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Abstract. In this article we solve a nonlinear cutting stock problem which represents a cutting

stock problem that considers the minimization of, both, the number of objects used and setup.

We use a linearization of the nonlinear objective function to make possible the generation of

good columns with the Gilmore and Gomory procedure. Each time a new column is added to

the problem, we solve the original nonlinear problem by an Augmented Lagrangian method.

This process is repeated until no more profitable columns is generated by Gilmore and Gomory

technique. Finally, we apply a simple heuristic to obtain an integral solution for the original

nonlinear integer problem.

Mathematical subject classification: 65K05.
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1 Introduction

The Unidimensional Cutting Stock Problem (1/V/I/R according Dyckhoff [5])

is characterized by cutting stocks in just one dimension. More specifically, we

havem itemswith different sizes withwidth equal towi andwemust cut, through

its length, a minimum number of master rolls (with width W > wi for all i) to
attend demand di for each item i . Each combination of items cut from a master
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62 NONLINEAR CUTTING STOCK PROBLEM MODEL

roll is called a cutting pattern. The problem is to determine the frequency of

each cutting pattern to attend demand and (for instance) minimize the number

of objects cut.

A reasonable goal to be met in a industry is to minimize the number of master

rolls used to produce the demanded items. If we consider that there are a suffi-

cient number of objects of same width W available, then the formulation below

describes the mathematical model that minimize the total number of objects (i.e.,

master rolls) used in a cutting plan:

(P1)




Minimize c1
n∑
j=1
x j

subject to
n∑
j=1
ai j x j ≥ di , i = 1, . . . ,m.

x j ∈ N, j = 1, . . . , n.

where

• c1 is the cost for each master roll used;

• ai j is the number of items i in cutting pattern j ;

• x j is the number of of objects cut according cutting pattern j .

In some cases, the minimization the number of objects used are not the only

goal for the manager. In fact, when we have a large demand to attend in a

short period of time, the number of machine setup done for cutting the items

from the master rolls takes a growing importance, since each time we process

a cutting pattern there is a need to adjust the knives in the cutting machine and

this adjustment takes time. Adding this setup cost in the previous problem (P1)
we obtain a new formulation which minimizes the number of objects and the

number of setup:

(P1)




Minimize c1
n∑
j=1
x j + c2

n∑
j=1

δ(x j )

subject to
n∑
j=1
ai j x j ≥ di , i = 1, . . . ,m.

x j ∈ N, j = 1, . . . , n.
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where c2 is the setup cost and δ(x j ) =


1 if x j > 0,

0 if x j = 0.

Combinatorial problems involving setup costs are known to be very hard to

solve. In particular (P1) presents two conflicting objectives: (1) Minimize the
total number of processed objects and (2) the total number of setup used.

Solving problem (P1) is already a hard task to do, since it is a N P-Hard prob-
lem. Problem (P1) is a harder problem, since, besides being a nonlinear integer
problem, the nonlinear part of the objective function is discontinuous. This

fact, does not allow us to solve the problem by using the Gilmore and Gomory

strategy [9, 10]. Vanderbeck [22] investigates the problem of minimizing the

number of different cutting patterns as an integer nonlinear programming, where

the number of objects is fixed. In his approach, Vanderbeck uses Dantzig-Wolfe

decomposition [20, 21]. Since the model considered works with a huge number

of variables, the method solves only problems with a small number of items. For

this reason several papers considering this problem involve the use of heuristic

procedures. Below, we describe two of these methods which will be used to

compare with our approach.

• SequentialHeuristic Procedure – SHP: It was proposed byHaessler [11]

and it is based on an exaustive technique of cutting pattern repetitions. In

each iteration an aspiration criterion is computed then a search is done to

look for cutting patterns that satisfy such parameters until the demand are

all attended. The SHP give us a good initial solution and it is used by

others method to compare the quality of their solutions. It generates an

inexpensive good initial solution to the (P1).

• Kombi: This method was developed by Foester and Wascher [7] and it is

based on a combination of cutting patterns in order to reduce the number of

setups of a given cutting plan. The idea of reducing the number of cutting

patterns using a post-optimization procedure was initially mentioned by

Hardley [13]. Others methods based on this idea were published by John-

ston [15], Allwood and Goulimis [1] and Diegel et al. [3]. All of them

have in common the combinations of pair or triples of cutting patterns,

but, they differ in the way the combinations are carried out. The method
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Kombi can be seen as a generalization of Diegel’s method, in which ideas

of combining cutting patterns are extended to a consistent system indepen-

dently from the number of cutting patterns combined. It makes use of the

fact that the sum of the cutting pattern frequencies of the resulting cutting

patterns has to be identical to the sum of the frequencies belonging to the

original cutting patterns in order to keep the material input constant. The

results presented show that the setup was reduced by up to 60% in relation

to the original cutting plan. Kombi has also been proved superior to SHP.

2 Smoothing a discontinuous cost function

Many practical problems require the minimization of functions that involve dis-

continuous costs. Martinez [16] propose a smoothing method for the discontin-

uous cost function and establish sufficient conditions on the approximation that

ensure that the smoothed problem really approximate the original problem.

Consider the problem

Minimize f (x) +
m∑
i=1
Hi [gi (x)] subject to x ∈ � (2.1)

where f : Rn → R is continuous, gi : Rn → R is continuous for all i =
1, . . . ,m and � ⊆ R

n . Also, Hi : R → R, i = 1, . . . ,m, are nondecreasing
functions such that Hi is continuous except at breakpoints αi j , j ∈ Ii . The set
Ii can be finite or infinite but the set of breakpoints is discrete, in the sense that:

inf
{|αil − αi j | such that l, j ∈ Ii , l �= j

}
> 0. (2.2)

The side limits limt→α−
i j
Hi (t), limt→α+

i j
Hi (t), exist for all j ∈ Ii and

lim
t→α−

i j

Hi (t) = Hi (αi j ) < lim
t→α+

i j

Hi (t)

for all j ∈ Ii , i = 1, . . . ,m.
The cost functions Hi will be approximated by a family of continuous nonde-

creasing functions Hik : R → R.. We assume that the approximating functions

are such that, for all µ > 0,

lim
k→∞ Hik(t) = Hi (t) uniformly in R\

⋃
j∈Ii

(αi j , αi j + µ). (2.3)
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Note that (2.3) implies that

lim
k→∞

Hik(t) = Hi (t) ∀ t ∈ R.

For each k, we define the approximated problems as

Minimize f (x) +
m∑
i=1
Hik[gi (x)] subject to x ∈ �. (2.4)

Since (2.4) has a continuous objective function, we can use continuous opti-

mization algorithms to solve it. The following theorem prove that the solution

of (2.1) can be approximated by the solution of (2.4).

Theorem 2.1 (Martinez [16]) Assume that for all k = 0, 1, 2, . . ., xk is a
solution of (2.4) and that x∗ ∈ � is a cluster point of {xk}. Then, x∗ is a
solution of (2.1).

We adapt those ideas for the (P1). Also, we relax (P1) by eliminating the
integrality constraints. We will denote this problem as

(P2)
{
Minimize f (x) +

n∑
i=1
Hi (xi ) subject to x ∈ �

where:

• � = {
x ∈ Rn such that Ax = d, x ≥ 0};

• f (x) = c1 ·
n∑
i=1
xi ;

• Hi (t) = c2δ(t), i = 1, . . . , n.

Note that Ii = {0} for all i = 1, . . . , n once the only discontinuous point of
Hi (t), i = 1, . . . , n is t = 0. Also, we have that

lim
t→0−

Hi (t) = 0 = Hi (0) < lim
t→0+

Hi (t) = c2.

We approximate each one of the functions Hi by the following continuous
functions:

Hik(t) =
{
0 if t ≤ 0
c2kt2/(1+ kt2) if t > 0
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Is easy to see that

lim
k→∞

Hik(t) = Hi (t)

for all t ∈ R and for all i = 1, . . . , n; and, Hik(t) uniformly converges to Hi (t)
if t �= 0.

Therefore, the conditions of Theorem (2.1) can be applied in this case. Let Pk
denotes the approximate nonlinear programming problem:

(Pk)




Minimize c1 ·
n∑
j=1
x j + c2 ·

n∑
j=1

kx2j
1+ kx2j

subject to :
n∑
j=1
ai j · x j ≥ di i = 1, . . . ,m

x j ≥ 0 j = 1, . . . , n.

So, Theorem (2.1) says that if for all k = 0, 1, 2, . . ., the point xk is the best
solution found for the approximate problem Pk and x∗ is the cluster point of the
sequence {xk} then x∗ is the solution of (P2).
Once we obtain a solution for (P2), we can use a rounding procedure to obtain

a integer solution for (P1). However, there exist a problem to be solved before
that: “How to generate good columns (i.e., cutting patterns) for problem (P2)?”.
Next section we answer this question.

3 Column generation in a nonlinear problem

The column generation procedure developed by Gilmore and Gomory [9, 10]

for linear programming problems, made it possible to solve large scale cutting

stock problem. Problems encountered in real life may involve a very large num-

bers of variables, the trick is to work with only a few cutting patterns (variables)

at a time and to generate new profitable cutting patterns only when they are re-

ally needed. In [17] we applied the column generation procedure in a nonlinear

problem by making use of an auxiliary linear programming problem “closer” to

our nonlinear problem. By “closer”, we mean that, the solution of (P2) satisfies
the optimality conditions of problem (P3).
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Consider the following linear programming problem:

(P3)




Minimize
P∑
j=1
x j

subject to
P∑
j=1
ai j x j ≥ di , i = 1, . . . ,m.

x j ≥ 0, j = 1, . . . , S.

where S is the number of different cutting patterns in the solution obtained
in P2.
In Belov and Scheithauer [2], they propose a linearization of the bi-criterion

cutting stock objective function in the following way: After solving a sequence

of problems Pk we get a (cluster) solution x∗
j for j = 1, . . . , n and let us call P4

the following auxiliary linear programming problem:

(P4)




Minimize
n∑
j=1

(
c1 + c2

u j

)
x j

subject to:
n∑
j=1
ai j x j ≥ di , i = 1, . . . ,m.

x j ≥ 0, j = 1, . . . , n

where u j = x∗
j if x∗

j > 0.

We use (P4) to generate a new column for the original problem (P2). In the
columngeneration procedure, we need to solve aKnapsackProblem. Togenerate

good profitable columns in the sense of reducing trim loss and setup number,

Haessler [12] suggests to solve a bounded knapsack problem where the upper

bounds for the variables are fixed according to:

bi = min

{⌊
di
10

⌋
,

⌊
W
wi

⌋}
, i = 1, . . . ,m.

In our work, we accepted Haessler’s suggestion, but, we compute the upper

limits in a different way. This modification is described in Section 4.
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4 Solving the Nonlinear Cutting Problem

Below, we describe the main steps of the new algorithm for solving the nonlinear

cutting stock problem.

New Algorithm – NANLCP

Step 1: Compute an initial solution (x∗) for (P1) using SHP;

Step 2: Obtain a solution for the current (P2) solving Pk for k = 10i ,

i = 1, 2, . . . , 5;

Step 3: If the solution obtained in Step 2 is better, for f (x) = c1 ·
n∑
i=1
xi +

c2
n∑
i=1

δxi than x∗, update it;

Step 4: Get the simplex multiplier πi , i = 1, . . . ,m by solving (P4);

Step 5: Solve a Bounded Knapsack Problem with the objective function

coefficients given by the simplex multiplier of (P4):

Maximize Z =
m∑
i=1

πi yi

subject to

m∑
i=1

wi yi ≤ W

yi ≤ bi , i = 1, . . . ,m

yi ∈ N i = 1, . . . ,m.

Step 6: If Z ≤ 1 solve the Knapsack Problem with no limits in the vari-

ables with Z as the optimal objective function value;

Step 7: If Z ≤ 1 go to 8. Otherwise, add the new column into problem

(P2) and go back to Step (2).

Step 8: Use a rounding procedure to obtain an integer solution. Stop.
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To obtain an initial solution for (P1),we implemented the SHP method with
some modifications, as described in [17].

The software BOX9903 [14] was used to solve the sequence of nonlinear

problems. The BOX9903 solves the optimization problem:

Minimize f (x)
subject to Ax = d

h(x) = 0

l ≤ x ≤ u
where f : Rn→R and h : Rn→R

m are differentiable functions and A is a real
matrixm×n. The format of our problem does not include the function h(x) and
the limits are defined by l = 0 e u = ∞. So, in each iteration, BOX9903 solves
the problem:

Minimize L(x)
subject to l ≤ x ≤ u

where

L(x) = c1
n∑
i=1
xi + c2

n∑
i=1
hik(xi ) + λt · (Ax − d) + (ρ/2) · ∥∥Ax − d∥∥2

2

is called the Augmented Lagrangian. In iteration j we define ρ = K = 10 j ,

where j assumes the values 1, 2, 3, 4 and 5. The Lagrangemultiplier is estimated
in each iteration j . Since this is a local method, each time a column is added to
the problem (P1), we solve a sequence of problems Pk with 20 different starting
points: the current solution, the null solution and 18 random generated points.

After solving a sequence of problems (Pk)′s and obtaining the best solution
for the new problem, we need to solve a Bounded Knapsack Problem to find

if there is a profitable column (i.e.,a cutting pattern) to be appended to the prob-

lem (P2). To obtain the simplex multipliers, used as coefficients in the objec-
tive function of the Knapsack Problem, we work with problem (P3). In the
Bounded Knapsack Problem, we determine the bounds of the components of the

current solution (i.e., variables x j ) using the following reasoning: Let the setup
number be equal S, S ≤ m, that means that we have S different cutting patterns.
Our interest, when adding a new column, is to reduce not only the trim loss,
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but, also the setup number. Assume we want to reduce the current setup number

by 20%. Therefore, after adding the new generated column to (P2) we hope
the new setup number (denoted by NSN) to be 0.8*S. Let NB be the number
of production rolls processed in the current solution. Suppose that this number

remains constant, we should have, on average, (MBP = NB/NSN ) processed

object per cutting pattern. And, assuming the new generated cutting pattern

will belong to the solution with frequency equal to MBP and that the items in
this cutting pattern will not be in the others nonzeros cutting patterns, then to

guarante a feasible solution, each item in this cutting pattern must be limited by

bi = �di/MBP�. And, if bi > W/wi then we fix bi = �W/wi� so we will
obtain only feasible cutting patterns.

Finally, we used the BRURED method described in [23] to round the solution

found in the end of the process. This method does not mess up with the setup

number and it is fast. First, we round the nonzero variables up, that is, x∗
j = x j�.

Usually, this procedure may generate an excess of production. This excess can

be reduced by checking which variables can be reduced by one unit without

making the problem infeasible. So, for each k ∈ {1, 2, . . . , n}, if the variable
xk , after the round up, satisfy the inequality

aik(xk − 1) +
m∑

i=1;i �=k
ai j x j ≥ di , i = 1, . . . ,m

then we make x∗
k = xk − 1.

5 Computational experiments

In order to evaluate our approach, we generated several random instances using

the one-dimensional cutting stock problem’s generator, CUTGEN1, developed

by Gau and Wascher [8]. The input parameters for the CUTGEN are

• m = problem size;

• W = standard length;

• v1 = lower bound for the relative size of order lengths in relation to W , i.e.
wi ≥ v1 ×W (i = 1 . . .m);
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• v2 = upper bound for the relative size of order lengths in relation to W ,
i.e. wi ≤ v2 ×W (i = 1 . . .m);

• d = average demand per order length.

By using these parameters we generate the following data set

• wi ∈ [v1 ×W, v2 ×W ], 1 = 1, . . . ,m;

• di , i = 1, . . . ,m such that the total demand D = m × d.
As in Foester and Wascher’s work [7], we generated 18 classes of random

problems by combining different values of the generator’s parameters:

• v1 assumed values 0.01 and 0.2;

• v2 assumed values 0.2 and 0.8;

• the number of items in the original cutting plan, denoted by m was set to
10 (small instances), 20 (mid-size instances) and 40 (large instances);

• problems with low average demand (d = 10) and high average demand

(d = 100);

• In all the classes W = 1000.

Each class contains 100 instances. We generated six classes with small items

(v1 = 0.01 and v2 = 0.2), six classes with wide-spread items (v1 = 0.01 and

v2 = 0.8) and other six classes with large items (v1 = 0.2 and v2 = 0.8). Table 1

shows the 18 classes and theirs parameters.

The solutions obtained by NANLCP were compared with the solutions of the

methods: SHP [11], KOMBI234 [7] and ANLCP [17]. These methods (not

including ANLCP) were also used as basis of comparison by Umetami et al.

[19] with the heuristic APG. We run CUTGEN1 with the same seed (i.e.,1994)

and parameters defined in [7] and [19] to generate all the 1800 instances (i.e., 18

classes, each class with 100 instances).

KOMBI234 uses the solution obtained by the heuristic developed by Stadler

[18] as a starting solution. This combination, Stadler + KOMBI234, produced

the best results encountered in the literature, at the time Foester and Wascher

published their work.
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Class 1 2 3 4 5 6 7 8 9

v1 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

v2 0.2 0.2 0.2 0.2 0.2 0.2 0.8 0.8 0.8

d 10 100 10 100 10 100 10 100 10

Class 10 11 12 13 14 15 16 17 18

v1 0.01 0.01 0.01 0.2 0.2 0.2 0.2 0.2 0.2

v2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8

d 100 10 100 10 100 10 100 10 100

Table 1 – Random generated classes and their parameters.

The methods NANLCP and ANLCP and the heuristic SHP were implemented

by the authors in Fortran, running under g77 for Linux, in a AthlonXP 1800Mhz,

512MBofRAM.The results for KOMBI234were obtained from an implementa-

tion inMODULA-2 inMSDOS operating systemwith a IBM486/66. Therefore,

the time was not considered when the comparison is done with KOMBI234.

Below, we present the computational results. We fix c1, the cost for each object
used, equal to 1 and c2, the setup cost, equal to 100. The value of c2 can be seen
as a penalization parameter for the setup number.

Tables 2, 3 and 4 show the average of the setup number and the average

of the number of objects used in the final solution of the 100 instances in all

the classes: small items, wide-spread items and large items. The averages of

setup and number of objects described in the end of each table suggest that the

NANLCP has a better performance than ANLCP, Kombi234 and SHP.

Table 5 presents the variation of setup and number of objects of the method

(NANLCP) in relation to SHP. For instance, to compute the variation for the

setup number we use the formula

100× (SetupNANLCP − SetupSHP)/SetupSHP,
therefore, a negative number indicates that NANLCP was better than SHP. The

average setup in NANLCP method was better than the average setup for SHP in

all the classes, except for classes 5 and 6. And, the average number of objects

in NANLCP method was better than the average obtained by SHP in 14 classes

out of 18.
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SHP Kombi ANLCP NANLCP
Class

Setup Objects Setup Objects Setup Objects Setup Objects

1 3.95 14.17 3.40 11.49 3.14 18.44 3.01 14.84

2 5.94 116.47 7.81 110.25 4.66 116.66 4.76 119.62

3 5.00 25.29 5.89 22.13 4.88 25.18 4.91 24.26

4 7.31 225.33 14.26 215.93 7.16 226.72 7.16 223.91

5 6.87 46.89 10.75 42.96 7.02 45.64 7.04 45.96

6 10.81 433.59 25.44 424.71 10.96 432.68 10.84 433.29

Average

of the 6.65 143.62 11.26 137.91 6.30 144.22 6.29 143.64

averages

Table 2 – Averages for small items.

SHP Kombi ANLCP NANLCP
Class

Setup Objects Setup Objects Setup Objects Setup Objects

7 8.84 55.84 7.90 50.21 5.78 50.84 5.31 53.69

8 9.76 515.76 9.96 499.52 8.22 506.02 6.97 488.85

9 17.19 108.54 15.03 93.67 10.90 106.72 10.92 105.65

10 19.37 1001.59 19.28 932.32 14.56 969.40 12.80 932.67

11 32.20 202.80 28.74 176.97 19.80 220.46 21.12 216.67

12 37.25 1873.05 37.31 1766.20 25.58 1813.60 25.25 1839.63

Average

of the 20.77 626.26 19.70 586.48 14.14 611.17 13.78 606.19

average

Table 3 – Averages for wide-spread items.

SHP Kombi ANLCP NANLCP
Class

Setup Objects Setup Objects Setup Objects Setup Objects

13 9.38 69.97 8.97 63.27 5.86 66.52 6.31 66.77

14 9.85 643.55 10.32 632.12 7.92 633.98 7.89 639.88

15 18.03 136.03 16.88 119.43 10.28 130.20 11.13 123.93

16 19.63 1253.55 19.91 1191.80 15.00 1193.54 14.44 1169.12

17 34.39 256.01 31.46 224.68 23.32 283.88 21.96 262.07

18 38.23 2381.54 38.28 2342.40 29.80 2410.82 26.03 2247.11

Average

of the 20.77 626.26 19.70 586.48 14.14 611.17 13.78 606.19

average

Table 4 – Averages for large items.
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NANLCP versus SHP – Variation cost in relation to

Class
Setup Object

Class
Setup Object

Class
Setup Object

Number Number Number Number Number Number

1 –23.80 +4.73 7 –39.93 –3.85 13 –32.73 –4.57

2 –19.87 +2.70 8 –28.59 –5.22 14 –19.90 –0.57

3 –1.80 –4.07 9 –36.47 –2.66 15 –38.27 –8.90

4 –2.05 –0.63 10 –33.92 –6.88 16 –26.44 –6.74

5 +2.47 –1.98 11 –34.41 +6.84 17 –36.14 +2.37

6 +0.28 –0.07 12 –32.21 –1.78 18 –31.91 –5.64

Table 5 – Variation in % of NANLCP in relation to SHP.

NANLCP versus Kombi – Variation cost in relation to

Class
Setup Object

Class
Setup Object

Class
Setup Object

Number Number Number Number Number Number

1 –11.47 29.16 7 –32.78 +6.93 13 –29.65 +5.53

2 –39.05 +8.50 8 –30.02 –2.14 14 –23.55 +1.23

3 –16.64 +9.62 9 –27.35 12.79 15 –34.06 +3.77

4 –49.79 +3.70 10 –33.61 +0.04 16 –27.47 – 1.90

5 –34.51 +6.98 11 –26.51 22.43 17 –30.20 16.64

6 –57.39 +2.02 12 –32.32 +4.16 18 –32.00 – 4.07

Table 6 – Variation in % of NANLCP in relation to Kombi.

Table 6 presents the variation of setup and the number of objects of our method

(NANLCP) in relation to KOMBI234. In all the classes NANLCP obtained a

better average for the setup than KOMBI. But, the average number of objects

used by KOMBI was better than NANLCP in the 15 classes.

When comparing the quality of the solutions of each method, we use c2 equal
5 and 10 in the objective function. Those are “real life” values for c2 and by
doing so, the comparison with the others methods were more honest. In general,

NANLCP obtained better objective function values than SHP and KOMBI.

In the literature, Diegel et al. [4] were the only to mention about practical

values for c1 and c2. According to Diegel, a exact relation between c1 and c2
depends on the data we have on hands. But, they say, that c2 is never much bigger
than c1. However, if the main goal is to minimize the setup number then c2 must
be bigger than c1. Therefore, the relation between those two cost depends on
several factors as: demand, deadlines, labor costs, etc.
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The results obtained by NANLCP when c1 = 1 e c2 = 5 are presented in

Table 7. The averages for the objectives function values for NANLCP were

better than those obtained by SHP in all 18 classes an better than KOMBI in 15

classes.

The computational results confirm the good performance of NANLCPmethod.

The version NANLCP, as shown in Table 8, obtained average costs better than

SHP in 16 classes and better than KOMBI in all the classes.

Objective function values – NANLCP versus

Class SHP KOMBI Class SHP KOMBI Class SHP KOMBI

1 –11.88 + 4.91 7 –19.79 –10.56 13 –15.87 –9.06

2 –1.88 – 3.94 8 –7.24 –4.66 14 –1.94 –0.64

3 –2.94 –5.37 9 –17.61 –5.08 15 –20.60 –11.90

4 – 0.83 –9.58 10 –9.26 –3.12 16 –8.17 –3.87

5 –0.10 –16.08 11 –11.42 + 0.50 17 –13.11 –2.65

6 –0.03 –11.67 12 –4.54 + 0.67 18 –7.60 –6.18

Table 7 – Variation in % of the objective function value, with c1 = 1 e c2 = 5, of

NANLCP in relation to SHP and KOMBI.

Objective Function Values – NANLCP versus

Class SHP KOMBI Class SHP KOMBI Class SHP KOMBI

1 –16.27 –1.21 7 –25.96 –17.35 13 –20.70 –15.10

2 –4.92 –11.22 8 –8.94 –6.77 14 –3.14 –2.25

3 –2.56 –9.47 9 –23.39 –11.94 15 –25.64 –18.39

4 –0.98 –17.58 10 –11.26 –5.73 16 –9.40 –5.56

5 +0.67 –22.66 11 –18.47 –7.86 17 –19.71 –10.68

6 +0.00 –20.24 12 –6.83 –2.20 18 –9.28 –7.99

Table 8 – Variation in % of the objective function value, with c1 = 1 e c2 = 10, of

NANLCP in relation to SHP and KOMBI.

6 Conclusions and future work

Based on the computational results presented, we may affirm that the NANLCP

has an average performance better that the ANLCP [17] and, therefore, it is a

good method to use when the objective is to minimize the cost of the processed
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object number and setup. Specifically in relation to Setup Number, NANLCP

has a better performance than SHP and KOMBI in almost all the classes.

It is important to say that another advantage of NANLCP is the possibility of

working with explicit values of c1 and c2 in the objective function. In fact, for
real life problems these costs depend on many factors as demand, deadline, labor

costs, etc. We do not know any othermethod that treat the problemofminimizing

the setup and the number of processed object in the same way NANLCP does.

Computational time (in seconds)

Class SHP KOMBI ANLCP NANLCP

1 0.01 0.14 0.80 0.83

2 0.08 1.14 1.17 1.21

3 0.17 1.74 0.47 0.94

4 0.21 16.00 0.94 1.22

5 0.27 38.03 0.58 0.89

6 0.31 379.17 0.93 1.02

7 0.01 0.07 16.49 13.44

8 0.02 0.20 8.96 16.51

9 0.04 3.37 69.11 75.81

10 0.06 3.25 77.21 142.02

11 0.22 36.26 185.53 168.67

12 0.32 76.31 318.54 420.53

13 0.01 0.08 4.44 5.12

14 0.02 0.13 1.95 4.44

15 0.03 1.81 29.36 61.68

16 0.04 2.60 26.30 78.34

17 0.16 50.93 248.62 250.04

18 0.24 70.94 443.66 390.75

Table 9 – Average time (in seconds) for each method.

However, NANLCP method has one disadvantage in relation to SHP and

KOMBI: the computational time. Although, we can not compare the compu-

tational time with KOMBI, since it was not implemented by the authors and,

therefore, it was not run in the same computational environment is easy to see

that the NANLCP method has a higher computational time. This happens be-

cause once a new column is added to the problem, we need to solve (Pk) with
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20 initial solutions to (hopefully) get rid of local minimum. For classes with a

large numbers of items, as Classes (11, 12, 17, 18) the computational time for

NANLCP was high.

Implementing better strategies to obtain global solutions when solving non-

linear problems, can make NANLCP better. Also, a better strategy to obtain a

integer solution froma fractional solution iswelcome since theBRUREDmethod

used here is very naive, although, it is fast.
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