
PHOTOSYNTHESIS IN JACK BEAN UNDER DROUGHT AND AFTER REHYDRATION

Braz. J. Plant Physiol., 16(3):181-184, 2004

181S H O R T   C O M M U N I C A T I O N

Photosynthetic performance in jack bean [Canavalia ensiformis
(L.) D.C.] under drought and after rehydration

Fábio Zanella1*, Tania Misae Watanabe2, Ana Lúcia da Silva Lima1 and Marlene Aparecida Schiavinato2

1Centro Universitário Luterano de Ji-Paraná, Universidade Luterana do Brasil, CP 271, CEP 78961-970, Ji-Paraná-RO, Brasil;
2Departamento de Fisiologia Vegetal, Universidade Estadual de Campinas, CP 6109, CEP 13083-970, Campinas, SP, Brasil. *Corresponding

author: zanellaf@yahoo.com.br

Received: 21/06/2004, Accepted: 17/11/2004

The effects of drought and rehydration on Canavalia ensiformis (L.) D.C. (jack bean) plants were evaluated using the following

gas exchange parameters: net carbon assimilation rate (A), stomatal conductance (gs), Ci/Ca ratio and transpiration rate (E);

chlorophyll a fluorescence: Fv/Fm and Fv/F0 ratio. The plants were cultivated under greenhouse conditions and after 30 days

from the emergence, irrigation was suspended in the plants submitted to drought, to obtain the following predawn leaf water

potential (Ψpd): -0.40 MPa (control), -1.00 MPa (moderate drought) and -2.30 Mpa (severe drought). Afterwards, the gas

exchange and fluorescence analysis were initiated , and 24 h after rehydration the same analyses were repeated. The A, E, gs

and Ci/Ca values decreased significantly under both drought treatments, without however changing the Fv/Fm and Fv/F0  values.

The gas exchange parameters recovered after rehydration. It seems that drought affected photosynthesis by stomatal inhibition,

as shown by the decreased gs and Ci/Ca values, besides the maintenance of PSII phtotochemical efficiency. The recovery of

gas exchange after rehydration could be due to plant protection mechanisms.
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Desempenho fotossintético de feijão-de-porco [Canavalia ensiformis (L.) D.C.] sob déficit hídrico e após reidratação: Os

efeitos do déficit hídrico e posterior reidratação foram avaliados em Canavalia ensiformis (L.) D.C., mediante parâmetros de

trocas gasosas: fotossíntese (A), condutância estomática (gs), razão Ci/Ca e transpiração (E); fluorescência da clorofila a: razão

Fv/Fm e Fv/F0. As plantas cresceram em casa de vegetação e após após 30 dias da emergência, suspendeu-se a irrigação

naquelas submetidas ao déficit hídrico, obtendo-se os seguintes potenciais hídricos na antemanhã (Ψam): -0,40 MPa (controle),

-1,00 MPa (déficit hídrico moderado) e -2,30 MPa (déficit hídrico severo). Após, foram realizadas as análises de trocas gasosas

e de fluorescência. As plantas foram reidradatas e, após um período de 24 h, as mesmas análises foram repetidas. Os regimes de

déficit hídrico provocaram decréscimos significativos em A, E, gs e na razão Ci/Ca; contudo, não alteraram as razões Fv/Fm e Fv/

F0. Após a reidratação houve o restabelecimento das trocas gasosas. Conclui-se que o déficit hídrico afetou negativamente a

fotossíntese, mediante uma limitação estomática, o que se confirma pelos decréscimos em gs, na razão Ci/Ca e na manutenção

da eficiência fotoquímica do FS II. Provavelmente, mecanismos de proteção tenham sido responsáveis pelo restabelecimento

das trocas gasosas após a reidratação.

Palavras-chave: condutância estomática, déficit hídrico moderado, déficit hídrico severo, fluorescência, fotossíntese.

During centuries, the jack bean [Canavalia ensiformis

(L.)  D.C.] legume has been used by local inhabitants of the

southwest United States, Central America, Mexico,  Brazil,

Peru, Equator and of the west of India. The great adaptability

of C. ensiformis to adverse conditions, mainly soil related,

has been of great relevance for the high protein production in

regions inept for agriculture. Besides the grains being a good

source of protein and its use as livestock feed, this plant is

also used in soil recovery in several countries (Lynd and

Ansman, 1989).
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For most plants, drought is one of the factors that most

limits photosynthesis (García-Plazaola and Becerril, 2000).

The intensity of water deficit is commonly evaluated by the

leaf water potential (Ψw). Values of -0.9; -1.5 and -1.3 MPa

represented moderate  drought for bean (Cornic et al., 1992),

coffee (Da Matta et al., 1997) and tomato (Haupt-Herting et

al., 2001), respectively. The values of -2.7 MPa for coffee

(Da Matta et al., 1997) and -1.8 MPa for tomato (Haupt-

Herting et al., 2001), were assumed to be severe drought.

The stomatal closure is among the first responses to the

water stress, and is assumed to be the main cause of impaired

photosynthesis induced by drought, since the stomatal closure

limits CO2 availability to the mesophyll (Chaves, 1991). In

view of this, a decrease in net photosynthesis under drought

depends more on the availability of CO2 in the chloroplast

than of leaf water potential (Sharkey, 1990). This fact can be

interpreted as a direct adjustment of photosynthesis to CO2

availability, which acts by regulating the activity of Rubisco

(Perchorowicz and Jensen, 1983).

Under natural conditions drought usually occurs in

association with high temperatures and high irradiance

(Pereira and Chaves, 1993), resulting in photoinhibition of

photosynthesis, characterized by a decrease in the PSII

photochemistry efficiency. Certainly, PSII is the main target

of photoinhibitory damage (Barber and Anderson, 1992),

although Genty et al. (1987) and Havaux (1992) have inferred

that drought has little effect on PSII functioning. Though an

evaluation of photosynthetic performance, the aim of the

present work was to investigate the effect of drought and

rehydration in jack bean plants.

The experiment was carried out at the Plant Physiology

Department of the State University of Campinas (UNICAMP),

SP, Brazil (22º54´S and 47º05´W), from September to October

2002, in the greenhouse under natural light and temperature

conditions. Seeds of jack bean [Canavalia ensiformis (L.)

D.C.] were sown in trays filled with vermiculite. After

emergence the seedlings were inoculated by immersing roots

in a suspension of previously selected Rizobium, and then

transferred to 5 L polyethylene pots with vermiculite as

substrate. The plants were supplied with Hoagland and Arnon

(1950) N-deficient nutrient solution twice weekly, and water

as required. Thirty days after emergence, watering was

suspended for the first lot of 15 plants, in order to induce

severe drought (SD). Seven days later, the same procedure

Figure 1. Net carbon assimilation rate - A (A), stomatal conductance - gs (B), transpiration rate - E (C) and Ci/Ca ratio (D) in C.
ensiformis plants under drought and rehydration. Control = C: Ψpd = -0.40 MPa; moderate drought = MD: Ψpd = -1.0 MPa;
severe drought =SD: Ψpd = -2.30 MPa. Different small letters represent statistical significance between means for each
treatment (p≤0.05, Duncan’s test). The bar represents standard error of five replicates.
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was carried out for another lot of 15 plants, to induce moderate

drought (MD). By this means, 26 and 19 days after suspending

water, the following predawn leaf water potentials (Ψpd) were

obtained: -1.0 MPa (MD) and -2.30 MPa (SD). In the

control plants (C) which remained watered, the value of

Ψpd was -0.4 MPa.

The predawn leaf water potential was evaluated by means

of pressure chamber (PMS). The gas exchange parameters,

net carbon assimilation rate (A), stomatal conductance (gs)

and transpiration rate (E), were measured under natural light

at about 8:30 am (temperature: 29ºC; PAR: 801 µmol.m-2.s-1),

using a portable open-system infrared gas analyzer (LCA4,

Analytical Development Company). The internal CO2

concentration (Ci) and the ambient CO2 concentration (Ca)

values were used in order to calculate the Ci/Ca ratio. The

chlorophyll a fluorescence, in the form of Fv/Fm and Fv/F0

ratios, was measured at room temperature using a portable

mini-pulse amplitude modulation fluorometer (MiniPAM,

Walz), in dark-adapted leaves for 30 min. All the analyses

were carried using the middle foliole of the third expanded

trifoliate leaf from the apex. The plants were distributed in a

completely randomized layout, with five replicates. Each

experimental plot was composed of one plant per tray.

Statistical significance of mean differences were analyzed by

Duncan’s test, at P ≤ 0.05.

All the gas exchange parameters decreased under both

drought treatments, but they recovered within 24 h after

rehydration (figure 1). The observed decline in gs and E (figure

1), indicates that drought caused stomatal inhibition with

negative reflexes on the photosynthetic CO2 uptake and

transpiration rate. The decrease in the Ci/Ca ratio in the present

of drought is consistent with this interpretation (figure 1),

since increases in this ratio demonstrate decreased uptake of

CO2 due to non-stomatal inhibition of photosynthesis.

According to Baker (1993), there is a direct relationship

between the reduction of intercellular CO2 concentration, due

to stomatal closure, and decreases in CO2 assimilation.

Although drought impaired photosynthesis it did not

damage the photosynthetic apparatus, as demonstrated by the

Fv/Fm and Fv/F0 ratios (table 1). Fv/Fm values were 0.78, 0.81

and 0.80 in control, MD and SD treatments, respectively,

while the Fv/F0 ratio ranged from 3.8 to 4.3. According to

Flexas et al. (2002) the Fv/Fm ratio in plants of grapevine

under drought remained around 0.8, as in the present work in

spite of significant decreases in the stomatal conductance.

The reduction in photosynthesis in plants of

Myracrodruon urundeuva under drought occurred mainly

because of stomatal closure rather than damage to PSII

(Queiroz et al., 2002). In coffee plants under drought

conditions partial maintenance of the quantum yield of PSII

was observed in spite of photosynthesis suppression. In this

case, some processes could contribute to the maintenance of

electron flow, such as the Mehler reaction and the

photorespiratory process (Lima et al., 2002). In this context,

the fall of net carbon assimilation rate caused by drought was

not accompanied by decreases in Fv/Fm, showing that PSII is

resistant to drought, as has been shown for the cotton plant

(Genty et al., 1987), coffee tree (Da Matta et al., 1997) and

Casuarina equisetifolia (Sanchez-Rodriguez, 1997).

However, photoinhibitory damages to PSII were found by

He et al. (1995), who verified degradation of the D1 and D2

proteins (mainly D2) in plants under drought. In olive trees,

the photosynthetic apparatus was resistant to both weak and

moderate drought, stomatal closure being the main factor

limiting photosynthesis. However, under severe drought,

decreases in the photosynthesis were attributed to

photoinhibitory phenomena associated with an over-excitation

of PSII (Angelopoulos et al., 1996).

In view of this decline in photosynthesis, less

photochemical energy would be spent on CO2 assimilation.

Consequently, the photochemical energy would need to be

consumed by alternative pathways. One possibility is the loss

of energy by heat (Krause and Weis, 1991). Data on non-

photochemical quenching (NPQ) gives information on the

fraction of luminous energy lost as heat (Lima et al., 2002).

In this regard, Casper et al. (1993) suggest that under drought,

protection mechanisms such as the zeaxanthine cycle could

be active and thereby prevent damage to the photosynthetic

apparatus.

Considering the results of this study, we conclude that

the two drought treatments negatively affected photosynthesis

and all gas exchange parameters, and these could be re-

established within 24 h after rehydration. The inhibitory effect

of drought on photosynthesis could be attributed to some

Table 1. Fv/Fm and Fv/F0 ratios in C. ensiformis plants  under

drought  and  rehydration. Control: Ψpd = -0.40 MPa; moderate

drought: Ψpd = -1.0 MPa;  severe  drought: Ψpd = -2.30 MPa.

Treatment Fv/Fm
a Fv/F0

Control 0.78 ± 0.013 a 3.8 ± 0.31 a

Moderate drought 0.81 ± 0.006 a 4.3 ± 0.18 a

Severe drought 0.80 ± 0.006 a 4.2 ± 0.16 a

a Each value represents the mean ± Standard Error of five replicates. Different
small letters represent statistical significance between means for each
treatment (p≤0.05, Duncan’s test).
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stomatal limitation. Neither of the two drought-imposed

treatments affected the maintenance of PSII photochemistry

efficiency, which could be attributed to protection

mechanisms.
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