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Spatially distributed genetic populations that compete locally for resources and mate only with sufficiently
close neighbors, may give rise to spontaneous pattern formation. Depending on the population parameters, like
death rate per generation and size of the competition and mating neighborhoods, isolated groups of individuals,
or demes, may appear. The existence of such groups in a population has consequences for genetic diversity
and for speciation. In this paper we discuss the robustness of demes formation with respect to two important
characteristics of the population: the way individuals recognize the demarcation of the local neighborhoods and
the way competition for resources affects the birth rate in an overcrowed situation. Our results indicate that
demes are expected to form only for sufficiently sharp demarcations and for sufficiently intense competition.

I Introduction

Animals don’t live completely free in the wild because their
living space is confined by natural boundaries. The size of
the area used is determined often by individual and species
needs and environmental limitation. Within the geographic
distribution of the species, therange, only areas of suitable
habitat are occupied.

The living area normally inhabited by an animal is its
Home Range. It may belong to a single individual, a mated
pair, or a social unit. Within the home range there is of-
ten a defended area which is identified as aterritory. Typi-
cal behavior is usually associated with establishing and de-
fending or protecting the animal’s territory. This behavior
and the reproductive behavior associated with the territory
is unique for each species, and allows several different ani-
mal species to live in the same space without rivalry, using
different niches within the habitat. Territories are marked
so that other members of the species can recognize it. Opti-
cal, acoustic, or olfactory cues, or a combination of these are
often used. Olfactory demarcation is very common among
mammals with a well-developed sense of smell. Urine, fe-
ces and products of special scent glands are used alone or in
conjunction to mark out the territory.

Theoretical biologists have become increasingly aware
of the importance of space in ecology, evolution and epi-
demiology. Home ranges and territories have become im-
portant parameters in mathematical models of population
dynamics [1, 2]. It has also become apparent that inho-
mogeneities in spatially distributed populations can funda-
mentally change the dynamics of these systems [3-10]. The

spatial variations so common to species in the wild, for in-
stance, is usually attributed to variations in selective forces,
i.e., differences in the environment. However, it has been
shown that spatially distributed systems can develop in-
homogeneity through symmetry breaking and spontaneous
pattern formation, independently of environmental inhomo-
geneity [11, 12]. Understanding the mechanisms that may
lead to spatial inhomogeneities, and the eventual isolation
of groups, is of fundamental importance for the study of ge-
netic diversity and speciation [14-18].

In a previous paper [12] we studied the process of pattern
formation in spatially distributed evolutionary processes us-
ing a model involving population density variations and ge-
netic variations. The main ingredient of the model is the
assumption that individuals mate and compete for resources
only locally. The competing neighborhood can be associ-
ated with the territory. The mating neighborhood is a dif-
ferent range, where the individual looks for a mate. The
size of these neighborhoods play a crucial role in the spa-
tial equilibrium configuration attained by the system. In this
paper we show that, in fact, it is not only the size of these
neighborhoods that matters, and we explore the way neigh-
borhoods are identified by the individuals as a key element
in the formation of isolated groups.

We also analyze the effects of crowding in pattern for-
mation. As the local population grows above the average
site capacity, individuals start to die by lack of food. We
model the effects of crowding by decreasing the birth rate
at large population densities. The specific way this hap-
pens, however, may differ from species to species. Here
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we consider three different types of what we callcrowding
functionsand study their influence in the process of pattern
formation. We are interested in studying the robustness of
these patters with respect to variations in the crowding func-
tions and the sharpness of the boundaries. What we mean
by robustness with respect to a parameter or function is that
the patterns continue to appear if the parameter or function
is modified slightly.

Our main conclusion is that isolated groups, or demes,
form only if competition for resources is sufficiently intense,
in the sense that lack of resources implies a drastic reduction
of the birth rate, and if territories are marked sufficiently
sharply. If territory boundaries are too fuzzy, the overlap be-
tween demes leads to a single homogeneous group. In order
to focus on the population density, we shall simplify the ge-
netic variations enormously, taking only four interbreeding
genomes with equally fit genotypes.

The paper is organized as follows: in section II we de-
scribe our model, in section III we discuss the spatially ho-
mogeneous solutions, and in section IV we study their sta-
bility as function of the several parameters describing the
population behavior. Demes arise when these homogeneous
solutions become unstable. We check our analytical findings
with numerical simulations of the spatial model. In section
V we summarize our conclusions.

II Model

We consider a population distributed over a large two-
dimensional region. For the sake of computational conve-
nience, space will be considered discrete, and the popula-
tion located in a square lattice with periodic boundary con-
ditions. We use the notation~r or ~rij = (xi, yj) for a point
on the 2-D lattice. The local population densities on each

site of the grid consists of non-negative real numbers with
no predefined upper bound.

For most living organisms the genome contains thou-
sands of genes. Here we shall focus on only two genes,
each of which is assumed to have only two alleles. The indi-
viduals reproduce sexually, so that one copy of each gene is
inherited from each of the parents. Representing the alleles
by the symbols+ and−, we have four possible genotypes:
[+, +], [+,−], [−, +] and[−,−]. The genotypes can repre-
sent either a two-locus haploid genetics where gene recom-
bination is enforced in every mating, or one-locus diploid
genetics if[+,−] and[−,+] are identified with each other.
For simplicity we assume that any pair of individuals can
mate to produce offspring, i.e., we make no distinction be-
tween males and females. We use the notationnαβ(~r) or
nt

αβ(~r) to denote the population of genotype[α, β] at site~r

and time t.n(~r) or nt(~r) is used for the total population.
The population at each site is updated at discrete time

intervals. At each time step (breeding season), offspring
are born and part of the previous population dies. Sexual
reproduction between individuals introduces genetic mix-
ing. We assume that individuals mate preferentially with
nearby members of the population, i.e., mating takes place
within local mating neighborhoodsthat range over several
sites. Genetic mixing, therefore, occurs only locally. The
total number of offspring born per site per breeding season
is bounded by the introduction of an intrinsic carrying ca-
pacity, modeling a limitation of resources for reproduction.

Finally, competition for finite resources also takes place
locally, within competition neighborhoods, ranging again
over several sites, but whose size may be different from that
of the mating neighborhoods.

The general form of the iterative equation for the local
population on each site is

c

n′αβ(r) = σαβ nαβ(r) + λαβ 〈n(r)〉M 〈nα∗(r)〉M
〈n(r)〉M

〈n∗β(r)〉M
〈n(r)〉M f(〈n(r)〉C)

= σαβ nαβ(r) +
λαβ 〈nα∗(r)〉M 〈n∗β(r)〉M

〈n(r)〉M f(〈n(r)〉C) (1)

d

whereσαβ is the survival rate of the parents,λαβ is the re-
productive rate,M is the mating neighborhood,C is the
competition neighborhood,nα∗ = nα+ + nα−, n∗β =
n+β + n−β . The prime on the left-hand-side indicates the
population at timet + 1 and the angular brackets denote av-
erage over the indicated neighborhood. The functionf on
the right-hand-side is the crowding function. Its role is to
limit the average population over the competition neighbor-
hood C. We shall discuss the crowding function and the
neighborhood types shortly. The genetic composition of the
newborns is determined by the product of two allelic proba-
bilities averaged within the mating neighborhood.

In this model, the concept of ‘site capacity’ is replaced
by that of average site capacity, in such a way that when the
average population around a certain site becomes closer to
a critical value, individuals start to die by lack of food. In
our previous work [12] we modeled the crowding function
by a logistic type of function, namelyf(〈x〉) = 1− 〈x〉/K,
whereK is the site capacity parameter. This function mul-
tiplies the birth rate. When the average population around a
site, 〈x〉, is much smaller thanK, f is very close to1 and
has essentially no effect. As〈x〉 gets close toK, f decreases
to near zero, cutting off drastically the birth rate. The actual
form of the crowding function is an important characteristic
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of the population being considered. Here we shall only con-
sider simple functions to model competition, but that will be
enough to highlight the importance off in the process of
pattern formation. To simplify the notation we shall mea-
sure populations in units of the site capacity, which amounts
to makeK = 1 in all equations.

The average value〈x〉 can be defined in a number of
ways. In our original work [12] this average was computed
using the so called characteristic function of the neighbor-
hood, which is1 for points inside a certain radius around
the site and0 for points outside. However, sharp boundaries
are not likely to occur in practice, and the definition of ter-
ritorial boundaries might vary from organism to organism.
We have shown, in particular, that Gaussian averages never
lead to the formation of demes for a logistic type of crowd-
ing function. We shall show in this paper that the sharpness
of boundaries turns out to be a crucial parameter for pattern
formation.

As a last remark we emphasize the role of the model pa-
rameters to the issue of territoriality. The size and shape of
the competition neighborhoodC defines the individual’s ter-
ritory. The mating neighborhoodM defines the area around
the home range where the individual looks for a mate (in
the case of birds this is also termed thebreeding dispersal
range, and it usually larger than the territory [18]). We shall
describe neighborhoods by a two-parameter family of func-
tions, containing information about the size of the rangeand
sharpness of the range boundaries. We shall focus on the
neighborhood sharpness, keeping the sizes fixed. Finally,
the crowding function controls theeffectivenessof competi-
tion, i.e., how the birth rate decreases when the population
grows close to the site capacity. As examples, we shall con-
sider three types of crowding functions.

II.1 The Flat Fitness Case

Our main goal here is to investigate the role of compe-
tition in the process of demes formation. In order to fo-
cus on this issue we shall restrict ourselves to theflat fitness
case, where all types have identical death and birth rates. In
this case the only relevant parameter is the total population
n = n++ +n−−+n+−+n−+ and the dynamical equation
for n simplifies to

n′(~r) = σn(~r) + λ〈n(~r)〉RM
f(〈n(~r)〉RC

) . (2)

II.2 The Crowding Function

In our model, competition acts through two separate
mechanisms: the crowding functionf , which controls how
the birth rate decreases when the population increases be-
yond the average site capacity, and the competition neigh-
borhood itself. The crowding function has to satisfyf(0) =
1 andf(x) < 1 for x > 0. We shall consider three types of

functions here:

f(x) =
{

1− x if x < 1
0 if x > 1 ( Logistic)

f(x) = e−x (Exponential)

f(x) = e−x2
(Gaussian)

(3)

II.3 Neighborhoods
The average ofn(~r) depends on the definition of the

neighborhoods. Since space is homogeneous and isotropic,
we restrict ourselves to circular neighborhoods. We write

〈n(~r)〉R =
∫ ∞

0

n(~r′)ρR(r − r′)2πr′dr′ (4)

with

2π

∫ ∞

0

ρR(r)rdr = 1 . (5)

ρ is the averaging, or smoothing, function. It tells how
sharply the territorial boundaries are identified by the in-
dividuals. Sharp boundaries correspond to takingρ as the
characteristic function of the neighborhoodR:

ρR(r) =
1

πR2





1 if r ≤ R

0 if r > R .
(6)

In order to generalize the way the averages are per-
formed, and therefore the way territories are marked, we
define the two-parameter family of smoothing functions

ρR,α(r) = N
1

1 + e(r−R)/α
(7)

with normalization

N−1 = 2π

∫ ∞

0

rdr

1 + e(r−R)/α
= −2πα2PolyLog[2,−eα/R]

(8)
where

PolyLog[2, z] =
∞∑

k=1

zk

2k
. (9)

α is the smoothing parameter. It is zero for the sharp av-
erage, Eq.(6). Asα grows from zero the neighborhood’s
boundary becomes more and more diffuse.

III Homogeneous Solutions

Homogeneous (space independent) solutions satisfy the dy-
namical equation

n′ = σn + λnf(n) . (10)

There are two stationary solutions, wheren′ = n:

n0 = 0 (extinction) (11)

and

f(n0) =
1− σ

λ
(thriving) . (12)
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The stability of these homogeneous stationary solutions
are determined by the behavior of small perturbations. For
extinction we writen = 0 + δn and obtain, to first order in
δn,

δn′ = σδn + λδnf(0)
= (σ + λ)δn .

(13)

Therefore extinction is stable ifσ + λ < 1 and unstable if
σ + λ > 1.

For the second solution we first note that the equation
for n0 can be writtenf(n0) = 1 + (1−σ−λ)/λ. Since we
assumef(n0) < 1 for n0 > 0, we must have1−σ−λ < 0.
Therefore thriving is possible only ifσ + λ > 1. Expanding
Eq.(10) aroundn0 we obtain

δn′ =
(

1 + λn0
∂f

∂n
(n0)

)
δn . (14)

Since∂f/∂n < 0, the thriving solution starts stable asσ+λ
grows from1. The stability range, however, depends of the
particular crowding function one uses. For the three func-
tions listed in Eq.(3) we get the following explicit solutions
and stability conditions:
(a) Logistic

n0 = (σ + λ− 1)/λ , (15)

stable if1 < σ + λ < 3 .

(b) Exponential

n0 = log [λ/(1− σ)] , (16)

stable if0 < (1− σ) log [λ/(1− σ)] < 2 .

(c) Gaussian

n0 =
√

log [λ/(1− σ)] , (17)

stable if0 < (1− σ) log [λ/(1− σ)] < 1 .

IV The Dynamics of Demes Forma-
tion

Spatial patterns arise when the homogeneous solutions be-
come unstable under smallspatialperturbations. Let us look
for solutions of eq.(2) in the linear approximation, assuming
them to be of the form

n(~r) = n0 + ξ µt s(~r) (18)

where
s(~r) = sin (vx + φ) sin (wy + ψ) (19)

represents a spatial perturbation of specific wavelength,µt

is an exponential time-dependence, possibly complex, andξ
is a small coefficient. We shall insert (18) into (2) and study
the change ofµt over one time-step, to find out under what
circumstancesn0 becomes unstable. To do that we need to

calculate the average of the perturbation over the mating and
competing territories,〈s(~r)〉R. We find

〈s(~r)〉R = s(~r)AR,α(k) (20)

where

AR,α(k) = 2π

∫ ∞

0

rJ0(kr)ρR,α(r)dr , (21)

with k =
√

v2 + w2. The effect of the averaging is to
renormalizethe amplitude of the perturbation. We shall call
AR,α(k) the Amplitude Factorand we note that it depends
on the wavelength of the perturbation.

Inserting Eq.(7) into Eq.(21) we find

AR,α(k) = − 1
ω2

I(r, ω)
PolyLog (2,−er/ω)

(22)

where

I(r, ω) =
∫ ∞

0

uJ0(u)
1 + e(u−r)/ω

du , (23)

r = Rk, J0 is the Bessel function of order zero andω = αk.
Finally, inserting (18) into (2) and expanding to first or-

der inξ we obtain an equation forµ after one time-step:

µ = σ+(1−σ)ARM ,α(k)+λn0
∂f

∂n
(n0)ARC ,α(k) . (24)

The homogeneous solutionn0 is unstable under spatial
perturbations ifµ > 1. For the three crowding functions
listed in section II we obtain the following conditions for
instability:
(a) Logistic

σ + (1− σ)ARM ,α − (λ + σ − 1)ARC ,α > 1 (25)

or

h ≡ 1−ARM ,α +
λ + σ − 1

1− σ
ARC ,α < 0 . (26)

(b) Exponential

σ+(1−σ)ARM ,α−(1−σ) log
(

λ

1− σ

)
ARC ,α > 1 (27)

or

h ≡ 1−ARM ,α + log
(

λ

1− σ

)
ARC ,α < 0 . (28)

(c) Gaussian

σ + (1− σ)ARM ,α − 2(1− σ) log
(

λ

1− σ

)
ARC ,α > 1

(29)
or

h ≡ 1−ARM ,α + 2 log
(

λ

1− σ

)
ARC ,α < 0 . (30)

In the limit of a sharply defined neighborhood,α → 0
(or ω → 0) we get

I(r, 0) =
∫ r

0

uJ0(u)du = rJ1(r) , (31)
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lim
ω→0

[PolyLog(2,−er/ω)] = −1
2
[log (1 + er/ω)]2 = − r2

2ω2

(32)
and

AR,0(k) =
2J1(r)

r
. (33)

Figure 1 shows plots ofh as a function ofr = Rmk
for different values ofω = αk. In all casesRM = 5,
RC = 10, λ = 2.0 and σ = 0.9. The regions where

h < 0 indicate instabilities of the homogeneous distribution.
The value ofr where the negative minimum occurs,r0, con-
tains information about the size of the spatial structures that
should form as a result of the perturbation. For fixedRM

we findk0 ≡ r0/RM andλ0 ≡ 2π/k0 as the critical pertur-
bation wavelength under which the homogeneous solutions
become unstable. This is the approximate size of the demes
that are formed. From the figures we findr0 ≈ 2.5, which
givesλ0 ≈ 15.
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Figure 1. Stability functionh(r) for the three crowding functions. Top: logistic function forω = 0.1, 0.5 and1.0; Middle: Gaussian
function forω = 0.05, 0.1 and0.5; Bottom: exponential function forω = 0.05, 0.1 and0.5. In all casesRM = 5, RC = 10, λ = 2.0 and
σ = 0.9.

For the logistic type of competition function (first three
plots), the homogeneous solution is stable against perturba-
tions of any wavelength ifω & 0.8. Fixing k0 = r0/Rm =
0.5 we find a critical smoothing parameterα0 = ω/k0 ≈
1.6. For the Gaussian competition function the homoge-
neous solution is stable ifω & 0.25, which givesα0 ≈ 0.5.
Finally, for the exponential function the homogeneous solu-
tion is expected to be always stable, completely preventing
the appearance of demes.

In order to confirm these predictions we show in Figs.
2 and 3 the results of numerical simulations with our spa-
tial model. We have used a grid of 128 by 128 points with
periodic boundary conditions. The initial configuration for
the time evolution is the uniform homogeneous solution plus
a small random spatial perturbation. All simulations with
the exponential crowding function resulted indeed in spa-
tially homogeneous populations and we do not show them
here. Fig. 2 corresponds to the logistic crowding function
and Fig. 3 to the Gaussian crowding function. In both cases

demes form forα sufficiently small, according to our analyt-
ical predictions. The simulations also show that the logistic
type of competition leads to faster deme formation than the
Gaussian type.

V Conclusion

The main reason for the existence of territories is competi-
tion for finite resources. In the case of animals, competition
is usually for food; in the case of plants it may be light.
For substrate organisms it may be space [19]. In our pre-
vious paper we showed that spatially isolated groups may
form spontaneously for populations that mate and compete
for resources locally, assuming a logistic type of crowding
function and sharp demarcation of territories.

In this paper we have studied the robustness of these iso-
lated groups against changes in the competition functions
and sharpness of the local neighborhoods, the home ranges,
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Figure 2. Spatial distribution of the population for the case of a logistic crowding function. From left to rightα = 0.5, 1.0 and2.0. Demes
are seen in the first two cases, but not the third. The dynamical equations were integrated for T=128 time steps. Space consists of a discrete
grid with 128 by 128 points and periodic boundary conditions. The population parameters are the same as in Fig.1.

Figure 3. Spatial distribution of the population for the case of a Gaussian crowding function. From left to rightα = 0.1, 0.5 and1.0. Demes
are seen in the first two cases, but not the third. The dynamical equations were integrated forT = 512 for α = 0.1 and forT = 1024 for
α = 0.5 and1.0. Space consists of a discrete grid with 128 by 128 points and periodic boundary conditions. The population parameters are
the same as in Fig.1.

as seen by individuals. We have shown that both of these
factors can be decisive in defining the population density
profile over the species range. If competition is sufficiently
intense, the population divides spontaneously into isolated
groups. The territory (deme) boundaries are dictated by (av-
erage) individual characteristics, such as death and birth rate
per generation, and group factors, such as the size, shape and
sharpness of local mating and competition neighborhoods.
Among the crowding functions considered, the logistic leads
to faster formation of demes and is the most robust against
changes in the smoothness of the boundaries. But even a
logistic type of crowding cannot garantee the formation of
demes if the demarcation of territories is too fuzzy.

Once isolated demes are established, genetic mixing
between demes is largely reduced, although some mixing
might still occur via inter-demes migration [13, 14, 9]. As
we have shown in [12], this spatial isolation contributes
to the maintenance of genetic diversity in the presence of
disruptive selection. In this case, when, for instance, het-
erozigous individuals[+,−] are less fit than homozigous in-
dividuals,[+, +] or [−,−], homogeneous populations tend

to be either all[+, +] or all [−,−]. When demes form, the
population in each deme is still either all[+, +] or all [−,−],
but different demes may be inhabited by different types. In
the long run, genetic isolation might also lead to genetic
divergence, since random mutations are not shared among
demes.
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