the case of f (x) = eγx, γ a real constant,
the ratio test demands |γ| < 1 for the series to be absolutely
convergent (which will be our interest in Sec. III).

C. Cudell-Martynov-Selyugin Representations (CMSr)

Recently, the following representations have been intro-
duced for the derivative dispersion relations [15]

Re F+(E) = K +E tan
[

π
2

d
dlnE

]
Im F+(E)

E

−2
π

∞

∑
p=0

C+(p)
2p+1

(m
E

)2p
, (8)

where,

C+(p) =
e−ξDξ

2p+1+Dξ

[
Im F+(E)−EIm F ′+(E)

]
.

and
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Re F−(E) = −E cot
[

π
2

d
dlnE

]
Im F−(E)

E

− 2
π

∞

∑
p=0

C−(p)
2p+1

(m
E

)2p+1
, (9)

where

C−(p) =
e−ξDξ

2p+Dξ

[
Im F ′+(E)

]
,

and ξ = ln(E/m) and Dξ = d
dξ .

We note the presence of correction terms in the form of in-
finity series, which go to zero as the energy increases, leading
to the sDDR, Eqs. (6-7). We shall use this representation in
Sec. III, where their applicability is discussed in detail.

D. Extended Derivative Dispersion Relations (EDDR)

In this section we present our analytical replacement of the
IDR by derivative forms without the high-energy approxima-
tion. We also specify the class of functions for which this
replacement can be formally performed.

Let us consider the even amplitude, Eq. (1). Integrating by
parts we obtain

Re F+(E) = K− E
π

ln
∣∣∣∣
m−E
m+E

∣∣∣∣
Im F+(m)

m
(10)

−E
π

∫ ∞

m
ln

∣∣∣∣
E ′−E
E ′+E

∣∣∣∣
d

dE ′
Im F+(E ′)

E ′
dE ′.

Following Ref. [15], we define E ′ = meξ′ and E = meξ, so
that the integral term in the above formula is expressed by

meξ

π

∫ ∞

m
lncoth

(
1
2
|ξ′−ξ|

)
d

dξ′
g(ξ′)dξ′, (11)

where g(ξ′) = Im F(meξ′)/(meξ′). Expanding the logarithm
in the integrand in powers of x = ξ′−ξ,

ln
(

cot
1
2
|x|

)
= ln

(
1+ e−|x|

1− e−|x|

)
= 2

∞

∑
p=0

e−(2p+1)|x|

2p+1
,

and assuming that

d
dξ′

g(ξ′)≡ g̃(ξ′)

is an analytic function of its argument, we perform the expan-
sion

g̃(ξ′) =
∞

∑
n=0

dn

dξ′n
g̃(ξ′)

∣∣∣∣
ξ′=ξ

(ξ′−ξ)n

n!

=
∞

∑
n=0

g̃(n)(ξ)
n!

(ξ′−ξ)n.

Substituting the above formulas in Eq. (11) and integrating
term by term, under the assumption of uniform convergence
of the g̃(ξ′) series, we obtain

2meξ

π

∞

∑
p=0

1
2p+1

∞

∑
k=0

1
k!

dk

dξk g̃(ξ)Ikp,

where

Ikp =
∫ ∞

0
e−(2p+1)|ξ′−ξ|(ξ′−ξ)kdξ′ =

1
(2p+1)k+1 [((−1)k +1)k!− (−1)kΓ(k +1,(2p+1)ξ)]

and Γ is the incomplete gamma function Γ(a,z) =∫ ∞
z ta−1e−t dt.

With this procedure and from ξ = ln(E/m), Eq. (10) is ex-
pressed by

Re F+(E) = K− E
π

ln
∣∣∣∣
m−E
m+E

∣∣∣∣
Im F+(m)

m
+

4E
π

∞

∑
p=0

∞

∑
k=0

1
(2p+1)2k+2

d2k+1

d(lnE)2k+1
Im F+(E)

E

+
2E
π

∞

∑
k=0

∞

∑
p=0

(−1)k+1Γ(k +1,(2p+1)ξ)
(2p+1)k+2k!

dk+1

d(lnE)k+1
Im F+(E)

E
,

which can be put in the final form
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Re F+(E) = K +E tan
(

π
2

d
dlnE

)
Im F+(E)

E
+∆+(E,m), (12)

where the correction term ∆+ is given by

∆+(E,m) =−E
π

ln
∣∣∣∣
m−E
m+E

∣∣∣∣
Im F+(m)

m
+

2E
π

∞

∑
k=0

∞

∑
p=0

(−1)k+1Γ(k +1,(2p+1) ln(E/m))
(2p+1)k+2k!

dk+1

d(lnE)k+1
Im F+(E)

E
.

With analogous procedure for the odd relation we obtain

Re F−(E) = tan
(

π
2

d
dlnE

)
Im F−(E)+∆−(E,m), (13)

where

∆−(E,m) =−1
π

ln
∣∣∣∣
m−E
m+E

∣∣∣∣ Im F−(m)+
2
π

∞

∑
k=0

∞

∑
p=0

(−1)k+1Γ(k +1,(2p+1) ln(E/m))
(2p+1)k+2k!

dk+1

d(lnE)k+1 Im F−(E).

Equations (12) and (13) are the novel EDDR, which are
valid, in principle, for any energy above the physical thresh-
old, E = m.

We note that the correction terms ∆±→ 0 as E → ∞, lead-
ing, in this case, to the sDDR, Eqs. (6) and (7). We also note
that the structure of the CMSr, Eqs. (8) and (9), are similar
to the above results, but without the logarithm terms. These
terms come from the evaluation of the primitive at the lower
limit in the integration by parts.

Since Theorem 1 insures the uniform convergence of the
series expansion associated with

g̃ =
d

dlnE
Im F(E)

E
(14)

the condition imposed by this Theorem defines the class of
functions for which the EDDR hold. For example, that is the
case for f (x) = eγx, 0 < γ < 1, referred to in Sec. II B. Other
conditions are discussed by Kolář and Fischer [12].

III. PRACTICAL EQUIVALENCES BETWEEN THE
INTEGRAL AND THE DERIVATIVE APPROACHES

In this section we verify and discuss the consistences be-
tween the analytical structures of the IDR and the EDDR in
a specific example: the connections of the total cross section
with the ρ parameter from pp and p̄p scattering. Firstly, it
is important to note that the efficiency of both integral and
derivative approaches in the description of the experimental
data, depends, of course, on the theory available, namely the
input for the imaginary part of the amplitude. In the absence
of a complete model, valid for any energy above the physical
threshold, we shall consider only as a framework, a Pomeron-
Reggeon parametrization for the scattering amplitude [16, 17].

For pp and p̄p scattering this analytical model assumes non-
degenerate contributions from the even (+) and odd (−) sec-
ondary reggeons (a2/ f2 and ρ/ω, respectively), together with
a simple pole Pomeron contribution:

Im F(E) = XEαIP(0) +Y+Eα+(0) + τY−Eα−(0), (15)

where τ = +1 for pp and τ = −1 for p̄p. As usual, the
Pomeron and the even/odd reggeon intercepts are expressed
by

αIP(0) = 1+ ε, α+/−(0) = 1−η+/−. (16)

We stress that the Pomeron-Reggeon phenomenology is in-
tended for the high-energy limit (rigorously, E or

√
s → ∞).

Its use here, including the region of low energies, has only a
framework character. However, as we shall show, this model
is sufficient for a comparative analysis of the consistences. We
shall return to this aspect in Sec. IV.

In what follows, the point is to treat simultaneous fits to the
total cross section and the ρ parameter from pp and p̄p scat-
tering and compare the results obtained with both IDR and
EDDR. Schematically, with parametrization (15-16) we deter-
mine Im F+/−(E) through Eq. (3) and then Re F+/−(E) either
by means of the IDR, Eqs. (1-2) or the EDDR, Eqs. (12-13).
Returning to Eq. (3) we obtain Re Fpp(E) and Re Fp̄p(E) and,
at last, Eqs. (4) and (5) lead to the analytical connections be-
tween σtot(E) and ρ(E) for both reactions. Moreover, through
the same procedure, we shall also compare the above results
with those obtained by means of both the sDDR, Eqs. (6-7)
and the CMSr, Eqs. (8-9). We first present the fit procedure
and then discuss all the obtained results.
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A. Fitting and Results

For the experimental data on σtot(s) and ρ(s), we made use
of the Particle Data Group archives [18], to which we added
the values of ρ and σtot from p̄p scattering at 1.8 TeV, obtained
by the E811 Collaboration [19]. The statistical and system-
atic errors were added in quadrature. The fits were performed
through the CERN-Minuit code, with the estimated errors in
the free parameters corresponding to an increase of the χ2 by
one unit. To fit the data as function of the center-of-mass en-
ergy, we express the lab energy in the corresponding formulas
in terms of s, namely E = (s−2m2)/2m.

We included all the data above the physical threshold,
√

s >
2m ≈ 1.88 GeV, that is, we did not perform any kind of data
selection. Since the ensemble has a relatively large number
of experimental points just above the threshold, the statistical
quality of the fit is limited by the model used here as frame-
work. In fact, with these choices and procedures we obtained
reasonable statistical results (in terms of the χ2 per degree of
freedom) only for an energy cutoff of the fits at

√
smin = 4

GeV. However, we stress that our focus here is in tests on the
consistences among the different relations and representations
and not, strictly, on the statistical quality of the fits (we shall
return to this point in Sec. IV).

In each of the four cases (IDR, sDDR, CMSr and EDDR),
we consider two variants of the fits, one neglecting the sub-
traction constant (that is, taking K = 0) and the other consider-
ing the subtraction constant as a free fit parameter. The numer-
ical results and statistical information on the fits are displayed
in Table I (K = 0) and Table II (K free). The corresponding
curves together with the experimental data are shown in Fig.
1 (K = 0) and Fig. 2 (K free).

B. Discussion

The main goal of this section is to discuss the consistences
among the results obtained by means of distinct analytical
connections between the real and imaginary parts of the am-
plitude. However, some phenomenological consequences can
also be inferred from this study, as discussed in what follows.

From Tables I and II we see that, as expected, the best sta-
tistical results are obtained with the subtraction constant K as
a free fit parameter. However, as we shall show, taking K = 0
gives suitable information not only on the practical equiv-
alence between the IDR and the differential forms (sDDR,
CMSr and EDDR), but also on the important role played by
the subtraction constant. For that reason we shall treat sepa-
rately the cases K = 0 and K as a fit parameter.

1. Neglecting the subtraction constant

From Table I we see that, for K = 0, the numerical results
obtained with the IDR and the EDDR are exactly the same, up
to four figures and that this does not occur in the case with the
sDDR and the CMSr neither. That is an important result since
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FIG. 1: Results of the simultaneous fit to σtot and ρ from pp and p̄p
scattering, by means of Integral Dispersion Relations (IDR), standard
Derivative Dispersion Relations (sDDR), Cudell-Martynov-Selyugin
representation (CMSr) and the Extended Derivative Dispersion Rela-
tions (EDDR) and considering the subtraction constant K = 0 (Table
I). The curves corresponding to IDR (solid) and EDDR (dot-dashed)
coincide.

it demonstrates the accuracy of our analytical results for the
extended derivative relations.

We note that the high values of χ2/DOF , in all the cases,
are consequences of the specific analytical model considered
(intended for the high-energy region) and the energy cutoff
used. We add the fact that we did not performed any data se-
lection, but used all the available data from the PDG archives.
However, as already commented this disadvantage has no in-
fluence in our main goal, namely tests of consistences.

The effects of the equivalences (IDR and EDDR) and dif-
ferences (IDR and sDDR or CMSr) in the description of the
experimental data are shown in Fig. 1. The curves corre-
sponding to IDR (solid) and EDDR (dot-dashed) coincide at
all the energies above the threshold and we see that even with
the fit cutoff at

√
smin = 4 GeV, the description of the experi-

mental data below this point is reasonably good in both cases.
On the other hand, the differences between the exact results
(IDR and EDDR) and the sDDR or CMSr are remarkable for
σtot(s) at the highest energies and for ρ(s) in the region of low
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TABLE I: Simultaneous fits to σtot and ρ, from pp and p̄p scattering, for
√

smin = 4 GeV (270 data points), with K = 0 and using Integral
Dispersion Relations (IDR), standard Derivative Dispersion Relations (sDDR), Cudell-Martynov-Selyugin representations (CMSr) and the
Extended Derivative Dispersion Relations (EDDR).

IDR sDDR CMSr EDDR
X (mb) 1.662 ± 0.033 1.497 ± 0.032 1.563 ± 0.033 1.662 ± 0.033

Y+ (mb) 4.089 ± 0.058 3.800 ± 0.041 3.892 ± 0.047 4.089 ± 0.058
Y− (mb) -2.143 ± 0.084 -1.947 ± 0.070 -2.039 ± 0.076 -2.143 ± 0.084

ε 0.0884 ± 0.0021 0.0975 ± 0.0021 0.0939 ± 0.0021 0.0884 ± 0.0020
η+ 0.3797 ± 0.0099 0.3209 ± 0.0076 0.3427 ± 0.0087 0.3797 ± 0.099
η− 0.569 ± 0.011 0.5583 ± 0.0098 0.567 ± 0.010 0.569 ± 0.011
χ2 382.1 365.4 325.9 382.1

χ2/DOF 1.45 1.38 1.23 1.45

TABLE II: Same as Table I but considering the subtraction constant K as a free fit parameter.

IDR sDDR CMSr EDDR
X (mb) 1.598 ± 0.034 1.598 ± 0.034 1.598 ± 0.034 1.598 ± 0.034

Y+ (mb) 3.957 ± 0.053 3.957 ± 0.053 3.957 ± 0.053 3.957 ± 0.053
Y− (mb) -2.082 ± 0.080 -2.083 ± 0.079 -2.084 ± 0.080 -2.082 ± 0.080

ε 0.0919 ± 0.0021 0.0919 ± 0.0021 0.0919 ± 0.0022 0.0919 ± 0.0021
η+ 0.3554 ± 0.0098 0.3555 ± 0.0097 0.3555 ± 0.0098 0.3554 ± 0.0098
η− 0.569 ± 0.010 0.569 ± 0.010 0.569 ± 0.010 0.569 ± 0.010
K -2.27 ± 0.28 2.28 ± 0.33 1.00 ± 0.29 -2.27 ± 0.28
χ2 315.4 314.6 314.2 315.4

χ2/DOF 1.20 1.20 1.19 1.20

energies (below
√

s≈ 10 GeV).
In the case of the total cross section, the results with sDDR

and CMSr indicate a faster increase with the energy then those
with the IDR and EDDR. We stress the importance of this
point, since it gives different solutions for the well known
puzzle between the CDF data [20] and the E710/E811 data
[21, 22] at

√
s = 1.8 TeV; in this respect, we see that the ex-

act results (IDR and EDDR) favor the E811/E710 results. In
particular the values for the Pomeron intercept read (Table I):
αIP(0) = 1.0884±0.0021 (IDR and EDDR), 1.0975±0.0021
(sDDR) and 1.0939±0.0021 (CMSr).

2. Subtraction constant K as a free fit parameter

With K as a free fit parameter our results demonstrate, once
more, an effect that we have already noted before [14], namely
the high-energy approximation can be absorbed by the sub-
traction constant. In fact, from Fig. 2 we see that in this case,
the differences between the sDDR/CMSr and the exact results
IDR/EDDR, practically disappear. From Table II we can iden-
tify the subtraction constant as the responsible for this com-
plementary effect: the numerical values of the fit parameters
and errors are practically the same in all the four cases, ex-
cept for the values of K, that is, in practice, the differences
are absorbed by this parameter. We conclude that the subtrac-
tion constant affects the fit results even in the region of the
highest energies; this effect is due to the correlations among
the free parameter in the fit procedure, as previously observed

[14, 23]. Of course, also in this case the numerical values
obtained with the IDR and EDDR are exactly the same, in-
cluding the value of the subtraction constant up to four figures
(Table II).

In particular, we note that all the four variants indicate the
same result for the intercept of the Pomeron, namely αIP(0) =
1.0919±0.0021. The corresponding result for the total cross
section lies nearly between the CDF and E811/E710 results,
barely favoring the last ones (Figure 2).

IV. CRITICAL REMARKS

We have demonstrated that for the class of functions de-
fined by Theorem 1, IDR can be formally replaced by differ-
ential operators without any high-energy approximation; we
have also verified the equivalence between the integral and
extended derivative results, in the particular case of a simple
phenomenological parametrization for pp and p̄p scattering.
Despite the encouraging results reached the whole analysis
has limitations from both formal and practical points of view.
In what follows we summarize the main critical points, giv-
ing references where more details can be found and providing
also suggestions for further investigations. Since the EDDR
involve two contributions, the tangent operators (sDDR) and
the correction terms ∆+/−(E,m), we shall consider the two
cases separately. We also present some critical remarks on
the Pomeron-Reggeon model used in Sect. III as a practical
framework.
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FIG. 2: Same as Figure 1 but considering the subtraction constant K
as a free fit parameter (Table II).

A. sDDR

First, let us discuss some aspects related to the dispersion
approach as it has been treated and widely used in the litera-
ture till now, namely the sDDR, Eqs. (6) and (7). As com-
mented in Sect. II B, these equations are obtained by consid-
ering the limit m→ 0 in the IDR, Eqs. (1) and (2). This con-
dition is a critical one, which puts serious practical and for-
mal limitations in any use of the sDDR, because that means
to go to lower energies by passing through different thresh-
olds, resonances, poles, up to E = 0! In this sense, the ex-
pression of the tangent operator as an integral from E = 0 to
E = ∞ does not guarantee any local character for the differ-
ential approach (or the corresponding integral), even in the
case of convergence of the series. In other words, this repre-
sentation of the non-local operator (integral) in terms of local
operators (tangent series), does not guarantee the non-locality
of the result. Moreover, the representation does not apply near
the resonances [7] and the convergence of the series has been
discussed in several works leading some authors to argue that,
in a general sense, the mathematical condition for the conver-
gence “excludes all cases of physical interest” [7]. These and
other aspects were extensively discussed in the seventies and

eighties [7–13] and some points have been recently reviewed
in [14].

However, there is a fundamental point developed by some
authors that enlarger the practical applicability of the sDDR
under some special conditions [7, 12]. As stated by Kolář and
Fischer [13], in discussing the replacement of IDR by sDDR
we must distinguish two formulations: (1) to consider the case
of asymptotic energies and a finite number of terms in the tan-
gent series; (2) to consider finite energies and an infinity num-
ber of terms in the series. The former case applies for smooth
behaviors of the amplitude (as it is the case at sufficiently high
energies, specifically

√
s > 10 - 20 GeV). That includes a wide

class of functions of physical interest, mainly if only the first
term can be considered [7, 12] (see [25] for a recent analysis
even beyond the forward direction). The later case, however,
is critical for at least two reasons. First, because the condi-
tion of convergence of the series (Theorem 1) limits the class
of functions of practical applicability. Secondly and more im-
portantly, since the high-energy approximation is enclosed, all
the strong limitations referred to before applies equally well to
this case. In conclusion, the class of functions for which the
sDDR have a practical applicability depends strongly on the
formalism considered and is narrower in the case of finite en-
ergies, namely entire functions in the logarithm of the energy.

B. EDDR

Let us now discuss the EDDR, with focus on the role of the
correction terms ∆+/−(E,m) in Eqs. (12) and (13). First we
note that these infinity series are analytically associated with
the fixed lower limit m in the integral representation and they
correspond to the contributions that are neglected in the high-
energy approximation (m → 0). For example, for the even
case we have the formal identity

tan
(

π
2

d
dlnE

)
Im F+(E)

E
+

∆+(E,m)
E

=

=
2E
π

P
∫ +∞

m
dE ′

1
E ′(E ′2−E2)

Im F+(E ′),

which means that all the physical situation concerns the region
above the physical threshold E = m. Therefore, from a formal
point of view, the critical points raised above on the sDDR
(tangent operator only), concerning the infinity series in the
region E : 0 → m, do not apply in this case and the critical
point here concerns only the convergence of the correction
series and their practical applicability.

On the one hand, from a formal point of view (as already
discussed at the end of Sect. II D), the convergence of the
correction series is ensured by Theorem 1 and that means a
narrower class of functions than that associated only with en-
tire functions in the logarithm of the energy. This restriction
is due to the infinity number of derivatives in lns. We shall
give and discuss some examples in what follows.

From a practical point of view, it is obvious that the effi-
ciency and/or real applicability of not only the derivative ap-
proach (EDDR), but also the integral one (IDR), depends on
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the specific physical problem involved. In this scenario (the
physical problem) we expect to find some specific limitations
that are independent of the formal aspects referred to above
and these aspects demands also some comments. In principle
and in a general sense, if we attempt to apply dispersion tech-
niques directly to the experimental data (related to the imag-
inary part of a function), we are faced with the problem of
error propagation from the experimental uncertainties. Even
if we can “reproduce” the experimental behavior by means
of suitable analytical parameterizations, with statistical errors
inferred for the free parameters, these errors should, in prin-
ciple, be propagated too. In this case, the infinity series in
both sDDR and EDDR have certainly limited usefulness (see
for example [9, 10] for the sDDR case). However, if error
propagation from the fit results is not of interest or can be
neglected, and, most importantly, one has a “correct” or ac-
ceptable model for the imaginary part of the amplitudes, then
we are restricted only to the the formal conditions discussed
above and the derivative approach becomes reliable, including
the correction series (Theorem 1).

Let us now discuss the specific physical problem that moti-
vated the present analysis. As commented in our introduction
and in Sect. II, we focused the dispersion techniques in the
context of hadron scattering, in special in the elastic case, for
which a complet theory is still absent. The main goal concerns
the connections between total cross section and the ρ parame-
ter for energies above

√
s = 5 - 10 GeV. In terms of disper-

sion techniques the usual way to treat the subject is by means
of IDR, sDDR and the analyticity prescriptions for even and
odd amplitudes (and recently the CMSr). In this specific case,
besides the absence of a pure QCD treatment, the subject is
characterized by three kinds of problems: (1) formal justifica-
tion of the usual phenomenology; (2) approximated descrip-
tions of the experimental data by phenomenological models;
(3) experimental data available (problems (2) and (3) are cer-
tainly connected). Since these problems affect the practical
applicability and efficiency of the dispersion techniques, let
us shortly discuss some aspects involved.

(1) As it is well know, the usual phenomenology for the
total cross sections is based on the reggeon concepts and in-
volves distinct contributions from Pomerons and secondaries
Reggeons. In this context, analytical parameterizations for
the total cross sections are characterized by power and log-
arithm functions of the energy (Reggeons, simple, double
and triple pole Pomerons) and the fits are performed not be-
low

√
s = 5 GeV. We note that all these contributions belong

to the class of functions defined by Theorem 1 (the tangent
series can be summed leading to closed analytical results)
and they have been used and investigated in several works
[15, 17, 23, 24]. However, as we have already pointed out
[14], the central problem here concerns the fact that these con-
tributions are formally justified only for asymptotic energies
(E or s → ∞), which certainly is not the case for the energies
considered. The applicability of these models seems to be jus-
tified only under the hypothesis that the accelerators have al-
ready reached the energies that can be considered asymptotic
in the mathematical context, which seems to us a dangerous
assumption.

(2 - 3) A close look at the bulk of experimental data avail-
able shows that these ensembles present several discrepancies
due to spurious data, normalization problems and other ef-
fects. In this respect, recent analysis have pointed out the
necessity of some screening criterion in order to select the
“correct” experimental information. We shall not discuss this
question here because it seems to us an open problem. But the
point is that this fact puts serious limitations in any interpreta-
tion of statistical tests of the fits, as the popular χ2 per degree
of freedom and, consequently, not only in the efficiency of the
phenomenological descriptions, but also in the possible selec-
tion of the best phenomenological model.

At last let us return to the applicability of the EDDR, now in
this context. Despite of all the above problems, the known and
usual phenomenological approach is characterized by analyti-
cal parameterizations for the imaginary parts of the amplitude
and statistical tests on the quality of the fit. In this case, with
specific analytical representations for the total cross sections,
without error propagation from the fit parameters and in the
Regge context we understand that the correction terms, we
have introduced, can have a suitable applicability in the con-
text of the dispersion techniques. The point is that the class
of functions for which they hold includes all the usual Regge
parameterizations and since the high-energy approximations
is absent the fits can be formally extend to lower energies.
However to reach a good statistical description of the data,
specifically near the threshold, demands a “correct” model for
the imaginary part of the amplitude, which, to our knowledge
is still lacking. We shall return to this point in what follows.

C. Pomeron-reggeon parametrization

Based on all the above limitations in the phenomenologi-
cal context, we have chosen one of the possible (and popular)
models in order to check the equivalences (and differences)
among the different dispersion representations analyzed in
this work. Although, as demonstrated in Sect. III, this choice
is sufficient for our aim, some drawnbacks involved demand
additional comments.

In the mathematical context, as demonstrated by Kolář and
Fischer [12], some formal results, theorems and represen-
tations for the derivative relations were obtained under the
assumption of the Froissart-Martin bound, σtot < c ln2 s, but
other forms of sDDR do not require this bound. Therefore,
since the simple pole Pomeron contribution, that dominates
at the asymptotic energies, violates this bound, the model as-
sumed is not an example in full agreement with the totality
of the formal results. However, as already exemplified (Sect.
II B), the model belongs to the class of functions defined by
Theorem 1 and therefore, in this restrictive sense it seems to
us to be an acceptable choice.

In the formal phenomenological context, when applied be-
low asymptotic (infinity) energies, the model suffers from
all the drawbacks already discussed. Despite of this, its use
above, let us say,

√
s = 10 GeV, could be explained (not jus-

tified) by the fact that the Regge approach is the only known
formalism, able to describe some global characteristics of the
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soft scattering. What is presently expected is the development
of a microscopic theory able to justify its efficiency.

Now let us focus in the low energy region, above the phys-
ical threshold, 2mp ≈ 1.88 GeV <

√
s ≤ 10 GeV and dis-

cuss the usefullness and practical applicability of the EDDR.
To our knowledge, there is no model proposed for this inter-
val and that could explain the fact that fit procedures, even
through IDR, make use of energy cutoffs at

√
s≈ 5 GeV ([26]

is a typical example). In this sense, the usefulness of the cor-
rection terms ∆+/−(E,m) could be questioned. However, we
understand that the lack of a phenomenological approach for
that region may also be a mirror of the present stage, char-
acterized by a focus (probably excessive) on the highest and
asymptotic energies (the great expectations from the Tevatron,
RHIC, LHC). In our oppinion, independently of the fact that
the “asymptopia” might be resolved or not in a short term,
the connection between resonance region (above the physical
threshold) and the high-energy region (above 10 GeV) still
remains a fundamental problem demanding solution. In this
respect we understand that the EDDR can play an important
role in further investigations.

Concerning the practical applicability of the extended re-
lations in this region, it is obviously limited, due to the lack
of a “correct” or accepted analytical model for the imaginary
part of the amplitude. One way to circumvent this problem
could be the introduction of a different parametrization for
this particular region. That was the procedure used in Ref.
[15]; although without justification or explicit reference to the
analytical form used, the authors obtained reasonable fit re-
sults. However, beyond the lack of any physical meaning, this
procedure puts limitations on the equivalence between inte-
gral and derivative representations.

Based on the above facts and aimed only to check and com-
pare the results obtained through different dispersion repre-
sentations, we considered the Pomeron-Reggeon parametriza-
tion extended up to the low energy region, with a fit cutoff at√

s = 4 GeV. Certainly the statistical results displayed in Ta-
bles I and II indicate that the confidence level is very low and
even a look at Figs. 1 and 2 shows that the data near the res-
onance are not adequately described. As a consequence the
numerical results in Tables I and II may be questionable on
physical grounds. However, we insist that all the figures in
these Tables are fundamental for a definite check of all the an-
alytical representations investigated (which is the only aim of
Sect. III). At last we note that one may think that it might
be possible to find a suitable function, in agreement with the
convergence condition and able to fit all the experimental data
of interest on secure statistical grounds; that would be enough
for our tests of consistences. We are not sure about this pos-
sibility, but the point is that the use of a known and popular
parametrization, even with limited efficiency, can bring new
insights for further developments mainly because it gives in-
formation on what should be improved.

V. CONCLUSIONS AND FINAL REMARKS

We have obtained novel analytical expressions for the
derivative dispersion relations, without high-energy approx-
imations. The mathematical results are valid for the class of
functions specified by Theorem 1. In principle, their applica-
bility can be extended to any area that makes use of dispersion
techniques, with possible additional constraints, dictated by
the analytical and experimental conditions involved. In spe-
cial, under adequate circumstances, the local character of the
derivative operators may be a great advantage.

For scattering amplitudes belonging to the class of func-
tions defined by Theorem 1, the EDDR are valid for any en-
ergy above the physical threshold. Since the experimental
data on the total cross sections indicate a smooth variation
with the energy (without oscillations just above the physical
threshold and a smooth systematic increase above

√
s ≈ 20

GeV), this class includes the majority of functions of physi-
cal interest. Using as framework a popular Pomeron-Reggeon
parametrization for the total cross sections, we have checked
the numerical equivalence between the results obtained with
the IDR (finite lower limit m) and the EDDR, as well as the
differences associated with the sDDR and the CMSr. We have
also presented a critical discussion on the limitations of the
whole analysis from both formal and practical points of view.

We stress that, as in the case of IDR, the practical efficiency
of the EDDR in the reproduction of the experimental data on
σtot and ρ depends on the model considered. Here, in order
only to check the consistences among the different analytical
forms, we made use of a particular Pomeron-Reggeon para-
metrization, for which a cutoff at

√
s = 4 GeV was neces-

sary. For example, by considering the full nondegenerated
case (four contributions, each one from each meson trajectory,
a2, f2,ρ,ω), this cutoff can be reduced [27], or the χ2/DOF
can be reduced for the same cutoff. Despite the limitations
of our practical example (Sec. IV), some interesting phenom-
enological aspects could be inferred. In particular, although
already noted [14, 23], we have called the attention to the role
of the subtraction constant as a practical “regulator”, in the
replacement of IDR by derivative forms, a fact that is clearly
identified in Table II: the high-energy approximation is ab-
sorbed by the constant. In this respect, we have demonstrated
that this artifice, which lack physical meaning, can be avoided
by the direct use of the EDDR. However, this observation does
not depreciate the important role of the subtraction constant
as a free fit parameter, since the best statistical results are ob-
tained in this context (Tables I and II). In particular, we note
that the effect of this parameter is to provide a slight higher
value for the Pomeron intercept, αIP(0) ≈ 1.088 (K = 0) and
αIP(0)≈ 1.092 (K free).

To our knowledge, a well established theoretical approach
for total cross sections just above the physical threshold and
in the region connecting low and high energies is still absent.
In this sense, despite all the limitations discussed, we hope
that the local analytical operators, developed here for these
regions, can contribute, as a formal mathematical tool, for fur-
ther developments on the subject.
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