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An estimate of the isovariant Borsuk-Ulam constant for a group of type Bs

Tkumitsu NAGASAKI V)

Abstract. The isovariant Borsuk-Ulam constant c¢g of a compact Lie group G
is defined to be the supremum of constants ¢ € R with the following property: If
there exists a G-isovariant map f : S(V) — S(W), then

c(dimV —dim VE) < dim W — dim W&

holds. Several estimates of c¢g are known. In our previous study, we provided a
new estimate of cg for G of type Aa. In this paper, we treat a group of type Ba
and provide a new estimate of cg by using representation theory.

1. Introduction

Let G be a compact Lie group, and S(V) and S(W) the unit spheres of (orthogo-
nal) G-representations V' and W respectively. A G-map f : S(V) — S(W) is called

isovariant if it preserves the isotropy groups.

Definition. The isovariant Borsuk-Ulam constant cg of a compact Lie group G is
defined to be the supremum of constants ¢ € R with the following property: If there
exists a G-isovariant map f : S(V) — S(W), then

c(dimV — dim V) < dim W — dim W¢
holds.

The determination of c¢ is an interesting and important problem for the study of the
isovariant Borsuk-Ulam type theorem; however, it is difficult at present and therefore
we shall provide estimates of ¢g. For any connected compact Lie group, we have
already provided some mild estimates in [3]; for example, % < cg <1 for G of type Ay
and % < ¢ <1 for G of type Bsy. In [4], we provided a better estimate % <cg <1
for type As. The goal of this paper is to provide a better estimate for type Bs; namely,
we shall show
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Theorem 1.1. Let G be of type Ba. Then % <cg <1

2. From representation theory

We collect necessary facts from representation theory in order to obtain the new
estimate. Since representation theory of connected compact Lie groups is equivalent

to that of complex Lie groups or algebraic groups, we may consider
G =By ={AcSL5(C)|"AJA = J} = SO5(C)

as a group of type By, where

0 0 0 0 1
0 0 0 1 0
J=10 0 1 0 O
01 0 0 O
1 0 0 0 O

Note that a maximal compact subgroup of G is isomorphic to SO(5) and a maximal

torus T of G can be taken as the group consisting of all elements

t1 0

ty?
0 tt

for t1, to € C*, which is isomorphic to C* x C*.
Irreducible representations of GG are parametrized by the dominant weights. In type

Bs, the set of dominant weights is given by
AT ={\=(\,\) €Z%| A > Ny > 0}.

We denote by V(\) the irreducible representation corresponding to A € A™. Consider

elements of G:

00 0 0 1 10 0 00 0100 0
01 0 0 0 00 0 10 1 00 00
a=|0 0 -1 0 0o, b=|0o 0o -1 0 0|, e=|0 0 1 0 0
00 0 10 01 0 0 0 0000 1
10 0 00 00 0 0 1 000 1 0

belonging to N = Ng(T). The subgroup W generated by a, b, ¢ is isomorphic to the
dihedral group D4 of order 8 and N is isomorphic to T'x W. Therefore the Weyl group
Ng(T)/T of G is isomorphic to W. Thus we identify W with the Weyl group of G.
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The conjugate action of W on T' is given by

th 0 t! 0
to t2
a 1 a = 1 ,
ty* ty?
0 tt 0 t
t1 0 t1 0
to ty !
b 1 bt = 1 ,
ty! ta
0 tt 0 tt
t1 0 to 0
tg tl
c 1 c = 1
ty? ot
0 tt 0 ty*

There are five conjugacy classes of elements of W given by

(1), (a)=(0), (¢)={(abc), (ab), (ac)= (bc).
The subgroups and the conjugacy classes of subgroups of W are described in figures 1
and 2.

w
N
(a,b) {ac) (ab, ¢)

P N I BN
(ab ) abe)

FIGURE 1. The subgroup lattice of W

There are five irreducible representations of W, say C, Cggn, C_, Cygn— and U,

whose characters are described in table 1.
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W
T
) ({ac)) ({ab, c))
(a)) ({ab)) ({e)
\(1)/

({a,b

(

FIGURE 2. The lattice of conjugacy classes

(1) (a) (ab) (ac) (c)
c [1 1 1 1 1
Con | 1 -1 1 -1 1
c_ |1 1 1 -1 -1
Con | 1 -1 1 1 -1
U [2 0o -2 0 0

TABLE 1. The character table of W

From the character table, we see the following.

Proposition 2.1. There are the following isomorphisms as W -representations.

(1) (a) CIW/W]=C.
(b) C[W/{a)] = CW/(B)] = CaC_aU.
(c) C[W/(a,b)] =C @ C_.
(d) C[W/(c)] 2 C[W/{abc)] = C & Cygn ®C_ @ U.
(€) C[W] 2 C@® Cogn ® C_ @ Cogn_ & 2U.
(I1) (a) C[W/W]® Cugn = Cygn.
(b) C[W/{a)] ® Csgn = Cygn & Cogn_ & U.
(c) C[W/{a,b)] ® Csgn = Cogn ® Cogn-.
(d) CW/{e)] ® Cggn = C[W/(c)].
(€) C[W]® Cygn == C[W].

Proof. For any subgroup H, the character x of a permutation representation C[W/H|
is given by

x(g) = |(W/H)|.
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All isomorphisms are verified by comparing the characters of both sides. ]
By Proposition 2.1, we have

Proposition 2.2. Let M be one of W -representations in Proposition 2.1. Then the
W -fized space MW =0 for cases (II) (a), (b) and (c), and M"Y = C otherwise.

3. Computation by a method of Ariki-Matsuzawa-Terada

Let G = By, N = Ng(T) and W = N/T as before. We determine dim VN =
dim(VT)W for irreducible representation V of G using a method of Ariki-Matsuzawa-
Terada [1]. Let V = V(\) be the irreducible G-representation with the highest weight
A= (A1, A2) € At. Let S*¥ = S*(C®) be the k-th symmetric power of the natural G-
representation on C°. By a result of Weyl [6, p.228, Theorem 7.9A], V()) is described

in the representation ring R(G) as follows.

Lemma 3.1.
SAI _ S>\172 S>\1+1 _ S>\173
= S}\Q*l _ S)\273 S>\2 _ S>\274
=SM @S 4 SN2 ghemt 4 gt g §hemd g ghimE g Al
. (S,\1_2 ® S>\2 +SA1 ®S)\2—4 + S>\1+1 ®S>\2—1 +S)\1—3 ®S)\2—3) c R(G)

40

In this notation, if k < 0, then S* is understood to be 0.

A basis B of St ® S*2 is given by the elements

Vi1 ,V12 O U2 UL V21 ,V22 Q2 U22 ,U21
€1 exyege Testt @epTegttegte, ey
with v;1 +vi2 + oy +uie +uin = p; (1 = 1,2). For simplicity, we indicate these elements
by

V11 V12 Q1 Ul U1l

€ Ma5(Z>0).
V21 V22 Q2 U2 U21> T

(v1,v2, @, uz,u1) = (
The action of T' on S** ® S*2 is given by
t . 611)11 65126?;1 62126151/11 ® 6’3121 672)22 632 6222 615/‘21

_tvu*u11+7)21*uzltU12*7t12+7122*u22 V11 ,V12 ,01 ,U12 ,U1]1 ®€7)2167)22 Q2 ,U22
Rt 1 2

uU21
5 e;tteyPeste, ey es3’ey .

€5
Thus (S* @ S#2)T has a basis BT consisting elements of

v v « u u v v « u U
6111621263 164126511 ® 612162226326422 6521
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satisfying the condition
X |Ui| = V14 + Vo; = |UZ| = U1 + U2; (Z = 1, 2)
Vi1 + Vio + o F U +up = gy (1= 1,2).
BT is identified with S = S(j1, 2) which consists of all elements

V11 V12 O1 U122 U1l
V21 V22 (Qig U2 U21

v = (v1, V2, 0, U, u1) = < ) € My 5(Z>o)

satisfying the condition (k).
Let a’, b/, ¢’ be the following elements of the symmetric group Sr over the set
I = {+£1,+2}:
) 1 2 —2 -1\ , (1 2 —2 -1\ , (1 2 -2 -1
o = Y = = .
-1 2 -2 1 1 -2 2 -1 2 1 -1 =2
Let W’ = (a’, ¥, ), which is isomorphic to W. The W’-action on S is given by:
al : (’Ul,UQ,Oé,'U/Q,Ul) = (u17U27a7U/27U1)7
b (01,02, 0y ug, ur) = (vi,ug, @, v2,u1),

C/ . (U17U27a7u25u1) == (U27vlaayu17u2)'

Note that these actions are identified with the actions of a, b, ¢ on BT respectively.

Hence we obtain a complete system S = S(u1, u2) of representatives of S/W:
? - {,U = ((Ul,'l)z,Oé,’U/Q,Ul) S S|U1 Z Uy, U2 Z ug, (Ulvul) Z (v27u2)}7

where
(v1,u1) > (vo,u2) < w1 > Vg, Or v1 = vy and u; > us.
Also set 8" = 5" (p1, p2) ={v e S|W, =1,(), (a'V')} and S = ?l(,ul,ug) =5 /W

By an easy argument, we have

Lemma 3.2. The isotropy subgroup W) at v € S is one of following:
W', (d), (), (b)), (), (V) 1L
The result of [1, Theorem B.2] shows that

D, esCIW' /W] (n1+p2 =0 (2))

SH1 ) GH2 T ~
( : {@ueSC[W//Wé] ®Csgn (11 +p2=1(2))

Thus, combining this and Propositions 2.1 and 2.2, we have
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Proposition 3.3.

w1 p2\N _ B p\T\W ~ ®D,e5C (11 +p2=0(2))
(ST s = (e s _{@Uesv@ (11 +p2 =1 (2)),

and hence B
IS] (p1+p2=0(2)

im(SH: w2 \N _ 1M1
dim(sT e 5 {|s'| (1 + 2 = 1 (2))

We give a few examples.

Example 3.4. If A = (1,0), then V(\) = S! ® S°. In this case, S’ = (); hence
dim V(AN = 0.

Example 3.5. If A = (2,0), then V = V()\) = $?2® S° — S ® S°. In this case, S(2,0)

(2,0
0O 0 2 0 O 1 0 0 0 1 — )
0 00 O 0>’ <0 00 0 0)3 and S(0,0) consists of an

>. Hence we have dim VY =2 -1 =1.

consists of elements <

00 00O

element <0 000 0

Example 3.6. If A = (1,1), then V =V()\) = S' ® S' — $2 @ S°. In this case, S(1,1)

01 0 0 10 0 0 O = .
00 1 0 0>,<0 00 0 1),and5(2,0) consists of two

elements as in the previous example. Hence dim V¥ =2 —2 = 0.

consists of elements (

Let So(p1,m2) for 1 > 0 and pe > 0 be the set of elements of (v1,ve,uz,u1) €
M; 4(Z>o) satistying the condition (%) with @ = 0. For 0 < d; < p;, there is an
injection So(dy,d2) — S(u1, o) defined by

V11 V12 U2 U1l = vi1 V12 M1 —di U2 un
V21 V22 U22 U21 Va1 V22 2 —dz U2z U
Then it is easily seen that

Lemma 3.7.

S(per, po) = H So(dy,ds2),
0<d1<p
0<da<po

and
S'(n,p2) = [ Soldr,da)

0<d1<py
0<da<p2

as W'-sets, where S{(di,dz2) be the subset of So(di,dz2) consisting of the elements sat-
isfying:
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(1) v1 # u1, v2 # ug, and v1 # Vo OT Uy F Ug, OT
(2) v1 # v, up # w1, v1 # Uy, or
(3) V1 # U2, V2 # Uy, U1 # V2, where

(v1,v2,u2,u1) € Ms4(Z>¢) satisfying the condition (x) with o = 0.
Definition. We set
no(di, dz) = |So(d1, da)/W'|
no(di,da) = [Sg(dy, dz)/W'|

From condition () with a = 0, it is easy to verify that

Lemma 3.8. v € Sy(dy,dy) <~

v11 = —da + U1 + va1 + U2z + 2u;
v = —%(dy + d2) — w11 — va2 — U2
Urg = %(d1 +d3) — u11 — Uge — U9y
Vo1 = d3 — V2 — U2z — Uz1

0 <wuy; <dj, 0< v <dy.

In particular, we see
Corollary 3.9. If dy + ds is odd, then no(di,d2) =0 and ng(di,ds) = 0.
As a finial result, we obtain the following formula.
Theorem 3.10. With the notation above,
(1) If A\ + g is even, then dim V(NN =
ng(A1, A2) +no(A1 — LA —3) —ng(A1 + 1, A2 — 1) = ng(A1 — 2, A — 2).
(2) If My + A2 is odd, then dim V (\)N =
no(A1 — 1, X2) + ng(A, A2 — 3) = ng(Ar + 1, A2 — 2) — ng(A — 2,0 — 1),

Proof. Suppose that A\; + A2 is even. By Proposition 3.3, Lemma 3.7 and Corollary

3.9, we have
dim(S" @ S)N = ) no(dy, dz).
0<d1<pu1
0<d2<p2
d1+do=0 (2)

By Lemma 3.1, we obtain statement (1). Statement (2) is similar. O
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4. Proof of Theorem 1.1
From representation theory of G = Bs, recall the dimension formula
dimV(A) = %(Al — X+ 1AM+ A+ 2)(M +3/2)( A2 +1/2),
see for example [2]. Suppose that H is a closed subgroup of G with ¢y = 1. Set
rq(H) := sup{dim V(\)/dim V(\) | X € AT < {0}}.
It follows from a similar argument as in [3, 4] that
1—rg(H)<ce <L

Since N is solvable, it follows from [5] that ¢y = 1. Therefore, it is suffices to show

the following.

Proposition 4.1. rg(N) = ﬁ for N = Ng(T).

To show this, we first note the following.

Lemma 4.2. If \y > 11, then M2V E < 1

Proof. By [3, Lemma 5.5], we have
dim V(NN < dim V(\)T < A1+ A2/2
dlmV()\) ~ dim V(/\) - K,\ + )\1 + )\2/2’
where Ky = A2 + A3 + 3)\; + A\2. Then the inequality

Mtde/2 1
Kx+tA+A/2 14

is equivalent to

11 521
DI ) L S O V— LSty
(A1 =5)" + (A2 1) > 16
It is easy to verify that this inequality holds when A; > 11. |

Proof of Proposition 4.1. By Lemma 4.2, we may assume that 0 < Ay < A\ < 10
(M1, X2) # (0,0)). We compute dim V(A)Y/dim V()\) by Theorem 3.10 and the di-

mension formula. By computation by Mathematica, we obtain the values of

dim V(AN /dim V ())

1
in Table 2 below, and thus we conclude that rg(N) = 7R O
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A1
0o 1 2 3 4 5 6 7 8 9 10
1 2 1 1 3
Ag 0| — 7 0 5 0 5 0 5 0 55
1 1 1
1 0 0 0 55 O Eo5 0 =5 0
9 i 1 1 1 3 2 2 1 1
35 105 110 390 625 935 665 910 483
3 0 0 1 1 _1 1 3 1
455 770 595 1729 2401 1610
4 2 1 1 1 _1 1 1
165 429 270 663 399 945 644
5 0 1 1 3 _3
715 1309 1045 3080 4301
6 2 _2 1 3 _2
155 1105 494 3004 1495
7 0 2 3
1615 2835 4370
8 1 2 1
323 2261 782
2
9 0 3059
3
10 1771
TABLE 2
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