
Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information). 9/2 (2016), 113-120
DOI: http://dx.doi.org/10.21609/jiki.v9i2.378

IMPLEMENTATION OF SERIAL AND PARALLEL BUBBLE SORT ON FPGA

Dwi M J Purnomo1, Ahmad Arinaldi1, Dwi T Priyantini1, Ari Wibisono1, and Andreas Febrian2

1Faculty of Computer Science, Universitas Indonesia, Kampus Baru UI, Depok, 16424, Indonesia
2Department of Engineering Education, Utah State University, 4160 Old Main Hill

Logan, Utah, 84322, United States of America

E-mail: dwimarhaendro@gmail.com, ari.w@cs.ui.ac.id

Abstract

Sorting is common process in computational world. Its utilization are on many fields from research to
industry. There are many sorting algorithm in nowadays. One of the simplest yet powerful is bubble
sort. In this study, bubble sort is implemented on FPGA. The implementation was taken on serial and
parallel approach. Serial and parallel bubble sort then compared by means of its memory, execution
time, and utility which comprises slices and LUTs. The experiments show that serial bubble sort
required smaller memory as well as utility compared to parallel bubble sort. Meanwhile, parallel bubble
sort performed faster than serial bubble sort to implement the algorithm on FPGA.

Keywords: Sorting, bubble sort, serial bubble sort, parallel.

Abstrak

Sorting adalah proses yang banyak dilakukan di dunia komputasi. Pemanfaatannya meliputi berbagai
macam bidang, dari penelitian hingga industri. Dewasa ini terdapat banyak macam algritma untuk sort-
ing. Salah satu algoritma yang paling sederhana tapi cukup akurat adalah bubble sort. Pada studi ini,
bubble sort diimplementasikan pada FPGA. Implementasi dilakukan pada pendekatan serial dan para-
lel. Bubble sort serial dan paralel dibandingkan penggunaan memori, waktu yang diperlukan untuk me-
ngimplementasi, dan utilitas yang terdiri dari slice dan LUT. Eksperimen yang dilakukan menunjukkan
bahwa bubble sort serial memerlukan lebih sedikit memori dan utilitas dibandingkan dengan bubble
sort paralel. Sementara itu, bubble sort paralel memerlukan waktu lebih sedikit untuk mengimplemen-
tasikan algoritma di FPGA.

Kata Kunci: Sorting, bubble sort, bubble sort serial, bubble sort parallel.

1. Introduction

Sorting is a process that can be utilized in many ap-
plications. The applications vary from its origin co-
mputer science to other fields such as management,
economic, etc. In computer science, sorting can be
used to sort data either ascending or descending
which is usually required in algorithm such as evo-
lutionary algorithm. In management, one example
is in risk management. The decision is taken based
upon risk calculation. Before the decision is made
the risk will be sorted to find the smallest. The
number of data to be sorted are also vary from sma-
ll number (e.g. less than 100) to large number of
data depends on the application. There are also ma-
ny variations of the algorithm in sorting process.

Several algorithms to undertake the sorting
process are selection sort, merge sort, insertion so-
rt, Heap sort, Radix sort, and bubble sort. Heap so-
rt, Radix sort, and merge sort are powerful to sort
large number of data [1]. Meanwhile the selection

sort, insertion sort and bubble sort are powerful for
few data.

Selection and bubble sort are almost similar in
term of the algorithm. The difference of those two
algorithms lie on the array utilization in selection
sort. In the selection sort, the sorting is based on the
maximum value on each array, whereas in bubble
sort each component is swapped one by one. There-
fore it leads to the complexity different for both the
algorithms. The complexity of bubble sort is O
(4n2), whereas selection sort is O (2n2) [2]. Never-
theless, for small number of input, bubble sort is
the simple but powerful algorithm compared to the
others [3].
 Bubble sort can be utilized to sort N numbers
whether ascending or descending. Basically, bub-
ble sort is undertaken in three main steps [4]. First-
ly, the algorithm would step each input from the fir-
st to the last. The first position is occupied whether
by smallest number or largest number, depend on
the orientation of the sorting process (i.e. ascending

113

mailto:E-mail:%20dwimarhaendro@gmail.com

114 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
2, June 2016

or descending). Secondly, the two adjacent input
then would be compared. Finally, if the two adja-
cent inputs are in wrong order, the algorithm would
swap it to the right order. The aforementioned steps
would be repeated until no swap is required. There-
fore, the final result would be numbers from the
smallest to the largest for ascending or from the
largest to the smallest for descending.
 Research on bubble sort have been conducted
in various application. Firstly, parallel bubble sort
to utilize the concept in parallel computing [5]. Pa-
rallel computing means several calculations under-
taken simultaneously [5]. Secondly study on bub-
ble sort to assess the performance of visualization
to promote the theory of understanding based on
application rather than syntax [6]. Thirdly, bubble
sort approach for channel routing [7]. Finally, study
that compare serial and parallel computing on bub-
ble sort with statistical bond [8]. This paper used
statistical approach rather than mathematical ap-
proach. Therefore, it is represented in variant sys-
tem rather than exact value like in mathematical ap-
proach [8].
 Sorting is a basic process, hence it can be im-
plemented in various platform. Field Programm-
able Gate Array (FPGA) is one of a desirable plat-
form to implement sorting process. FPGA is still
widely employed, especially in the industry. The
advantage of using FPGA over another device is
that in FPGA there will be no redundancy because
the gate utilized in FPGA has not been prescribed
yet [9]. Therefore, the utilization of resource is en-
ergetically effective [10]. Moreover, it is also men-
tioned that FPGA has considerable performance
[10].
 Sorting implementation on FPGA have been
researched by many researchers. Srivasta et al. [10]
proposed hybrid design for large scaling sorting on
FPGA. Other research on high-speed parallel sche-
me for data sorting on FPGA. [11,12]. Parallel sor-
ting which was conducted by Sogabe [13] and Mar-
tínez [14]. Last but not least is comparison study of
many sorting algorithms covering parallel merge
sort, parallel counting sort, and parallel bubble sort
on FPGA [15].
 The focus of this study is to implement bubble
sort algorithm on FPGA. Bubble sort was chosen
due to its simplicity and accuracy if the number of
input data is fairly small. This study would contri-
bute on two aspects. Firstly, the implementation of
bubble sort on FPGA both serial and parallel ap-
proach. Secondly, the comprehensive comparison
between serial and parallel approach on bubble sort
algorithm implementation on FPGA.
 The remainder of this paper is organized as
follows: section two would elaborate bubble sort
section three would explain the research method,

section four would shows the results and give some
discussion, and the last section is conclusions.

2. Methods

Serial Bubble sort

Generally, serial bubble sort sequentially compares
two number from leftmost to rightmost [3]. The or-
der depends on whether it is ascending or descen-
ding. If it is ascending the largest number would be
in the rightmost, otherwise would be in the left-
most. The schematic of serial bubble sort is deline-
ated in Figure 1.

As shown in Figure 1, each consecutive step
is undertaken by comparing two adjacent number.
On the top left of the figure, two leftmost adjacent
numbers are compared. In case of ascending the
smaller number would be put in left side. On the
contrary, in case of descending the larger number
would be positioned in the left side.

The next step is to compare the next two num-
bers. Similar to the first step those number are com-
pared and swapped. The same steps continue until
the last number and called first stage. After all the
number in the first stage has been compared, the
rightmost of the number will be fixedly positioned.
Therefore in the next stage, the aforementioned nu-
mber would not be compared again.

The second stage then compared the 2 left-
most number again. It continues until one number
before the last number similar to the first stage. In
Figure 1 the fixedly last number is colored orange.
Thus, it distinct which number can still be compar-
ed (blue), which cannot (orange).

The next stage until last stage is executed si-
milarly, the only difference is that in the next stage,
the rightmost number is reduced by one number as
shown in Figure 1. The stage finish when all the

Figure. 1. Scheme of serial bubble sort.

Stage 1Step 1 Step 2

Step n-1 Step n

Stage 2Step 1 Step 2

Stage n-1Step 1 Step 2

Dwi M J Purnomo, et al., Implementation of Serial and Parallel Bubble Sort on FPGA 115

number in each position has been compared to the
number which position is right. Therefore, the posi-
tion of each number will be prescribed based on the
value of the number. The pseudo code for serial
bubble sort is shown in algorithm 1.

As shown in the pseudo code, there are two
loops in total bubble sort algorithm. The first loop
is the top loop. The top loop define the stage of the
algorithm. The number of stage is the number of
data minus 1.

Meanwhile, the second loop is the bottom lo-
op. It defines the step of the algorithm. The number
of the step depends on the stage. It is number of da-
ta minus the undergoing stage.

Parallel Bubble sort

The idea of parallel bubble sort is to create parallel
swapping. When in the serial bubble sort there is
only 1 comparing process in parallel bubble sort
there are n/2 (n is total input) comparing process.
The schematic of one sorter is depicted in Figure 2.

As shown in Figure 2, there are n input data
that would be sorted (i.e. in1, in2, ..., in(n)). The
first step is comparing each two adjacent numbers
which is undertaken in swapper. After the first sw-
ap, the first and last number is located into the first
and last output respectively (i.e. out 1 and out n).
Meanwhile, the other number after the first swap
will be compared again with its adjacent number.
However, the adjacent number is now changed. In
the first swap process, the numbers to be compared

are odd number followed by even number. Whereas
in the second swap the numbers to be compared are
even number followed by odd number.

Similar with the serial bubble sort, in parallel
bubble sort there are also many stages. In each sta-
ge, contains several steps which has been previous-
ly elaborated. The schematic of the total stages in
parallel bubble sort is shown in Figure 3. As shown
in Figure 3, there are n-1 sorter. Each sorter would
sort all the input (n input). Inside each sorter, there
are two swappers as mentioned in the previous ex-
planation.

Therefore, each number will compared to all
the other numbers and placed in the right position.
The pseudo code of parallel bubble sort is shown in
Algorithm 2. As shown in the pseudo code, there
are three loops in total bubble sort algorithm. The
first loop is the top loop. The top loop define the
stage of the algorithm. The number of stage is the
number of data minus 1.

 Meanwhile, the second and third loop is the
bottom loop. It defines the step of the algorithm.

Figure 2. Scheme of steps in sorter in one stage.

in1 in2 in3 in4 in
(n-1) in(n)

out
1

out
2

out
3

out
4

out
n

Swapper Swapper Swapper

Swapper Swapper

……….

…………...

…………...

…………..…...

Algorithm 1: Serial Bubble Sort
1
2
3
4
5
6

7
8
9
10
11

% Initialization
Input_Data;
Number_of_Data;

for i in 1 to Number_of_Data-1 do
 for j in 1 to Number_of_Data-i
do
compare Input_Data(i)with
Input_Data(i+1);
If Input_Data(i)>
Input_Data(i+1)then swap;
 end for;
end for;

Algorithm 2: Parallel Bubble Sort
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

% Initialization
Input_Data;

for i in 1 to Number_of_Data-1
do
 for i in 0 to

Number_of_Data/2-1 do
compare Input(2*i+1) with
Input(2*i+2);
If Input(2*i+1)>
Input(2*i+2) then swap;

 end for;

for i in 1 to
Number_of_Data/2-1 do
compare Input(2*i) with
Input(2*i+1);
If Input(2*i)> Input(2*i+1)
then swap;

 end for;
end for;

Figure 3. Scheme of stages in parallel bubble sort.

in1 in2 in3 in4 in
(n-1)

in
(n)

out
1

out
2

out
3

out
4

out
5

out
(n-1)

Out
(n)

Sorter

Sorter

n-1 sorter

116 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
2, June 2016

The second loop is the first swapper, whereas the
third loop is the second swapper. The number of
the step in the first swapper is half of number of da-
ta minus. Meanwhile, in the second swapper is half
of number of data minus 1.

Serial Bubble Sort Implementation on FPGA

The implementation of serial bubble sort on FPGA
contains two main steps. The steps are number re-
presentation and component implementation. This
sub-section would rigorously discuss those steps.

Number Representation
In this study, the number is represented as 6 bit
two’s complement. The representation of the num-
ber is shown in Figure 4.

Component Implementation
There are four levels of component in serial bubble
sort. Firstly, the top level is bubble sort itself which
sort all the input into the right position. Secondly,
swapper which swap two inputs if the condition is
met. Thirdly, comparator which compare two inp-
uts. Lastly, adder which was utilized to subtract two
inputs to define the larger number in the compa-
rator component.

Figure 5 shows one example of bubble sort
component. In this example, only 8 inputs and out-
puts used. In the real experiment the number of in-
put and output is varied. In this component the in-

put would be ordered. The outputs are input that ha-
ve been arranged whether ascending or descending.
Inside this component, there are many swappers
which is shown in Figure 6.

Figure 6 delineates the structure of the swap-
per which form top level bubble sort. In the first
stage there are n-1 swappers i.e. to compare 2 adja-
cent numbers from 1 to n-1 with 1 increment. The
next stage the number of swapper is reduced one
each level. It means that the swapping process is
reduced one step from the previous stage.

Inside swapper component there is a compa-
rator component and multiplexer. The structure of
swapper component is depicted in Figure 7. The
comparator is delineated as one component, where-
as the multiplexer is the combination of logic gates.
The multiplexer is used to define the output after
swapping process. Therefore, it has 2 outputs.

Inside comparator component there is an N
bit adder. The structure of swapper component is
depicted in Figure 8. The comparing process is un-
dertaken by adding the first input with the negative
of the second input. Finally, inside N bit adder there
are 6 full adders which undertake the adding pro-
cess.

Parallel Bubble Sort Implementation on FPGA

Similar to the serial bubble sort, the implement-
tation of parallel bubble sort on FPGA contains two
main steps. The steps are number representation
and component implementation. The number re-
presentation in parallel bubble sort is similar with
serial bubble sort. Therefore, this sub-section wou-

Figure. 5. Bubble sort.

1 bit sign 5 bit number

Figure. 4. Number representation.

Figure. 6. Structure of the Bubble Sort.

Figure. 7. Structure of Swapper.

MultiplexerComparator

Dwi M J Purnomo, et al., Implementation of Serial and Parallel Bubble Sort on FPGA 117

ld only sophisticatedly discuss the component im-
plementation.

Component Implementation
There are five levels of component in parallel bub-
ble sort. Firstly, top level sorter which sort all the
input into the right position. Thirdly, bottom level
sort which sort each two numbers. Thirdly, swap-
er which swap two inputs if the condition is met.
Fourthly, comparator which compare two inputs.
Lastly, adder which was utilized to subtract two in-
puts to define the larger number in the comparator
component.

Figure 9 shows one example of top level sort-
er component. In this example, only 8 inputs and
outputs used. In the real experiment the number of
input and output is varied. In this component the
input would be ordered. The outputs are input that
have been arranged whether ascending or descend-
ing. Inside this component, there are many swap-
ers which is shown in Figure 10.

Figure 10 delineates the structure of the bott-
om level sorter which form top level sorter. There
are n-1 bottom level sorter to form top level sorter
with n inputs and n outputs. The large view of the
bottom level sorter is delineated in Figure 11.

Bottom level sorter consist of n inputs and n
outputs (n = 8). Each bottom sorter represent the

sorter in the block diagram which has previously
been elucidated in Figure 3. Inside bottom level so-
rter there are n-1 swapper as shown in Figure 12.

The n input from top level sorter will be map-
ed in bottom level sorter. The inputs would enter
the swapper and positioned as shown in Figure 12.
If the order is wrong, then it would be swapped.
Otherwise, no swapping would be undertaken. In-
side swapper there is comparator in which have ad-
der and multiplexer inside it. Swapper, comparator,
and adder component in parallel bubble sort are si-
milar with those in serial bubble sort.

Scenario

In this study, both serial and parallel bubble sort
would be implemented on FPGA. The input would
be varied from 4 to 40. Its increment is 2. There-
fore, the input variations are 4, 6, 8, 10, 12, 14, ..,
40. The increment is defined to be two, because in
parallel bubble sort it would be efficient if the num-
ber of input is even number.

The device utilized is Spartan 3A. Meanwhile
the value of the inputs are varied from negative and
positive. There are also similar number to test the
performance of the sorter completely.

There are three main performance criteria em-
ployed in this study. The first criteria is execution
time. The time required by the algorithm too imple-
mented in the FPGA is calculated and compared.

Figure 8. Structure of Comparator.

Figure 9. Top level sorter.

Figure 10. Structure of bottom level sorter.

Figure 11. Bottom level sorter.

118 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
2, June 2016

The second criteria is memory. Memory required
by the algorithm to operate is assessed and com-
pared. Lastly, resources needed by the algorithm.
Resources that compared cover slices and LUTs.

3. Results and Analysis

Serial Bubble Sort

From the experiments it is evident that serial bub-
ble sort can be employed to sort the numbers. From
4 to 40 inputs, all variation could successfully be
sorted by serial bubble sort. One example of 8 input
is shown in Figure 13. The representation of the nu-
mber before and after sorted are listed in Table 1.

The accuracy of serial bubble sorter is 100%.
This is due to the fact that there is no number that
is not compared by the others. Therefore, it covered
the worst case.

To improve the system by means of its memo-
ry as well as its execution time, optimization proce-
dure can be taken into account. By utilizing optimi-
zation process the unnecessary processes can be
overlooked. Hence the time and resources can be
reduced.

Parallel Bubble Sort

From the experiments it is apparent that parallel bu-
bble sort can be utilized to sort the numbers. From
4 to 40 inputs could successfully be sorted by paral-

lel bubble sort. One example of 8 input is shown in
Figure 14. The representation of the number before
and after sorted are listed in Table 2.

The accuracy of parallel bubble sorter is 100.
This is due to the fact that all number in the input
is compared by the others. Therefore, it cope with
the worst case.

To improve the system i.e. reducing memory
as well as its execution time, optimization proce-
dure can be empowered. By employing optimiza-
tion process the unnecessary processes can be era-
dicated. Therefore, the time and resources utilizati-
on can be reduced.

Comparison of Serial and Parallel Bubble Sort

In this study, serial bubble sort and parallel bubble
sort are compared. The comparison was focused on
the execution time and resources. The execution
time comparison is depicted in Figure 15. Mean-
while the resources by means its memory is deli-
neated in Figure 16.

In execution time, parallel bubble sort perfo-
rm better than serial bubble sort. Parallel bubble so-
rt can sort the input faster than serial bubble sort.

Figure. 12. Structure of swapper in parallel bubble sorter.

Figure 13. Result of 8 inputs serial bubble sorter.

TABLE 1
RESULT OF SERIAL BUBBLE SORT

Before Sorted After Sorted
Binary Decimal Binary Decimal

000011 3 111100 -4
111110 -1 111110 -1
000001 1 000001 1
111100 -4 000001 1
000100 4 000010 2
000011 3 000011 3
000010 2 000011 3
000001 1 000100 4

Dwi M J Purnomo, et al., Implementation of Serial and Parallel Bubble Sort on FPGA 119

This is due to the fact that several process in paral-
lel bubble sort can be executed parallel. Therefore,
it does not have to wait the previous process done
to be executed. Meanwhile, in serial bubble sort,
the next process would be undertaken after the pre-
vious process have finished. Even though the more
process executed at the same time would cause the

system take longer time to finish it, the result shows
that the compensation does not affect the final re-
sult.

In terms of memory, parallel bubble sort re-
quired memory larger than serial bubble sort. Pa-
rallel bubble sort required larger memory because
it undertook several processes at the same time.
Therefore, each process would take larger capacity
of memory.

This phenomenon is the compensation of
faster process in parallel bubble sort. Serial bubble
sort can be employed with limited memory capa-
city, whereas parallel bubble sort can operate fast-
er. The detail comparison between serial bubble so-
rt and parallel bubble sort are listed Table 3 for me-
mory and time comparison.

4. Conclusion

In this paper, bubble sort has been successfully im-
plemented on FPGA. Serial bubble sort required
smalller memory as well as utilities, i.e. slices and
LUTs compared to parallel bubble sort. Meanwhi-
le, parallel bubble sort is faster than serial bubble
sort to undertake the processes.

TABLE 2
RESULT OF PARALLEL BUBBLE SORT

Before Sorted After Sorted
Binary Decimal Binary Decimal

111110 -2 111100 -4
111111 -1 111101 -3
111101 -3 111110 -2
111100 -4 111111 -1
000100 4 000001 1
000011 3 000010 2
000010 2 000011 3
000001 1 000100 4

Figure 14. Result of 8 inputs parallel bubble sorter.

TABLE 3
MEMORY AND TIME COMPARISON BETWEEN SERIAL AND

PARALLEL BUBBLE SORT
Number
of Input

Memory (kB) Time(s)
Serial Parallel Serial Parallel

4 288288 301104 49.18 17.7
8 301472 326896 50.34 26.42
12 331936 376496 76.35 25.81
14 349344 443696 91.27 32.05
16 353184 482608 106.68 40.84
18 378784 529712 129.84 53.52
20 388640 534448 136.52 70.39
22 417440 590896 191.17 94.22
24 450080 656304 201.25 135.36
26 483872 725488 266.02 206.48
28 522336 802160 365.61 276.3
30 561248 883824 333.17 370.87
32 603552 967088 415.3 422.21
34 651808 1068848 497.61 535.47
36 701536 1166000 711.03 634.98
38 754336 1242144 918.59 634.12
40 808224 1351264 1065.18 904.92

Figure 15. Execution time comparison between serial and
parallel bubble sort.

Figure 16. Memory comparison between serial and
parallel bubble sort.

0
100
200
300
400
500
600
700
800
900

1000

0 20 40

tim
e

(s
)

Number of Input

Serial

Parallel

0

200000

400000

600000

800000

1000000

1200000

1400000

0 10 20 30 40

M
em

or
y

(k
B

)

Number of Input

Serial
Parallel

120 Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information), Volume 9, Issue
2, June 2016

References

[1] R. Abirami, “VHDL Implementation of Mer-

ge Sort Algorithm” International Journal of
Computer Science and Communication Engi-
neering, Vol. 3, No. 2, pp. 15-18, 2014.

[2] R. Edjlal, A. Edjlal, and T. Moradi, “A Sort
Implementation Comparing with Bubble Sort
and Selection Sort” In 3rd International Con-
ference on Computer Research and Develop-
ment, pp. 380-381, 2011.

[3] W. Min, “Analysis on Bubble Sort Algorithm
Optimization” In International Forum on In-
formation Technology and Applications, pp.
208-211, 2010.

[4] H. Sutopo, “Multimedia Based Instructional
Development: Bubble Sort Visualization” In
3rd International Conference on Software
Engineering and Service Science, pp. 791-
794, 2015.

[5] R. Rashidy, S. Yousefpour, and M. Koohi,
“Parallel Bubble Sort Using Stream Program-
ming Paradigm” In 5th International Confe-
rence on Application of Information and Co-
mmunication Technologies, pp. 1-5, 2011.

[6] P. Bellström and C. Thorén, “Learning How
to Program through Visualization: A Pilot
Study on the Bubble Sort Algorithm” In 2nd
International Conference Applications of Di-
gital Information and Web Technologies, pp.
90-94, 2009.

[7] S. S. Chen, C. H. Yang, and S. J. Chen, “Bu-
bble-Sort Approach to Channel Routing” In
IEE Proceedings - Computers and Digital
Techniques, pp. 415-422, 2000.

[8] S. K. Panigrahi, S. Chakraborty, and J. Mishra
“Statistical Bound of Bubble Sort Algorithm
in Serial and Parallel Computations” In Elec-

trical, Electronics, Signals, Communication
and Optimization, pp. 1-6, 2015.

[9] D. M. J. Purnomo, M. R. Alhamidi, A. Wibi-
sono, and M. I. Tawakal, “Investigation of
Flip-Flop Performance on Different Type and
Architecture is Shift Register with Parallel
Load Applications” Jurnal Ilmu Komputer
dan Informasi, pp. 87-95, 2015.

[10] A. Srivastava, R. Chen, V. K. Prasanna, and
C. Chelmis, “A Hybrid Design for High Per-
formance Large-scale Sorting on FPGA” In
ReConFigurable Computing and FPGAs, pp.
1-6, 2015.

[11] S. Dong, X. Wang, and X. Wang, “A Novel
High-Speed Parallel Scheme for Data Sorting
Algorithm Based on FPGA” In 2nd Interna-
tional Congress on Image and Signal Pro-
cessing, pp. 1-4, 2009.

[12] F. A. Alquaied and M. A. AlShaya, “A Novel
High-Speed Parallel Sorting Algorithm Based
on FPGA” In Saudi International Electronics,
Communications and Photonics Conference,
pp. 1-4, 2011.

[13] Y. Sogabe and T. Maruyama, “FPGA Accele-
ration of Short Read Mapping based on Sort
and Parallel Comparison” In 24th Internatio-
nal Conference on Field Programmable Lo-
gic and Applications, pp. 1-4, 2014.

[14] J. Martínez, R. Cumplido, and C. Feregrino,
“An FPGA-based Parallel Sorting Architec-
ture for the Burrows Wheeler Transform” In
International Conference on Reconfigurable
Computing and FPGAs, pp. 7-14, 2005.

[15] S. Bique, W. Anderson, M. Lanzagorta, and
R. Rosenberg, “Sorting Using the Xilinx Vir-
tex-4 Field Programmable Gate Arrays on the
Cray XD1” In CUG 2008 Proceedings, pp. 1-
12, 2008.

