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Abstract 

 

The rapid progress of computer science has been accompanied by a corresponding 

evolution of computation, from classical computation to quantum computation. As quantum 

computing is on its way to becoming an established discipline of computing science, much 

effort is being put into the development of new quantum algorithms. One of quantum 

algorithms is Grover's algorithm, which is used for searching an element in an unstructured 

list of N elements with quadratic speed-up over classical algorithms. In this work, Quantum 

Computer Language (QCL) is used to make a Grover's quantum search simulation in a 

classical computer document. 
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Abstrak 

 

Pesatnya kemajuan ilmu komputer telah disertai dengan evolusi komputasi yang sesuai, 

mulai dari komputasi klasik hingga komputasi kuantum. Ketika komputasi kuantum berada 

dalam perjalanan untuk menjadi disiplin ilmu komputer yang mapan, banyak usaha telah 

dilakukan dalam pengembangan algoritma kuantum yang baru. Salah satu algoritma 

kuantum adalah algoritma Grover, yang digunakan untuk pencarian sebuah elemen dalam 

suatu daftar elemen N tidak terstruktur dengan “speed-up” kuadrat dibandingkan algoritma 

klasik. Dalam paper ini, Quantum Computer Language (QCL) digunakan untuk membuat 

simulasi pencarian kuantum Grover dalam suatu dokumen komputer klasik. 

 
Kata Kunci: Algoritma Grover, Bahasa Komputer Kuantum, Transformasi-Hadamard 

 

 

1. Introduction 

 

 These instructions give you guidelines for 

preparing papers for Journal of Computer Science 

and Information – Universitas Indonesia. Use this 

document as a template if you are using Microsoft 

Word 6.0 or later. Otherwise, use this document as 

an instruction set. Instructions about final paper 

and figure submissions in this document are for 

Journal of Computer Science and Information – 

Universitas Indonesia; please use this document 

as a “template” to prepare your manuscript. 

 The rapid progress of computer science has 

been accompanied by a corresponding evolution 

of computation, from classical computation to 

quantum computation. In classical computation, 

computer memory made up of bits, where each bit 

represents either a one or a zero. In quantum 

computation, there are some quantum mechanical 

phenomena, such as superposition and 

entanglement, to perform operations on data. 

 Instead of using bits, quantum computation 

uses qubits (quantum bits). A single qubit can 

represent a one, a zero, or both at the same time, 

which is called superposition. Because of this 

ability, quantum computation can perform many 

tasks simultaneously, faster than classical 

computing. There is also another phenomenon in 

quantum computation which is called 

entanglement. If two qubits get an outside force, 

then those qubits can be entangled condition. It 

means that, even the distance of both qubits is far, 

treating one of them will affect the other qubit 

too. For example, there are two entangled qubits, 

and one of them has spin up (we know it after 

done a measurement). Then without have to 

measure it, we can directly know that the other 

qubit has spin down. Because of this ability, 

communication in quantum computation can 

reach a very high speed because information can 

be transferred instantly, very fast like it 

overmatches the speed of light. 
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 As quantum computing is on its way to 

becoming an established discipline of computing 

science, much effort is being put into the 

development of new quantum algorithms. One of 

quantum algorithms is Grover algorithm, which is 

used for searching an element in an unstructured 

list of N elements with quadratic speed-up over 

classical algorithms. Today, there are some 

quantum programming languages which can be 

used to simulate quantum mechanical and 

quantum algorithm without having a real quantum 

computer. In this work, Quantum Computer 

Language (QCL) will be used to make a Grover’s 

quantum search simulation in a classical 

computer. 

 This research is related to an invention of a 

quantum search algorithm by Lov K. Grover [1]. 

His invention presents an algorithm, which is 

known as Grover algorithm that is significantly 

faster than any classical algorithm can be. This 

quantum search algorithm can search for an 

element in an unsorted database containing N 

elements only in O( N ) steps, while in the 

models of classical computation, searching an 

unsorted database cannot be done in less than 

linear time (so merely searching through every 

item is optimal), which will be done in O(N) 

steps. Also, this research will also try to simulate 

Grover algorithm in a classical computer using 

one of quantum programming languages, 

Quantum Computer Language (QCL) [2, 3]. 

 In practice, this research can be used as the 

fastest known method or solution for searching an 

element in an unsorted database containing N 

elements. By using the method in this research, 

the searching process can speed-up quadratically 

over classical algorithms. 

 Considered points in this work are: 

1. Is it possible to simulate Grover algorithm in 

a classical computer? 

2. How many qubits and iterations the program 

needed to search an element? 

3. How minimum and maximum the size of 

elements in the database that the program 

can hold? 

 

 The objective of this work is to to make a 

simulation of Grover algorithm using Quantum 

Computer Language (QCL), to know how many 

qubits and iterations needed for the searching 

process, and to know how minimum and 

maximum the size of elements in the database that 

can be hold by the program. 

 This paper concerns on simulating Grover 

algorithm in a classical computer using Quantum 

Computer Language (QCL). The program can 

search a desired element in an unsorted database 

of N elements. 

 This work begins with designing pseudo-

code for Grover algorithm. Then, the design will 

be implemented by using Quantum Computer 

Language. After that, there will be several test to 

know how many qubits and iterations needed for 

the searching process, also to know how 

minimum and maximum the size of elements in 

the database that can be hold by the program. 

 

2. Literature Review 

 

 Computer science has grown faster, made an 

evolution in computation. Research has already 

begun on what comes after our current computing 

revolution. This research has discovered the 

possibility for an entirely new type of computer, 

one that operates according to the laws of 

quantum physics - a quantum computer. 

 

2.1. Way to Quantum Computation 

 Quantum computers were first proposed in 

the 1970s and 1980s by theorists such as Richard 

Feynman, Paul Benioff, and David Deutsch. At 

those times, many scientists doubted that they 

could ever be made practical. Richard Feynman 

was the first to suggest, in a talk in 1981, that 

quantum-mechanical systems might be more 

powerful than classical computers. In this lecture 

[4], reproduced in the International Journal of 

Theoretical Physics in 1982, Feynman asked what 

kind of computer could simulate physics and then 

argued that only a quantum computer could 

simulate quantum physics efficiently. He focused 

on quantum physics rather than classical physics. 

He said that nature isn’t classical, and if we want 

to make a simulation of nature, we’d better make 

it quantum mechanical, because it does not look 

so easy. Around the same time, in a paper titled 

"Quantum mechanical models of Turing machines 

that dissipate no energy" [5] and related articles, 

Paul Benioff demonstrated that quantum-

mechanical systems could model Turing 

machines. In other words, he proved that quantum 

computation is at least as powerful as classical 

computation. But is quantum computation more 

powerful than classical computation? David 

Deutsch explored this question and more in his 

1985 paper "Quantum theory, the Church-Turing 

principle and the universal quantum computer" 

[6]. First, he introduced quantum counterparts to 

both the Turing machine and the universal Turing 

machine. He then demonstrated that the universal 

quantum computer can do things that the universal 

Turing machine cannot, including generate 

genuinely random numbers, perform some 

parallel calculations in a single register, and 

perfectly simulate physical systems with finite 

dimensional state spaces. In 1989, in "Quantum 
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computational networks"[7], Deutsch described a 

second model for quantum computation: quantum 

circuits. He demonstrated that quantum gates can 

be combined to achieve quantum computation in 

the same way that Boolean gates can be combined 

to achieve classical computation. He then showed 

that quantum circuits can compute anything that 

the universal quantum computer can compute, and 

vice versa. 

 

2.2. Superposition 

 Superposition is the fundamental law of 

quantum mechanics. It defines the collection of all 

possible states that an object can have. 

Superposition means a system can be in two or 

more of its states simultaneously. For example a 

single particle can be traveling along two different 

paths at once. 

 The principle of superposition states that if 

the world can be in any configuration, any 

possible arrangement of particles or fields, and if 

the world could also be in another configuration, 

then the world can also be in a state which is a 

superposition of the two, where the amount of 

each configuration that is in the superposition is 

specified by a complex number. 

 For example, if a particle can be in position 

A and position B, it can also be in a state where it 

is an amount "3i/5" in position A and an amount 

"4/5" in position B. To write this, physicists 

usually say:  

 

 BAi
5

4

5

3
 

 
 In the description, only the relative size of 

the different components matter and their angle to 

each other are on the complex plane. This is 

usually stated by declaring that two states which 

are a multiple of one another are the same as far 

as the description of the situation is concerned. 

 

   


 The fundamental dynamical law of quantum 

mechanics is that the evolution is linear, meaning 

that if the state A turns into A’ and B turns into B’ 

after 10 seconds, then after 10 seconds the 

superposition  turns into a mixture of A’ and B’ 

with the same coefficients as A’ and B’. 

 Example: A particle can have any position, 

so that there are different states which have any 

value of the position x. These are written: 

x 

 The principle of superposition guarantees 

that there are states which are arbitrary 

superpositions of all the positions with complex 

coefficients: 

 

x
xx)( 


 This sum is defined only if the index x is 

discrete. If the index is over R, then the sum is not 

defined and is replaced by an integral instead. The 

quantity )(x is called the wavefunction of the 

particle. 

 If a particle can have some discrete 

orientations of the spin, say the spin can be 

aligned with the z-axis   or against it  , then 

the particle can have any state of the form: 

 

 21 CC 


 If the particle has both position and spin, the 

state is a superposition of all possibilities for both: 

 

  x
xxxx ,)(,)(  


 The configuration space of a quantum 

mechanical system cannot be worked out without 

some physical knowledge. The input is usually the 

allowed different classical configurations, but 

without the duplication of including both position 

and momentum. 

 A pair of particles can be in any combination 

of pairs of positions. A state where one particle is 

at position x and the other is at position y is 

written x,y . The most general state is a 

superposition of the possibilities: 

 

xy
yxyxA ,),( 


 The description of the two particles is much 

larger than the description of one particle; it is a 

function in twice the number of dimensions. This 

is also true in probability, when the statistics of 

two random things are correlated. If two particles 

are uncorrelated, the probability distribution for 

their joint position ),( yxP  is a product of the 

probability of finding one at one position and the 

other at the other position: 

 

 )()(),( yPxPyxP yx 
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 In quantum mechanics, two particles can be 

in special states where the amplitudes of their 

position are uncorrelated. For quantum 

amplitudes, the word entanglement replaces the 

word correlation, but the analogy is exact. A 

disentangled wavefunction has the form: 

 

 )()(),( yxyxA yx                     (4) 


while an entangled wavefunction does not have 

this form. Like correlation in probability, there are 

many more entangled states than disentangled 

ones. For instance, when two particles which start 

out with an equal amplitude to be anywhere in a 

box have a strong attraction and a way to dissipate 

energy, they can easily come together to make a 

bound state. The bound state still has an equal 

probability to be anywhere, so that each particle is 

equally likely to be everywhere, but the two 

particles will become entangled so that wherever 

one particle is, the other is too. 

 

2.3. Entanglement 

 

 Quantum entanglement, also called the 

quantum non-local connection, is a property of a 

quantum mechanical state of a system of two or 

more objects in which the quantum states of the 

constituting objects are linked together so that one 

object can no longer be adequately described 

without full mention of its counterpart - even if 

the individual objects are spatially separated in a 

space-like manner. The property of entanglement 

was understood in the early days of quantum 

theory, although not by that name. Quantum 

entanglement is at the heart of the EPR paradox 

developed in 1935. This interconnection leads to 

non-classical correlations between observable 

physical properties of remote systems, often 

referred to as nonlocal correlations. 

 Quantum mechanics holds that observable, 

for example, spin are indeterminate until such 

time as some physical intervention is made to 

measure the observable of the object in question. 

In the singlet state of two spins it is equally likely 

that any given particle will be observed to be spin-

up as that it will be spin-down. Measuring any 

number of particles will result in an unpredictable 

series of measures that will tend more and more 

closely to half up and half down. However, if this 

experiment is done with entangled particles the 

results are quite different. For example, when two 

members of an entangled pair are measured, their 

spin measurement results will be correlated. Two 

(out of infinitely many) possibilities are that the 

spins will be found to always have opposite spins 

(in the spin anti-correlated case), or that they will 

always have the same spin (in the spin correlated 

case). Measuring one member of the pair 

therefore tells you what spin the other member 

would have if it were also measured. The distance 

between the two particles is irrelevant. 

 Theories involving ’hidden variables’ have 

been proposed in order to explain this result; these 

hidden variables account for the spin of each 

particle, and are determined when the entangled 

pair is created. It may appear then that the hidden 

variables must be in communication no matter 

how far apart the particles are that the hidden 

variable describing one particle must be able to 

change instantly when the other is measured. If 

the hidden variables stop interacting when they 

are far apart, the statistics of multiple 

measurements must obey an inequality (called 

Bell’s inequality), which is, however, violated - 

both by quantum mechanical theory and in 

experiments. 

 When pairs of particles are generated by the 

decay of other particles, naturally or through 

induced collision, these pairs may be termed 

"entangled", in that such pairs often necessarily 

have linked and opposite qualities, i.e. of spin or 

charge. The assumption that measurement in 

effect "creates" the state of the measured quality 

goes back to the arguments of, among others: 

Schroedinger, and Einstein, Podolsky, and Rosen 

concerning Heisenberg’s uncertainty principle and 

its relation to observation (see also the 

Copenhagen interpretation). The analysis of 

entangled particles by means of Bell’s theorem, 

can lead to an impression of non-locality (that is, 

that there exists a connection between the 

members of such a pair that defies both classical 

and relativistic concepts of space and time). This 

is reasonable if it is assumed that each particle 

departs the scene of the pair’s creation in an 

ambiguous state (as per a possible interpretation 

of Heisenberg). In such a case, for a given 

measurement either outcome remains a 

possibility; only measurement itself would 

precipitate a distinct value. On the other hand, if 

each particle departs the scene of its "entangled 

creation" with properties that would 

unambiguously determine the value of the quality 

to be subsequently measured, then a postulated 

instantaneous transmission of information across 

space and time would not be required to account 

for the result. The Bohm interpretation postulates 

that a guide wave exists connecting what are 

perceived as individual particles such that the 
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supposed hidden variables are actually the 

particles themselves existing as functions of that 

wave. 

 Observation of wavefunction collapse can 

lead to the impression that measurements 

performed on one system instantaneously 

influence other systems entangled with the 

measured system, even when far apart. Yet 

another interpretation of this phenomenon is that 

quantum entanglement does not necessarily 

enable the transmission of classical information 

faster than the speed of light because a classical 

information channel is required to complete the 

process. 

 

2.4. Hadamard Transform 

 

 The Hadamard transform (also known as the 

Walsh-Hadamard-transform, Hadamard-Radema-

cher-Walsh-transform, Walsh-transform, or 

Walsh-Fourier transform) is an example of a 

generalized class of Fourier transforms. It is 

named for the French mathematician Jacques 

Solomon Hadamard, the German-American 

mathematician Hans Adolph Rademacher, and the 

American mathematician Joseph Leonard Walsh. 

It performs an orthogonal, symmetric, 

involutional, linear operation on m2 real numbers 

(or complex numbers, although the Hadamard 

matrices themselves are purely real). 

 The Hadamard transform can be regarded as 

being built out of size-2 discrete Fourier 

transforms (DFTs), and is in fact equivalent to a 

multidimensional DFT of size 2222   . It 

decomposes an arbitrary input vector into a 

superposition of Walsh functions. 

 The Hadamard transform mH  is a mm 22 

matrix, the Hadamard matrix (scaled by a 

normalization factor), that transforms m2 real 

numbers x into m2  real numbers kx . The 

Hadamard transform can be defined in two ways: 

recursively, or by using the binary (base-2) 

representation of the indices n  and k . 

 Recursively, we define the 11  Hadamard 

transform 0H  by the identity 10 H , and then 

define mH  for m > 0 by: 

 















11

11

2

1

mm

mm
m

HH

HH
H                          (5) 

where the 2/1  is a normalization that is 

sometimes omitted. Thus, other than this 

normalization factor, the Hadamard matrices are 

made up entirely of 1 and -1. 

 Equivalently, we can define the Hadamard 

matrix by its (k, n)-th entry by writing 

,222= 01
2

2
1

1 kkkkk m
m

m
m  




  (6) 

and 

,222= 01
2

2
1

1 nnnnn m
m

m
m  




  (7) 

where the kj and nj are the binary digits (0 or 1) of 

n and k, respectively. In this case, we have: 

  .1)(
2

1
=

/2,


 j jjnk

mnkmH                               (8) 

This is exactly the multidimensional 

2222    DFT, normalized to be unitary, if 

the inputs and outputs are regarded as 

multidimensional arrays indexed by the jn and 

jk , respectively. Some examples of the Hadamard 

matrices follow. 

 
 1=0 H (9) 

 

 








11

11

2

1
=1H (10) 

 
 This H1 is precisely the size-2 DFT. It can 

also be regarded as the Fourier transform on the 

two-element additive group of Z/(2). 
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1111

2

1
=2H (11) 

 















































11111111

11111111

11111111

11111111

11111111

11111111

11111111

11111111

2

1
=

3/23H

(12) 

 

.1)(
2

1
=)(

/2,
ji

njinH  (13) 

 

where i  j is the bitwise dot product of the binary 

representations of the numbers i and j. For 

example,  
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agreeing with the above (ignoring the overall 

constant). Note that the first row, first column of 

the matrix is denoted by 00H . The rows of the 

Hadamard matrices are the Walsh functions. 

 In quantum information processing the 

Hadamard transformation, more often called 

Hadamard gate, is a one-qubit rotation, mapping 

the qubit-basis states 0| and 1| to two 

superposition states with equal weight of the 

computational basis states 0| and 1| . Usually 

the phases are chosen so that we have 

 

|1
2

1|0|
|0

2

1|0|








 
in Dirac notation. This corresponds to the 

transformation matrix 

 

 








11

11

2

1
=1H (14) 



in the 0| , 1| basis. 

 Many quantum algorithms use the Hadamard 

transform as an initial step, since it maps n qubits 

initialized with 0| to a superposition of all n2  

orthogonal states in the 0| , 1| basis with equal 

weight. Hadamard gate operations: 

 

 .1|
2

1
0|

2

1
=1| H                              (15) 



 .1|
2

1
0|

2

1
=0| H                               (16) 



;1=|

)1|0(|
2

1
)1|0(|

2

1
=)1|

2

1
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H
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)1|
2

1
0|

2

1
(

2

1

)1|0(|
2

1

2

1
=)1|

2

1
0|

2

1
(



H

.0=|  (18) 

 

2.5. Grover’s Quantum Search Algorithm 

 

 One of the most celebrated achievement of 

quantum computation is Lov Grover’s quantum 

search algorithm (known as Grover’s algorithm), 

which was invented in 1996. Grover’s algorithm 

is a quantum algorithm for searching an unsorted 

database with N entries in O(N1/2) time and using 

O(log N) storage space. 

 In models of classical computation, 

searching an unsorted database cannot be done in 

less than linear time (so merely searching through 

every item is optimal). Grover’s algorithm 

illustrates that in the quantum model searching 

can be done faster than this; in fact its time 

complexity O(N1/2) is asymptotically the fastest 

possible for searching an unsorted database in the 

quantum model. It provides a quadratic speedup. 

 There are already related works about 

Grover algorithm, such as done by Matthew 

Whitehead, Ahmed Younes, and C. Lavor et.al., 

Matthew Whitehead’s paper [8] shows how 

Grover’s quantum search may be used to improve 

the effectiveness of traditional genetic search on a 

classical computer. He uses repeated applications 

of Grover’s Algorithm to get a variety of decent 

chromosomes that will then be used to form a 

starting population for classical genetic search. He 

also provides the pseudo code for the modified 

genetic search, which is a combination between 

Grover’s quantum search and standard genetic 

search. Another work related to Grover algorithm 

is done by Ahmed Younes. In his paper [9], he 

described the performance of Grover’s algorithm, 

and also wrote a review about Grover algorithm 

by means of a detailed geometrical interpretation 

and a worked out example. Some basic concepts 

of Quantum Mechanics and quantum circuits are 

also reviewed. 

 

3. Design and Implementation 

 

 Many problems in classical computer 

science can be reformulated as searching a list for 

a unique element which matches some predefined 

condition. If no additional knowledge about the 

search-condition C is available, the best classical 

algorithm is a brute-force search i.e. the elements 

are sequentially tested against C and as soon as an 

element matches the condition, the algorithm 

terminates. For a list of N elements, this requires 

an average of N/2 comparisons. By taking 

advantage of quantum parallelism and 

interference, Grover found a quantum algorithm 

[1] which can find the matching element in only 

O( N )steps. 

 In this paper, Grover algorithm and its 

implementation will be explained process by 

process. The algorithm consists of two parts: (1) 

1=1)(=1)(=1)(=1)(= 101(1,0)(1,1)23
32  H
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Input and initialization (2) Main loop. Each of the 

parts will be explained and implemented one by 

one below. 

 

3.1. Input and Initialization 

3.1.1. Input 

 This simulation needs to know what number 

it should search, so user will be prompted to input 

a round number (integer). The implementation of 

this input process can be seen below. 

input "Enter an integer that that 

will be find:",bil; 

 In the code implementation above we can 

see that bil is a variable that is used to store the 

round number. 

 

3.1.2. Initialization 

 Initialization is a process to initiate variables 

and qubit registers needed in the simulation. 

 The most important variables that we have to 

initiate are the number of qubits and the number 

of iterations needed. Assume that the number of 

qubits is called sumqubit, and the number of 

iterations is called iteration. 

To calculate the number of qubits needed, we can 

use this formula: 

  1)log(=
2
bilsumqubit (19) 

To calculate the number of iterations needed, we 

can use this formula: 

  sumqubititeration 2*/8=  (20) 

 Then, after the value of both sumqubit and 

iteration are known, another important step to do 

is to set up the registers for each qubits. Also, 

some variables need to be listed to for common 

process; looping, storing result, etc. The code 

implementation for initialization can be seen 

below. 

 
int sumqubit = floor(log(bil,2))+1; 

int iteration = ceil(pi/8*sqrt 

2^sumqubit)); 

int rmeasurement; 

int i; 

qureg q[sumqubit]; 

qureg f[1]; 

print "Number of qubit 

are used:",sumqubit; 

print "Number of iteration 

are needed:",iteration; 

print "start searching process.."; 

 

3.1.3. Main Loop 

 Main loop is the main process to begin 

searching. The steps to do in the main loop are: 

1. Reset all qubits to 0  and apply the 

Hadamard transform to each of them. 

2. Repeat the following operation as much as 

the number of iterations needed (see the 

initialization part): 

 Rotate the marked state by a phase of   

radians ( 
fI ). A query function needs to 

be applied. The query function is needed 

to flip the variable f if x (the qubits) is 

equal to 1111... 

 Apply a phase process between   and f. 

 Undo the query function. 

 Apply a diffusion function. The process 

are apply Hadamard transform, invert q, 

then apply a phase process between 

and q (rotate if q=1111..). After that, 

undo the invert process and undo 

Hadamard transform. 

 Do an oracle function by measure the 

quantum register that has been found, 

and then compare the result to the input. 

 

 These iterations must be repeated again if the 

measurement result does not match with the 

wanted number. 

 The code implementation of the main loop 

including the functions in it can be seen below. 
{ 

    reset; 

    H(q); 

    for i= 1 to iteration { 

        print "Iteration",i; 

        query(q,f,bil); 

        CPhase(pi,f); 

        !query(q,f,bil); 

        diffuse(q); 

    } 

        oracle(q,rmeasurement,bil); 

    }       until rmeasurement==bil; 

    reset; 

} 

 
3.1.4. Query Procedure 
procedure query(qureg x,quvoid f,int bil) 

{ 

    int i; 

    for i=0 to #x-1 { 

        if not bit(bil,i) 

            {Not(x[i]);} 

    } 

    CNot(f,x); 

    for i=0 to #x-1 { 

        if not bit(bil,i) 

            {!Not(x[i]);} 

    } 

} 

 
3.1.5. Diffuse Procedure 
procedure diffuse(qureg q) 

{ 

    H(q); 

    Not(q); 
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    CPhase(pi,q); 

    !Not(q); 

    !H(q); 

} 

 
3.1.6. Oracle Procedure 

 This procedure is for checking whether the 

measurement result is match with the wanted 

number or not. In general, the oracle function can 

be formulated as below. 










0

0

0

1
)(

xxif

xxif
xf  

x is the indexes in the database, and x0 is the 

wanted index. Back to the simulation, before we 

implement the oracle, we need to do a 

measurement to check if the number that been 

found is already matched with the wanted number. 

The code implementation can be seen below. 

 
procedure oracle(qureg q,int hasil- 

measurement,bil) 

{ 

    measure q,rmeasurement; 

    if rmeasurement==bil { 

    print "result of measurement:", 

    rmeasurement; 

    print "has equaled with the 

    searched number..."; 

    } 

    else { 

    print "result of measurement:", 

    rmeasurement; 

    print "not equaled with the 

    searched number..."; 

   } 

} 

 

4. Results and Discussion 

 

 The Grover’s quantum search simulation can 

be running from Linux’s terminal, by going to the 

directory where the file is put in then typing "qcl -

i -b32 SimulasiGrover.qcl". This command will 

start QCL then run a file named 

SimulasiGrover.qcl, and providing all qubits that 

QCL has (32 qubits). 

 To discuss the results of the program, Table 

I. containing ten outputs from Grover’s quantum 

search simulation program is provided. 

In Table I, column "Input" is for the number 

that the user wants to find. Column "Qubits" is the 

total of qubits needed to search the number. 

Column "Iterations" is the total iterations needed 

to find one number to be measuring. Column "List 

of Measured Numbers" is the list of numbers that 

are found and get measured until the number is 

same to the input. Column "Total Iterations" is the 

total of iterations needed to find the correct 

number. The value of this column is the 

multiplication of the value in column "Iterations" 

and the amount of numbers in column "List of 

Measured Number. 

 
TABLE I 

OUTPUTS FROM THE PROGRAM 

 

Input 

 

Qubits 

 

Iterations 

List of 

Measured 
Total 

   Number Iterations 

10 4 2 10 2 

30 5 3 30 3 

175 8 7 175 7 
500 9 9 373 - 500 18 

1000 10 13 327 - 1000 26 

1676 11 18 1676 18 

2000 11 18 

1645 - 1497 -

1493 - 703 - 

2000 

90 

2200 12 26 
3765 - 2349 - 

2200 
78 

8111 13 36 8111 36 

9999 14 54 9999 54 

 
 From the table, we can see that the number 

of qubits and the number of iterations needed are 

depend on the value of the number that user wants 

to find. If the number is bigger, so will the qubits 

and the iterations be. Sometimes, the number that 

the program found is not matched with the input. 

If this condition is happen, the program will do 

the iterations again until the number is matched 

with the input. But even the program do the 

iterations more than one round, the total iterations 

is never exceed the value of the input. We can see 

this from the table in the column "Total 

Iterations". But this Grover’s quantum search 

simulation has a limitation; the maximum qubits 

that the program can use is only 32 qubits (QCL 

limitation). For the possible real implementation, 

Grover’s algorithm can be used for searching a 

record in database and improving the traditional 

genetic search. 

 

5. Concluding Remarks 

 

 Using QCL, a Grover’s quantum search 

simulation has been made. It is performed without 

using a quantum computer, but using a classic 

computer. To search an element, the program 

needs to use qubit instead of bit. The number of 

qubits needed depend on the value of the number 

that we want to find. The bigger the value of the 

number, the bigger qubits needed. It goes the 

same with the number of iterations needed. The 

minimum value for the number is 1, and the 

maximum value is depending on the qubits 

needed. At this far, the program has been tested to 

search number till 9999. This Grover’s quantum 

search is just a simulation to simulate the 
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algorithm, not a real quantum searching program 

that can be implemented on the real database. 

 This Grover’s quantum search is just a 

simulation of quantum search in a classic 

computer. That is some possible works for the 

future related to Grover algorithm. Some of them 

is implementing Grover algorithm in a real 

database using quantum computer, but in this 

case, the database must be converted in to 

quantum states which is probably the most 

difficult thing to do. Another possible work is 

improving the traditional genetic search by 

combine it with Grover’s algorithm. 

 

Appendix 

 

Listing Program 

procedure query(qureg x,quvoid f,int bil) 

{ 

    int i; 

    for i=0 to #x-1 {     // x -> NOT 

                          // (x XOR bil) 
        if not bit(bil,i) 

        {Not(x[i]);} 

    } 

    CNot(f,x);            // flip f 

                          // if x=1111.. 

    for i=0 to #x-1 {     // x <- NOT 

                          // (x XOR bil) 

        if not bit(bil,i) 

            {!Not(x[i]);} 

    } 

} 

procedure diffusi(qureg q)  

{ 

    H(q);              // Hadamard 

                       // Transformation 

                       // (superposisi) 

    Not(q);            // Inversi q 

    CPhase(pi,q);      // Rotate 

                       // if q=1111.. 

    !Not(q);           // undo inversi 

    !H(q);             // undo 

                       // Hadamard 

                       // Transformation 

} 

 

procedure algoritma(int bil) 

{ 

    int sumqubit = floor(log(bil,2))+1; 

                       // number of 

                       // qubit 

    int iteration = ceil(pi/8*sqrt 

                  (2^sumqubit)); 

                       // number of 

                       // iterasi 

    int rmeasurement; 

    int i; 

    qureg q[sumqubit]; 

    qureg f[1]; 

    print "Number of qubit 

          are used:",sumqubit; 
    print "Number of iteration 

    are needed:",iteration; 

    print "Start searching process..."; 

    { 

    reset;  // clean the register 

    H(q);  // superposition arrangments 

    for i= 1 to iterasi { 

             // main loop 

    print "Iteration",i; 

    query(q,f,bil); 

            // count C(q) 

    CPhase(pi,f); 

            // negation |n> 

    !query(q,f,bil); 

           // undo C(q) 

    diffusi(q); 

    } 

    //oracle 

    measure q,rmeasurement; 

                   // measurement 

    if rmeasurement==bil { 

    print "result of measurement:", 

    rmeasurement; 

    print "has been equal with the 

    searched number..."; 

    } 

    else { 

    print "result of measurement:", 

    rmeasurement; 

    print "has not been equal with 

    the search number..."; 

    } 

    } until rmeasurement==bil; 

    reset; // clean the register 

} 

procedure start(){ 

    int bil; 

    print; 

    print "--------------------------"; 

    print; 

    print "SIMULATION of QUANTUM SEARCH 

    Using GROVER's ALGORITHM"; 

    print; 

    input "Enter an integer 

    that will be searched:",bil; 

    algoritma(bil); 

    print; 

    print "--------------------------"; 

} 
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