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A recursive subtractive renormalization of the scattering equation is applied to the nucleon-riGgleban-
nel with one-pion-exchange plus derivative contact interactions. This method can be easily extended to any
derivative order of the singular interaction. Although we limit this work to the singlet partial wave, the method
can be used as well in higher waves and coupled channels'Sjhienormalization parameters are fitted to the
data.

I. INTRODUCTION subtractions. Within this framework, we perform a systematic
analysis of the physical contribution coming from each order

The inspiring work of Weinberg [1] provided the basis for term in the recursive order-by-order renormalization method.
the effective field theory (EFT) of nuclear forces starting from  The presentation of this paper is as follows. In section I,
the expansion of an effective chiral Lagrangian. In leadingVe revise the recursive subtraction method to treat the scat-
order, it gives the one-pion-exchange potential (OPEP) plus Ering equation of ultraviolet singular potentials, and we des-
Dirac-3 contact interaction. Many works where EFT methodsctibe in detail the renormalized scattering equation, also we
were applied to the NN system have been developed by marigrieﬂy discuss the invariance of the scattering amplitude un-
groups with important results [2—11]. er the dislocation of the su_btraction point. In section IlI, we

Recent works [12, 13] handle the OPEP plus derivativePresent the_ results for the singlet nucleon-nucleon phase-shift
Dirac-d interactions making use of dimensional and boun-and in section IV, we conclude.
dary conditions regularizations. The leading order interaction,
renormalized with subtracted scattering equations, dominates

the coupled®S; —2 D; channel while the singletS, channel Il. SUBTRACTED T-MATRIX EQUATIONS
requires high order terms in the effective interaction [11].
The description of the'Sy singlet wave up topLap ~ The bare effective potential of Eq. (1) is ultraviolet di-

300MeV/c demands an effective NN interaction with secondvergent, making the Lippman-Schwinger equation singular
order derivatives of the Dirad: which in the relative momen-  which requires regularization and renormalization to allow a

tum space reads sensible scattering amplitude. The use of the subtracted scat-
L tering equations which by construction are regularized and re-
= — TNS 2 2 normalized where the Green’s functions appear subtracted at
(P|VerT|B) = (P'VRlB) + i,zzo)\” PoPY (D) Cerain scales, which are convenient for introducing the phy-
’ sical inputs.

where the\'s are unregulated strengths and the matrix element In the present case we consider a four-term singular inte-
of the one-pion-exchange potential VS| p). The effective raction of Eq. (1), which after partial-wave decomposition to
bare potential of Eq. (1) generates integrals that diverge dbe singlet s-wave state, gives the bare potential in the form:
much asp in the scattering equation. Therefore, it is neces- , reg, ./

sary at least three subtractions in the kernel of the Lippman-  VEFTs(P.P) = Vis(P', ) + Ao

Schwinger (LS) equation, since each subtraction introduces a Viis

factor of p—2. Differently from the recent works [12] and [13], 2 5 2 5

we implement the alternative method of subtracted scattering + Aoap” +A10p” +HAuppt.  (2)
equations [15] to handle the divergencies. Vy

The one-subtraction scheme used in our previous work [11]
was generalized in [15] to allow multiple subtractions, whichand we introduc#/;, 5 which corresponds to the regular part
makes possible to treat derivatives of the contact interactionf OPEP plus a Dirac-delta interactigg For thelS, state, the
in the effective two-body potential. The driving term of the regular part is
n-subtracted LS equation is constructed recursively, so that
the model is renormalized at each subtraction order, being the
approach renormalization group invariant [15].

In this work we obtain théSy NN amplitude from the effec-
tive interaction Eq. (1), using a scattering equation with threavhich has a finite scattering matrix, solution of the partial-

Z
g 1 ma

reg —_
Vns(p/ap)__gznf]_zr 7ldxp2+p,2_2pdx+n’%7

®)
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wave projected LS equation: B. Recursively subtracted T-matrix equations
(P, i K?) = , , ,
2Z o VS0, q) The singular potential of Eq. (2) requires a three-fold sub-
ro(Pp)+=  dadf 5 —Tn(q,p;k?). (4)  tracted T-matrix equation to allow a finite scattering amplitude
' o k*—q+ie from its solution. The n-fold subtracted equation in operator
In our normalization conventions, the scattering lamplitude‘orm is written as [15]:

in the angular momentum basis T4k, k,;kz) = — KeoBTK

and reminding that the low-energy parameters are defined by TE)= VO(—pZE)+
the effective range expansiéiotd = f% + %rok2 +---, with (2 )2
athe scattering length ang the effective range. V(-5 E)Gh (E;—p)T(E), (1)
where
A. Renormalized T-matrix for Vi, 5
V(-2 E) =

The T-matrix of the one-pion-exchange plus the Dirac-delta 2 N1y (-1), 2. =30 2] L
potential [11] is the input of the subtracted scattering equati- [1* (- -E)"V (—HSE)Go(—1) | x
ons for the complete singular potential of Eq. (2). Here, itis V(n—l)(_HZ.E) (12)
obtained using Distorted Wave Theory [16] (see Ref. ([12]): Y

Tres(E) = Tn(E) 4+ [Q ™ (E)]"T5(E)Q T (E) , (5)  with the n-fold subtracted Green’s function defined by

whereQ* (E) = 1+G(()+)(E)TH(E). The singular part of the

(H) e 2 _
T-matrix is: Gn (Ei—W) =

n
To(E) = Vs +VaGi ) (E)T5(E) . (6) (- - E)G(—1)] "G (), (1)
where and G{/(E) = [E — Ho + ig] * with Ho = p in the two-
Gr(E) =Gy (E) + Gy (E)Tw(E)GS ™ (E) (7)  nucleon rest-frame.

is the Green’s function obtained from the regular part of the The driving termv ®) (—2) is constructed recursively star-
pion-exchange interaction. ting fromV W (—p?) = Ty 5(—12) given by Eq. (9). Then, the

Eq. (6) is ill-defined due to ultraviolet divergences in the higher order singular terms of the potential Eq.(2) are introdu-
momentum integration. In our method, this scattering equaced in the driving term of the three-fold subtracted equation as
tion is reformulated in a subtracted form, which allows to getwe are going to show in detail below.
a finite scattering amplitude with only one subtraction [11]. The driving term of the three-fold subtracted scattering
Therefore, we apply the method of subtracted equations tequation is obtained numerically by solving recursively the in-

Eq. (6) subtracting the interacting Green's function, Eq. (7) tegral equations for the matrix elemem‘ﬁ)a(rﬂ p; —1k3)

at a certain energy scale” and the driving ternTs(—1?) of  which are explicitly given by:
the subtracted equation has now a finite value. Then, we have:

T5(E) = V(0 p 12 k2) = VT (0 pi 12 k)
To(—1) + To(—1) [ Gi(B) ~ Gr( 1) | Ta(E). (8) 2% (p2+k2)"—lv,iig”<p',q;uz;k2>
- X
We observe that Eq. (8) has the same operator form as the ori- o W+ g? —W2—q?
ginal one-fold subtracted T-matrix equation [11] with the only Xv(i)a(q p; — 12 K2) (14)
T bl ’ 1 k)

difference being that the interacting Green’s function appears

in the place of the free one. _ . .
The renormalized strength of the interaction is the value ofVIt K= VE. Then, the higher singular terms of the full effec-

Ts(E) at the subtraction poinTg(—2) = A 00, Which allows tive interacti(%? of Eq.2(2? are introduced directly in the matrix
to solve Eq. (8) resulting in a finite scattering amplitude forelement oV, s o (—p°) in the form:
the OPEP plus a Dirac-delta:

Trs(P, s — 1) = Vﬁw(p’, p; —1% k%) =V,ﬁ)5(p’7 p;—H%K2) +
Tn(P, p; —12) + (P’ —12) Agoo (P — 1), (9) Agao(P? + P?) + Ag11p P2 . (15)

where
z The driving term of the three-fold subtracted scattering equa-

w(p;, —2) =1+ 2 wdq &M , (10) tion gets contribution from the derivatives of the Dirac-delta
mTo - —q interaction, that havRg;; as the renormalized strengths of the

with Eq. (4) giving the T-matrix for the regular part of the corresponding singular part of the potential.
one-pion-exchange potential in th& channel. Finally, within our method we solve numerically the three-
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fold subtracted LS equation given by: 70
| = « « Nijmegen
. 3 . . 60~ ,
T(p,p;K?) =V1£+)5+5/(p’7p,—u2,k2) — S
Z, 2,12\ 3 ssorf +5+5 | |
2 W2+ k A I . n
+=  doef - 840
o He+q = |
3 = 30 :
VA (T k2>T (@.pk®) (16) R
k2—q2+is ) ’ ;‘EZO,;: ----------
where in all steps to get and solve the above equation the ultra- 10 / |
violet divergences were removed in favor of the renormalized 05 ‘ T U E—T
strengths of the singular interaction at the subtraction energy p[MeVic]

—2. Indeed, the arbitrary subtraction point can be moved
without affecting the physics at the expense of changing the&IG. 1: 15, phase shift as a function of the c.m. momentum calcula-
driving term of the subtracted LS-equation. ted forVp, 5, Vy andVy, 5, 5. The dots are the Nijmegen data [14].

C. Renormalization group invariance MAzoo = —0.1465 p3}\gwl =4.7124and US)‘Rll = 5.0265
with p= 214 MeV. The resulting effective range igs =

The physics of the nucleon-nucleon scattering should nog-73fm compared with the value of 2.68 fm from Ref. [14].
depend on the arbitrary subtraction energy scaig?. One In the figure, we show our study for the different contributi-
could work with any convenient value f. However, the ©NS of the effective potential as well as the full calculation. We
detailed form of the driving term in Eq. (15) which defines performed calculations for thkS phase shifts obtained with

the scattering amplitude depends on the prescription used w8 Vo @ndVr, 5,5, with the parameters fixed at the values
define the renormalized theory. The renormalization grougVe found by the fitting procedure. Belop/~ 20 MeVi/c the

method guide us how to modify this prescription while kee- calculation with onlyV;;, 5 underestimates the data, while for
ping unchanged the predictions of the theory [17]. Vy the phase shifts are better described. The dominant contri-
The invariance of the theory under the changes of the reution in this channel comes frouy, while the pion appears

normalization prescriptions defines a rule to modify consis—?atlclg‘gnenerg'es providing the long range part of the NN inte-

oo o .
tently ViV in E%‘é)ll) to keep unchanged the T matnx.. L_JS|_ng It is interesting to study how the observables depend on the
Eq. (11) andY5z" = 0, one can derive the non-relativistic gq51e, The dependence of the singl& phase shifts on the

Callan-Symanzik (NRCS) differential equation [15, 18]: subtraction poinftwas studied in Ref. [19].
N (—ZE)
ap2 - IV. CONCLUDING REMARKS
M2 0Gh" (E: —1?) M2 .
V(- ;E)TV (—-p5E). (A7) We show how to apply the method of subtracted scattering
H equations [15] to calculate the NN singlet phase-shift, when

The solution of the above equation gives the driving term athe matrix elements of the effective interaction diverges in the
any subtraction point with the boundary condition given byultrawolet region asp?. In this case three subtractions are

Eq. (15). The NRCS equation concretizes the invariance ofcduired to renormalize the model. Then, the integrand of
the original scattering equation is automatically regularized

the renormalized T-matrix under dislocation of the subtractio th biract  th i t |
point. From that one immediately realizes that the dependeng_%y € subtractions of the propagator at some energy scale.
he Born term in our calculation is the T-matrix at the sub-

on the subtraction point appearing in the driven term of thetr tion ener le differently from th | potential term
subtracted scattering equation is highly nontrivial, althoughoftch'g steanec:ia?r{islfgz lIJa?ioen )I/:o:)re u?aLrJSli)?eﬂ(t)iaels ;ﬁe esub-
the physical results of the model are kept unchanged. q ' 9 b

tracted equations is fully equivalent to the LS formalism. If
one desires the subtraction scale can be moved without mo-
difying the calculated observables as long as new driven term
of the subtracted scattering equation comes from the solution
. of the Non-Relativistic Callan-Symanzik (CS) equation. In

~ The free parameters of our calculation are the renormag,,r cajculation, the boundary condition of the CS equation
lized strengthsAgoo, Ag10, Ag11 @nd the subtraction point s getermined by the renormalized coupling constants and by
W To simplify the fitting procedure we fiXz10, Az11 @nd  the T-matrix of the OPE and Dirak-potentials at the speci-

K and adjusiz oo to reproduce the singlet scattering length fieq value of the subtraction point. And finally, we would like
as = —23739fm. The three parameters left are adjusted totg add that the method of subtracted scattering equation is in
reproduce the Nijgemen data [14] up to the center of mass Myrinciple suitable to treat also higher order singular terms of
mentum ofk =300 MeV/c. From the fitting procedure we got

. NUMERICAL RESULTS
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the effective interaction.
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