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Evaluation of Subsurface Contact 
Stresses in Railroad Wheels Using an 
Elastic Half-Space Model 
Railroad wheels fail in two main modes: rolling surface defects like spalling, shelling and
wear, and internal defects including cracks propagating after a change takes place in the
original stress pattern. Although the effects of the latter are almost always catastrophic,
the former is more usual. The onset of rolling surface defects depends on the strength of 
the surface and the applied loads. The strength is related to surface hardness and can be 
determined through experimental evaluation under controlled conditions.  Evaluating the
loads is one of the challenges for contact researchers. This paper presents the evaluation
of the stress field inside elastic rolling bodies with an elliptic area of contact. This kind of 
model can be applied to wheel-rail contact phenomena. Typical high freight transportation 
loads are used in conjunction with regular recommended wheel and rail sizes.  The results 
have shown that shear stress reaches the maximum magnitude below the surface of 
contact, and this explains the presence of shelling defects in service. They have also shown
that a new model including plasticity is required, because the range of the stresses reached 
surpasses, by far, the elastic limit
Keywords: Railroad wheel stresses, contact stresses, elastic half-space 

Introduction

Railroad freight car wheels are subject to mechanical and
thermal loads during normal operation. The main mechanical loads
are due to the weight and the driving forces. The great magnitude of
the freight load is one of the main advantages that rail transportation
has over other modes of land transportation, and the increase in the 
maximum load has been one of the challenges in applied research 
around the world. The driving force is usually lower than the
vertical weight force. In extreme situations this load combines with
other solicitations, causing bending stresses in the wheel plate.
Those loads contribute to the increase in contact failures: weight
loads can cause shelling on the rolling surface (tread) and driving
loads can cause cracks in the wheel flange. 1

Thermal loads arise from the braking process. In freight cars the
wheel works as a brake drum. The objective of braking is to take the
kinetic and potential energy out of the train. Most of the energy is 
turned into heat in the regular brake system. Part of the heat flows to
the wheel rim and creates a temperature gradient in the radial
direction. The heated rim tends to expand and the plate, still cool,
tends to restrain the rim movement. The difference in deformation
between these two parts of the wheel is responsible for the rising of
radial stresses in the plate. In addition, constraint causes hoop 
compressive stress in the rim, because expansion in the
circumferential direction requires an increase in this part’s mean
radius. Stresses caused by braking process are called thermal
stresses. A common mistake is to misconstrue the residual stresses
caused by thermal stresses, sometimes wrongly called thermal
stresses (Gallagher et al., 1991; Stone et al., 1992).

Problems Related to Wheel Stresses

There are three main problems related to residual stresses in the 
wheel: spalling, sudden fracture and shelling. Spalling is caused by
the change in the material structure in small portions of the tread.
This change occurs when the cool rail quenches the hot tread. Only
the portion in contact has its structure changed. The original
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structure in the tread consists of fine perlite and it can become
bainite or even martensite. The train’s movement and the presence
of hoop tensile stresses can help small surface cracks propagate
around the new structure formed, causing the piece of the material
to fall off.

Sudden cracking is the most dangerous kind of problem in the 
wheel. The change in the original compressive stress pattern can
lead to sudden cracking when the train is moving.  The effects of the
resulting derailment can be catastrophic. It occurs when a crack,
which originated either in the tread or in another portion of the rim,
propagates through a residual tensile stress field.  Preventing this 
kind of failure is very difficult because there is no easy way to 
identify highly stressed wheels in the field.

Shelling is caused by contact stresses. It occurs when a surface
check propagates in the direction of maximum shear stress. It 
happens at 45o with the surface or right below the surface, parallel to
it. The shells created usually disappear after few wheel revolutions
because the checks are in a fine layer near the surface. Propagation
of these small cracks depends on the plastic deformation in their tips
and it is likely to occur at higher temperatures, like those caused by
the braking process. Besides, the presence of a residual tensile stress
pattern in the circumferential direction will allow those cracks to
propagate deeper toward the plate, causing greater damage. This is 
one of the main problems in Brazilian high freight car wheels.

Contact Stresses

Contact stresses are due to weight, driving forces and other 
types of unusual, mainly dynamic, forces. For the simplest model to 
calculate the stresses, one uses the Hertz Theory and evaluates the
effect of the weight only. Even more complicated theories consider
the driving and other forces as a percentage of weight. So, these
models require weight increase in order to include all the effects.

One of the main advantages of the railroad over other
transportation modes is the amount of load it is able to carry.
Brazilian railroads have been trying to increase freight cars capacity
for many years. The great number of surface defects appears to be
the main obstacle when one is trying to reach this goal. Railroad
wheel life usually ranges from 400,000 to 1.2 million kilometers.
The mean railroad wheels life is about 60 to 70% of the expected 
life for other countries’ railroads, assuming loading characteristics
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are the same. It would appear that the real loads are higher or the
wheel materials are not so strong. The wheel manufacturers are
internationally recognized for the quality of their products, so the 
real loads should be the main cause of failures. Real loads are 
usually evaluated by the stresses they cause on the wheel. An
incorrect formulation for stresses calculation can result in an 
overestimation of wheel life. It is important to get the correct values
for the stress field in the contact region. This paper describes the use
of analytical tools to evaluate stresses inside bodies in contact.

State of the Art and Contribution

The initial studies about the contact between two bodies took 
place near the end of the nineteenth century. German researcher
Heinrich Hertz published one of his first papers about this subject in 
1896. His studies (Hertz, 1882) were based on experiments using
optical interference between two cylindrical glass lenses. He
observed that both lenses deformed under load and that the contact
region had an elliptic shape. When he took off the load, the contact
region disappeared and the lenses reverted to their original shape. 
From those observations, Hertz formulated his theory that is still
used by anyone who studies contact. Regardless its great
importance, the Hertz Theory can be used only with perfectly elastic
bodies under normal loads only. He calculated only the surface
stresses.

English researcher Carter, in the late nineteen-twenties (Carter,
1926), was the first to evaluate the tangential forces between two 
rolling bodies. He aimed to evaluate locomotive railroad wheels in 
contact with the rail. He considered only the longitudinal creep, and 
found the tangential forces in that direction. He was also the first to
propose a model to consider the creep in the longitudinal direction.

In 1949, M’Ewen (1949) evaluated the contact between two 
cylinders and calculated the stress field, taking into account the
tangential load due the friction on the contact area. His study was
the first to include the friction force on the model.

Johnson, (1985), studied the contact between two moving 
spheres measuring the creep coefficient in its three forms:
longitudinal, transversal and spin. He also got the corresponding
forces and moments. Determination of the contact region and the
pressure distribution was based on the Hertz Theory. His research
provided a great contribution to the understanding of contact
phenomena and was documented in several papers and in a book
(Johnson, 1985).

Smith and Liu (1953) studied the contact between elastic bodies
with and without creep. Their model could be applied only to 
rectangular contact areas. They deducted the equations to calculate
the normal and shear stresses analytically, both in the contact
surface and inside the bodies. They used the maximum value for the 
tangential force, as described by Coulomb's Law. Their studies 
represented a big step in contact stress evaluation because they
calculated the stresses under the surface, instead of only on it, like
Hertz did.

In the early nineteen-sixties, Haines and Ollerton (1963) came 
up with an approximated solution for shear stress distribution in an
elliptic contact area. They also compared their results with photo 
elasticity experiments and found good agreement.

Hamilton and Goodman (1966) found, analytically, the stress
field for a circular contact area, both on the surface and under it.
They also used Hertz Theory and included the sliding effect using
Coulomb's Law. 

In the late nineteen-sixties, Kalker (1967) presented his Ph.D.
thesis in which he proposed a new revolutionary theory for contact
between rolling bodies. He calculated all tangential forces and creep
coefficients. He also found the rigidity parameters involved in the
analysis. His work was also based on the Hertz Theory.  He used it

to develop several simplified algorithms (FASTSIM) and complete
programs (CONTACT) to calculate the forces in the contact. His 
work provided an outstanding contribution to railroad research, 
because his theory explained and allowed one to calculate several
parameters used in the wheel-rail modeling, like creep, yaw angle,
spin and others.

Sackfield and Hills (1983) put together the existing theories for 
circular and rectangular contact areas. They considered both the 
longitudinal and tangential loads. They proposed a model to obtain 
the stress field for both cases; each one was identified using the axle
ratio k. The results they got were similar to the ones calculated by
other researchers before them.

The main contribution of this work is its application to the
wheel/rail contact problem, as a means to study a type of failure that
is commonplace in railroad wheels, which originate from the 
stresses created at the contact interface: shelling. Basically, the
authors we quote have calculated subsurface stresses considering the
contact between two spheres or two cylinders, which creates a
circular or rectangular contact area, respectively. With these shapes, 
the contact area dimensions are determined analytically, by solving
simple equations. Subsurface stresses may also be found by means
of purely analytical expressions. When we work with a more
complex contact, such as wheel / rail contact, the contact area
becomes elliptic, since the bodies’ curvature is different and they are 
in perpendicular plans. For the case of elliptic contact, the equations 
cannot be solved in a trivial manner; numeric analysis is required. 
The determination of the contact ellipse’s semi-axles is performed
by means of a semi-analytical process, in order to solve elliptic
integrals. The same situation occurs with the subsurface stresses.
The stresses’ expressions require the resolution of a double integral 
that does not exist in a primitive manner. Thus, one must resort to 
the use of numeric methods for the stresses’ calculation. With the 
results obtained through this work, it is possible to calculate the
distribution of the stresses resulting in the vicinity of the contact,
which may allow comparison with proper resistance models, in 
future studies.

Objective

The objective of this work is to find the stress tensor in any
place of wheels and rails near the contact region, as a part of a study
to evaluate wheel and rail life. An elastic half-space model describes
the contact region and Boussineq and Cerruti potential functions are
used together with Hooke´s law to find the displacements that are 
used to calculate the stress field. Three contact area shapes are 
analyzed: circular, rectangular and elliptic. The Gauss-Lobato
method is used to solve the final equations. The results will be used
for the stresses’ evaluation in a typical loading condition, in keeping
with the characteristics of the Brazilian railroads that carry the
heaviest loads. Specifically we will work with nominal data related
to iron-ore carrying railway cars belonging to Estrada de Ferro
Carajás, a subsidiary of Companhia Vale do Rio Doce, with a total
load of 120 tons on eight wheels. 

Displacements by Boussinesq and Cerruti Potential 
Functions

Evaluating surface and subsurface stresses requires the
calculation of the displacements field. One also needs to calculate
the contact area. The displacements can be found using the 
Boussinesq and Cerruti potential functions and the Theory of 
Elasticity. The results are calculated using only one normal force,
not the tangential or longitudinal ones. It is assumed that an elastic 
half-space model can describe the contact, i.e., one should consider 
only the contact region without taking its dimensions into account. It 
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means that the model assumes that the bodies are elastic and their 
dimensions are much greater than the contact region. The loads are
two-dimensional and the stress field is plotted in three dimensions.
So, the symmetric stress tensor has six components: 

z

yz

xzxy

sim

y

x

ij  (1) 

The classical modeling to find a stress and displacement fields 
was presented by Boussinesq and Cerruti. They used the potential
theory. This modeling is presented by Love (1929). A solid model is
called an elastic half-space when all of its points are placed on just
one side of a “z” plane which meets the requirements of the
following relationship: {(x, y, z) : z  0}. 

Considering the half-space model shown in Fig. 1, one could
define an arbitrary position described by C( , ), inside the contact
area S, and another arbitrary position described by A(x,y,z)
subsurface of the bodies. Consider the distance R as the module of
the position of point A related to point C, as shown in Eq.(2).

Figure 1. Elastic half-space model.

2122 zyxR  (2) 

The pz( , ) function represents the pressure distribution on the
contact surface and qx( , ) and qy( , ) represent the tangential
stress distribution in the x and y direction, respectively. The
potential functions F1, G1 and H1 can be defined by Eqs. (3), (4) and
(5) These functions represent the total load applied in one direction 
(x,y,z). The functions also meet the requirements of Laplace's
equation.

ddqF
S

x ,1 (3)

ddqG
S
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ddPH
S

z ,1  (5) 

Where  is a harmonic variable used to reduce previous 
equations (Love, 1929). It is given by:

RzRz ln (6)

The derivative of the potential function is shown in Eqs. (7) to 
(9).
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From potential functions one can define the parameters  and 1,
that are harmonic functions of x, y and z. So they have to satisfy
Laplace's Equation, as described in Eqs. (10) to (13).
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Hertz (1882) and Boussinesq (in love, 1929) deducted the ux, uy

and uz components of the elastic displacement in an arbitrary
position A(x,y,z) by using the potential functions. The relations are 
shown in Eqs. (14) to (16).
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Considering only the normal stresses, i.e., the pressure
distribution pz( , ) caused by vertical forces, the friction forces are
null and the values of qx( , ) and qy( ,  )vanish, as shown in 
Eq.(17).

011 GGFF  (17) 

With this simplification, the harmonic functions can be reduced
to:
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Taking Eqs. (18), (19) and Eqs. (14) to (16), results:
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In the previous equation, G is the shear modulus and v is the 
Poisson coefficient.

Modeling Elliptic Contact Areas 

The wheel-rail contact can be described by the general case of
an elliptic contact area. Although there are some important 
simplifications that can be applied in modeling other formats of the
contact areas, these will not be developed here. The circular contact
area is important for roller bearings studies and the rectangular
contact area is important for modeling contact in roller bearings and
gears.

Pressure Applied to an Elliptic Contact Region

Considering the a and b semi-axles of the ellipse formed in the 
contact region of two bodies with arbitrary curvature, the pressure 
distribution has the shape described as follows (Hertz, 1882):

2/122
0 //1, byaxpyxpz  (23) 

This pressure acts on the elliptic region described by:

01// 22 byax  (24) 

Using the classical model with the Boussinesq potential
functions, Eq.(19) can be written as follows: 

S

ddRbazyx 12/122 //1,,  (25) 

The component normal to surface of the displacement can be
calculated through Eq.(22) using z = 0, as shown. 
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Using the potential theory for one arbitrary position inside one 
of the bodies (Love, 1929):
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In the previous equation, 1 is the greatest positive root of the
Eq.(28).
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Analyzing just the surface (z = 0), one can get:
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So, the displacement in the surface of the elliptic region is:
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In the previous equation, M, N and L are given by:
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In the previous equations E(e) and K(e) are complete elliptic
integrals and e the eccentricity given by:

2/1221 abe  (34) 

Geometric Constants 

The calculation of the contact areas requires knowledge of some 
geometric constants used in the formulation. Consider Fig. 2, where 
two solid discs are put together to generate an elliptic contact area.
The maximum curvature radius for body 1 is R’1 and the minimum
is R1. The same notation is used for body 2. The coordinate systems
(U1,V1) and (U2,V2), attached to each body, have an angle of a
between them. Initially, the contact between the bodies is in just one
point. Considering z the distance of two points in the surfaces near
the contact point, measured perpendicular to the contact areas, it can
be calculated by:

22 ByAxz  (35) 

A and B are geometric constants, which depends on the
curvature of the bodies and the position x and y with regard to the
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coordinate axles X and Y, in the tangent common plane.  Assuming 
that Eq.(35) describes the contact area, it is elliptical. Figure 3
shows part of body 1 and the z1 distance, which is measured from
the tangent plane to some arbitrary point C or D in the surface of the
same body and near the contact point.

Figure 2.  Scheme of two solids pressed together. 

Figure 3. Deformations in the contact surface.

If the contact is local in nature, the z1 distance can be found 
using the ODD’ triangle: 
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1
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Considering small  and R’
1 approximately equal to HK, from 

HKD triangle: 
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Replacing Eqs. (37) in (36) results in: 
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2
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u
z (38)

Likewise, the z1 distance from contact center to point E or F, 
which are on the same plane as R1 is: 

1
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1 2R

v
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The distance to an arbitrary point G, which is not in the main
axles, is the sum of both z1 distances described by Eqs. (38) and
(39). This sum is an elliptic equation, expressed by:
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Body 2 can be analyzed using the same steps and the z2 distance 
can be described as:
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The total z distance is the sum of z1 and z2:
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To find the geometric constants shown in Eq.(35), one must put 
Eq.(42) in the same format. The step is vanish u2 and v2 using the 
geometric relations:

sencos 112 vuu  (43) 

cossen 112 vuv  (44) 

Replacing Eqs. (43) and (44) in (42), results in:
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Changing the coordinate systems from (U1,V1) to (X,Y) requires
the use of the following relations: 

seny-cos1 xu (49)

cossen1 yxv (50)

Replacing the previous relations in Eq.(45) gives Eq.(35), where
the geometric constants are:
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Figure 4 shows the relation between the displacements of the
body centers and the displacements and deformation in an arbitrary
point in the contact region. From that figure, one can get the 
relation:

Figure 4. Displacements of two solids in contact.
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Elliptic Contact Area

Equation (30) shows the displacement caused by the pressure
distribution. Using the elastic relation from Eq.(53), one can express
the sum of the displacements.

2222 1
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Equating Eq. (30) and (53), one can find that the geometric
constants have the following values:

M N L
A B

E E
d

Ep p p* *= = = *  (55) 

Using Eq. (31) to (33) to compare with previous equation, one 
can find:
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The semi-axles a and b of the ellipse can be found by:
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a
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2

 (59) 

The process to get a and b depends on the eccentricity, which
depends on a and b as described by means of Eq.(60) equation. So,
an interactive process is required to find the ellipse axles.

ababe 1
2/122  (60) 

Stresses in Elliptic Contact Areas

The generalized Hooke´s Law expresses the stress-strain
relation in an orthogonal (x,y,z) system as:

zyxx E

1
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zxyy E

1
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yxzz E

1
 (63) 

In the previous x, y, z e x, y, z are strains and stresses in the
(x,y,z) coordinates, respectively. The stresses can be calculated
inverting those equations:
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The strains can be found by the derivative of displacements:
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Merging Eq.(64) to (66) with Eq.(67) yields:
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Also, one can get the shear stresses using the same procedure: 
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The expression for stresses using just normal load, as decided
previously, are related to the expansion concept from Elasticity
Theory. This concept can be expressed by:
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The replacement of Eq.(74) in the equations for stress 
calculation yields:
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Equations (75) to (80) equations yield the stress field to the 
contact region in elastic bodies without friction.

Results and Discussion

The equations developed make it possible to determine the 
distribution of the stresses in the contact area in any body that has an 
elliptic contact area. In order to study the shelling issue in railroad
wheels and rails – both manufactured in steel – one must determine 
the elastic and geometric properties, in addition to the load applied.
Table 1 shows the elastic properties used and the curvature radiuses
of both bodies. Both in the wheel and in the rail, these radiuses are
on perpendicular planes. The wheel’s shape on the plane on which
the rail is curved is a straight line  (infinite radius), tangential to the
rail’s curvature. The same situation occurs with the rail on the plane
on which the wheel is curved.

The results shown take into consideration a coordinates system
with the “x” axle parallel to the contact plane, in the wheel’s rolling
direction; the “y” axle is parallel to the contact plane and its
direction is perpendicular to the “x” axle; the “z” axle direction is 
perpendicular to the contact plane.

Figures 5 to 10 show the plots for stresses along the z-
coordinated axle, where the stresses have maximum magnitudes. 
The maximum values for normal stresses are on the surface,
coherently, and those are also along the z-coordinate. The maximum 
values for shear stresses are found right below the surface. As
reported before, it is the main cause of the shelling problems
reported by Brazilian Railroads (Santos, 2000).

The results shown take into consideration a coordinates system
with the “x” axle parallel to the contact plane, in the wheel’s rolling
direction; the “y” axle is parallel to the contact plane and its
direction is perpendicular to the “x” axle; the “z” axle direction is 
perpendicular to the contact plane.

Figures 5 to 10 show the plots for stresses along the z-
coordinated axle, where the stresses have maximum magnitudes. 
The maximum values for normal stresses are on the surface,
coherently, and those are also along the z-coordinate. The maximum 
values for shear stresses are found right below the surface. As
reported before, it is the main cause of the shelling problems
reported by Brazilian Railroads (Santos, 2000).
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Table 1. Outline Conditions for the Calculation of Wheel/Rail Contact 
Stresses.

Elasticity
Modulus
E (MPa)

Poisson’s
Coefficient

Minimum
Radius
R (mm)

Maximum
Radius

R’ (mm)

Loading
F (N)

Wheel 207000 0,3 483

Rail 207000 0,3 254

150000/
wheel

Figure 5. Normal Stress x along the z-coordinated axle.

Figure 6. Normal Stress y along the z-coordinated axle.

Figure 7. Normal Stress z along the z-coordinated axle.

Figure 8. Shear Stress zx along the z-coordinated axle.

Figure 9. Shear Stress zy along the z-coordinated axle.
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Figure 10. Shear Stress xy along the z-coordinated axle.

The order of magnitude of the maximum shearing stresses found 
is 350 MPa. The shearing stress endurance limit (Ssn) may be 
estimated by multiplying the same multiplication factor used for the 
strain energy theory (0,58) by the endurance limit. For an endurance
limit of 1200 MPa, the value of Sn is approximately 600 MPa and
the value of Ssn may be estimated at about 350 MPa. In addition, one 
must consider the fact that the high temperatures caused by braking
on the wheel itself significantly decrease the wheel material’s
endurance and that the inclusion of sulfites and other stress
concentrating agents might be present (Santos, 1992). Although this 
is not the main criterion employed, it shows the importance of the
presence of stresses with the magnitude found. .

The values found for the stresses are extremely high when 
compared with the elastic limit of the type of steel usually employed
in wheel manufacture. Nominal yield point values do not exceed 
800 MPa. Thus, the elastic treatment used by all researchers cited, 
as well as in this study, must be the object of a new approach for the 
evaluation of loads carried on railroads similar to the ones used as 
examples of the use of this method. This line of research has been 
developed with the use of numeric tools (Santos and Santos, 2001).

The order of magnitude of actual subsurface shearing stresses,
taking into consideration the initial yield under load, is certainly
lower than the one shown in figures 5 to 7. Nevertheless, with only
one revolution under a high load, the whole tread of the wheel will
have yielded. Due to the steel’s own properties and since no
significant inversion of loads is expected, the material will have a
new distribution of stresses in the area near the surface. A traction
load will occur, since, during the yield, the load that occurred was a
compression load. Thus, in a shallow range, stress will vary between
a significant amount of compression and a small amount of traction. 

Below the surface high shearing stress will occur if compared
with those on the surface, as shown in Fig. 6 and 7. According to
studies on this issue (Gallagher et al., 1992; Santos, 1992), cracks
originating from the surface might spread due to the existing
traction, in a radial direction, along the “z” axle, and meet with 
those cracks that have started due to subsurface shearing. Due to the
radial property of the crack which spreads through traction, this 
crack would only cause shelling if it reached the tangential crack
caused by shearing. Otherwise, it would spread to wherever traction
occurred and would stop at the subsurface compression area.

One of the methods used to evaluate the life in service of
railroad wheels, calculated in terms of an equivalent shear stresses
amount is the Dang Van criterion, which compares this amount to
the shearing stress endurance limit. In order to determine the total
amount of damage, a scan is performed at each point of the wheel
tread and the estimated life under load is determinate. Even if there
is previous residual tension – as long as it has occurred with no
damage – the criterion may be employed. Thus, the work hereby
described can be useful for the analysis of the life until failure
occurs, since the previous distribution of stresses is known, and that 
may be combined with the one applied to the contact.

Conclusions

This study enabled us to calculate the order of magnitude of the 
expected elastic stresses and verify that the latter are severe enough
to cause shelling. The study also enabled us to determine that, under
high loading conditions, the likelihood of failure is very high, given
the current characteristics of the railroads, as seen in the example of
the Estrada de Ferro Carajás (Carajás Railroad).

The method used, based on Boussinesq potential functions and
on the elastic half-space model, was instrumental for the evaluation
of the stresses distribution and for comparison with the wheel
material properties. With the results obtained, it was possible to 
identify the method’s limitations when regard to the issue of high 
loads with bodies, which have the geometry of wheels, and rails. For 
the case in point, one must face the problem using an elastic-plastic
model. This can be achieved based on the results of this study, by
including the stresses distribution after the initial yield under a high
load.

The study also shows an analytical manner of evaluating elastic
stresses on contact bodies for the case in which the contact area is 
elliptic. Since compression yield occurs as soon as the railroad cars 
are loaded, and since iron ore carrying railroad cars seldom travel
with loading conditions other than fully loaded or empty, one does
not expect to find significant variances in the stresses caused by
mechanical loads after the operation starts. Thus, the values found
hereby could be combined with the distribution of stresses caused
by the initial overload, and allow proper evaluation of the stresses 
that cause failure.
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