

76

SIMULATION OF QUANTUM SEARCH ALGORITHM

Rina Refianti and Achmad Benny Mutiara

Fakultas Ilmu Komputer dan Teknologi Informasi, Universitas Gunadarma

Jl. Margonda Raya No.100, Depok, 16424

E-mail: rina@staff.gunadarma.ac.id

Abstract

The rapid progress of computer science has been accompanied by a corresponding

evolution of computation, from classical computation to quantum computation. As quantum

computing is on its way to becoming an established discipline of computing science, much

effort is being put into the development of new quantum algorithms. One of quantum

algorithms is Grover's algorithm, which is used for searching an element in an unstructured

list of N elements with quadratic speed-up over classical algorithms. In this work, Quantum

Computer Language (QCL) is used to make a Grover's quantum search simulation in a

classical computer document.

Keywords: Grover’s Algorithm, Quantum Computer Language, Hadamard-Transform

Abstrak

Pesatnya kemajuan ilmu komputer telah disertai dengan evolusi komputasi yang sesuai,

mulai dari komputasi klasik hingga komputasi kuantum. Ketika komputasi kuantum berada

dalam perjalanan untuk menjadi disiplin ilmu komputer yang mapan, banyak usaha telah

dilakukan dalam pengembangan algoritma kuantum yang baru. Salah satu algoritma

kuantum adalah algoritma Grover, yang digunakan untuk pencarian sebuah elemen dalam

suatu daftar elemen N tidak terstruktur dengan “speed-up” kuadrat dibandingkan algoritma

klasik. Dalam paper ini, Quantum Computer Language (QCL) digunakan untuk membuat

simulasi pencarian kuantum Grover dalam suatu dokumen komputer klasik.

Kata Kunci: Algoritma Grover, Bahasa Komputer Kuantum, Transformasi-Hadamard

1. Introduction

 These instructions give you guidelines for

preparing papers for Journal of Computer Science

and Information – Universitas Indonesia. Use this

document as a template if you are using Microsoft

Word 6.0 or later. Otherwise, use this document as

an instruction set. Instructions about final paper

and figure submissions in this document are for

Journal of Computer Science and Information –

Universitas Indonesia; please use this document

as a “template” to prepare your manuscript.

 The rapid progress of computer science has

been accompanied by a corresponding evolution

of computation, from classical computation to

quantum computation. In classical computation,

computer memory made up of bits, where each bit

represents either a one or a zero. In quantum

computation, there are some quantum mechanical

phenomena, such as superposition and

entanglement, to perform operations on data.

 Instead of using bits, quantum computation

uses qubits (quantum bits). A single qubit can

represent a one, a zero, or both at the same time,

which is called superposition. Because of this

ability, quantum computation can perform many

tasks simultaneously, faster than classical

computing. There is also another phenomenon in

quantum computation which is called

entanglement. If two qubits get an outside force,

then those qubits can be entangled condition. It

means that, even the distance of both qubits is far,

treating one of them will affect the other qubit

too. For example, there are two entangled qubits,

and one of them has spin up (we know it after

done a measurement). Then without have to

measure it, we can directly know that the other

qubit has spin down. Because of this ability,

communication in quantum computation can

reach a very high speed because information can

be transferred instantly, very fast like it

overmatches the speed of light.

Rina Refianti, et al., Simulation of Quantum Search 77

 As quantum computing is on its way to

becoming an established discipline of computing

science, much effort is being put into the

development of new quantum algorithms. One of

quantum algorithms is Grover algorithm, which is

used for searching an element in an unstructured

list of N elements with quadratic speed-up over

classical algorithms. Today, there are some

quantum programming languages which can be

used to simulate quantum mechanical and

quantum algorithm without having a real quantum

computer. In this work, Quantum Computer

Language (QCL) will be used to make a Grover’s

quantum search simulation in a classical

computer.

 This research is related to an invention of a

quantum search algorithm by Lov K. Grover [1].

His invention presents an algorithm, which is

known as Grover algorithm that is significantly

faster than any classical algorithm can be. This

quantum search algorithm can search for an

element in an unsorted database containing N

elements only in O(N) steps, while in the

models of classical computation, searching an

unsorted database cannot be done in less than

linear time (so merely searching through every

item is optimal), which will be done in O(N)

steps. Also, this research will also try to simulate

Grover algorithm in a classical computer using

one of quantum programming languages,

Quantum Computer Language (QCL) [2, 3].

 In practice, this research can be used as the

fastest known method or solution for searching an

element in an unsorted database containing N

elements. By using the method in this research,

the searching process can speed-up quadratically

over classical algorithms.

 Considered points in this work are:

1. Is it possible to simulate Grover algorithm in

a classical computer?

2. How many qubits and iterations the program

needed to search an element?

3. How minimum and maximum the size of

elements in the database that the program

can hold?

 The objective of this work is to to make a

simulation of Grover algorithm using Quantum

Computer Language (QCL), to know how many

qubits and iterations needed for the searching

process, and to know how minimum and

maximum the size of elements in the database that

can be hold by the program.

 This paper concerns on simulating Grover

algorithm in a classical computer using Quantum

Computer Language (QCL). The program can

search a desired element in an unsorted database

of N elements.

 This work begins with designing pseudo-

code for Grover algorithm. Then, the design will

be implemented by using Quantum Computer

Language. After that, there will be several test to

know how many qubits and iterations needed for

the searching process, also to know how

minimum and maximum the size of elements in

the database that can be hold by the program.

2. Literature Review

 Computer science has grown faster, made an

evolution in computation. Research has already

begun on what comes after our current computing

revolution. This research has discovered the

possibility for an entirely new type of computer,

one that operates according to the laws of

quantum physics - a quantum computer.

2.1. Way to Quantum Computation

 Quantum computers were first proposed in

the 1970s and 1980s by theorists such as Richard

Feynman, Paul Benioff, and David Deutsch. At

those times, many scientists doubted that they

could ever be made practical. Richard Feynman

was the first to suggest, in a talk in 1981, that

quantum-mechanical systems might be more

powerful than classical computers. In this lecture

[4], reproduced in the International Journal of

Theoretical Physics in 1982, Feynman asked what

kind of computer could simulate physics and then

argued that only a quantum computer could

simulate quantum physics efficiently. He focused

on quantum physics rather than classical physics.

He said that nature isn’t classical, and if we want

to make a simulation of nature, we’d better make

it quantum mechanical, because it does not look

so easy. Around the same time, in a paper titled

"Quantum mechanical models of Turing machines

that dissipate no energy" [5] and related articles,

Paul Benioff demonstrated that quantum-

mechanical systems could model Turing

machines. In other words, he proved that quantum

computation is at least as powerful as classical

computation. But is quantum computation more

powerful than classical computation? David

Deutsch explored this question and more in his

1985 paper "Quantum theory, the Church-Turing

principle and the universal quantum computer"

[6]. First, he introduced quantum counterparts to

both the Turing machine and the universal Turing

machine. He then demonstrated that the universal

quantum computer can do things that the universal

Turing machine cannot, including generate

genuinely random numbers, perform some

parallel calculations in a single register, and

perfectly simulate physical systems with finite

dimensional state spaces. In 1989, in "Quantum

78 Journal of Computer Science and Information, Volume 6, Issue 2, June 2013

computational networks"[7], Deutsch described a

second model for quantum computation: quantum

circuits. He demonstrated that quantum gates can

be combined to achieve quantum computation in

the same way that Boolean gates can be combined

to achieve classical computation. He then showed

that quantum circuits can compute anything that

the universal quantum computer can compute, and

vice versa.

2.2. Superposition

 Superposition is the fundamental law of

quantum mechanics. It defines the collection of all

possible states that an object can have.

Superposition means a system can be in two or

more of its states simultaneously. For example a

single particle can be traveling along two different

paths at once.

 The principle of superposition states that if

the world can be in any configuration, any

possible arrangement of particles or fields, and if

the world could also be in another configuration,

then the world can also be in a state which is a

superposition of the two, where the amount of

each configuration that is in the superposition is

specified by a complex number.

 For example, if a particle can be in position

A and position B, it can also be in a state where it

is an amount "3i/5" in position A and an amount

"4/5" in position B. To write this, physicists

usually say:

 BAi
5

4

5

3

 In the description, only the relative size of

the different components matter and their angle to

each other are on the complex plane. This is

usually stated by declaring that two states which

are a multiple of one another are the same as far

as the description of the situation is concerned.

 The fundamental dynamical law of quantum

mechanics is that the evolution is linear, meaning

that if the state A turns into A’ and B turns into B’

after 10 seconds, then after 10 seconds the

superposition turns into a mixture of A’ and B’

with the same coefficients as A’ and B’.

 Example: A particle can have any position,

so that there are different states which have any

value of the position x. These are written:

x

 The principle of superposition guarantees

that there are states which are arbitrary

superpositions of all the positions with complex

coefficients:

x
xx)(

 This sum is defined only if the index x is

discrete. If the index is over R, then the sum is not

defined and is replaced by an integral instead. The

quantity)(x is called the wavefunction of the

particle.

 If a particle can have some discrete

orientations of the spin, say the spin can be

aligned with the z-axis or against it , then

the particle can have any state of the form:

 21 CC

 If the particle has both position and spin, the

state is a superposition of all possibilities for both:

 x
xxxx ,)(,)(

 The configuration space of a quantum

mechanical system cannot be worked out without

some physical knowledge. The input is usually the

allowed different classical configurations, but

without the duplication of including both position

and momentum.

 A pair of particles can be in any combination

of pairs of positions. A state where one particle is

at position x and the other is at position y is

written x,y . The most general state is a

superposition of the possibilities:

xy
yxyxA ,),(

 The description of the two particles is much

larger than the description of one particle; it is a

function in twice the number of dimensions. This

is also true in probability, when the statistics of

two random things are correlated. If two particles

are uncorrelated, the probability distribution for

their joint position),(yxP is a product of the

probability of finding one at one position and the

other at the other position:

)()(),(yPxPyxP yx

Rina Refianti, et al., Simulation of Quantum Search 79

 In quantum mechanics, two particles can be

in special states where the amplitudes of their

position are uncorrelated. For quantum

amplitudes, the word entanglement replaces the

word correlation, but the analogy is exact. A

disentangled wavefunction has the form:

)()(),(yxyxA yx (4)

while an entangled wavefunction does not have

this form. Like correlation in probability, there are

many more entangled states than disentangled

ones. For instance, when two particles which start

out with an equal amplitude to be anywhere in a

box have a strong attraction and a way to dissipate

energy, they can easily come together to make a

bound state. The bound state still has an equal

probability to be anywhere, so that each particle is

equally likely to be everywhere, but the two

particles will become entangled so that wherever

one particle is, the other is too.

2.3. Entanglement

 Quantum entanglement, also called the

quantum non-local connection, is a property of a

quantum mechanical state of a system of two or

more objects in which the quantum states of the

constituting objects are linked together so that one

object can no longer be adequately described

without full mention of its counterpart - even if

the individual objects are spatially separated in a

space-like manner. The property of entanglement

was understood in the early days of quantum

theory, although not by that name. Quantum

entanglement is at the heart of the EPR paradox

developed in 1935. This interconnection leads to

non-classical correlations between observable

physical properties of remote systems, often

referred to as nonlocal correlations.

 Quantum mechanics holds that observable,

for example, spin are indeterminate until such

time as some physical intervention is made to

measure the observable of the object in question.

In the singlet state of two spins it is equally likely

that any given particle will be observed to be spin-

up as that it will be spin-down. Measuring any

number of particles will result in an unpredictable

series of measures that will tend more and more

closely to half up and half down. However, if this

experiment is done with entangled particles the

results are quite different. For example, when two

members of an entangled pair are measured, their

spin measurement results will be correlated. Two

(out of infinitely many) possibilities are that the

spins will be found to always have opposite spins

(in the spin anti-correlated case), or that they will

always have the same spin (in the spin correlated

case). Measuring one member of the pair

therefore tells you what spin the other member

would have if it were also measured. The distance

between the two particles is irrelevant.

 Theories involving ’hidden variables’ have

been proposed in order to explain this result; these

hidden variables account for the spin of each

particle, and are determined when the entangled

pair is created. It may appear then that the hidden

variables must be in communication no matter

how far apart the particles are that the hidden

variable describing one particle must be able to

change instantly when the other is measured. If

the hidden variables stop interacting when they

are far apart, the statistics of multiple

measurements must obey an inequality (called

Bell’s inequality), which is, however, violated -

both by quantum mechanical theory and in

experiments.

 When pairs of particles are generated by the

decay of other particles, naturally or through

induced collision, these pairs may be termed

"entangled", in that such pairs often necessarily

have linked and opposite qualities, i.e. of spin or

charge. The assumption that measurement in

effect "creates" the state of the measured quality

goes back to the arguments of, among others:

Schroedinger, and Einstein, Podolsky, and Rosen

concerning Heisenberg’s uncertainty principle and

its relation to observation (see also the

Copenhagen interpretation). The analysis of

entangled particles by means of Bell’s theorem,

can lead to an impression of non-locality (that is,

that there exists a connection between the

members of such a pair that defies both classical

and relativistic concepts of space and time). This

is reasonable if it is assumed that each particle

departs the scene of the pair’s creation in an

ambiguous state (as per a possible interpretation

of Heisenberg). In such a case, for a given

measurement either outcome remains a

possibility; only measurement itself would

precipitate a distinct value. On the other hand, if

each particle departs the scene of its "entangled

creation" with properties that would

unambiguously determine the value of the quality

to be subsequently measured, then a postulated

instantaneous transmission of information across

space and time would not be required to account

for the result. The Bohm interpretation postulates

that a guide wave exists connecting what are

perceived as individual particles such that the

80 Journal of Computer Science and Information, Volume 6, Issue 2, June 2013

supposed hidden variables are actually the

particles themselves existing as functions of that

wave.

 Observation of wavefunction collapse can

lead to the impression that measurements

performed on one system instantaneously

influence other systems entangled with the

measured system, even when far apart. Yet

another interpretation of this phenomenon is that

quantum entanglement does not necessarily

enable the transmission of classical information

faster than the speed of light because a classical

information channel is required to complete the

process.

2.4. Hadamard Transform

 The Hadamard transform (also known as the

Walsh-Hadamard-transform, Hadamard-Radema-

cher-Walsh-transform, Walsh-transform, or

Walsh-Fourier transform) is an example of a

generalized class of Fourier transforms. It is

named for the French mathematician Jacques

Solomon Hadamard, the German-American

mathematician Hans Adolph Rademacher, and the

American mathematician Joseph Leonard Walsh.

It performs an orthogonal, symmetric,

involutional, linear operation on m2 real numbers

(or complex numbers, although the Hadamard

matrices themselves are purely real).

 The Hadamard transform can be regarded as

being built out of size-2 discrete Fourier

transforms (DFTs), and is in fact equivalent to a

multidimensional DFT of size 2222 . It

decomposes an arbitrary input vector into a

superposition of Walsh functions.

 The Hadamard transform mH is a mm 22

matrix, the Hadamard matrix (scaled by a

normalization factor), that transforms m2 real

numbers x into m2 real numbers kx . The

Hadamard transform can be defined in two ways:

recursively, or by using the binary (base-2)

representation of the indices n and k .

 Recursively, we define the 11 Hadamard

transform 0H by the identity 10 H , and then

define mH for m > 0 by:

11

11

2

1

mm

mm
m

HH

HH
H (5)

where the 2/1 is a normalization that is

sometimes omitted. Thus, other than this

normalization factor, the Hadamard matrices are

made up entirely of 1 and -1.

 Equivalently, we can define the Hadamard

matrix by its (k, n)-th entry by writing

,222= 01
2

2
1

1 kkkkk m
m

m
m

 (6)

and

,222= 01
2

2
1

1 nnnnn m
m

m
m

 (7)

where the kj and nj are the binary digits (0 or 1) of

n and k, respectively. In this case, we have:

 .1)(
2

1
=

/2,

 j jjnk

mnkmH (8)

This is exactly the multidimensional

2222 DFT, normalized to be unitary, if

the inputs and outputs are regarded as

multidimensional arrays indexed by the jn and

jk , respectively. Some examples of the Hadamard

matrices follow.

 1=0 H (9)

11

11

2

1
=1H (10)

 This H1 is precisely the size-2 DFT. It can

also be regarded as the Fourier transform on the

two-element additive group of Z/(2).

1111

1111

1111

1111

2

1
=2H (11)

11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

2

1
=

3/23H

(12)

.1)(
2

1
=)(

/2,
ji

njinH (13)

where i j is the bitwise dot product of the binary

representations of the numbers i and j. For

example,

Rina Refianti, et al., Simulation of Quantum Search 81

agreeing with the above (ignoring the overall

constant). Note that the first row, first column of

the matrix is denoted by 00H . The rows of the

Hadamard matrices are the Walsh functions.

 In quantum information processing the

Hadamard transformation, more often called

Hadamard gate, is a one-qubit rotation, mapping

the qubit-basis states 0| and 1| to two

superposition states with equal weight of the

computational basis states 0| and 1| . Usually

the phases are chosen so that we have

|1
2

1|0|
|0

2

1|0|

in Dirac notation. This corresponds to the

transformation matrix

11

11

2

1
=1H (14)

in the 0| , 1| basis.

 Many quantum algorithms use the Hadamard

transform as an initial step, since it maps n qubits

initialized with 0| to a superposition of all n2

orthogonal states in the 0| , 1| basis with equal

weight. Hadamard gate operations:

 .1|
2

1
0|

2

1
=1| H (15)

 .1|
2

1
0|

2

1
=0| H (16)

;1=|

)1|0(|
2

1
)1|0(|

2

1
=)1|

2

1
0|

2

1
(

H

17)

)1|
2

1
0|

2

1
(

2

1

)1|0(|
2

1

2

1
=)1|

2

1
0|

2

1
(

H

.0=| (18)

2.5. Grover’s Quantum Search Algorithm

 One of the most celebrated achievement of

quantum computation is Lov Grover’s quantum

search algorithm (known as Grover’s algorithm),

which was invented in 1996. Grover’s algorithm

is a quantum algorithm for searching an unsorted

database with N entries in O(N1/2) time and using

O(log N) storage space.

 In models of classical computation,

searching an unsorted database cannot be done in

less than linear time (so merely searching through

every item is optimal). Grover’s algorithm

illustrates that in the quantum model searching

can be done faster than this; in fact its time

complexity O(N1/2) is asymptotically the fastest

possible for searching an unsorted database in the

quantum model. It provides a quadratic speedup.

 There are already related works about

Grover algorithm, such as done by Matthew

Whitehead, Ahmed Younes, and C. Lavor et.al.,

Matthew Whitehead’s paper [8] shows how

Grover’s quantum search may be used to improve

the effectiveness of traditional genetic search on a

classical computer. He uses repeated applications

of Grover’s Algorithm to get a variety of decent

chromosomes that will then be used to form a

starting population for classical genetic search. He

also provides the pseudo code for the modified

genetic search, which is a combination between

Grover’s quantum search and standard genetic

search. Another work related to Grover algorithm

is done by Ahmed Younes. In his paper [9], he

described the performance of Grover’s algorithm,

and also wrote a review about Grover algorithm

by means of a detailed geometrical interpretation

and a worked out example. Some basic concepts

of Quantum Mechanics and quantum circuits are

also reviewed.

3. Design and Implementation

 Many problems in classical computer

science can be reformulated as searching a list for

a unique element which matches some predefined

condition. If no additional knowledge about the

search-condition C is available, the best classical

algorithm is a brute-force search i.e. the elements

are sequentially tested against C and as soon as an

element matches the condition, the algorithm

terminates. For a list of N elements, this requires

an average of N/2 comparisons. By taking

advantage of quantum parallelism and

interference, Grover found a quantum algorithm

[1] which can find the matching element in only

O(N)steps.

 In this paper, Grover algorithm and its

implementation will be explained process by

process. The algorithm consists of two parts: (1)

1=1)(=1)(=1)(=1)(= 101(1,0)(1,1)23
32 H

82 Journal of Computer Science and Information, Volume 6, Issue 2, June 2013

Input and initialization (2) Main loop. Each of the

parts will be explained and implemented one by

one below.

3.1. Input and Initialization

3.1.1. Input

 This simulation needs to know what number

it should search, so user will be prompted to input

a round number (integer). The implementation of

this input process can be seen below.

input "Enter an integer that that

will be find:",bil;

 In the code implementation above we can

see that bil is a variable that is used to store the

round number.

3.1.2. Initialization

 Initialization is a process to initiate variables

and qubit registers needed in the simulation.

 The most important variables that we have to

initiate are the number of qubits and the number

of iterations needed. Assume that the number of

qubits is called sumqubit, and the number of

iterations is called iteration.

To calculate the number of qubits needed, we can

use this formula:

 1)log(=
2
bilsumqubit (19)

To calculate the number of iterations needed, we

can use this formula:

 sumqubititeration 2*/8= (20)

 Then, after the value of both sumqubit and

iteration are known, another important step to do

is to set up the registers for each qubits. Also,

some variables need to be listed to for common

process; looping, storing result, etc. The code

implementation for initialization can be seen

below.

int sumqubit = floor(log(bil,2))+1;

int iteration = ceil(pi/8*sqrt

2^sumqubit));

int rmeasurement;

int i;

qureg q[sumqubit];

qureg f[1];

print "Number of qubit

are used:",sumqubit;

print "Number of iteration

are needed:",iteration;

print "start searching process..";

3.1.3. Main Loop

 Main loop is the main process to begin

searching. The steps to do in the main loop are:

1. Reset all qubits to 0 and apply the

Hadamard transform to each of them.

2. Repeat the following operation as much as

the number of iterations needed (see the

initialization part):

 Rotate the marked state by a phase of

radians (
fI). A query function needs to

be applied. The query function is needed

to flip the variable f if x (the qubits) is

equal to 1111...

 Apply a phase process between and f.

 Undo the query function.

 Apply a diffusion function. The process

are apply Hadamard transform, invert q,

then apply a phase process between

and q (rotate if q=1111..). After that,

undo the invert process and undo

Hadamard transform.

 Do an oracle function by measure the

quantum register that has been found,

and then compare the result to the input.

 These iterations must be repeated again if the

measurement result does not match with the

wanted number.

 The code implementation of the main loop

including the functions in it can be seen below.
{

 reset;

 H(q);

 for i= 1 to iteration {

 print "Iteration",i;

 query(q,f,bil);

 CPhase(pi,f);

 !query(q,f,bil);

 diffuse(q);

 }

 oracle(q,rmeasurement,bil);

 } until rmeasurement==bil;

 reset;

}

3.1.4. Query Procedure
procedure query(qureg x,quvoid f,int bil)

{

 int i;

 for i=0 to #x-1 {

 if not bit(bil,i)

 {Not(x[i]);}

 }

 CNot(f,x);

 for i=0 to #x-1 {

 if not bit(bil,i)

 {!Not(x[i]);}

 }

}

3.1.5. Diffuse Procedure
procedure diffuse(qureg q)

{

 H(q);

 Not(q);

Rina Refianti, et al., Simulation of Quantum Search 83

 CPhase(pi,q);

 !Not(q);

 !H(q);

}

3.1.6. Oracle Procedure

 This procedure is for checking whether the

measurement result is match with the wanted

number or not. In general, the oracle function can

be formulated as below.

0

0

0

1
)(

xxif

xxif
xf

x is the indexes in the database, and x0 is the

wanted index. Back to the simulation, before we

implement the oracle, we need to do a

measurement to check if the number that been

found is already matched with the wanted number.

The code implementation can be seen below.

procedure oracle(qureg q,int hasil-

measurement,bil)

{

 measure q,rmeasurement;

 if rmeasurement==bil {

 print "result of measurement:",

 rmeasurement;

 print "has equaled with the

 searched number...";

 }

 else {

 print "result of measurement:",

 rmeasurement;

 print "not equaled with the

 searched number...";

 }

}

4. Results and Discussion

 The Grover’s quantum search simulation can

be running from Linux’s terminal, by going to the

directory where the file is put in then typing "qcl -

i -b32 SimulasiGrover.qcl". This command will

start QCL then run a file named

SimulasiGrover.qcl, and providing all qubits that

QCL has (32 qubits).

 To discuss the results of the program, Table

I. containing ten outputs from Grover’s quantum

search simulation program is provided.

In Table I, column "Input" is for the number

that the user wants to find. Column "Qubits" is the

total of qubits needed to search the number.

Column "Iterations" is the total iterations needed

to find one number to be measuring. Column "List

of Measured Numbers" is the list of numbers that

are found and get measured until the number is

same to the input. Column "Total Iterations" is the

total of iterations needed to find the correct

number. The value of this column is the

multiplication of the value in column "Iterations"

and the amount of numbers in column "List of

Measured Number.

TABLE I

OUTPUTS FROM THE PROGRAM

Input

Qubits

Iterations

List of

Measured
Total

 Number Iterations

10 4 2 10 2

30 5 3 30 3

175 8 7 175 7
500 9 9 373 - 500 18

1000 10 13 327 - 1000 26

1676 11 18 1676 18

2000 11 18

1645 - 1497 -

1493 - 703 -

2000

90

2200 12 26
3765 - 2349 -

2200
78

8111 13 36 8111 36

9999 14 54 9999 54

 From the table, we can see that the number

of qubits and the number of iterations needed are

depend on the value of the number that user wants

to find. If the number is bigger, so will the qubits

and the iterations be. Sometimes, the number that

the program found is not matched with the input.

If this condition is happen, the program will do

the iterations again until the number is matched

with the input. But even the program do the

iterations more than one round, the total iterations

is never exceed the value of the input. We can see

this from the table in the column "Total

Iterations". But this Grover’s quantum search

simulation has a limitation; the maximum qubits

that the program can use is only 32 qubits (QCL

limitation). For the possible real implementation,

Grover’s algorithm can be used for searching a

record in database and improving the traditional

genetic search.

5. Concluding Remarks

 Using QCL, a Grover’s quantum search

simulation has been made. It is performed without

using a quantum computer, but using a classic

computer. To search an element, the program

needs to use qubit instead of bit. The number of

qubits needed depend on the value of the number

that we want to find. The bigger the value of the

number, the bigger qubits needed. It goes the

same with the number of iterations needed. The

minimum value for the number is 1, and the

maximum value is depending on the qubits

needed. At this far, the program has been tested to

search number till 9999. This Grover’s quantum

search is just a simulation to simulate the

84 Journal of Computer Science and Information, Volume 6, Issue 2, June 2013

algorithm, not a real quantum searching program

that can be implemented on the real database.

 This Grover’s quantum search is just a

simulation of quantum search in a classic

computer. That is some possible works for the

future related to Grover algorithm. Some of them

is implementing Grover algorithm in a real

database using quantum computer, but in this

case, the database must be converted in to

quantum states which is probably the most

difficult thing to do. Another possible work is

improving the traditional genetic search by

combine it with Grover’s algorithm.

Appendix

Listing Program

procedure query(qureg x,quvoid f,int bil)

{

 int i;

 for i=0 to #x-1 { // x -> NOT

 // (x XOR bil)
 if not bit(bil,i)

 {Not(x[i]);}

 }

 CNot(f,x); // flip f

 // if x=1111..

 for i=0 to #x-1 { // x <- NOT

 // (x XOR bil)

 if not bit(bil,i)

 {!Not(x[i]);}

 }

}

procedure diffusi(qureg q)

{

 H(q); // Hadamard

 // Transformation

 // (superposisi)

 Not(q); // Inversi q

 CPhase(pi,q); // Rotate

 // if q=1111..

 !Not(q); // undo inversi

 !H(q); // undo

 // Hadamard

 // Transformation

}

procedure algoritma(int bil)

{

 int sumqubit = floor(log(bil,2))+1;

 // number of

 // qubit

 int iteration = ceil(pi/8*sqrt

 (2^sumqubit));

 // number of

 // iterasi

 int rmeasurement;

 int i;

 qureg q[sumqubit];

 qureg f[1];

 print "Number of qubit

 are used:",sumqubit;
 print "Number of iteration

 are needed:",iteration;

 print "Start searching process...";

 {

 reset; // clean the register

 H(q); // superposition arrangments

 for i= 1 to iterasi {

 // main loop

 print "Iteration",i;

 query(q,f,bil);

 // count C(q)

 CPhase(pi,f);

 // negation |n>

 !query(q,f,bil);

 // undo C(q)

 diffusi(q);

 }

 //oracle

 measure q,rmeasurement;

 // measurement

 if rmeasurement==bil {

 print "result of measurement:",

 rmeasurement;

 print "has been equal with the

 searched number...";

 }

 else {

 print "result of measurement:",

 rmeasurement;

 print "has not been equal with

 the search number...";

 }

 } until rmeasurement==bil;

 reset; // clean the register

}

procedure start(){

 int bil;

 print;

 print "--------------------------";

 print;

 print "SIMULATION of QUANTUM SEARCH

 Using GROVER's ALGORITHM";

 print;

 input "Enter an integer

 that will be searched:",bil;

 algoritma(bil);

 print;

 print "--------------------------";

}

Acknowledgment

 A.B.M. and R.R. gratefully acknowledge

financial support of the Gunadarma Education

Foundation during the research.

References

[1] L.K. Grover, “A fast quantum mechanical

algorithm for database search”, In Proceeding

of the 28th Annual ACM Symposium on

Theory of Computing, 1996, arXiv:quant-

ph/9605043v3

[2] B. Oemer, S. Doz, and D.K. Svozil,

“Simulation of quantum computers”, 1996.

[3] B. Oemer, “Structured quantum programming

”, May 2003,

http://tph.tuwien.ac.at/$~$oemer/.

[4] R.P. Feynmann, “Simulating physics with

computers”, International Journal of

Theoretical Physics, vol. 21, no. 6-7, pp. 467-

-488, 1982.

Rina Refianti, et al., Simulation of Quantum Search 85

[5] P. Benioff, “Quantum mechanical models of

turing machines that dissipate no energy”,

Physical Review Letters, vol. 48, pp. 1581--

1585, June 1982.

[6] D. Deutsch, “Quantum theory, the Church-

Turing principle and the universal quantum

computer “, In Proceedings of the Royal

Society of London Series A, vol. A400, pp.

97—117, 1985.

[7] D. Deutsch, “Quantum computational

networks “, In Proceedings of the Royal

Society of London, vol. A425, pp. 73--90,

1989.

[8] M. Whitehead, “Using grover's algorithm for

genetic search”, December 2005,

https://www.cs.indiana.edu/$~$mewhiteh/

files/quantum_genetic_search.pdf.

[9] A. Younes, “Strength and weakness in

grover's quantum search algorithm “,

November 2008, arXiv:quantph/0811.4481

v1

