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Abstract. The isovariant Borsuk-Ulam constant cG of a compact Lie group G

is defined to be the supremum of constants c ∈ R with the following property: If

there exists a G-isovariant map f : S(V )→ S(W ), then

c(dimV − dimV G) ≤ dimW − dimWG

holds. Several estimates of cG are known. In our previous study, we provided a

new estimate of cG for G of type A2. In this paper, we treat a group of type B2

and provide a new estimate of cG by using representation theory.

1. Introduction

Let G be a compact Lie group, and S(V ) and S(W ) the unit spheres of (orthogo-

nal) G-representations V and W respectively. A G-map f : S(V ) → S(W ) is called

isovariant if it preserves the isotropy groups.

Definition. The isovariant Borsuk-Ulam constant cG of a compact Lie group G is

defined to be the supremum of constants c ∈ R with the following property: If there

exists a G-isovariant map f : S(V )→ S(W ), then

c(dimV − dimV G) ≤ dimW − dimWG

holds.

The determination of cG is an interesting and important problem for the study of the

isovariant Borsuk-Ulam type theorem; however, it is difficult at present and therefore

we shall provide estimates of cG. For any connected compact Lie group, we have

already provided some mild estimates in [3]; for example, 3
4 ≤ cG ≤ 1 for G of type A2

and 4
5 ≤ cG ≤ 1 for G of type B2. In [4], we provided a better estimate 26

27 ≤ cG ≤ 1

for type A2. The goal of this paper is to provide a better estimate for type B2; namely,

we shall show
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Theorem 1.1. Let G be of type B2. Then 13
14 ≤ cG ≤ 1.

2. From representation theory

We collect necessary facts from representation theory in order to obtain the new

estimate. Since representation theory of connected compact Lie groups is equivalent

to that of complex Lie groups or algebraic groups, we may consider

G = B2 = {A ∈ SL5(C) | tAJA = J} ∼= SO5(C)

as a group of type B2, where

J =

⎛
⎜⎜⎜⎝
0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎞
⎟⎟⎟⎠.

Note that a maximal compact subgroup of G is isomorphic to SO(5) and a maximal

torus T of G can be taken as the group consisting of all elements

t =

⎛
⎜⎜⎜⎝
t1 0

t2
1

t−1
2

0 t−1
1

⎞
⎟⎟⎟⎠

for t1, t2 ∈ C∗, which is isomorphic to C∗ × C∗.
Irreducible representations of G are parametrized by the dominant weights. In type

B2, the set of dominant weights is given by

Λ+ = {λ = (λ1, λ2) ∈ Z
2 |λ1 ≥ λ2 ≥ 0}.

We denote by V (λ) the irreducible representation corresponding to λ ∈ Λ+. Consider

elements of G:

a =

⎛
⎜⎜⎜⎝
0 0 0 0 1
0 1 0 0 0
0 0 −1 0 0
0 0 0 1 0
1 0 0 0 0

⎞
⎟⎟⎟⎠, b =

⎛
⎜⎜⎜⎝
1 0 0 0 0
0 0 0 1 0
0 0 −1 0 0
0 1 0 0 0
0 0 0 0 1

⎞
⎟⎟⎟⎠, c =

⎛
⎜⎜⎜⎝
0 1 0 0 0
1 0 0 0 0
0 0 1 0 0
0 0 0 0 1
0 0 0 1 0

⎞
⎟⎟⎟⎠

belonging to N = NG(T ). The subgroup W generated by a, b, c is isomorphic to the

dihedral group D4 of order 8 and N is isomorphic to T �W . Therefore the Weyl group

NG(T )/T of G is isomorphic to W . Thus we identify W with the Weyl group of G.
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The conjugate action of W on T is given by

a

⎛
⎜⎜⎜⎝
t1 0

t2
1

t−1
2

0 t−1
1

⎞
⎟⎟⎟⎠a−1 =

⎛
⎜⎜⎜⎝
t−1
1 0

t2
1

t−1
2

0 t1

⎞
⎟⎟⎟⎠,

b

⎛
⎜⎜⎜⎝
t1 0

t2
1

t−1
2

0 t−1
1

⎞
⎟⎟⎟⎠b−1 =

⎛
⎜⎜⎜⎝
t1 0

t−1
2

1
t2

0 t−1
1

⎞
⎟⎟⎟⎠,

c

⎛
⎜⎜⎜⎝
t1 0

t2
1

t−1
2

0 t−1
1

⎞
⎟⎟⎟⎠c−1 =

⎛
⎜⎜⎜⎝
t2 0

t1
1

t−1
1

0 t−1
2

⎞
⎟⎟⎟⎠.

There are five conjugacy classes of elements of W given by

(1), (a) = (b), (c) = (abc), (ab), (ac) = (bc).

The subgroups and the conjugacy classes of subgroups of W are described in figures 1

and 2.
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Figure 1. The subgroup lattice of W

There are five irreducible representations of W , say C, Csgn, C−, Csgn− and U ,

whose characters are described in table 1.
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Figure 2. The lattice of conjugacy classes

(1) (a) (ab) (ac) (c)
C 1 1 1 1 1

Csgn 1 −1 1 −1 1
C− 1 1 1 −1 −1

Csgn− 1 −1 1 1 −1
U 2 0 −2 0 0

Table 1. The character table of W

From the character table, we see the following.

Proposition 2.1. There are the following isomorphisms as W -representations.

(I) (a) C[W/W ] ∼= C.

(b) C[W/〈a〉] ∼= C[W/〈b〉] ∼= C⊕ C− ⊕ U .

(c) C[W/〈a, b〉] ∼= C⊕ C−.
(d) C[W/〈c〉] ∼= C[W/〈abc〉] ∼= C⊕ Csgn ⊕ C− ⊕ U .

(e) C[W ] ∼= C⊕ Csgn ⊕ C− ⊕ Csgn− ⊕ 2U .

(II) (a) C[W/W ]⊗ Csgn
∼= Csgn.

(b) C[W/〈a〉]⊗ Csgn
∼= Csgn ⊕ Csgn− ⊕ U .

(c) C[W/〈a, b〉]⊗ Csgn
∼= Csgn ⊕ Csgn−.

(d) C[W/〈c〉]⊗ Csgn
∼= C[W/〈c〉].

(e) C[W ]⊗ Csgn
∼= C[W ].

Proof. For any subgroup H, the character χ of a permutation representation C[W/H]

is given by

χ(g) = |(W/H)〈g〉|.
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All isomorphisms are verified by comparing the characters of both sides. �

By Proposition 2.1, we have

Proposition 2.2. Let M be one of W -representations in Proposition 2.1. Then the

W -fixed space MW = 0 for cases (II) (a), (b) and (c), and MW = C otherwise.

3. Computation by a method of Ariki-Matsuzawa-Terada

Let G = B2, N = NG(T ) and W = N/T as before. We determine dimV N =

dim(V T )W for irreducible representation V of G using a method of Ariki-Matsuzawa-

Terada [1]. Let V = V (λ) be the irreducible G-representation with the highest weight

λ = (λ1, λ2) ∈ Λ+. Let Sk = Sk(C5) be the k-th symmetric power of the natural G-

representation on C5. By a result of Weyl [6, p.228, Theorem 7.9A], V (λ) is described

in the representation ring R(G) as follows.

Lemma 3.1.

V (λ) =

∣∣∣∣ Sλ1 − Sλ1−2 Sλ1+1 − Sλ1−3

Sλ2−1 − Sλ2−3 Sλ2 − Sλ2−4

∣∣∣∣
= Sλ1 ⊗ Sλ2 + Sλ1−2 ⊗ Sλ2−4 + Sλ1+1 ⊗ Sλ2−3 + Sλ1−3 ⊗ Sλ2−1

− (Sλ1−2 ⊗ Sλ2 + Sλ1 ⊗ Sλ2−4 + Sλ1+1 ⊗ Sλ2−1 + Sλ1−3 ⊗ Sλ2−3) ∈ R(G).

In this notation, if k < 0, then Sk is understood to be 0.

A basis B of Sμ1 ⊗ Sμ2 is given by the elements

ev11
1 ev12

2 eα1
3 eu12

4 eu11
5 ⊗ ev211 ev222 eα2

3 eu22
4 eu21

5

with vi1+vi2+αi+ui2+ui1 = μi (i = 1, 2). For simplicity, we indicate these elements

by

(v1, v2, α, u2, u1) =

(
v11 v12 α1 u12 u11

v21 v22 α2 u22 u21

)
∈M2,5(Z≥0).

The action of T on Sμ1 ⊗ Sμ2 is given by

t · ev11
1 ev12

2 eα1
3 eu12

4 eu11
5 ⊗ ev21

1 ev22
2 eα2

3 eu22
4 eu21

5

= tv11−u11+v21−u21
1 tv12−u12+v22−u22

2 ev11
1 ev12

2 eα1
3 eu12

4 eu11
5 ⊗ ev211 ev222 eα2

3 eu22
4 eu21

5 .

Thus (Sμ1 ⊗ Sμ2)T has a basis BT consisting elements of

ev11
1 ev12

2 eα1
3 eu12

4 eu11
5 ⊗ ev211 ev222 eα2

3 eu22
4 eu21

5
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satisfying the condition

(∗)
{
|vi| := v1i + v2i = |ui| := u1i + u2i (i = 1, 2)

vi1 + vi2 + αi + ui2 + ui1 = μi (i = 1, 2).

BT is identified with S = S(μ1, μ2) which consists of all elements

v = (v1, v2, α, u2, u1) =

(
v11 v12 α1 u12 u11

v21 v22 α2 u22 u21

)
∈M2,5(Z≥0)

satisfying the condition (∗).
Let a′, b′, c′ be the following elements of the symmetric group SΓ over the set

Γ = {±1,±2}:

a′ =
(

1 2 −2 −1
−1 2 −2 1

)
, b′ =

(
1 2 −2 −1
1 −2 2 −1

)
, c′ =

(
1 2 −2 −1
2 1 −1 −2

)
.

Let W ′ = 〈a′, b′, c′〉, which is isomorphic to W . The W ′-action on S is given by:

a′ · (v1, v2, α, u2, u1) = (u1, v2, α, u2, v1),

b′ · (v1, v2, α, u2, u1) = (v1, u2, α, v2, u1),

c′ · (v1, v2, α, u2, u1) = (v2, v1, α, u1, u2).

Note that these actions are identified with the actions of a, b, c on BT respectively.

Hence we obtain a complete system S = S(μ1, μ2) of representatives of S/W
′:

S = {v = ((v1, v2, α, u2, u1) ∈ S | v1 ≥ u1, v2 ≥ u2, (v1, u1) ≥ (v2, u2)},

where

(v1, u1) ≥ (v2, u2) ⇐⇒ v1 > v2, or v1 = v2 and u1 ≥ u2.

Also set S′ = S′(μ1, μ2) = {v ∈ S |W ′
v = 1, 〈c′〉, 〈a′b′c′〉} and S

′
= S

′
(μ1, μ2) = S′/W ′.

By an easy argument, we have

Lemma 3.2. The isotropy subgroup W ′
v at v ∈ S is one of following:

W ′, 〈a′〉, 〈b′〉, 〈a′, b′〉, 〈c′〉, 〈a′b′c′〉, 1.

The result of [1, Theorem B.2] shows that

(Sμ1 ⊗ Sμ2)T ∼=
{
⊕v∈SC[W

′/W ′
v] (μ1 + μ2 ≡ 0 (2))

⊕v∈SC[W
′/W ′

v]⊗ Csgn (μ1 + μ2 ≡ 1 (2))

Thus, combining this and Propositions 2.1 and 2.2, we have
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Proposition 3.3.

(Sμ1 ⊗ Sμ2)N = ((Sμ1 ⊗ Sμ2)T )W ∼=
{
⊕v∈SC (μ1 + μ2 ≡ 0 (2))

⊕v∈S′C (μ1 + μ2 ≡ 1 (2)),

and hence

dim(Sμ1 ⊗ Sμ2)N =

{
|S| (μ1 + μ2 ≡ 0 (2))

|S′| (μ1 + μ2 ≡ 1 (2)).

We give a few examples.

Example 3.4. If λ = (1, 0), then V (λ) = S1 ⊗ S0. In this case, S′ = ∅; hence

dimV (λ)N = 0.

Example 3.5. If λ = (2, 0), then V = V (λ) = S2⊗S0−S0⊗S0. In this case, S(2, 0)

consists of elements

(
0 0 2 0 0
0 0 0 0 0

)
,

(
1 0 0 0 1
0 0 0 0 0

)
, and S(0, 0) consists of an

element

(
0 0 0 0 0
0 0 0 0 0

)
. Hence we have dimV N = 2− 1 = 1.

Example 3.6. If λ = (1, 1), then V = V (λ) = S1⊗S1−S2⊗S0. In this case, S(1, 1)

consists of elements

(
0 0 1 0 0
0 0 1 0 0

)
,

(
1 0 0 0 0
0 0 0 0 1

)
, and S(2, 0) consists of two

elements as in the previous example. Hence dimV N = 2− 2 = 0.

Let S0(μ1, μ2) for μ1 ≥ 0 and μ2 ≥ 0 be the set of elements of (v1, v2, u2, u1) ∈
M2,4(Z≥0) satisfying the condition (∗) with α = 0. For 0 ≤ di ≤ μi, there is an

injection S0(d1, d2)→ S(μ1, μ2) defined by(
v11 v12 u12 u11

v21 v22 u22 u21

)
�→

(
v11 v12 μ1 − d1 u12 u11

v21 v22 μ2 − d2 u22 u21

)
.

Then it is easily seen that

Lemma 3.7.

S(μ1, μ2) ∼=
∐

0≤d1≤μ1
0≤d2≤μ2

S0(d1, d2),

and

S′(μ1, μ2) ∼=
∐

0≤d1≤μ1
0≤d2≤μ2

S′
0(d1, d2)

as W ′-sets, where S′
0(d1, d2) be the subset of S0(d1, d2) consisting of the elements sat-

isfying:

An estimate of the isovariant Borsuk-Ulam constant for a group of type B 2 47



(1) v1 �= u1, v2 �= u2, and v1 �= v2 or u1 �= u2, or

(2) v1 �= v2, u2 �= u1, v1 �= u1, or

(3) v1 �= u2, v2 �= u1, v1 �= v2, where

(v1, v2, u2, u1) ∈M2,4(Z≥0) satisfying the condition (∗) with α = 0.

Definition. We set

n0(d1, d2) = |S0(d1, d2)/W
′|

n′
0(d1, d2) = |S′

0(d1, d2)/W
′|

From condition (∗) with α = 0, it is easy to verify that

Lemma 3.8. v ∈ S0(d1, d2) ⇐⇒⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

v11 = −d2 + u11 + v21 + u22 + 2u21

v12 = − 1
2 (d1 + d2)− u11 − v22 − u21

u12 = 1
2 (d1 + d2)− u11 − u22 − u21

v21 = d2 − v22 − u22 − u21

0 ≤ uij ≤ di, 0 ≤ vij ≤ di.

In particular, we see

Corollary 3.9. If d1 + d2 is odd, then n0(d1, d2) = 0 and n′
0(d1, d2) = 0.

As a finial result, we obtain the following formula.

Theorem 3.10. With the notation above,

(1) If λ1 + λ2 is even, then dimV (λ)N =

n0(λ1, λ2) + n0(λ1 − 1, λ2 − 3)− n0(λ1 + 1, λ2 − 1)− n0(λ1 − 2, λ2 − 2).

(2) If λ1 + λ2 is odd, then dimV (λ)N =

n′
0(λ1 − 1, λ2) + n′

0(λ1, λ2 − 3)− n′
0(λ1 + 1, λ2 − 2)− n′

0(λ1 − 2, λ2 − 1).

Proof. Suppose that λ1 + λ2 is even. By Proposition 3.3, Lemma 3.7 and Corollary

3.9, we have

dim(Sμ1 ⊗ Sμ2)N =
∑

0≤d1≤μ1
0≤d2≤μ2

d1+d2≡0 (2)

n0(d1, d2).

By Lemma 3.1, we obtain statement (1). Statement (2) is similar. �
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4. Proof of Theorem 1.1

From representation theory of G = B2, recall the dimension formula

dimV (λ) =
2

3
(λ1 − λ2 + 1)(λ1 + λ2 + 2)(λ1 + 3/2)(λ2 + 1/2),

see for example [2]. Suppose that H is a closed subgroup of G with cH = 1. Set

rG(H) := sup{dimV (λ)H/ dimV (λ) |λ ∈ Λ+
� {0}}.

It follows from a similar argument as in [3, 4] that

1− rG(H) ≤ cG ≤ 1.

Since N is solvable, it follows from [5] that cN = 1. Therefore, it is suffices to show

the following.

Proposition 4.1. rG(N) = 1
14 for N = NG(T ).

To show this, we first note the following.

Lemma 4.2. If λ1 ≥ 11, then dimV (λ)N

dimV (λ) < 1
14 .

Proof. By [3, Lemma 5.5], we have

dimV (λ)N

dimV (λ)
≤ dimV (λ)T

dimV (λ)
≤ λ1 + λ2/2

Kλ + λ1 + λ2/2
,

where Kλ = λ2
1 + λ2

2 + 3λ1 + λ2. Then the inequality

λ1 + λ2/2

Kλ + λ1 + λ2/2
<

1

14

is equivalent to

(λ1 − 5)2 + (λ2 − 11

4
)2 >

521

16
.

It is easy to verify that this inequality holds when λ1 ≥ 11. �

Proof of Proposition 4.1. By Lemma 4.2, we may assume that 0 ≤ λ2 ≤ λ1 ≤ 10

((λ1, λ2) �= (0, 0)). We compute dimV (λ)N/ dimV (λ) by Theorem 3.10 and the di-

mension formula. By computation by Mathematica, we obtain the values of

dimV (λ)N/ dimV (λ)

in Table 2 below, and thus we conclude that rG(N) =
1

14
. �
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λ1

0 1 2 3 4 5 6 7 8 9 10

λ2 0 − 0 1
14 0 2

55 0 1
70 0 1

95 0 3
506

1 0 0 0 0 1
260 0 1

595 0 1
567 0

2 1
35

1
105

1
110

1
390

3
625

2
935

2
665

1
910

1
483

3 0 0 1
455

1
770

1
595

1
1729

3
2401

1
1610

4 2
165

1
429

1
270

1
663

1
399

1
945

1
644

5 0 1
715

1
1309

1
1045

3
3080

3
4301

6 2
455

2
1105

1
494

3
3094

2
1495

7 0 1
1615

2
2835

3
4370

8 1
323

2
2261

1
782

9 0 2
3059

10 3
1771

Table 2
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