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Double-Helix Current Drive Revisited
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The conditions required for efficient current drive in a weakly resistive plasma column, subject to a double
helix traveling magnetic field, are examined in detail by using a simple non-linear Ohm’s law for the plasma.
In agreement with previous numerical work on the subject by Bertram [5], it is shown that field penetration
is indeed strongly limited when large external bias longitudinal magnetic fields are used. However, there is a
range of small external bias fields that allow for significant penetration when reasonable driving fields are used.
This should be of interest for sustaining reversed-field pinches and toroidal screw pinches.

1 Introduction

Among the various methods for driving continuous currents
in magnetically confined plasmas, there are those based in
rotating or traveling magnetic fields. They present the ad-
vantage, when compared with other schemes, that it should
be possible to drive the bulk of the electrons to build up
the necessary currents. Rotating magnetic fields have been
proved effective in sustaining field-reversed configurations
(FRC) in small devices in the past [1], and recently the
scheme has attracted renewed attention from the FRC com-
munity, both from a theoretical and an experimental point of
view [2-3].

Considering toroidal devices, where both poloidal and
toroidal currents are necessary, a natural extension of the
RMF method is the double-helix scheme, where two sets of
helical coils wound around the plasma chamber and pow-
ered by a strong RF source, are employed. In the litera-
ture, there is a limited number of theoretical and experi-
mental studies devoted to the subject [4-8], starting from
the mid eighties to the mid nineties when, apparently, the
subject was abandoned. The pessimistic conclusions pre-
sented by Bertram in 1988 are probably the main reason for
this behavior [5]. He studied numerically the double-helix
scheme using a simple model for the plasma: fixed ions,
a non-linear Ohm’s law for electrons, uniform density and
neglected temperature effects. After examining in details
two representative cases, weakly and strongly resistive plas-
mas, Bertram concluded (in his own words at the end of the
paper): “...strong toroidal fields do result in drastic reduc-
tions in the amount of current that can be driven. Conse-
quently this mechanism may not provide an efficient practi-
cal method for continuous current drive when applied to a
large Tokamak.”

Here, we want to examine in detail the actual condi-
tions required for large field penetration in a weakly resis-
tive plasma column, subject to a double helix traveling mag-
netic field, by using the same plasma model as Bertram. It is
shown that when large external bias toroidal magnetic fields
are used the penetration is strongly limited indeed. There
is, however, a range of small external bias fields suitable for
large penetration, when reasonable driving fields are used.
This could be of interest to sustain reversed-field pinches
(RFP) and toroidal screw-pinches. In the following, for
clearness, we will rederive Bertram’s equations introduc-
ing some different notation and correcting some misprints
in Eqs. (6) and (10) of his paper.

2 Helical Formalism

Let us consider an infinite plasma column of radiusa, sub-
ject to the action of external traveling helical magnetic fields
varying likeexp i(θ+kz−ωt) and a uniform static longitu-
dinal magnetic fieldB0. Ions will be considered immobile,
electron inertia will be neglected together with thermal ef-
fects and density gradients, in such a way that the following
Ohm’s law is appropriate:

J = −enu =
e2n

mν

(
E− J×B

en

)
, (1)

where e2n
mν = 1

η being n, m, −e, u and ν the electronic
density, mass, charge, velocity and collision frequency re-
spectively;n andν will be assumed constants. Moreover,
displacement current densities will also be neglected in such
a way that Ampere’s law can be written as:∇ × B = µ0J.
Faraday’s law∇×E = −∂B/∂t will be also used.
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The treatment can be simplified by introducing non-
dimensional helical coordinatesx1 = x = r/a, x2 =
θ + kz andx3 ignorable, with unit vectorŝe1 = êr, ê2 =
(êθ+hxêz)/

√
1 + h2x2 andê3 = (êz−hxêθ)/

√
1 + h2x2,

whereh = ka. A generic vector can be expressed asC =
C1êr + (C2ê2 + C3ê3)/

√
1 + h2x2 with C2 = Cθ + hxCz

andC3 = Cz − hxCθ quasi-helical components [5]. Al-
ternatively Cθ = (C2 − hxC3)/(1 + h2x2) and Cz =
(C3 + hxC2)/(1 + h2x2).

All quantities of interest will be assumed to be the sum
of a steady part, indicated by a subscript 0, depending only
on x and an oscillating part depending onx and only on
first harmonics ofx2 − ωt. Without loss of generality we
can restrict to positive values ofω, situations of paramag-

netism or diamagnetism, with relation to the externally ap-
plied bias toroidal magnetic field, will be reproduced by
proper choice of the sign of such field. It is convenient to
normalize the magnetic field components withB0

ω, the am-
plitude of the external traveling magnetic field atx =0 in
absence of plasma. Similarly, current density components
will be normalized withB0

ω/µ0a. In the following, non-
dimensional components of the magnetic field and current
density will be indicated with a symbol “∼

′′
.

In complex notation, with helical symmetry, the non-
dimensional time dependent magnetic field can be repre-
sented in terms of two non-dimensional scalar functions,
α(x)ei(x2−ωt) andβ(x)ei(x2−ωt) as:

c

B̃ =
(

iα

x
êr − 1√

1 + h2x2

dα

dx
ê2 +

β√
1 + h2x2

ê3

)
ei(x2−ωt) . (2)

Correspondingly, the non-dimensional time dependent current density results:

J̃ =
(

iβ

x
êr − 1√

1 + h2x2

dβ

dx
ê2 − 1√

1 + h2x2

(
∆⊗α +

2h

1 + h2x2
β

)
ê3

)
ei(x2−ωt) , (3)

d

where∆⊗ ≡ d2

dx2 + 1−h2x2

1+h2x2
1
x

d
dx − 1+h2x2

x2 . The external
traveling field in the absence of plasma corresponds toβ=0
andα ≡ αcoil = −i2xI ′1(hx), whereI1 is the hyperbolic

Bessel function of the first kind and “′”, from here on, means
derivative with respect to the argument. The amplitudes of
the actual helical components of the traveling magnetic field
in the absence of plasma are given by:

c

B1 ext = 2B0
ω

I ′1(hx)
x

;B2 ext = 2B0
ω

√
1 + h2x2

hx
I1(hx) .

Since∆⊗αcoil = 0, to our purposes it is convenient to assume thatα ≡ αcoil+α. Therefore, taking into account Faraday’s
and Ampere’s laws and ignoring contributions from second and higher harmonics ofx2 − ωt, it is possible to obtain for the
third quasi-helical component of Ohm’s law:

∆⊗α +
2h

1 + h2x2
β = i2λ2

(
−(αcoil + α) +

δ

x

(
βB̃02 − J̃02(αcoil + α)

))
, (4)

d

where 2λ2 = ωµ0a
2/η (λ is the ratio between the col-

umn radius and the classical field skin depth) andδ =
B0

ω/µ0neωa2. Here, we adopted a different notation from
that frequently used in the literature whereγ = 2λ2δ is com-
monly introduced.δ quantifies the efficiency of the driving

scheme in terms of magnetic field amplitudes and the conve-
nience of its introduction will be evident in the results shown
later on.

A second equation relatingα andβ results from consid-
ering the projection alonĝe3 of the curl of Ohm’s law:

c

∆⊗β = −i2λ2

{
β +

2h

1 + h2x2
(αcoil + α) +

δ

x

[
B̃02

(
∆⊗α +

2h

1 + h2x2
β

)

−(αcoil + α)(1 + h2x2)
d

dx

J̃03

1 + h2x2
− 2h2x

1 + h2x2
βB̃03

]}
. (5)
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The zero order quantities appearing in (4) and (5) came from averaging Ohms’law, according to the rule

〈PQ〉 ≡
〈

P + P ∗

2
· Q + Q∗

2

〉
=

〈
PQ∗ + P ∗Q

4

〉
= Re

〈
PQ∗

2

〉

and also from using Ampere’s law:

d

J̃02 =
λ2δ

x
Im

[(
∆⊗α +

2h

1 + h2x2
β

)
(αcoil + α)∗

]
,

(6)

J̃03 = −λ2δ

x
Im

[
d

dx

(
β (αcoil + α)∗

)]
, (7)

∂B̃03

∂x
= −J̃02 , (8)

∂B̃02

∂x
+

1− h2x2

1 + h2x2

B̃02

x
− 2h

1 + h2x2
B̃03 = J̃03 . (9)

At x= 0 we must haveα = β = B̃02 = 0, at x = 1
β=0 andαcoil + α must be matched to the vacuum exter-
nal potential arising from solutions of∆⊗αvac=0 , αvac =
αcoil +DxK ′

1(hx) whereK1 is the hyperbolic Bessel func-
tion of the second kind andD is a complex constant. There-
fore, we must have for the real and imaginary parts ofα:

(
1

αr,i

dαr,i

dx

)

x=1

=
(1 + h2)

h

K1(h)
K ′

1(h)
. (10)

The matching of the external bias field implies:

B̃03(1) + hB̃02(1) = (1 + h2)B̃0. (11)

With a brilliant insight, Bertram considered the limit of
full penetration as corresponding to2λ2δ → ∞ assum-
ing 2λ2δ β might remain non-zero. In such case, Eq.(4)
gives the current densitỹJ02 = −x/δ and Eq. (5) fur-
nishesJ̃03 = −h(1 − 2x2)/(2 + h2)δ [5]. Showing the
actual possibility of driving current orthogonally to the di-
rection of propagation of the traveling fields as well as along
such direction. He also solved numerically Eqs. (4) to (9)
and presented results for givenλ andδ (or alternativelyγ)
as functions ofh usinghB̃0/2

√
1 + h2I1(h) (the external

static bias toroidal magnetic field normalized to the ampli-
tude of the second actual helical component of the external
helical field at the column radius in absence of plasma) as a
parameter.

For plasmas of fusion interest, the parameterλ should
be very large. Bertram consideredλ=1000 and showed full

penetration of the driving field when practical values ofh (of
order unity) are considered andδ = 2.27 (γ = 5.54 · 106),
only in the case of vanishing external bias magnetic field.
The other case, considered in more detail by Bertram, cor-
responds to a cold resistive plasma withλ = 4 andδ = .11
(or γ = 3.52), showing appreciable penetration only when
the driven currents are diamagnetic and the normalized (ac-
cording to his rule) external bias longitudinal field is unity
(correspondingly the longitudinal field at the center of the
plasma column is practically vanishing).

3 Results and Discussion

Here, we want to analyze in more detail the conditions for
large penetration at largeλ and determine the range of val-
ues of the external field where this is possible. For large
penetration it should be expected that|βr,i| << |αcoil| =
2xI ′1(hx) . In such case, one can look for steady current
density quasi-components corresponding to:

J̃02 =
λ2δ

x
Im

[(
∆⊗αr +

2h

1 + h2x2
βr

)
α∗coil

]
, (12)

J̃03 = −λ2δ

x
Im

[
d

dx
(βrα

∗
coil)

]
. (13)

In the case of small deviation from the limit of full pen-
etration, we can also assume:

J̃02 = −x(1− ε2x))/δ ,

J̃03 = −h(1− 2x2)(1− ε3(x))
(2 + h2)δ

,

whereε2,3 can be interpreted as a kind of slip factors (per-
centual deviation of electron velocities from the full penetra-
tion case) assumed small.ε2,3 can be easily estimated from
the real parts of Eqs. (4) and (5) whenλ is large:

ε2(x) = − δβiB̃02

2x2I ′1(hx)
, (14)

and

c

d

dx

(1− 2x2)ε3(x)
1 + h2x2

=
βi

(
1− 2h2

1+h2x2 δB̃03

)
+ 2λ2 δ2

x2 βrB̃
2
02

2δI ′1(hx)(1 + h2x2)
. (15)
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Equations (15) must be integrated subject to the condi-
tion ((1 − 2x2)ε3(x))x=1/

√
2 = 0. Consistency with the

smallness assumption forε2,3, allows considering all quan-
tities in the right hand side of Eqs. (14) and (15) as of zero
order in ε2,3. Consequentlyβr can be computed directly
from Eq.(13), as:

βr =
hx(1− x2)

4(2 + h2)λ2δ2I ′1(hx)
. (16)

Similarly, from Eq. (12) it results:

∆⊗αr +
2h

1 + h2x2
βr = − x

2λ2δ2I ′1(hx)
. (17)

As it can be appreciatedαr andβr are of order(λδ)−2,
in such a way that this procedure is not applicable to the re-
sistive case considered by Bertram (λδ = 0.44). The same
scaling does not apply toαi andβi, since to zero order in
ε2,3 the following Eqs. result:

∆⊗αi = − 2h

1 + h2x2
βi +

h(1− x2)
2δ(2 + h2)I ′1(hx)

B̃02, (18)

∆⊗βi = −2λ2βr

(
1− 2h2δB̃03

1 + h2x2

)
+

B̃02

δI ′1(hx)
. (19)

Equations (18) and (19) show thatαi andβi are of sim-
ilar order and considerably larger thanαr and βr when
λ >> 1, depending also oñB02,3. To computeB̃02,3 it is
convenient to use the cylindrical components of the current
densities to zero order inε2,3:

J̃0θ = − 2x

δ(2 + h2)
;

J̃0z = − h

δ(2 + h2)
⇒ B̃0θ = − hx

2δ(2 + h2)
;

B̃0z =
(C + x2)
δ(2 + h2)

,

from which the corresponding helical quasi-components can
be easily obtained as:

B̃02 =
hx(2C − 1 + 2x2)

2δ(2 + h2)
; B̃03 =

(2C + x2(2 + h2))
2δ(2 + h2)

.

(20)
In the above expressionsC is a real constant related

to the external value of the bias magnetic field̃B0 =
(B̃03(1) + hB̃02(1))/(1 + h2) = (C + 1)/δ(2 + h2). It
is seen thatC= -1 corresponds to a vanishing external field,
C > −1 represents a diamagnetic profile andC < −1 cor-
responds to paramagnetic ones. The above relations also
give an idea of the meaning of the parameterδ, for example∣∣∣B̃0θ(1)

∣∣∣ =
∣∣B0θ(a)/B0

ω

∣∣ = h/2δ(2 + h2) indicating that

small values ofδ correspond to a better efficiency in terms
of magnetic amplitudes.

The real and imaginary parts ofβ tend to vanish when
h tends to zero or infinite, independently of the values of
λand δ. However, since in such cases one or both of the
driven currents also tend to vanish, the interesting cases cor-
respond toh of order unity. This sets serious constraints on
the conditions needed to justify the proposed procedure, in
the sense thatC must always be sufficiently small.

Whenλ >> 1 our scaling is easily satisfied ifδ >> 1.
Whenδ << 1, the scaling can not be satisfied in general
for αi and βi, this generate large slip factors invalidating
the proposed procedure. However, whenδ is of order unity
our scaling can be satisfied in a convenient range of the con-
stantC. We want to emphasize that this is just the situation
for the low resistivity case,λ=1000 andδ = 2.27, consid-
ered by Bertram. To investigate this regime we integrated
Eqs. (17-19) numerically using (16) and (20) and satisfying
their boundary conditions. In Figs. 1 and 2 we showαr,
βr andαi,βi corresponding toλ=1000, withh =

√
2 and

C=-1 (vanishing longitudinal bias field). As it can be seen,
all the functions are effectively small when compared with
2xI ′1(hx), in such a way that no appreciable slip factors re-
sult. However, the scaling is even better satisfied ifC is in-
creased (diamagnetic profiles), reaching the best conditions
(in terms of smallness of slip factors) whenC is slightly pos-
itive, allowing to obtain good penetration at smaller values
of δ. Apart from a small dependence onh, whenC is nega-
tive βi is positive.βi has an internal zero whenC is approx-
imately comprised between 0 and 0.4, and aboveC =0.4 it
becomes negative. As an example, we present in Fig. 3αi

andβi for the caseλ=1000,δ=0.227,h =
√

2 andC=0.3
(screw pinch case) and in Fig. 4 the corresponding slip fac-
tors. As it can be seen, they are of the order of a few percent
(the same happens for the contributions to the zero order
steady current densities arising from the neglected terms in
Eqs. (6) and (7)).

When |C| >> 1 it is impossible to satisfy the scaling
since |αi| and |βi| increase, unless larger values ofδ are
used. This allows to understand why Bertram’s results for

λ=1000,δ = 2.27 and
∣∣∣hB̃0/2

√
1 + h2I1(h)

∣∣∣ ≥ 1 did not

show good penetration at practical values ofh. According
to our procedure, such larger values of the external bias field
should correspond to values of|C| ≥ 19, for which our
scaling conditions can not be attained, generating large slip
factors.

In general, large external bias magnetic fields, with small
paramagnetism or diamagnetism, should imply large values
of C and Bertram’s conclusions regarding the applicability
of this method to tokamak like configurations, are true since,
in order to attain good penetration large values ofδ should
be used.

However, if−1 < C < 0, the resulting configuration
at large penetration corresponds to a RFP and this should be
easily sustained ifδ = 2.27, even more, this should also be
possible atδ closer to unity. RFPs are more attractive than
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Figure 1. Real parts ofα(filled line) andβ(dashed line) as func-
tions ofx = r/a, for the caseλ=1000,δ=2.27,h =

√
2 andC=-1

(vanishing external bias field).

Figure 2. Imaginary parts ofα(filled line) andβ(dashed line) as
functions ofx = r/a, for the caseλ=1000,δ=2.27,h =

√
2 and

C=-1(vanishing external bias field).

Figure 3. Imaginary parts ofα(filled line) andβ(dashed line) as
functions ofx = r/a, for the caseλ=1000,δ=0.227,h =

√
2 and

C=0.3 (screw pinch case).

toroidal screw-pinches due to their better stability proper-
ties, moreover, they have large aspect ratios and quite flat
experimental density profiles. As an example, in Figs. 5
and 6 we present results forαi, βi and the slip factors
for h=1, λ=1000, δ=0.85 andC=-0.85. This should cor-
respond to a RFP like equilibrium with pinch parameter
Θ = Bθ(1)/B̄z = −h/(2C + 1) = 1.43 and field-reversal
ratio F = B0/B̄z = (C + 1)/(C + 1/2) = −0.43, values
which are typical of RFP experiments. As it can be seen, the
slip factors are reasonably small. Lower values ofδ gener-
ate larger slip factors and in order to assess the limits of the
double helix scheme as a RFP sustainment method, full nu-
merical calculations, including higher harmonics, should be
done to avoid the limitations of the present semi-analytical
study. In this regard, it is suggestive to note that in Ref.
[6] second harmonics inx2 − ωt were taken into account in
the numerical solution of the resistive caseλ=4, with h=0.8
andδ changing from 0 to 0.625, showing an increase in the
driven currents. Unfortunately, Ref. [6] does not provide
information about the value of the external bias field used in
the computation.

Figure 4. Slip factorsε2(filled line) andε3(dashed line) as func-
tions of x = r/a, for the caseλ=1000, δ=0.227,h =

√
2 and

C=0.3 (screw pinch case).

Figure 5. Imaginary parts ofα(filled line) andβ(dashed line) as
functions ofx = r/a, for the caseλ=1000,δ=0.85,h = 1 and
C=-0.85 (reversed-field pinch case).
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Figure 6. Slip factorsε2(filled line) andε3(dashed line) as func-
tions ofx = r/a, for the caseλ=1000,δ=0.85,h = 1 andC=-0.85
(reversed-field pinch case).

When related to present RFP experiments,δ of order
unity implies quite large antenna fields, of the order of some
kG. This represents a high technological requirement, in
terms of RF power. However, the double helix scheme de-
serves additional studies, both from the theoretical an the
experimental point of view, since it may be a good alterna-
tive to other non-inductive current drive schemes, like wave
injection and AC helicity injection (or Oscillating Field Cur-
rent Drive), presently pursued by the RFP community.

Acknowledgments

One of the authors, RAC, would like to thanks partial
financial support fromConselho Nacional de Desenvolvi-
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