

УНИВЕРЗИТЕТ У НОВОМ САДУ

ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА У
НОВОМ САДУ

Ivan Prokić

Formal modeling and analysis of
resource usage and sharing in
distributed software systems

DOCTORAL DISSERTATION

Иван Прокић

Развој и анализа формалних модела за
коришћење и дељење ресурса у
дистрибуираним софтверским

системима

ДОКТОРСКА ДИСЕРТАЦИЈА

Нови Сад, 2019

УНИВЕРЗИТЕТ У НОВОМ САДУ  ФАКУЛТЕТ ТЕХНИЧКИХ НАУКА

21000 НОВИ САД, Трг Доситеја Обрадовића 6

КЉУЧНА ДОКУМЕНТАЦИЈСКА ИНФОРМАЦИЈА

Редни број, РБР:

Идентификациони број, ИБР:

Тип документације, ТД: Монографска документација

Тип записа, ТЗ: Текстуални штампани запис

Врста рада, ВР: Докторска дисертација

Аутор, АУ: Иван Прокић

Ментор, МН: др Јованка Пантовић, др Хуго Филипе Мендес Торес Виеира

Наслов рада, НР: Развој и анализа формалних модела за коришћење и дељење
ресурса у дистрибуираним софтверским системима

Језик публикације, ЈП: Енглески

Језик извода, ЈИ: Српски, енглески

Земља публиковања, ЗП: Република Србија

Уже географско подручје, УГП:

Година, ГО: 2019

Издавач, ИЗ: Ауторски репринт

Место и адреса, МА: Нови Сад, Факултет техничких наука, Трг Доситеја Обрадовића 6

Физички опис рада, ФО:
(поглавља/страна/ цитата/табела/слика/
графика/прилога)

4/156/116/15/0/0/0

Научна област, НО: Математичке науке

Научна дисциплина, НД: Формални модели у рачунарству

Предметна одредница/Кључне речи, ПО: Процесни рачуни, типски системи, конкурентни системи, дистрибуирани
системи, безбедност, приватност, контрола коришћења ресурса,
контрола дељења ресурса

УДК

Чува се, ЧУ: Библиотеци Факултета техничких наука, Трг Доситеја Обрадовића 6, Нови
Сад

Важна напомена, ВН:

Извод, ИЗ: У тези су разматрани проблеми формалног описа и анализе дељења и
коришћења ресурса у дистрибуираним софтверским системима. Уведен је
један рачун који моделира поверљиво дељење имена и један који
моделира контролисано коришћење ресурса. За други модел предложен
је и типски систем за статичку проверу који осигурава одсуство
неауторизованог коришћења ресурса у систему.

Датум прихватања теме, ДП: 05.09.2019.

Датум одбране, ДО:

Чланови комисије, КО: Председник: др Јелена Иветић, доцент ФТН

 Члан: др Љубо Недовић, доцент ФТН

 Члан: др Силвиа Гилезан, редовни професор ФТН Потпис ментора

Члан,
ментор:

др Хуго Филипе Мендес Торес Виеира, доцент
Универзитет Беира Интериор Ковиља

Члан,
ментор:

др Јованка Пантовић, редовни професор ФТН

Образац Q2.НА.06-05- Издање 1

Accession number, ANO:

Identification number, INO:

Document type, DT: Monographic publication

Type of record, TR: Textual printed material

Contents code, CC: PhD thesis

Author, AU: Ivan Prokić

Mentor, MN: dr Jovanka Pantović, dr Hugo Filipe Mendes Torres Vieira

Title, TI: Formal modeling and analysis of resource usage and sharing in distributed
software systems

Language of text, LT: English

Language of abstract, LA: Serbian, english

Country of publication, CP: Republic of Serbia

Locality of publication, LP:

Publication year, PY: 2019

Publisher, PB: Author’s reprint

Publication place, PP: Novi Sad, Faculty of Technical Sciences, Trg Dositeja Obradovića 6

Physical description, PD:
(chapters/pages/ref./tables/pictures/graphs/appendix
es)

4/156/116/15/0/0/0

Scientific field, SF: Мathematics

Scientific discipline, SD: Formal Models in Computer Science

Subject/Key words, S/KW: Process calculi, type systems, concurrent systems, distributed systems, security,
privacy, resource usage control, sharing resource control

UC

Holding data, HD: Library of the Faculty of Techincal Sciences, Trg Dositeja Obradovića 6, Novi
Sad

Note, N:

Abstract, AB: This thesis investigates problems of formal, mathematically based,
representation and analysis of controlled usage and sharing of resources in
distributed software systems. We present a model for confidential name passing,
and a model for controlled resource usage. For the second model we also
introduce a type system for performing a static verification that can ensure
absence of unauthorized usages of resources in the system.

Accepted by the Scientific Board on,
ASB:

September 05, 2019

Defended on, DE:

Defended Board, DB: President: dr Jelena Ivetić, assistant professor at FTN

 Member: dr Ljubo Nedović, assistant professor at FTN

 Member: dr Silvia Ghilezan, full professor at FTN Menthor's sign

Member,
Mentor:

dr Hugo Filipe Mendes Torres Vieira, assistant professor at
Universidade de Beira Interior Covilhã

Member,
Mentor:

dr Jovanka Pantović, full professor at FTN

Obrazac Q2.НА.06-05- Izdanje 1

Acknowledgements

First of all, I would like to express my sincere gratitude to my mentors Professor
Jovanka Pantovi¢ and Professor Hugo Torres Vieira, for their unsel�sh help and
experienced guidance. Before starting my PhD studies I had no idea what doing
research means. They introduced me to the wonderful world of formal methods
and shown me how far one needs to go in order to extract the juice out of his work.
Above all, I thank them for always encouraging me to �keep up the good work�,
and for demonstrating what it takes to be a true scientist and a good person.

To my elementary and high school teachers, and my professors at the university,
thank you for making me prepared for doing the Ph.D.

I would like to thank my colleagues at the Chair of Mathematics at Faculty
of Technical Sciences for letting me be part of the family and for sharing all the
good and the bad that our job carries.

To all of my friends, for making my life happier.
To my family, I owe the most. I thank my �in-law� family Radovan, Jasna,

and Maja, for their great support. To my sister Draginja, her husband Bojan and
my nieces Jelisaveta and Jovana, to my older brother Mladen and his wife Nina,
and to my younger brother Aleksandar, thank you for being a perfect family. To
my parents Jovanka and Sini²a, for their endless love. To my wife Sanja, and
our daughters Tamara and Lenka, for their patience, support, and unquestionable
love, thank you for being my world.

Rezime

Rasprostranjenost distribuiranih softverskih sistema razli£itih namena promenila
je na£in na koji ljudi komuniciraju, sti£u znanja i vode biznise: skoro svi as-
pekti ljudskog ºivota postali su povezani sa internetom. Ovaj sistem me�usobno
povezanih ra£unarskih instanci napravio je veliki pozitivan uticaj na svakodnevni
ºivot, od brze i jednostavne komunikacije putem dru²tvenih mreºa i ra£unarskih
platformi dostupnih putem interneta, do distribuiranih sistema za pla¢anja i krip-
tovaluta zasnovanih na blockchain tehnologijama. Me�utim, deljenje informa-
cija, prava pristupa bazama podataka i prava pristupa ra£unarskim platformama,
kao i deljenje drugih resursa otvara i nove probleme, me�u kojima su pitanja
bezbednosti, pristupa£nosti i dostupnosti. Postoji veliki broj primera u kojima
su napada£i (krakeri) uspeli da zloupotrebe previde programera koji su razvijali
sisteme. Jedan takav skoriji primer je i gre²ka koja je omogu¢ila nepravilno gener-
isanje tokena za pristup li£nim pro�lima na Facebook-u. Tu gre²ku je za sada
nepoznati napada£ uspeo da iskoristi da bi do²ao do li£nih podataka sa skoro 50
miliona naloga [95]. Takvi primeri jasno ukazuju na probleme kontrole deljenja i
kori²¢enja resursa u distribuiranim softverskim sistemima, problemima kojima se
ova teza bavi kori²¢enjem formalnih metoda.

Pouzdanost distriburanih softverskih sistema moºe zavisiti od velikog broja fak-
tora i £esto nije lako £ak ni de�nisati ²ta se pod pouzdano²¢u odre�enog sistema
podrazumeva. Jedan od mogu¢ih pristupa kod dizajna i veri�kacije takvih sistema
je kori²¢enje formalnih, matemati£ki zasnovanih metoda. Formalne metode pred-
stavljaju tehnike i alate za speci�kaciju i veri�kaciju kompleksnih (softverskih i
hardverskih) sistema zasnovane na matemati£kim i logi£kim principima. Formalni
dizajn obuhvata dve faze: formalnu speci�kaciju i veri�kaciju. U fazi formalne
speci�kacije (modeliranja) de�ni²e se sistem koriste¢i jezik modeliranja, naj£e²¢e
koriste¢i preciznu matemati£ku sintaksu i semantiku. Razvijaju¢i formalnu speci-
�kaciju, uglavnom nastaje i skup teorema koje opisuju osobine tog sistema. U
fazi veri�kacije, ove teoreme se precizno matemati£ki dokazuju. U konkurentnom
ra£unarstvu, neki od poznatih formalnih modela koji se koriste za speci�kaciju i
veri�kaciju osobina sistema su Petrijeve mreºe [83, 94], komuniciraju¢i automati
sa kona£nim brojem stanja [20] i procesni ra£uni [54, 68, 73, 74].

Cilj ove teze je da predstavi dve speci�kacije zasnovane na dva procesna ra£una
koje tretiraju neke aspekte bezbednosti i kontrole pristupa u distribuiranim sis-
temima. Kona£ni cilj je stvoriti uslove za bolje razumevanje koncepata izu£avanih
u ovom radu i omogu¢iti njihovu kasniju ispravnu implementaciju.

Komunikacija putem distribuiranih sistema, ponekad uklju£uju¢i interakcije
sa nepoznatim i nepouzdanim korisnicima, je postala svakodnevna, a u nekim

i

slu£ajevima £ak i nezaobilazna rutina. U mnogim situacijama razmenjena infor-
macija je privatna i zahteva paºljivo rukovanje i kori²¢enje. Na primer, osetljivi
privatni podaci, kao ²to su broj kreditne kartice ili adresa, moraju biti otkriveni
tokom kupovine putem interneta, ali sa druge strane ove informacije ne bi smele
biti dalje deljene od strane korisnika ili aplikacije koji prima informaciju. Ovakvi
primeri ukazuju na probleme kontrole deljenja informacija u distribuiranim sis-
temima. Dakle, deljenje informacija sa tre¢im licima moºe dovesti do neºeljene
diseminacije. �ak i u slu£ajevima kada se korisnicima generalno moºe verovati
postoji mogu¢nost previda koji mogu dovesti do zloupotreba.

Problem privatnosti moºe i mora biti sagledan sa strane tehnologije ali i prava.
Jedan od pionira koji su prou£avali privatnost iz obe perspektive je pravnik Alan
Westin. On je primetio �da ¢e integracija kontrola privatnosti u nove tehnologije
zahtevati snaºan napor...� [114]. Iako nove tehnologije donose nove pretnje za
kontrolu privatnosti, one mogu doneti i nove na£ine za za²titu privatnosti [109].
Solove [105] uvodi taksonomiju i navodi £etiri vrste naru²avanja privatnosti: saku-
pljanje informacija, invazija, diseminacija i obra�ivanje informacija. Nedovoljna
kontrola nad deljenjem informacija u distribuiranim sistemima moºe biti direktno
povezana sa diseminacijom.

Solove daje dalju taksonomiju naru²avanja privatnosti putem diseminacije, ali
sve ove podvrste uglavnom prepoznaju ²tetu koja moºe nastati kod otkrivanja i
deljenja osetljivih informacija. Komunikacija me�u u£esnicima je centralni aspekt
distribuiranih sistema, a kontrola protoka informacija u takvim sistemima £esto
ima svoje pote²ko¢e. Entiteti u takvim sistemima mogu imati razli£ita prava za
manipulaciju odre�enim informacijama. Na primer, korisnik bankovnog ra£una
ima ovla²¢enja da koristi broj kartice za pla¢anja putem interneta, moºe povla£iti
odre�ena sredstava sa bankovnog ra£una, itd. Sa druge strane, kod isplate banka
moºe izvr²iti uvid u stanje kako bi proverila da li postoji dovoljno sredstava na
ra£unu. Ako se za trenutak fokusiramo na kontrolu protoka informacija, moºemo
uo£iti da bi broj kreditne kartice trebalo da moºe poslati samo korisnik te kartice,
ali ne i banka koja prima tu informaciju. To jest, banka ne bi trebalo da ima
prava da prosle�uje informaciju u ovom slu£aju. Za naru²avanje diseminacije
informacija, prosle�ivanje moºe biti prepoznato kao jedna od glavnih meta gde
kontrola mora biti uspostavljena.

Ako razmatramo prava koja entitet moºe imati u odnosu na komunikacioni
kanal, moºemo razlikovati prava na kori²¢enje kanala za slanje i £itanje, pravo da
se kreira novi kanal i da se po²alje jedan njegov kraj drugom korisniku, prava da
se prosle�uju primljena imena kanala, itd. Davanje prava o prosle�ivanju imena
kanala svim entitetima apriori moºe kasnije prouzokovati pote²ko¢e oko kontrole
diseminacije, jer u tom slu£aju kontrola mora da bude sprovedena u celom sistemu.

Posmatrajmo sada jedan jednostavan primer u kom se poverljivo ime kanala
session ²alje od jednog do drugog korisnika, kao ²to je onaj naveden u odeljku
Introduction. U ovom primeru, korisnik Alice kreira novi kanal i ²alje jedan njegov
kraj korisniku Bob. Nakon sinhronizazije u kojoj se razmeni ime kanala, ova dva
korisnika mogu napraviti privatnu sesiju na kanalu session. Me�utim, u na²em
primeru Bob odlu£uje da prosledi ime kanala session nekom tre¢em korisniku.

U nekim slu£ajevima moºe biti £ak i poºeljno dati prava prosle�ivanja imena

ii

kanala nekim korisnicima. Na primer, zadaci mogu biti prosle�ivani od nadre�enog
(eng. master) procesa do pot£injenog (eng. slave) procesa, i tada pot£injeni proces
moºe neprimetno da bude uklju£en u sesiju. U na²em primeru, ova situacija moºe
biti posmatrana kao problemati£na sa ta£ke gledi²ta korisnika Alice, jer ona i
dalje veruje da drugi kraj kanala, koji ona smatra poverljivim, drºi Bob. Ako
je session kanal koji je Alice kreirala, kojim se moºe pristupiti nekim njenim
poverljivim podacima, i koji je poslat isklju£ivo korisniku Bob, moºemo re¢i da
Bob ne bi trebalo da stekne mogu¢nost da ga dalje prosle�uje samo zato ²to je u
nekom trenutku primio ime kanala session. U svakom slu£aju, moºemo napraviti
razliku izme�u ova dva slanja, jer prvo slanje je izveo korisnik koji je kreirao kanal
(Alice), a u drugom je kanal zapravo prosle�en od strane u£esnika koji je primio
kanal (Bob).

Nekoliko formalnih modela je do sada predloºeno u svrhu opisivanja restriko-
vanog deljenja imena, kako bi se postiglo da ime moºe biti razmenjeno samo u
okviru unapred de�nisanog dela sistema. Takav je i model koji uvodi pojam
grupe za imena [26] i model koji uvodi pojam skrivanja imena [46]. Me�utim, u
praksi imamo i slu£ajeve u kojima ne postoji unapred de�nisan deo sistema u kom
poverljiva informacija moºe biti razmenjena. Na primer, u prethodnom primeru
moºemo re¢i da Alice moºe u nekom trenutku sama da odlu£i da po²alje ime
kanala session drugim u£enicima. Generalno, privatne informacije nekada moraju
biti deljene i u otvorenim sistemima.

Drugi domen koji ova teza obra�uje je izu£avanje kontrole prava pristupa u
distribuiranim softverskim sistemima. Za po£etak, moºemo primetiti da kon-
trola prava pristupa ra£unarskim resursima postaje sve vaºnija, uprkos sve ve¢oj
raspoloºivosti takvih resursa. Potreba za kontrolom pristupa moºe biti motivisana
mnogim faktorima, kao ²to su privatnost, bezbednost i ipak postojanje nekog
ograni£enja kapaciteta. Primeri ograni£enog kapaciteta mogu biti direktno povezani
sa �zi£kim ure�ajima, kao ²to su ²tampa£i, mobilni telefoni i procesori, jer svi
imaju �zi£ki ograni£ene mogu¢nosti. Iako neki virtualni ure�aji, kao ²to su deljena
memorijska ¢elija i web servis, imaju neograni£en potencijal, njihova dostupnost
je £esto ograni£ena.

Privatnost i bezbednost su neki od centralnih problema koji se pojavljuju kod
razvoja distribuiranih sistema. Jedan od razloga je taj ²to distribuirani sistemi
postaju sve vi²e heterogeni i kompleksni, a kontrola prava pristupa u takvim sis-
temima moºe biti veoma te²ka. Opravdanje za ovakve tvrdnje moºemo na¢i skoro
svakodnevno, ve¢ pomenuti primer gre²ke na Facebook-u je samo jedan u nizu.
Takvi primeri su prouzrokovali milionske gubitke kompanija, ali jo² vaºnije, sig-
urnost i privatnost korisnika je u takvim situacijama bila izloºena opasnosti. For-
malni modeli i veri�kacije mogu biti korak bliºe ka pouzdanijim distribuiranim
softverskim sistemima [21].

Razli£ite metode za kontrolu prava pristupa u distribuiranim softverskim sis-
temima razvijane su tokom godina. Njihov razvoj pratio je stalne promene u
strukturi i veli£ini sistema. Za male sisteme, i za sisteme sa unapred de�nisanim
brojem u£esnika, kontrola prava pristupa resursima obi£no se postiºe kori²¢enjem
lista za kontrolu pristupa (eng. access control lists - ACL). ACL metoda koristi
liste sa pravima koje su dodeljene resursima. Pravo pristupa resursu moºe biti

iii

odobreno samo korisniku koji je naveden kao subjekat sa odgovaraju¢im pravom
pristupa na listi datog resursa.

Iako ACL metod daje prirodan na£in za kontrolu prava pristupa, u velikim sis-
temima koji su dinami£ni po pitanju broja i sastava u£esnika ovaj metod postaje
teºak za implementaciju. Razlog za to je ²to u ACL metodi svaka lista £uva po-
datke o svakom korisniku individualno, a to moºe predstavljati veliki tro²ak pri
odrºavanju sistema. Na primer, posmatrajmo aplikaciju kao ²to je Facebook, koju
koristi preko milijardu korisnika. Imati liste korisnika koji mogu da pristupe resur-
sima, kao ²to su fotogra�je ili postovi svakog korisnika, moºe postati neprakti£no.

Upravljanje pristupom na osnovu uloga (eng. role-based access control method
- RBAC) [96] je uvedeno kao alternativa ACL metodi. RBAC metoda de�ni²e skup
uloga i svakom korisniku dodeljuje se jedna ili vi²e uloga. Na primer, da bi sistem
korisniku dozvolio ili odbio pristup fotogra�ji drugog korisnika na Facebook-u, ne
mora se oslanjati na njegov identitet direktno. Prakti£nije re²enje je proveriti da
li korisnik koji poku²ava da pristupi fotogra�ji ima ulogu �prijatelja� sa vlasnikom
fotogra�je. Pored svih prednosti (i mana) koje RBAC metoda ima u pore�enju sa
ACL metodom, ona i dalje ima nedostatak da mora postojati centralni mehanizam
za izdavanje i proveravanje uloga korisnika.

Upravljanje pristupom na osnovu klju£a (eng. capability-based method for ac-
cess control) [116] je metoda koja je vi²e prilago�ena decentralizovanim sistemima.
U ovoj metodi, reference koje se ne mogu kopirati kreira i izdaje centralni meh-
anizam. Jednom izdata referenca ostaje kod korisnika i proverava se samo kada
korisnik ºeli da pristupi resursu. Dakle, u ovoj metodi centralni mehanizam ne
mora da drºi informacije o kontroli pristupa za svakog korisnika pojedina£no, do-
voljno je da proverava validnost referenci (klju£eva) samo kada je to potrebno.
Tako�e, ove reference mogu biti delegirane izme�u dva u£esnika, bez potrebe da
se o tome obavesti centralni mehanizam za kontolu pristupa.

Jo² jedan domen koji obuhvata sli£ne principe kao i poslednja navedena metoda
za upravljanje pristupom je domen licenci: korisnik moºe upotrebiti odre�enu
aplikaciju samo pod uslovom da poseduje odgovaraju¢u licencu. U ovom domenu
tako�e moºemo na¢i pojam eksplicitne delegacije. Na primer, korisnik koji ºeli
da uposli aplikaciju na ra£unarskoj platformi dostupnoj putem interneta moºe
delegirati licencu za tu aplikaciju koju ve¢ poseduje. Taj pojam poznat je pod
nazivom Bring Your Own License [38] (BYOL). Posebna vrsta licenci kao ²to
su licence za konkurentnu upotrebu (eng. concurrent use licenses) nudi dodatnu
�eksibilnost kod kori²¢enja [10]. Kao primer, posmatrajmo jednu kompaniju koja
koristi aplikaciju i koja poseduje odre�eni broj licenci potrebnih za kori²¢enje te
aplikacije. U slu£aju licenci za konkurentnu upotrebu, licence mogu biti dostupne
svim korisnicima u okviru domena date kompanije, ali broj licenci odre�uje gornju
granicu za broj korisnika koji mogu koristiti aplikaciju u bilo kom trenutku [5].

U ovoj tezi istraºujemo probleme formalnog, matemati£ki zasnovanog, modeli-
ranja i analize kontrolisanog kori²¢enja i deljenja resursa u distribuiranim softver-
skim sistemima. Teza je organizovana u £etiri poglavlja.

Prvo poglavlje daje motivaciju za razvoj modela uvedenih u drugom i tre¢em
poglavlju teze.

iv

Drugo poglavlje ove teze daje jedan novi pristup za prou£avanje prvog prob-
lema koji smo do sada naveli: ograni£ene diseminacije poverljivih informacija.
U ovom poglavlju uvodimo formalni model koji ograni£ava komunikacije koje se
mogu okarakterisati kao prosle�ivanje. U tu svrhu predstavljen je ra£un nazvan
Con�dential π-calculus, ili skra¢eno Cπ. Ovaj ra£un predstavlja jedan fragment
£uvenog Milnerovog π-ra£una [102], koji direktno u sintaksi onemogu¢ava prosle�i-
vanje primljenih imena. Jedini resursi u na²em modelu su imena kanala, i mi
tretiramo imena kanala kao poverljive informacije. Glavna razlika u pore�enju
sa originalnim π-ra£unom je ta ²to u Cπ-ra£unu jednom primljena imena kanala
kasnije nije mogu¢e poslati. Ovo poglavlje teze se oslanja na publikovani rad

1. I. Proki¢. The Cpi-calculus: a model for con�dential name passing. In
M. Bartoletti, L. Henrio, A. Mavridou, and A. Scalas, editors, Proceedings
12th Interaction and Concurrency Experience, ICE 2019, Copenhagen,
Denmark, 20-21 June 2019, volume 304 of Electronic Proceedings in The-
oretical Computer Science, pages 115�136. Open Publishing Association,
2019.

ali ga dopunjava i pro²iruje. Tako�e, ovde uvodimo novo pojednostavljeno kodi-
ranje iz π-ra£una u Cπ-ra£un i predstavljamo kompletan dokaz operacione kore-
spondencije za ovde uvedeno kodiranje. Doprinosi ovog poglavlja u tezi su slede¢i:

� Uvo�enje novog, jednostavnog fragmenta π-ra£una koji nam omogu¢ava da
predstavimo komuniciranje poverljivih imena ograni£avanjem mogu¢nosti
prosle�ivanja imena. �injenica da je uvedeni model fragment uveliko izu£a-
vanog π-ra£una, daje nam mogu¢nost da iskoristimo ve¢ razvijene teorijske
rezultate koji postoje za π-ra£un.

� Uvo�enje de�nicije osobine neprosle�ivanja i, kao provera dobre zasnovanosti,
pokazivanje da svi procesi iz na²eg Cπ-ra£una zadovoljavaju ovu osobinu.

� Koriste¢i jaku bisimulaciju, bihevioralnu ekvivalenciju iz π-ra£una, pokazan
je jedan bihevioralni identitet koji potvr�uje da u na²em ra£unu moºemo
direktno predstaviti kreiranje zatvorenih domena za kanale.

� Data je detaljna diskusija o ekspresivnosti Cπ-ra£una na nekoliko pro²irenih
primera, koji uklju£uju reprezentaciju kreiranja zatvorenih domena za kanale,
autentikacije, zatvorenih i otvorenih grupa, od kojih svi mogu biti direktno
predstavljeni u na²em modelu.

� Uvedeno je novo kodiranje π-ra£una u Cπ-ra£un, £ime je pokazano da je
na² ra£un, iako predstavlja tek fragment π-ra£una koji razmatra samo deo
njegove sintakse, podjednako ekspresivan kao i π-ra£un. Tako�e, u ovom
poglavlju dat je detaljan dokaz operacione korespondencije za uvedeno kodi-
ranje.

Centralni pojam svih formalnih modela za konkurentne i distribuirane sis-
teme je proces. Proces ozna£ava entitet koji moºe da komunicira sa drugim
takvim entitetima koriste¢i zajedni£ke komunikacione kanale. Neke od prvih i

v

najvi²e izu£avanih procesnih algebri su Milnerov ra£un komunikacionih sistema
(eng. Calculus of Communicating Systems - CCS) [68] i Hoareov ra£un komu-
nikacionih sekvencijalnih procesa (eng. Communicating Sequential Processes -
CSP) [54]. Napomenimo da je CSP posluºio kao osnovni model za programski
jezik Go koji je razvio Google. Za sveobuhvatniji pregled istorije razvoja procesnih
algebri pogledati [8].

Milnerov CCS-ra£un je jedan od prvih koji je formalno izu£avao konkurentne
sisteme. Ovaj ra£un uvodi pojmove paralelne kompozicije, sinhronizacije slanja i
primanja na istom imenu, kreiranja privatnih imena i sumacije (izbora). U ovoj
tezi operator sumacije nije razmatran, ali verujemo da bi dodavanje ovog operatora
moglo da se uradi na uobi£ajen na£in. U CCS-ra£unu moºemo de�nisati proces
Alice | Bob koji ozna£ava dva konkurentna potprocesa Alice i Bob, spojena oper-
atorom paralelne kompozicije. Dva konkurentna procesa mogu da se sinhronizuju
putem zajedni£kog kanala. Recimo, u procesu

chn.Alice | chn.Bob

proces na levoj strani chn.Alice moºe da izvede akciju slanja na kanalu chn, dok
proces na desnoj strani moºe da izvede (dualnu) akciju primanja na istom kanalu.
Nakon sinhronizacije po£etni proces se svodi na Alice | Bob. U CCS-ra£unu
procesi mogu i da kreiraju nova imena kanala, £ime se modeluje stvaranje privatnih
kanala koji nisu dostupni drugim procesima. U procesu

((νsession)Alice) | Bob

ime kanala session je poznato samo procesu Alice i moºe biti kori²¢eno samo za
sinhronizacije unutar tog procesa, dok proces Bob nema nikakvu informaciju o
postojanju tog kanala. Ono ²to CCS-ra£un ne moºe da predstavi direktno jeste
mobilnost kanala.

Tamo gde je Milner stao sa CCS-ra£unom, nastavio je sa π-ra£unom, koji
pro²iruje CCS da bi dozvolio mobilnost komunikacionih kanala. U π-ra£unu
procesi u toku sinhronizacije na kanalu mogu da razmenjuju imena kanala, time
stvaraju¢i nove konekcije me�u sobom. Nekoliko programskih jezika inspirisano je
ovim modelom [39, 66, 86, 104, 108, 113].

U π-ra£unu, moºemo de�nisati proces

chn!session.Alice | chn?x.Bob

gde na levoj strani paralelne kompozicije imamo proces koji je spreman da ²alje
ime kanala session putem kanala chn, dok na desnoj strani imamo proces koji je
spreman da primi bilo koje ime kanala na kanalu chn, a zatim da ime x (koje se
jo² zove i �placeholder�) unutar procesa Bob bude zamenjeno primljenim. Ovaj
mehanizam daje novu dimenziju kada se kombinuje sa kreiranjem novih kanala, jer
sada kreirani kanali mogu biti razmenjeni me�u procesima, £ime se mogu stvarati
privatne konekcije. Ovo je ujedno i poslednji sastojak koji nam je trebao da bismo
u π-ra£unu modelovali primer sa prosle�ivanjem imena kanala koji smo ranije
spominjali:

((νsession)chn!session.Alice) | chn?x.forward !x.Bob ′

vi

U ovom procesu kanal session je poznat samo potprocesu sa leve strane paralelne
kompozicije. Me�utim, nakon sinhronizacije sa potprocesom sa desne strane,
po£etna kon�guracija evoluira u

(νsession)(Alice | forward !session.Bob ′′)

gde je ime privatnog kanala session sada poznato i desnom potprocesu (to jest,
Bob ′′ predstavlja proces koji se dobije od procesa Bob ′ kada sva pojavljivanja imena
x zamenimo imenom session). Dakle, u π-ra£unu domen privatnog imena (²to
predstavlja deo sistema gde je ime poznato) se moºe uve¢ati nakon sinhronizacije.
Ako pretpostavimo da paralelno postoji i tre¢i aktivni process

(νsession)(Alice | forward !session.Bob ′′) | forward?y.Carol

onda proces koji obuhvata Bob ′′ moºe sada proslediti ime kanala session tom
tre¢em procesu putem kanala forward , a da o tome prethodno nije obavestio Alice.
Ova diseminacija imena moºe dovesti do situacije u kojoj je privatnost Alice kom-
promitovana.

Cπ-ra£un diskvali�kuje osobinu prosle�ivanja, te stoga chn?x.forward !x.Bob ′

nije Cπ proces. Formalno, na² ra£un razlikuje imena kanala i imena promenljivih
koje se pojavljuju u pre�ksu primanja (eng. placeholder). Mi uvodimo dva dis-
junktna skupa imena, jedan ozna£en sa C koji £ine imena kanala, i drugi ozna£en
sa V koji £ine imena promenljivih. Ova distinkcija je iskori²¢ena kod de�nisanja
jezika na²eg modela, jedino imena iz skupa C mogu biti navedena kao imena za
slanje u pre�ksu koji de�ni²e ovu akciju. Ovakvo sintaksno ograni£enje samo po
sebi ne daje uop²teno ograni£enje da se imena kanala, koja su posmatrana kao
poverljiva informacija, ne mogu razmenjivati, niti ograni£ava deo sistema u kom
ime moºe biti primljeno. Ono ²to Cπ postiºe zapravo je lokalizacija dela sistema
koji moºe poslati ime kanala, a to je onaj deo gde je kanal prvobitno kreiran.
Ukoliko je neophodno uspostaviti kontrolu nad slanjem imena nekog kanala, u
Cπ-ra£unu je dovoljno skoncentrisati se na deo sistema gde je kanal kreiran, dok
bi, recimo, u π-ra£unu bilo neophodno kontrolu uspostaviti nad £itavim delom
sistema koji zna za dato ime.

Ono ²to je posledica speci�£nosti Cπ-ra£una je to da moºemo razlikovati dva
nivoa ovla²¢enja koja proces moºe imati u odnosu na neki kanal. Proces koji
kreira kanal ima ovla²¢enja da komunicira putem kanala, ali tako�e moºe i da
po²alje ime kanala drugim procesima. Proces koji u nekom trenutku primi ime
kanala sti£e pravo da komunicira putem tog kanala, ali ne i da dalje prosle�uje
ime tog kanala. Prvi tip procesa u ovoj tezi je nazvan administrator kanala, a
drugi korisnik kanala. Svaki administrator je istovremeno i korisnik, ali korisnik
ne mora biti i administrator. Jo² jedna posledica lokalizacije dela sistema u kom
se ime datog kanala moºe poslati u tezi je iskori²¢ena i da pokaºe kako Cπ-ra£un
moºe biti iskori²¢en za modelovanje autentikacije. Naime, sama mogu¢nost slanja
imena nekog kanala zapravo pripada samo administratoru kanala, a onom procesu
koji prima to ime zapravo govori sa kojim procesom u tom trenutku komunicira
(sa administratorom tog kanala).

Restrikcija koju Cπ-ra£un pravi u odnosu na π-ra£un zapravo su²tinski ne uti£e
na ekspresivnu mo¢, a to je i dokazano u samoj tezi. Sama ideja reprezentacije

vii

prosle�ivanja u Cπ-ra£unu je izdvajanje procesa koji bi bili zaduºeni isklju£ivo za
slanje odre�enog imena kanala. Drugi procesi bi, ukoliko ºele da po²alju neko
ime kanala, zapravo umesto slanja samog imena prvo kontaktirali odgovaraju¢i
izdvojeni proces koji bi izvr²io slanje umesto njih. Ova ideja je u tezi formalizovana
u kodiranju π-ra£una u Cπ-ra£un.

Veliki broj teorijskih istraºivanja konkurentnih i distribuiranih sistema di-
rektno je povezan sa π-ra£unom. Mnogi radovi koriste π-ra£un kao osnovni i
pro²iruju njegovu sintaksu kako bi stekli odgovaraju¢i nivo apstrakcije da mo-
deluju poliadi£ne komunikacije [25, 70], komunikacije vi²eg reda [71], distribuirane
sisteme [50], sigurnost i privatnost [1, 2, 26, 32, 46, 49], i mnoge druge aspekte,
uklju£uju¢i i kontrolu kori²¢enja resursa koju razmatramo u tre¢em poglavlju ove
teze. Sa druge strane, deo istraºiva£a je koristio suºavanje sintakse π-ra£una
kako bi modelovali asinhrone komunikacije [18, 55], unutra²nju mobilnost [99], i
lokalizaciju [67], a na² Cπ-ra£un svakako spada u ovu kategoriju.

Tre¢e poglavlje predstavlja formalni model za izu£avanje kontrole pristupa
resursima u distribuiranim softverskim sistemima. Ovaj ra£un u apstraktnom
smislu modeluje �capabilities� metodu za kontrolu pristupa, ali tako�e i licence za
konkurentnu upotrebu, uvode¢i pojam deljene autorizacije. Autorizacije se mogu
de�nisati kao funkcije koje odre�uju prava i privilegije u odnosu na neki resurs.
Kao i u drugom poglavlju, i ovde nam je fokus na sistemima kod kojih je komu-
nikacija centralni pojam, tako da su jedini resursi koje ovde razmatramo zapravo
imena komunikacionih kanala. Dakle, autorizacija de�ni²e pravo da se koristi
odre�eni komunikacioni kanal. Deljene autorizacije, koje posmatramo u ovom
modelu, de�ni²u prava da se kanal koristi konkurentno. Ovo zapravo zna£i da
jedna autorizacija moºe biti dostupna ve¢em broju korisnika, ali da je u svakom
trenutku moºe koristiti najvi²e jedan korisnik. U ovom modelu koristimo des-
tilovane osobine deljenih autorizacija: domen, koji de�ni²e deo sistema u kome
je autorizacija implicitno dostupna; brojanje, koje de�ni²e kapacitet; delegacija,
koja de�ni²e slanje i primanje samih autorizacija.

Model predstavljen u tre¢em poglavlju je zapravo ekstenzija π-ra£una [102],
koji se direktno oslanja na pretodno razvijeni ra£un sa autorizacijama [43, 44]. Iz
ra£una sa autorizacijama [43] preuzeti su sintaksni konstrukti za domen i dele-
gaciju autorizacija. U semanti£kom smislu, na² model modi�kuje samo zna£enje
domena autorizacije, kako bi dobili mogu¢nost da obuhvatimo princip o brojanju
autorizacija koji proisti£e iz prirode deljenih autorizacija izu£avanih ovde. Tre¢e
poglavlje sistemati£no iznosi rezultate koji su prethodno predstavljeni u publiko-
vanim radovima:

1. J. Pantovi¢, I. Proki¢, and H. T. Vieira. A calculus for modeling �oating
authorizations. In C. Baier and L. Caires, editors, Formal Techniques for
Distributed Objects, Components, and Systems - 38th IFIP WG 6.1 Inter-
national Conference, FORTE 2018, Held as Part of the 13th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2018,
Madrid, Spain, June 18-21, 2018, Proceedings, volume 10854 of Lecture
Notes in Computer Science, pages 101�120. Springer, 2018.

viii

2. I. Proki¢, J. Pantovi¢, and H. T. Vieira. A calculus for modeling �oating
authorizations. Journal of Logical and Algebraic Methods in Programming,
107:136 � 174, 2019.

Glavni doprinosi ukupnog rada na modelu koji uvodi deljene autorizacije u π-ra£un
u tre¢em poglavlju ove teze su slede¢i:

� De�nisanje novog formalnog ra£una koji modeluje ve¢ spomenute pojmove
domena, deljenih resursa, brojanja i delegacije, uvo�enjem pojma deljene
autorizacije.

� Izu£avanje bihevioralne semantike ovog modela. Izvedena bihevioralna karak-
terizacija pokazuje speci�£nu prirodu deljenih autorizacija, naro£ito odnos
izme�u konstrukta za domen autorizacije i konstrukta za paralelnu kompozi-
ciju, koja re�ektuje gore spomenuti princip brojanja.

� Uvo�enje tipskog sistema koji omogu¢ava izdvajanje procesa koji autorizo-
vano koriste svoje kanale, £ak i u prisustvu autorizacija koje su obezbe�ene
od strane konteksta. Dokazivanje rezultata koji pokazuju da dobro tipiziran
process ne samo da uvek koristi svoje kanale autorizovano, ve¢ to tako�e
vaºi i za sve njegove mogu¢e evolucije.

� Pobolj²anje e�kasnosti algoritma za proveru tipa uvo�enjem drugog tipskog
sistema, za koji je pokazano rezultatom tipske korespondencije da je ekviva-
lentan sa prvim tipskim sistemom.

� Prikazivanje pro²irenog primera inspirisanog pojmom Bring Your Own Li-
cense iz domena licenci, koji detaljnije opisuje uvedeni model i koji povezuje
model sa njegovim mogu¢im aplikacijama.

� Na osnovu pomenutog pro²irenog primera pokazan je jedan konkretan pravac
za primenu de�nisanog modela u programskim jezicima. Dat je primer koji
posmatra jednu mogu¢u ekstenziju programskog jezika Go1.

Model sa deljenim autorizacijama uspostavlja dodatni nivo kontrole kori²¢enja
kanala u odnosu na π-ra£un. U na²em modelu, nije dovoljno da proces ima pristup
kanalu, ve¢ dodatno mora imati i autorizaciju za kori²¢enje tog kanala. Sama
sintaksa π-ra£una pro²irena je sa konstruktima za autorizacije i njihovo delegiranje
me�u procesima. Na primer, proces

(license)(Alice | Bob)

de�ni²e da je jedna autorizacija za kori²¢enje kanala license dostupna procesima
Alice i Bob. Ako, recimo, proces Bob prvi zapo£ne komunikaciju na kanalu license
onda kon�guracija data gore postaje

Alice | (license)LicensedBob

1https://golang.org

ix

https://golang.org

gde autorizacija license vi²e nije dostupna za Alice. Autorizacije mogu biti raz-
menjene u komunikaciji. Na primer, u

(license)(auth)auth〈license〉.UnlicensedBob | (auth)auth(license).LicensedCarol

proces na levoj strani ima autorizaciju da koristi kanale auth i license, a pre�ks
de�ni²e akciju slanja autorizacije za license putem kanala auth. Sa desne strane,
proces moºe da primi autorizaciju za license na kanalu auth, i za tu akciju ima
odgovaraju¢u autorizaciju. Nakon sinhronizacije dva procesa, dobijemo

(auth)UnlicensedBob | (auth)(license)LicensedCarol

gde autorizacija za license prelazi sa leve na desnu stranu.
Kao ²to smo videli u prethodnom primeru, autorizacije zapravo omogu¢avaju

(ili u nedostatku istih, onemogu¢avaju) komunikacije na kanalima. Ovo vaºi ne
samo za komunikacije u kojima se razmenjuju autorizacije, ve¢ i za komunikacije
u kojima se razmenjuju imena kanala. Na primer,

(comm)comm!license.Alice | (comm)comm?x .Dylan

predstavlja proces u kome ime kanala license poslato na kanalu comm od pot-
procesa sa leve strane, moºe biti primljeno u potprocesu sa desne strane, jer za
obe akcije postoje odgovaraju¢e autorizacije. Sa druge strane, sinhronizacija u
procesu

(comm)(comm!license.Alice | comm?x .Dylan)

nije mogu¢a jer za akcije slanja i primanja postoji samo jedna autorizacija, dok
su potrebne dve. U ovoj tezi, ovakvi procesi, koji ne mogu da sinhronizuju svoje
dualne akcije zbog nedostatka odgovoraju¢ih autorizacija nazivaju se gre²kama.

Da bi izdvojili procese koji nisu gre²ke i koji ni u jednoj od mogu¢ih evolucija
ne postaju gre²ke, u tezi je predstavljen tipski sistem. Tipski sistem se sastoji
od dodele tipova imenima i tipskih pravila, koja de�ni²u uslove koje proces koji
se proverava mora zadovoljiti. Ukoliko proces moºe da pro�e de�nisanu tipsku
proveru onda je on �bezbedan�, to jest, nije gre²ka i ne svodi se na gre²ku. Tipovi
koje mi ovde dodeljujemo imenima zapravo govore o imenima koja mogu biti
bezbedno komunicirana na kanalima. Na primer, posmatrajmo process

(exam)(minitest)(alice)alice?x.x!value.0

koji moºe da primi ime kanala i da zatim po²alje value na primljenom kanalu. Pri-
manje na alice je autorizovano direktno jer je odgovaraju¢a autorizacija prisutna.
Sa druge strane, kasnije slanje je autorizovano samo za imena exam i minitest .
Ako moºemo da osiguramo da na kanalu alice samo imena exam i minitest mogu
biti komunicirana, tada je ovaj process bezbedan. Stoga, imenu alice dodeljujemo
tip {alice}({exam,minitest}(∅)), i to obeleºavamo sa

alice : {alice}({exam,minitest}(∅))

kako bismo ozna£ili da je alice �nalno ime (uporediti sa tipom od x datim dole),
i da kanal moºe biti kori²¢en isklju£ivo za komuniciranje imena exam i minitest .

x

Poslednja informacija u tipu govori da exam i minitest ne mogu biti kori²¢eni za
komunikacije (ozna£eno sa ∅). Sa druge strane, tip koji bismo dodelili promenljivoj
u ovom procesu je x : {exam,minitest}(∅), jer x moºe biti zamenjeno imenima
exam ili minitest , za koje onda treba obezbediti autorizacije. Dakle, za samo ime
x autorizacija nije prisutna u procesu u kom se nalazi pre�ks, ali autorizacije za
dve mogu¢e zamene imena jesu, zbog £ega ovakve indirektne autorizacije zovemo
kontekstualne autorizacije. Tipski sistem predstavljen u ovoj tezi tretira i direktne
i kontekstualne autorizacije. Tipske pretpostavke skupljaju se u tipsko okruºenje,
obi£no obeleºeno sa ∆, i u odnosu na takvo okuºenje vr²i se provera procesa
pomo¢u pravila koja se de�ni²u za svaki sintati£ki konstrukt pojedina£no. Tipsko
tvr�enje, koje je oblika ∆ `ρ P , govori da proces P koristi svoje kanale kako je to
propisano u tipskom okruºenju ∆ i da proces poseduje dovoljno autorizacija ako
bi bio sme²ten u kontekst koji bi mu obezbedio dodatne autorizacije navedene u
multiskupu ρ. Ove ideje su tako�e formalizovane u tre¢em poglavlju teze.

�etvrto poglavlje sadrºi saºetak postignutih rezultata kandidata, pregled
literature i razmatra pravce daljih istraºivanja.

xi

xii

Abstract

Distributed software systems have changed the way people communicate, learn
and run businesses: almost all aspects of human life have become connected to the
internet. The system of interconnected computing devices has numerous positive
impacts on everyday life, however, it also raises some concerns, among which are
security, accessibility and availability issues.

This thesis investigates problems of formal, mathematically based, represen-
tation and analysis of controlled usage and sharing of resources in distributed
software systems. The thesis is organized into four chapters. The �rst chapter
provides motivation for our work, and the last concludes the thesis. The second
and the third chapters are the core of the thesis, the former addresses controlling
information passing and the latter addresses controlling usages of resources.

The second chapter presents a model for con�dential name passing, called
Con�dential π-calculus, abbreviated Cπ. This model is a simple fragment of the
π-calculus that disables information forwarding directly at the syntax level. We
provide an initial investigation of the model by presenting some of its properties,
such as the non-forwarding property and the creation of closed domains for chan-
nels. We also present examples showing that Cπ can be used to model restricted
information passing, authentication, closed and open-ended groups. We present
an encoding of the (sum-free) π-calculus in Cπ and we prove the correctness of the
encoding via an operational correspondence result.

The third chapter presents a model of �oating authorizations. Our process
model introduces �oating authorizations as �rst-class entities, encompassing di-
mensions of accounting, domain, and delegation. We exploit the language of an
already existing process algebra for authorizations, and we adopt a di�erent se-
mantic interpretation so as to capture accounting. We de�ne the semantics of our
model in two equivalent ways, using a labeled transition system and a reduction
relation. We de�ne error processes as undesired con�gurations that cannot evolve
due to lacking authorizations. The thesis also provides a preliminary investigation
of the behavioral semantics of our authorization model, showing some fundamental
properties and also informing on the speci�c nature of �oating authorizations.

In the third chapter, we also present a typing discipline that allows to statically
single out processes that are not errors and that never evolve into errors, addressing
con�gurations where authorization assignment is not statically prescribed in the
system speci�cation. We also develop a re�nement of our typing discipline to
pave the way for a more e�cient type-checking procedure. We show an extended
example of a scenario that involves the notion of Bring Your Own License, and

xiii

we exploit this example to provide insight on a possible application of our model
in programming language design.

xiv

Contents

Rezime i

Abstract xiii

1 Introduction 1
1.1 Controlling information sharing . 2
1.2 Access control . 4
1.3 Publications and structure of the thesis 6

2 A calculus for con�dential name passing 9
2.1 Syntax . 11
2.2 Action semantics . 15

2.2.1 Properties of the labeled transition system 19
2.3 Reduction semantics . 21
2.4 Behavioral equivalence . 23

2.4.1 Strong barbed equivalence 28
2.4.2 A characterization of the non-forwarding π processes 29

2.5 Examples . 30
2.5.1 Authentication . 31
2.5.2 Modeling groups and name hiding 32
2.5.3 Open-ended groups . 33

2.6 Encoding forwarding . 34
2.6.1 The encoding . 36
2.6.2 Operational correspondence 38

2.7 Remarks . 48

3 A calculus of �oating authorizations 51
3.1 Preview of the model . 52
3.2 Syntax . 55
3.3 Action semantics . 58
3.4 Reduction semantics . 62

3.4.1 Harmony result . 69
3.4.2 Error processes . 77

3.5 Behavioral semantics . 79
3.6 Type analysis . 86

3.6.1 Background on types . 87
3.6.2 Introducing types by examples 88

xv

3.6.3 Typing discipline . 89
3.6.4 Type safety . 93
3.6.5 Illustrating typing rules by examples 100
3.6.6 Type-checking . 102

3.7 Extended example . 111
3.8 Towards applications . 114

4 Conclusion 119
4.1 Summary of contributions . 119
4.2 Related work . 120
4.3 Future work . 122

Bibliography 125

xvi

Chapter 1

Introduction

Widespread dissemination of various distributed software systems has changed the
way people communicate, learn and run businesses: almost all aspects of human
life have become connected to the internet. The system of interconnected com-
puting devices has numerous positive impacts on everyday life, from fast and easy
communication through social networks, on-line available computing platforms,
to the distributed electronic currency systems based on blockchain technologies.
However, sharing information, storage capabilities, computing capabilities, and
other resources raises some concerns, among which are security, accessibility and
availability issues. There are a plethora of examples in which attackers were able
to misuse developers oversights. A recent one is a bug that enabled an incorrect
generation of access tokens on Facebook, enabling attackers to steal personal data
from almost 50 million accounts [95]. Such examples show the need for controlling
information sharing and resource usage in distributed systems, the problems this
thesis addresses relying on the use of formal methods.

Ensuring reliability and correctness of software systems is very di�cult, and
design and veri�cation of such systems, at least in some critical cases, should be
mathematically based. Formal methods are techniques that allow for the spec-
i�cation and veri�cation of complex (software and hardware) systems based on
mathematics and formal logic. Formal design usually involves two phases: formal
speci�cation and veri�cation. In the formal speci�cation phase a system is de�ned
using a modeling language, usually by means of precise mathematical syntax and
semantics. By building a formal speci�cation, one may show in a rigorous way a set
of properties of the system. These theorems are validated through mathematical
proofs. Formal models for concurrency such as Petri nets [83, 94], communicating
state machines [20] and process calculi [54, 68, 73, 74], are examples of formal
approaches that can be used to specify and validate application behavior.

The aim of this thesis is to provide formal, process calculi based, models for
some security and access control aspects in distributive software systems, paving
the way for better understanding of the concepts studied here so as to move
towards supporting their correct implementation.

The thesis presents two process algebras, one for modeling controlled infor-
mation sharing and the other for modeling controlled access to resources in dis-
tributed software systems. Accordingly, the rest of the Introduction is divided into
two subsections.

1

2 CHAPTER 1. INTRODUCTION

1.1 Controlling information sharing

Communication in distributed systems, sometimes involving interactions with un-
known and untrusted parties, is an everyday routine and in some cases even in-
dispensable. Often, the exchanged information is private and requires careful
handling, in a sense of how it is used. For example, private data, such as credit
card number or address, must be revealed for online shopping, but the same kind
of information should not be shared further along by the receiving party. Such sce-
narios bring forward the problem of controlling information sharing in distributed
systems. In particular, sharing private information with third parties may cause
undesired dissemination. Even when the parties are trusted, there is a possibility
of oversights and unintended misusages.

The privacy problem in distributed systems needs to be perceived from a point
of view of technology and law. One of the pioneers in studying privacy in this
perspective is Alan Westin, a legal scholar. He noted that �Building privacy con-
trols into emerging technologies will require strong e�ort..." [114]. Although new
technologies bring new threats to privacy, they can also bring new ways to pro-
tect privacy [109]. In the work of Solove [105], that deals with the taxonomy of
privacy, four kinds of privacy violation are distinguished: information collection,
invasions, information dissemination, and information processing. This concept is
also elaborated in [61]. Uncontrolled information sharing in distributed systems
can be directly related to the information dissemination violation. Solove gives a
further detailed taxonomy for information dissemination violation, but all these
sub-kinds approximately acknowledge the damage that revealing and spreading
sensitive information can cause.

Communication among parties in distributed systems is central and controlling
the �ow of con�dential information poses some obstacles. The entities in such
systems can have di�erent capabilities over the information. For example, a credit
card holder can send a credit card number or withdraw a certain amount from
a bank account; the bank should not be able to disclose a credit card number,
but, for example, in order to accept or decline a withdrawal request, the bank
should be able to check the funds available in the account. Focusing on controlling
the �ow of information, we may notice that the party receiving the credit card
number should not acquire the ability to send it later on to third parties, i.e., the
information should not be forwarded. For the information dissemination violation,
the forwarding capability can be recognized as one of the targets where the control
may be required.

Considering capabilities over a communication channel one can: use the chan-
nel only for writing or reading, create the channel and send its end-points to other
entities, forward the received end-point, etc. Giving the forwarding capability to
all parties in the communication a priori induces a problem of post festum control
of the dissemination, since the control has to be conducted on all the entities in
the system.

Let us consider a simple example where a con�dential channel session is shared
between two parties. Consider that participant Alice is the creator of the channel
and that she shares one end-point of the channel with Bob. The two parties

1.1. CONTROLLING INFORMATION SHARING 3

can establish a private interaction over channel session, but if Bob forwards his
end-point to a third party perhaps Alice's expectation will be frustrated.

In some cases, it may be appealing to have the forwarding capability. For
instance, when a task is forwarded from a master to a slave process, a slave
process is a third party and can seamlessly step in. In our example, this situation
may be considered as problematic from the point of view of Alice, as she can
still believe that the shared end-point of channel session, which she may consider
con�dential, is held by Bob. If session is a channel created by Alice, pointing to
some private data and shared exclusively with Bob, one might debate that Bob
should not acquire the forwarding capability only by receiving session. In any
case, we can distinguish two di�erent kinds of channel end-point sharing in the
example, as the �rst one is conducted by the channel creator (Alice), while the
second can be recognized as forwarding (by Bob).

Several formal models have been developed for the purpose of restricting name-
sharing considering a statically determined name scope, such as the ones with
name grouping [26] and name hiding [46]. However, there are cases when there is
no statically prede�ned scope for a piece of private information. For instance, in
the example above it may be the case that Alice can decide at some point in the
future to share an end-point of session with others. In general, we need private
information to be shared also in open-ended systems.

Our approach to addressing the problem mentioned above, i.e., to mathemat-
ically reason on restricted dissemination of con�dential information, is to develop
a formal model which disables forwarding directly at the syntax level. Our model,
which we name Con�dential π-calculus, abbreviated Cπ, is a fragment of the π-
calculus [102]. In Cπ the only resources are channels, and, hence, we treat channel
names as con�dential information: channels once received cannot be forwarded
later on. This is the only di�erence with respect to the π-calculus. The contribu-
tion of the �rst part of the thesis is the following:

� We present a simple fragment of the π-calculus that allows modeling con-
�dential name passing by restricting forwarding. Being a fragment of a
well-established model, such as the π-calculus, gives us the possibility to
directly apply to our model a notable amount of theory already developed.

� We formally characterize the non-forwarding property and, as a sanity check
of the process model, we show that all Cπ processes respect this property.

� Based on the notion of behavioral equivalence relation from the π-calculus
we present a behavioral identity attesting that closed domains for channels
can be directly represented in our model.

� We further elaborate on the expressiveness of the Cπ-calculus by showing ex-
amples that include closed domains for channels, authentication, and open-
ended groups, all of which are also directly represented in the model.

� We investigate the expressive power of our model when compared to the π-
calculus and show that the π-calculus can be encoded into the Cπ-calculus.
We show an operational correspondence result for the given encoding.

4 CHAPTER 1. INTRODUCTION

1.2 Access control

Another aspect addressed in this thesis is a study of access control in distributed
software systems. The control of access to computational resources is becoming
more important, despite their availability is growing in scale every year, since such
growth encompasses di�erent forms of resource access and raises some issues. The
need to control access can be motivated by many reasons, such as privacy, secu-
rity and capacity constraints. As examples of capacity constraints consider that
physical devices (printers, cell phones, processors, etc.) all have �nite capabilities,
while some virtual devices (shared memory cell, web service, etc.) have in�nite
potential but their availability is frequently limited.

Privacy and security are central issues in the development of distributed sys-
tems. One of the reasons is that distributed systems are nowadays highly complex
and heterogeneous, and the access control in such systems can be an error-prone
task. Justi�cations for these claims are appearing almost every day, one of which
is the incorrect access token generation on Facebook mentioned previously. For
such bad examples companies su�ered the loss of millions of dollars, but even
worse, privacy and security of millions of users have been compromised. Formal
modeling and veri�cation can be a step towards more reliable distributed software
systems [21].

Various methods for controlling access in distributed systems have been pro-
posed in the past, as the scale and the structure of such systems has been chang-
ing. Considering systems that are small or in which the number of participants
is prede�ned, access to resources of the system is usually achieved through ac-
cess control lists (ACL). The ACL method uses lists of permissions attached to
resources, where the right to access a resource is granted only if the user is men-
tioned as a subject (with the right permission) on the access list of the resource.
While the ACL method provides a natural way to control access, when it comes to
large-scale systems that are highly dynamic this method becomes hard to imple-
ment. This comes from the fact that access control lists keep information of each
user individually, which becomes a serious overhead when the number of users of
a system is large and frequently changes. As an example consider an application,
such as Facebook, that is used by millions of users whose number varies over time.
Having lists of users authorized to access each resource (e.g., pictures or posts of
users) becomes arguably impractical.

Role-based access control method [96] (RBAC) was introduced as an alterna-
tive way to deal with the scalability of ACLs. In the RBAC method, a set of roles
is established and a role is assigned to each user. A user can have more than one
role. For instance, to allow access to a picture of a Facebook user it might not
be necessary to rely directly on the identity of the user attempting to access the
picture. In practice, it is enough to check if the user trying to access the picture
has the role of a �friend� of the owner of the picture. Besides the advantages (and
disadvantages) of the RBAC method with respect to the ACL method, the former
still su�ers from the fact that there usually must be a central authority that issues
and checks the roles of the users.

1.2. ACCESS CONTROL 5

The capability-based method for access control [97] is more suitable for uncen-
tralized systems. In this method, unforgeable references are created and issued by
a central authority, but once issued, these references are held by users. Only when
the user wants to access the recourse the capability is checked. Hence, a central
authority does not have to keep access control information for each user individu-
ally, it only checks the validity of the references when needed, which signi�cantly
reduces the load on central authorities [116]. Furthermore, capabilities can be
delegated from one user to another without informing the central authority.

Another domain conveying some of the principles of the capability-based ac-
cess control is that of use licenses: a user is allowed to use a software application
only if it owns a proper license, where we also �nd an explicit notion of delegation.
For example, a user, while deploying his software application on the cloud com-
puting platform, may delegate his own license, potentially losing access to use the
application himself, a notion known as Bring Your Own License [38] (BYOL). A
speci�c kind of use licenses, the concurrent use licenses, also provide a �exibility to
use the license in a shared way [10]. As an example consider a software application
that is licensed to be used by an institution. In this case, licenses are available to
all users in the closed domain of institution, but there is a bound on the number
of licenses, hence the total number of deployed applications at any point cannot
exceed the total number of licenses [5].

We study capabilities and licenses in an abstract way in a process model of
�oating authorizations. Authorization is a function determining rights and privi-
leges over a resource. As before, our focus is on communication centered systems,
and hence, in our model, the only resources considered are communication chan-
nels. Thus, an authorization determines the right to use a communication channel.
A �oating authorization in our model represents the right to use a channel in a
shared way like in the setting of concurrent use licenses. In such constellation, we
exploit distilled dimensions of �oating authorizations: domain (to capture where
access may be implicitly granted), accounting (to capture the capacity), and del-
egation (to capture explicit granting).

Our model is an extension of the π-calculus [102], and it builds on previous
developments [43, 44]. From the calculus for authorizations of [43] we adopt the
syntax constructs for authorization scoping and delegation. Semantically, we mod-
ify the meaning of authorization scoping construct so as to be able to represent
the accounting principle arising from the �oating nature of authorizations. Hence,
our aim is, therefore, to address the speci�c notion of accounting, emerging from
the settings of capabilities and licenses, by modifying an existing model in the
minimal necessary way. The contribution of the second part of the thesis is as
follows:

� We present a calculus that models the notions of domain, implicit granting,
accounting, and delegation of �oating authorizations.

� We investigate the behavioral semantics of our model: our behavioral charac-
terizations show the speci�c nature of �oating authorizations, in particular,
the correlation between the authorization construct and the parallel compo-
sition, re�ecting our accounting principle.

6 CHAPTER 1. INTRODUCTION

� We present a type analysis that singles out processes in which each use of a
channel is properly authorized, even in the case of contextual authorizations,
and we show type soundness and type safety.

� We introduce another type system that allows for a more e�cient implemen-
tation than the original one and we show the respective typing correspon-
dence.

� We give an extended example inspired by the notion of Bring Your Own
License from the licensing setting.

� Based on the extended example, we show one direction towards the applica-
tion of our model by considering a possible extension of the Go programming
language1.

1.3 Publications and structure of the thesis

Controlled name passing is presented in Chapter 2, where we introduce the Cπ-
calculus. As noted in Section 1.1, our calculus models interactions in which in-
formation can be shared between two parties, but cannot be forwarded by the
receiving party. Chapter 2 is based on the paper:

1. I. Proki¢. The Cpi-calculus: a model for con�dential name passing. In
M. Bartoletti, L. Henrio, A. Mavridou, and A. Scalas, editors, Proceedings
12th Interaction and Concurrency Experience, ICE 2019, Copenhagen,
Denmark, 20-21 June 2019, volume 304 of Electronic Proceedings in The-
oretical Computer Science, pages 115�136. Open Publishing Association,
2019.

The work reported here extends the work presented in the mentioned paper by a
more pedagogical introduction of the model and by encompassing all the results.
Furthermore, the encoding presented in this document simpli�es the one given in
the above paper and completes the proof of operational correspondence.

Controlling resource usages is considered in Chapter 3, where we introduce our
calculus of �oating authorizations. Our model allows separating resource aware-
ness from resource usages by authorizations. Chapter 3 is based on publications:

1. J. Pantovi¢, I. Proki¢, and H. T. Vieira. A calculus for modeling �oating
authorizations. In C. Baier and L. Caires, editors, Formal Techniques for
Distributed Objects, Components, and Systems - 38th IFIP WG 6.1 Inter-
national Conference, FORTE 2018, Held as Part of the 13th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2018,
Madrid, Spain, June 18-21, 2018, Proceedings, volume 10854 of Lecture
Notes in Computer Science, pages 101�120. Springer, 2018.

2. I. Proki¢, J. Pantovi¢, and H. T. Vieira. A calculus for modeling �oating
authorizations. Journal of Logical and Algebraic Methods in Programming,
107:136 � 174, 2019.

1https://golang.org

https://golang.org

1.3. PUBLICATIONS AND STRUCTURE OF THE THESIS 7

where the listed journal extends the listed conference publication.
In Chapter 4, we conclude by presenting the contributions of the candidate,

providing an overview of the related literature, and, �nally, showing some ideas
for improvements and possible extensions of the work presented in this thesis.

8 CHAPTER 1. INTRODUCTION

Chapter 2

A calculus for con�dential name

passing

In this chapter, we present the Cπ-calculus, which is a fragment of the π-calculus [72,
73, 74, 102]. We start by a small introduction on process algebras.

As in the π-calculus, the building blocks of the Cπ language are processes. A
process represents an entity that can synchronize with other processes through
communication links (channels) that they share. Some of the �rst and well-known
process models are a Calculus of Communicating Systems (CCS) [68] and Com-
municating Sequential Processes (CSP) [54]. The latter has in�uenced the design
of Google's Go programming language. See [8] for a more comprehensive overview
of the history of process algebras.

The CCS-calculus models concurrent systems formally by introducing the no-
tions of parallel composition, synchronization of input and output action on the
same name, the private names and the choice. The choice operator is not con-
sidered throughout this thesis, and hence we will not mention its interpretation
nor its properties. For instance, a CCS process Alice | Bob represents that Alice
and Bob are simultaneously active processes. Furthermore, these processes can
synchronize via shared name. For instance, in process

chn.Alice | chn.Bob

process chn.Alice can synchronize the output action on name chn with the input
action of process chn.Bob, since both are active in parallel. In that case, the
process reduces to Alice | Bob.

In CCS a name can be speci�ed as private. In process

((νsession)Alice) | Bob

name session is known only to Alice and can be used only internally, while Bob
cannot acquire the name. What CCS fails to capture directly is name mobility.

The π-calculus takes as its basis CCS, but it extends it in an important way
by allowing name mobility. Namely, processes now can, while synchronizing their
actions (via communication channels), transmit names of channels. This model
has also in�uenced the design of several programming languages [39, 66, 86, 104,

9

10 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

108, 113]. For example, in the π-calculus we may specify

chn!session.Alice | chn?x.Bob

where the left process can send channel name session on channel chn, the right
process can receive a name on the same channel and replace the placeholder name
x in Bob with the received name. Another important aspect is that a π process can
share a private communication channel with other processes via synchronization,
establishing private connections. This is the last ingredient needed to represent
the scenario given in the Introduction, as we may now write

((νsession)chn!session.Alice) | chn?x.forward !x.Bob ′

where the channel session is privately held by the left process. After the synchro-
nization, the above con�guration evolves to

(νsession)(Alice | forward !session.Bob ′′)

where private channel session is received in the right process (i.e., Bob ′′ represents
the process derived from Bob ′ by replacing each occurrence of name x with name
session), hence enlarging the scope of the name. Assuming there is a third party
active,

(νsession)(Alice | forward !session.Bob ′′) | forward?y.Carol

the process comprehending Bob ′′ can forward received name session to the third
party on channel forward without a need to notify Alice, hence potentially com-
promising the privacy of Alice (cf. Section 1.1).

The subject of this section, the Cπ-calculus, allows reasoning on con�dentiality
in a fragment of the π-calculus. By restricting forwarding in a way that channel
name once received by a process cannot be later sent by the same process, we gain
a suitable abstraction level to reason on, e.g., groups [26] and name hiding [46],
directly in the Cπ without additional language constructs. Since we are dealing
only with a fragment of the π-calculus rather than with its extension, our model
can reuse all the theory already developed for the π.

Extensive theoretical research conducted in the past is directly connected to
the π-calculus in many ways. Many of these works extend the π-calculus syntax by
variety of constructs so as to gain a suitable abstraction level to reason about, e.g.,
polyadic communications [25, 70], higher-order communication [71], distributed
systems [50], and many others, including security and privacy [1, 2, 26, 32, 46, 49].
In contrast, some of the research exploits restricting the syntax of the π-calculus
to reason on asynchronous communications [18, 55], internal mobility [99], and
locality [67].

Overview of the chapter. The syntax of the process model is presented in
Section 2.1. The action semantics is presented in Section 2.2, followed by an inves-
tigation of some basic properties together with the de�nition of the non-forwarding
property in Section 2.2.1. The reduction semantics is brie�y introduced in Sec-
tion 2.3. Section 2.4 presents a behavioral equivalence (strong bisimilarity) and a

2.1. SYNTAX 11

π ::= Pre�xes
a!k output

| a?x input
| [a = b]π matching

P ::= Process terms
0 termination

| π.P pre�x
| P | P parallel composition
| (νk)P name restriction
| !P replication

Table 2.1: Syntax of Cπ

property called closed domains for channels, capturing that closing the scope of a
channel can be represented directly in Cπ. Section 2.4.1 brie�y presents another
behavioral equivalence, the strong barbed equivalence relation, and Section 2.4.2
gives a method for identifying non-forwarding π processes. In Section 2.5 we
present some interesting scenarios modeled in Cπ, such as authentication schemes
(Section 2.5.1), closing the domain for channels (Section 2.5.2), and open-ended
groups (Section 2.5.3). Section 2.6 presents an encoding from the π-calculus into
the Cπ-calculus and the operational correspondence result that validates the en-
coding and informs on the expressive power of Cπ.

2.1 Syntax

In this section, we introduce the language of the Cπ-calculus. As we have noted,
the building blocks of our language are processes, and processes may communicate
using names. The names themselves are an abstraction for communication links.
Communication links are modeled as named communication channels that can
connect two or more processes.

In Cπ, we distinguish variable and channel names by introducing two disjoint
sets for each kind. We use C to denote the set of channel names, ranged over by
k, l,m, . . ., and V to denote the set of variable names, ranged over by x, y, z, . . .
The union of the two sets is denoted by N , and we let a, b, c, . . . range over N . The
use of each of the sets is explained below when language constructs are introduced.

The syntax of the language is given in Table 2.1. Notice that we do not
consider the sum operator [102] since our goal is to study con�dentiality in a
minimal setting, but we believe the sum can be added following expected lines.
The �rst part of the table introduces the pre�xes, used in the de�nition of three
types of processes:

� The output pre�x a!k.P describes an action in which the object, channel
name k, is sent on the subject, name a, after which the process evolves to
P . Notice that only a channel name, i.e., a name from set C, can be the

12 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

object of an output action. This is the only di�erence with respect to the
π-calculus, where the name of a variable can also appear as the object of an
output action. The subject of an output action can be either a channel or
variable name, like in the π-calculus. Hence, received names can be used to
communicate but cannot be communicated. For example, process b!k.0 can
send k on b and evolve to 0.

� The input pre�x a?x.P describes an action in which a name is received on
the subject name a. The received name is substituted in the continuation
process P for a variable name x, and the original process evolves to the
term resulting from this substitution. Here, x, also called a placeholder, is
bound in process P (see De�nition 2.1.1). For example, process a?x.x!k.0
can receive a name on a and substitute x by it in the continuation. Assuming
the received name is b, the above process evolves to b!k.0. Notice that the
object of an input can only be a variable name, i.e., name from set V . Hence,
process as a?x.k!x.0 excluded by the Cπ syntax is a π process.

� The match pre�x [a = b]π.P activates the action prescribed by pre�x π.P
only if a = b and it blocks the action otherwise. For example, process
a?x.[x = b]x!k.0 receives a name on a, then either: it sends k on b if the
name received is b; else if the received name is not b it performs no further
actions.

We comment the rest of the process constructs:

� The termination 0 denotes the process that exhibits no actions. Notice that
we have used it in the examples above to signal when a thread has performed
all its actions.

� The parallel composition P | P denotes that two processes are simultane-
ously active, and possibly can synchronize their actions. For example, in
a!k.0 | a?x.x!l.0 the left thread can synchronize the output action with the
input action of the right thread, and can also exhibit any of the individual
actions of the two threads.

� The name restriction (νk)P denotes the creation of a new (channel) name
k, known only to process P . Channel k can be used as a private medium
for communications of the components of process P . For example, process
(νk)(k!l.0 | k?x.0) can use channel k for synchronization of the two threads
but cannot interact with other processes along channel k. On the other
hand, the restricted channel can be shared with other processes if it is com-
municated in a message. The explanation of sharing restricted names and its
interplay with con�dentiality in Cπ can be found in Section 2.2, Section 2.4
and Section 2.5.

� The replication !P denotes a process with potentially in�nite behavior. In-
formally, !P can be seen as an in�nite parallel composition of the copies of
process P , i.e., P | P | For example, process !a!k.Q can send k on a and
activate the original process in parallel.

2.1. SYNTAX 13

We name the operators' precedence from highest to lowest: pre�xes, name
restriction, replication, and parallel composition. For example, the above pro-
cess a!k.0 | a?x.x!l.0 stands for (a!k.0) | (a?x.(x!l.0)), and (νk)P | Q stands for
((νk)P) | Q.

We denote with n(P) the set of all names (channels and variables from N)
appearing in the process P . Some of these names are said to be free, while the
rest are called bound.

De�nition 2.1.1 (Free and bound names). For any Cπ process the set of free
names fn(P) and the set of bound names bn(P) are de�ned as follows.

fn(0) = ∅
fn(a!k.P) = {a, k} ∪ fn(P)
fn(a?x.P) = {a} ∪ (fn(P) \ {x})

fn([a = b]π.P) = {a, b} ∪ fn(π.P)
fn(P | Q) = fn(P) ∪ fn(Q)
fn((νk)P) = fn(P) \ {k}

fn(!P) = fn(P)

bn(0) = ∅
bn(a!k.P) = bn(P)
bn(a?x.P) = {x} ∪ bn(P)

bn([a = b]π.P) = bn(π.P)
bn(P | Q) = bn(P) ∪ bn(Q)
bn((νk)P) = {k} ∪ bn(P)

bn(!P) = bn(P)

Notice that in (νk)P and a?x.P the channel k and variable x are bound and
that these are the only operators that bind names. In these two cases, we say that k
and x are binding with scope P . The scope of a bound name determines the process
which is the only one that knows the name. Notice that fn(P) = n(P)\bn(P). For
free names, the scope is not prede�ned since free names may be known by other
processes. We also identify a set of free channels appearing as objects of output
pre�xes in a process, so as to be able to talk about names a process can send.

De�nition 2.1.2 (Free output object names). For any Cπ process P , the set of
free output object names fo(P) is de�ned as follows.

fo(0) = ∅
fo(a!k.P) = {k} ∪ fo(P)
fo(a?x.P) = fo(P)

fo([a = b]π.P) = fo(π.P)
fo(P | Q) = fo(P) ∪ fo(Q)
fo((νk)P) = fo(P) \ {k}

fo(!P) = fo(P)

To precisely de�ne replacements of names in processes (such as the ones de-
scribed in the receive actions) we give a precise de�nition of the substitution.
Before that, we introduce a convention that bound names must not be mentioned
by substitutions (we will come back to this point).

De�nition 2.1.3 (Substitution). A substitution is a mapping from N to N that
is not the identity only on a �nite subset of N , and that maps C only to C. We
de�ne the support of σ to be �nite set {a | σa 6= a}, and the co-support of σ to
be �nite set {σ(a) | σa 6= a}. We write n(σ) for the union of the support and the

14 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

co-support of σ. If substitution σ is applied to process P , then the resulting process
Pσ is de�ned as follows.

0σ = 0
(a!k.P)σ = σ(a)!σ(k).Pσ
(a?x.P)σ = σ(a)?x.Pσ

([a = b]π.P)σ = ([σ(a) = σ(b)](π.P)σ
(P | Q)σ = Pσ | Qσ
((νk)P)σ = (νk)Pσ

(!P)σ = !Pσ

If the support of σ is {a1, . . . , an}, and σ(ai) = bi, for i = 1, . . . , n, then instead
of Pσ we may also write P{b1, . . . , bn/a1, . . . , an}.

For example, we have (x!l.0){k/x} = k!l.0. Notice also that substitution ap-
plied on a process does not a�ect the bound names of the process. Only free
names can be substituted and the convention preceding De�nition 2.1.3 ensures
that substitution does not map free names into bound names. This is required to
avoid name clashes, the notion explained next.

So far, our syntax allows us to de�ne a process in which a name may be used in
distinct binding occurrences, and also to appear free elsewhere. For example, we
can write (νk)a!k.0 | (νk)a?x.x!k.0, where, the two restricted names are identi�ed
with the same k. After synchronization of the two branches, name k from the left
branch can clash with the k in the right branch. In order to simplify the handling
of bound names, which are to be considered distinct regardless of their identi�er,
we identify processes up to α-conversion de�ned next.

De�nition 2.1.4 (α-conversion). Processes P and Q are α-convertible if we may
obtain Q from P by a �nite number of replacements of subterms (νk)P1 and a?x.P2

in P by (νl)P1{l/k} and a?y.P2{y/x}, where l /∈ n(P1) and y /∈ n(P2). If P and
Q are α-convertible we write P ≡α Q.

Notice that since we identify α-convertible processes, P ≡α Q implies P = Q.
We may then say that process (νk)a!k.0 | (νk)a?x.x!k.0 is equal to

(νk)a!k.0 | (νm)a?x.x!m.0

which allows avoiding the name clash when reasoning on the synchronization.
To avoid name clashes, in general, we use a sort of Barendregt convention as

adopted in the π-calculus in [102] Convention 1.1.7, which states that all free names
and names of the substitutions are distinct from all bound names in any processes
and substitutions under consideration. Furthermore, to avoid explicitly working
with α-conversion, we also assume that all bound names among themselves in any
process under consideration are di�erent.

We remark that this treatment of bound and free names is appealing in the-
oretical works on the π-calculus such as ours, but when a formalization of the
π-calculus in some theorem proving systems (e.g., Coq [13], Isabelle/HOL [76]) is
conducted, a more precise way of handling free and bound names is needed, like
adopting de Bruijn notation of names [35] to the π-calculus [42, 51, 82].

2.2. ACTION SEMANTICS 15

2.2 Action semantics

In the previous section, we informally presented some examples where processes
perform inputs, outputs and synchronize their actions. We formalize these notions
in this section where we de�ne the action semantics of our model in terms of a
labeled transition system, that in turn matches the one of [102] for the sum-free
π-calculus. Intuitively, each process evolution involves three parts: the starting
process, the action performed and the resulting process. This kind of operational
semantics allows us to characterize the behavior of a process relying on the behav-
ior of its subparts, including their interactions. An action of a process describes
what the environment can observe when interacting with the process. We now
de�ne the actions.

De�nition 2.2.1 (Actions). The observable action α is de�ned as

α ::= k!l | k?l | (νl)k!l | τ

and we denote with A the set of all actions.

We may recognize that the �rst two actions correspond to the process pre�xes.
Pre�xes k!l.P and k?x.P describe the potential of a process to perform an action
and observable actions k!l and k?l describe the action itself: the �rst sending and
the second receiving the channel l on the channel k. Notice that in our (early)
semantics, the input action already identi�es the received channel (l), and does
not mention the input pre�x variable (x). In action (νl)k!l the sent channel l is
bound, denoting that process performing the action sends a fresh channel (here l).
This allows for scope extrusion, explained later. A process performing invisible
action τ evolves internally, hence without interacting with the environment. To
retain the same notation as for processes, we denote by fn(α), bn(α) and n(α), the
sets of free, bound and all names of action α, respectively. As we noted above,
these sets contain only channels, and not variables.

De�nition 2.2.2 (Free and bound names of actions). For observable action α we
de�ne a set of free and bound names as follows.

fn(k!l) = {k, l}
fn((νl)k!l) = {k}

fn(k?l) = {k, l}
fn(τ) = ∅

bn(k!l) = ∅
bn((νl)k!l) = {l}

bn(k?l) = ∅
bn(τ) = ∅

As for the processes, we extend here our convention that all free names are
di�erent from the bound names, and that all bound names are pairwise distinct,
not only in all processes and substitutions but also including all actions under
consideration. The only exception of this convention is when the scope extrusion
is performed, as explained later. This matches Convention 1.4.10 in [102].

The labeled transition relation is the least relation in P × A× P , where P is
the set of all processes, that satis�es the rules given in Table 2.2. We describe the
rules on salient points.

16 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

(out)

k!l.P
k!l−→ P

(in)

k?x.P
k?l−→ P{l/x}

(match)

π.P
α−→ P ′

[a = a]π.P
α−→ P ′

(res)

P
α−→ P ′ k /∈ n(α)

(νk)P
α−→ (νk)P ′

(open)

P
k!l−→ Q k 6= l

(νl)P
(νl)k!l−−−→ Q

(par-l)

P
α−→ Q bn(α) ∩ fn(R) = ∅

P | R α−→ Q | R

(comm-l)

P
k!l−→ P ′ Q

k?l−→ Q′

P | Q τ−→ P ′ | Q′

(close-l)

P
(νl)k!l−−−→ P ′ Q

k?l−→ Q′ l /∈ fn(Q)

P | Q τ−→ (νl)(P ′ | Q′)

(rep-act)

P
α−→ P ′

!P
α−→ P ′ | !P

(rep-comm)

P
k!l−→ P ′ P

k?l−→ P ′′

!P
τ−→ (P ′ | P ′′) | !P

(rep-close)

P
(νl)k!l−−−→ P ′ P

k?l−→ P ′′ l /∈ fn(P)

!P
τ−→ (νl)(P ′ | P ′′) | !P

Table 2.2: LTS Rules.

� Rules (out), (in) and (match) directly correspond to the explanations of
the corresponding syntactic constructs. For example, considering process
k?x.[x = l]x!m.0 receives channel l, by rule (in) we derive

k?x.[x = l]x!m.0
k?l−→ [l = l]l!m.0

where the received channel l substitutes the variable x. Since by rule (out)
we derive

l!m.0
l!m−−→ 0

and since the matched names preceding the output coincide, by (match) we
have that

[l = l]l!m.0
l!m−−→ 0

If the received channel in process k?x.[x = l]x!m.0 is not l, but, say n, again
by (in) we derive

k?x.[x = l]x!m.0
k?n−−→ [n = l]n!m.0

only now the output action of the �nal process is blocked due to the mismatch
in the pre�x, and hence the process cannot perform further actions. This
is the consequence of the fact that the only rule in Table 2.2 that deals
with the match operator, i.e., (match), cannot be applied since n and l are
distinct. Notice also that in the above example the transitions are justi�ed

2.2. ACTION SEMANTICS 17

by rules in Table 2.2 in a unique way, in a sense that only rules (in), (out)
and (match), respectively, can be applied.

� Rule (res) lifts the action of the process scoped with channel restriction
and ensures that the action does not mention the channel speci�ed in the
restriction. The e�ect of the side condition is that the restricted channel is
never mentioned in the action visible to the process's environment, hence
keeping the channel private. The only exception is when a channel is sent
in a message (cf. rule (open)). For example, for process k!l.0, by (out), we
can derive

k!l.0
k!l−→ 0

but restricting channel k in the above process we end up with process
(νk)k!l.0 which only action (output) is blocked due to the side condition
of (res). Also, process (νl)k!l.0 is blocked by this rule, however, it can
proceed by applying the rule explained next.

� Rule (open) allows for sending a restricted channel by opening its scope,
which, combined with rule (close-l) (explained later), enables the commu-
nication of restricted names, where their scope is enlarged as a consequence
(scope extrusion). Going back to the last example, applying rule (open)

after (out) we derive

(νl)k!l.0
(νl)k!l−−−→ 0

where the label of the action carries the information that the channel sent
is fresh. Notice that the side condition of the rule ensures that the subject
of the action is not the restricted one, therefore, processes (νk)k!l.0 and
(νk)k!k.0, cannot evolve, as no rule of Table 2.2 can be applied.

� In rule (par-l) the action of the left branch is lifted at the level of the parallel
composition while avoiding the case when the bound channel of the action
is speci�ed as free in the right branch. The symmetric rule (par-r), where
the action originates from the right branch is omitted from the table. For
example, by (out) and (par-l) we may derive

k!l.0 | k?x.[x = l]x!m.0
k!l−→ 0 | k?x.[x = l]x!m.0

where the process carry out the action of the left branch and the right
branch does not exhibit any action. Rules (par-l) and (par-r) combined
allow to interleave the behavior of both branches, capturing the fact that
both branches are active. Moreover, the left branch can synchronize the
action with the right branch: this is explained by the next rule.

� Rule (comm-l) describes the synchronization of the two dual external ac-
tions, output and input. After the synchronization the observable action of
the overall process is an internal step, i.e., τ , denoting that the process at
this point is not interacting with the environment. In the example above,
applying (out) and (in) we derive

k!l.0
k!l−→ 0 and k?x.[x = l]x!m.0

k?l−→ [l = l]l!m.0

18 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

then, by (comm-l) we have that

k!l.0 | k?x.[x = l]x!m.0
τ−→ 0 | [l = l]l!m.0

We also omit the symmetric cases of the rules (comm-l) and (close-l).

� Rule (close-l) handles the case when the name sent by the left branch is
bound. The right branch again performs the input action, and after the
synchronization, the scope of the sent channel, previously opened in rule
(open), is now closed. As an example, consider process (νl)k!l.0 | k?x.x!m.0.
By rules (out), (open) and (in) we get

(νl)k!l.0
(νl)k!l−−−→ 0 k?x.x!m.0

k?l−→ l!m.0

and by (close-l)

(νl)k!l.0 | k?x.x!m.0
τ−→ (νl)(0 | l!m.0)

The side condition ensures that the received channel is not speci�ed as free
in the right branch, thus avoiding unintended name capturing.

� Rules (rep-act) allows for a replicated process to perform an action while
activating a copy of the original process in parallel. For example, since by
(in) we can derive

k?x.[x = l]x!m.0
k?l−→ [l = l]l!m.0

Then, by (rep-act) we conclude

!k?x.[x = l]x!m.0
k?l−→ [l = l]l!m.0 | !k?x.[x = l]x!m.0

Thus, we may say that process !k?x.[x = l]x!m.0 is repeatably available to
receive a channel and afterwards send m only if the received channel is l.

� Rules (rep-comm) and (rep-close) allow for two copies of the same repli-
cated process to synchronize their actions, where in the latter rule the com-
municated channel is fresh. As an example consider process

P = k!l.0 | k?x.[x = l]x!m.0

By rules (out) and (par-l) we can derive

P
k!l−→ 0 | k?x.[x = l]x!m.0

and by rules (in) and (par-r) also

P
k?l−→ k!l.0 | [l = l]l!m.0

Then, by rule (rep-comm) we have

!P
τ−→ (0 | k?x.[x = l]x!m.0) | (k!l.0 | [l = l]l!m.0) | !P

2.2. ACTION SEMANTICS 19

Let us now consider process

Q = (νl)k!l.0 | k?x.x!m.0

By rules (out), (open) and (par-l)

Q
(νl′)k!l′−−−−→ 0 | k?x.x!m.0

where we α-converted Q by renaming l with a fresh channel l′, to represent
that the restricted name of this copy of Q is unique. Let us now take another
copy of Q and let us by (in) derive k?x.x!m.0

k?l′−−→ l′!m.0, where the received
channel matches the one sent by the �rst copy of Q. Since the restricted
channel of the second copy of Q is also fresh, and hence, to be distinguished
from l (and also l′), we α-convert Q again by renaming l to some fresh
channel l′′ and then we apply (par-r)

Q
k?l′−−→ (νl′′)k!l′′.0 | l′!m.0

Then, by (rep-close) we get

!Q
τ−→ (νl′)(0 | k?x.x!m.0 | (νl′′)k!l′′.0 | l′!m.0) | !Q

Notice that introducing fresh channels by α-converting each copy of process
Q resulted that in the last derived process each bound channel is distinct,
thus avoiding name clashes.

The derivation in the last example was possible thanks to De�nition 2.1.4 since
all α-converted processes are implicitly identi�ed. This kind of derivations as in
the last example can be formalized by introducing the explicit rule

P
α−→ Q P ≡α R

R
α−→ Q

which follows directly by considering processes equal up to α-conversion.

2.2.1 Properties of the labeled transition system

This section presents some basic properties of the labeled transition system (LTS).
Let us recall that the LTS introduced in Section 2.2, perfectly matches the one
given in [102] (for the sum-free π-calculus). Hence, since Cπ-calculus is a fragment
of the π-calculus, all the results given in [102] hold also for the Cπ. We present
here only the results speci�c to our model.

The distinguishing feature of the Cπ-calculus syntax, that variables do not
appear as objects of output pre�xes, re�ects in the evolutions of processes. Namely,
the set of free objects of output pre�xes in the process is possibly augmented only
by opening the scope of a channel. Another speci�c property is that the set of
free objects of output pre�xes in the process is invariant to input actions. These
results are stated in the next lemma.

20 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

Lemma 2.2.3 (Free output objects and transitions). Let P and P ′ be Cπ processes
such that P

α−→ P ′.

1. If α = k?l then fo(P ′) = fo(P).

2. If α = k!l then l ∈ fo(P) and fo(P ′) ∪ {l} = fo(P).

3. If α = (νl)k!l then fo(P ′) ⊆ fo(P) ∪ {l}.

4. If α = τ then fo(P ′) ⊆ fo(P).

Proof. The proof is by induction on the derivation P α−→ P ′. We will detail only
the second and the third statement.

2 . For the base case we have that rule (out) must be applied. In that case we
have P = k!l.P1

k!l−→ P1 = P ′. Since fo(P) = fo(P1) ∪ {l} and l ∈ fo(P), by
De�nition 2.1.2, we may conclude the case.

For the inductive step we have that only rules (match), (res), (par-l),
(par-r) and (rep-act) can be applied. We detail only the case of (par-l).
In that case P = P1 | R

k!l−→ Q | R = P ′ is derived from P1
k!l−→ Q, where

the side condition of (par-l) is vacuously true since bn(k!l) = ∅. By the
induction hypothesis we get fo(Q) ∪ {l} = fo(P1) and l ∈ fo(P1), and hence
by De�nition 2.1.2 we derive fo(Q | R) ∪ {l} = fo(Q) ∪ {l} ∪ fo(R) =
fo(P1) ∪ fo(R) = fo(P1 | R), and l ∈ fo(P1) ⊆ fo(P1 | R).

3 . We only detail the base case, i.e., when rule (open) is applied. Then, P =

(νl)P1
(νl)k!l−−−→ P ′ is derived from P1

k!l−→ P ′. By the �rst part of the proof
we get l ∈ fo(P1) and fo(P ′) ∪ {l} = fo(P1). Since l ∈ bn((νl)P1), by
De�nition 2.1.1, we conclude fo(P ′) ⊆ fo((νl)P1) ∪ {l}.

What we can conclude from the �rst statement of Lemma 2.2.3 is that if a
process receives a channel that is not a free output object of the process, then
the received channel also cannot be a free object output in the resulting process.
The second statement of the lemma implies that if channel l is not free object
output of process P , then process P cannot perform an output action with object
l. Combining the two above statements we may conclude that if a process receives
a channel previously not speci�ed as an object of an output pre�x in the process,
then the received channel will also not appear as an object of an output pre�x
in the resulting process. We may show that this is preserved also by all possible
evolutions of the process. To this end, we �rst relate the set of free channels
appearing in output pre�xes of a process and any execution trace. Having this in
mind, the next result follows by a direct induction on the size of the trace (m).

Corollary 2.2.4 (Free output objects and traces). Let P, P1, . . . , Pm be Cπ pro-
cesses. If P

α1−→ P1
α2−→ . . .

αm−−→ Pm then fo(Pm) ⊆ fo(P) ∪ bn(α1) ∪ . . . ∪ bn(αm).

2.3. REDUCTION SEMANTICS 21

The last corollary implies that in the Cπ model, a process that receives a (fresh)
channel name cannot send it later on. To precisely capture this property, we �rst
give a precise de�nition of non-forwarding for all π processes.

De�nition 2.2.5 (Non-forwarding property). A π process P1 satis�es the non-
forwarding property if whenever

P1
α1−→ P2

α2−→ . . .
αm−−→ Pm+1.

where l /∈ fn(Pi) and αi = k?l, for some i in 1, . . . ,m− 1, then αj 6= k′!l, for any
channel k′ and any j in i+ 1, . . . ,m.

The next theorem attests that all Cπ processes respect the non-forwarding
property. As we will see in the next section, De�nition 2.2.5 will also be used to
reason about the non-forwarding of the π processes.

Theorem 2.2.6 (Non-forwarding of Cπ processes). If P is a Cπ process then P
satis�es the non-forwarding property.

Proof. Let P = P1 be a Cπ process and let

P1
α1−→ P2

α2−→ . . .
αm−−→ Pm+1

We show that if l /∈ fn(Pi) and αi = k?l, for some i in 1, . . . ,m− 1, then αj 6= k′!l,
for any channel k′ and any j in i + 1, . . . ,m. Since without loss of generality
we can assume all bound outputs are fresh and l /∈ fn(Pi) (therefore l /∈ fo(Pi)),
using Corollary 2.2.4 we get l /∈ fo(Pj), for j = i+ 1, . . . ,m + 1. Hence, applying
Lemma 2.2.3, we can conclude αj 6= k′!l, for j = i+ 1, . . . ,m.

Notice that, according to discussion preceding De�nition 2.2.5, we could replace
the condition l /∈ fn(Pi) in the de�nition and in Theorem 2.2.6 by l /∈ fo(Pi).
Theorem 2.2.6 should come as no surprise, the Cπ syntax is restricted with the
goal of excluding forwarding, but nevertheless serves as a rigorous sanity check.
On the other hand, if we consider the π processes it appears to be nontrivial to
di�erentiate processes that respect the non-forwarding of fresh channel names (cf.
De�nition 2.2.5). To address this goal, we may rely on comparing π processes with
Cπ processes and on the result shown here (see Proposition 2.4.10).

2.3 Reduction semantics

In this section, we present the reduction semantics of the Cπ-calculus, which again
follows directly from the theory developed for the π-calculus [102]. The reduction
semantics expresses only internal actions of the processes, and, as we will see, it di-
rectly corresponds to the τ transitions of the labeled transition system introduced
in Section 2.2. The usefulness of the reduction semantics lays in its simplicity and
elegance, in particular when used in proofs. This is also the main reason for us
to introduce it in this thesis, as we will use the reduction semantics to show the
properties of our encoding in Section 2.6. The simplicity comes from the fact that

22 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

(sc-par-inact)

P | 0 ≡ P

(sc-par-comm)

P | Q ≡ Q | P
(sc-par-assoc)

(P | Q) | R ≡ P | (Q | R)

(sc-res-inact)

(νk)0 ≡ 0

(sc-res-extr)

P | (νk)Q ≡ (νk)(P | Q) if k /∈ fn(P)

(sc-res-swap)

(νk)(νl)P ≡ (νl)(νk)P

(sc-mat)

[a = a]π.P ≡ π.P

(sc-rep)

!P ≡ P | !P

Table 2.3: Structural congruence.

(r-comm)

k!l.P | k?x.Q→ P | Q{l/x}

(r-par)

P → Q

P | R→ Q | R

(r-res)

P → Q

(νk)P → (νk)Q

(r-stru)

P ≡ P ′ → Q′ ≡ Q

P → Q

Table 2.4: Reduction relation.

this semantics relies on the structure congruence relation, that permits for term
manipulation, allowing to single out two active pre�xes willing to synchronize.

The structural congruence relation, denoted by ≡, is the least binary con-
gruence on processes that satis�es rules in Table 2.3. Rules (sc-par-inact),
(sc-par-comm) and (sc-par-assoc) make (P , | , 0) a commutative monoid. Rule
(sc-res-inact) shows that restricting an inactive process has no e�ect and that
the restriction can be removed. Rule (sc-res-extr) states that if the restricted
channel is not speci�ed as free in one of the branches then its scope can be con�ned
only to the other branch, and in the other direction it allows for name extrusion
(see the example below). Rule (sc-res-swap) allows swapping name restrictions,
rule (sc-mat) allows to remove the top matching if the names coincide, and rule
(sc-rep) states that a copy of the replicated process can be activated in parallel
with the replicated one.

The reduction relation, denoted by →, is the least binary relation included in
P × P that satis�es the rules given in Table 2.4. Rule (r-comm) allows for two
threads that are running in parallel, one sending and the other receiving on the
same channel, to synchronize their actions. Rules (r-par) and (r-res) allow for a
reduction to take place under parallel composition and channel restriction, respec-
tively, as pre�xes involved in the reduction remain active under these constructs.
Rule (r-stru) closes the reduction relation under structural congruence, which
thus allows to single out two threads ready to synchronize.

For the sake of illustration, consider process (νl)k!l.0 | k?x.x!m.0 given in the
explanation of rule (close-l) in Section 2.2. By rule (sc-res-extr) we have

(νl)k!l.0 | k?x.x!m.0 ≡ (νl)(k!l.0 | k?x.x!m.0)

2.4. BEHAVIORAL EQUIVALENCE 23

Since by (r-comm) k!l.0 | k?x.x!m.0→ 0 | l!m.0 and by (r-res)

(νl)(k!l.0 | k?x.x!m.0)→ (νl)(0 | l!m.0)

by (r-stru) we conclude

(νl)k!l.0 | k?x.x!m.0→ (νl)(0 | l!m.0)

As we announced, τ transitions of the action semantics coincide with reductions
of the reduction semantic, up to structural congruence. This is a well-known result
for the π-calculus, cf. [102] Lemma 1.4.15, and we may directly state this result
for our fragment of the π-calculus.

Theorem 2.3.1 (Harmony). P → Q if and only if there is Q1 such that Q1 ≡ Q
and P

τ−→ Q1.

We have shown that the set of free object names of a Cπ process is preserved
by τ transitions in Lemma 2.2.3. Following these lines, we can show that the same
property holds in general for π-calculus processes, by extending De�nition 2.1.2
to consider free object (channel) names of all π processes. In what follows we
show that the set of free object names of a π process is preserved by structural
congruence and is not enlarged by the reduction relation. The reduction semantics
of the (sum-free) π-calculus [102] relies on the same set of rules as in Table 2.3 and
Table 2.4, hence we may refer to these rules when dealing with the π processes.

Lemma 2.3.2 (Free output objects and reductions). Let P and Q be π processes.

1. If P ≡ Q then fo(Q) = fo(P).

2. If P → Q then fo(Q) ⊆ fo(P).

Proof. 1 . The only structural congruence rule a�ecting free names is (sc-mat):
[a = a]π.P ≡ π.P , and by the de�nition fo([a = a]π.P) = fo(π.P).

2 . Follows by induction on → derivation. The base case is when (r-comm) is
used. Then k!l.P1 | k?x.P2 → P1 | P2{l/x}. Since fo(k!l.P1 | k?x.P2) =
{l} ∪ fo(P1) ∪ fo(P2) and fo(P1 | P2{l/x}) ⊆ fo(P1) ∪ (fo(P2) \ {x}) ∪ {l},
the case follows. The rest of the cases follow directly from the induction
hypothesis and de�nition of fo(P), and only in the case of (r-stru) the case
1 . of this lemma is applied.

The result of the last lemma is used in the proofs of correctness of the encoding
of the π-calculus in the Cπ-calculus, presented in Section 2.6.

2.4 Behavioral equivalence

In this section, we introduce a behavioral equivalence relation, called strong bisim-
ilarity. Behavioral equivalences are used to answer the question: in which cases are
two systems (processes) indistinguishable when inserted in the same interacting

24 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

environments [36]. The strong bisimilarity is widely used as (the strictest) equiv-
alence relation to proving properties of processes [9, 100, 101]. As we will see,
the strong bisimilarity relation de�ned here for the Cπ-calculus in De�nition 2.4.1
precisely matches the one of the π-calculus in [102] De�nition 2.2.1. Therefore, all
the properties for strong bisimilarity relation are inherited, and we fully exploit
this convenience to state and explain these properties without giving the proofs,
as they can be found in [102].

The observable actions introduced in Section 2.2 give a basis to de�ne the
strong bisimilarity. Intuitively, two processes are called strongly bisimilar if a
game can be played between them: each labeled action of one process can be
reproduced by the other process (and inversely), and the resulting processes can
be again paired under the same conditions. Hence, this relation pairs processes
exhibiting the same behavior.

De�nition 2.4.1 (Strong bisimilarity). The strong bisimulation is a symmetric
relation R over processes that satis�es

if PRQ and P
α−→ P ′, where bn(α) ∩ fn(Q) = ∅, then Q

α−→ Q′ and P ′RQ′.

The strong bisimilarity, denoted ∼, is the largest strong bisimulation, i.e., it in-
cludes all strong bisimulation relations over processes.

For instance, (νk)k!l.P ∼ 0, for any process P , since the left-hand side process
cannot exhibit the output action speci�ed in the active pre�x because of the side
condition of rule (res). Now consider processes

(νk)((νl)k!l.0 | k?x.[x = m]π.0) and (νk)((νl)k!l.0 | k?x.0) (2.1)

We may show that these two processes are also bisimilar, since

R = {((νk)((νl)k!l.0 | k?x.[x = m]π.0), (νk)((νl)k!l.0 | k?x.0))
((νk)(νl)(0 | [l = m]π.0), (νk)(νl)(0 | 0))}

is a strong bisimulation relation. Notice that in process [l = m]π.0 the received
channel l is matched withm, and since these two names do not coincide the process
cannot exhibit the action speci�ed in pre�x π, because of rule (match). Notice
also that l is received involving name extrusion since it is bound in the left branch.
We now state some of the fundamental properties of the strong bisimilarity, for
which the respective proofs can be found in [102].

Proposition 2.4.2 (Equivalence). Strong bisimilarity is an equivalence relation.

Proposition 2.4.3 (Structural congruence). If P ≡ Q then P ∼ Q.

Proposition 2.4.4 (Non-input congruence).

(a) If P ∼ Q then

1. P | R ∼ Q | R;
2. (νk)P ∼ (νk)Q;

2.4. BEHAVIORAL EQUIVALENCE 25

3. !P ∼ !Q;

4. if π = [b1 = c1] . . . [bn = cn]a!k or π = a!k then π.P ∼ π.Q.

(b) If for any channel k it is the case that P{k/x} ∼ Q{k/x} holds and π =
[b1 = c1] . . . [bn = cn]a?x or π = a?x then π.P ∼ π.Q.

The fact that strong bisimilarity is a non-input congruence is inherited from
the π-calculus. It is known that only for some speci�c sub-calculi of the π-calculus
the strong bisimilarity is preserved by the input construct [16, 52, 53, 102]. Strong
bisimilarity is a non-input congruence in the presence of matching [17], as it is the
case in the Cπ-calculus. For instance, [x = m]π.0 ∼ 0, as we already noted in the
example above, but

a?x.[x = m]π.0 6∼ a?x.0

since it can be the case that the received name is m, and then the action speci�ed
by π is activated, while the other process terminates no matter what name is
received.

We now present one behavioral equality that is speci�c for the Cπ-calculus.
We have shown that the processes given in (2.1) are bisimilar, and we commented
there that if the received name is new to the process then matching it with any
name of the process will always fail. What speci�cally holds in the Cπ-calculus is
that if a process sends a bound name, after which receives a name and matches it
with the name previously sent (like in (νl)k!l.k?x.[x = l]π.P), the matching will
always fail. The reason is the non-forwarding property of Cπ processes: a process
that receives l will never be able to send it later on. We exploit this feature in the
next result to directly represent the creation of closed domains for channels, that
resembles the creation of secure channels with statically determined scope.

Proposition 2.4.5 (Closed domains for channels). For any Cπ process P , channel
m and pre�x π, the following equality holds

(νk)((νl)k!l.m?y.[y = l]π.0 | k?x.P) ∼ (νk)((νl)k!l.m?y.0 | k?x.P)

Proof. The proof is by coinduction on the de�nition of the strong bisimulation,
by showing that the relation

R = {
(
(νk)((νl)k!l.m?y.[y = l]π.0 | k?x.P), (νk)((νl)k!l.m?y.0 | k?x.P)

)
,(

(νk)(νl)(m?y.[y = l]π.0 | Q), (νk)(νl)(m?y.0 | Q)
)
,(

(νl)(m?y.[y = l]π.0 | Q), (νl)(m?y.0 | Q)
)
,(

(νk)(νl)([n = l]π.0 | Q), (νk)(νl)(0 | Q)
)
,(

(νl)([n = l]π.0 | Q), (νl)(0 | Q)
)
,(

(νk)(νl)(νn)([n = l]π.0 | Q), (νk)(νl)(νn)(0 | Q)
)
,(

(νl)(νn)([n = l]π.0 | Q), (νl)(νn)(0 | Q)
)

| for all n,m ∈ C, such that n 6= l,
and all processes P and Q, such that l /∈ fo(Q) }

is a strong bisimulation, hence, contained in strong bisimilarity (i.e., R ⊆∼).

26 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

We show that each action of one process can be mimicked by the other process
in the pair in R, leading to processes that are again in relation R. Let the process
in the �rst pair

(νk)((νl)k!l.m?y.[y = l]π.0 | k?x.P)
α−→ P ′

Then, since actions of the starting process can only be actions of its two branches,
we conclude that either α = (νl)k!l or α = k?n or it is the synchronization of
these two actions, in which case α = τ . We reject the �rst two options since
the subject of the action is bound in the starting process and by rule (res)

it cannot be observed outside of the process. Hence, we conclude α = τ and
P ′ = (νk)(νl)(m?y.[y = l]π.0 | P{l/x}). Then, by applying (out), (open), (in),
(close-l) and (res), respectively, we observe

(νk)((νl)k!l.m?y.0 | k?x.P)
τ−→ (νk)(νl)(m?y.0 | P{l/x})

and since l /∈ fn(P) and x cannot appear as an object in the pre�xes in P we
conclude l /∈ fo(P{l/x}). Hence, we have(

(νk)(νl)(m?y.[y = l]π.0 | P{l/x}), (νk)(νl)(m?y.0 | P{l/x})
)
∈ R

The symmetric case is analogous.
Now let us consider processes in the second pair of R. If

(νk)(νl)(m?y.[y = l]π.0 | Q)
α−→ P ′

then the observable α can originate from one of the branches or from their syn-
chronization.

�Left branch: If the observable originate from the left branch, then α = m?n,
and by (in), (par-l) and (res)

(νk)(νl)(m?y.[y = l]π.0 | Q)
m?n−−→ (νk)(νl)([n = l]π.0 | Q)

where, by the side condition of (res) we conclude n /∈ {k, l}. In the same we
derive

(νk)(νl)(m?y.0 | Q)
m?n−−→ (νk)(νl)(0 | Q)

and
(
(νk)(νl)([n = l]π.0 | Q), (νk)(νl)(0 | Q)

)
∈ R holds.

�Right branch: If the action originates from the right branch, i.e., from
Q

α−→ Q′, we distinguish two cases:

(i) if the derivation is carried out using rules (par-r) and (res) we have that

(νk)(νl)(m?y.[y = l]π.0 | Q)
α−→ (νk)(νl)(m?y.[y = l]π.0 | Q′)

where, since l /∈ fo(Q), by Lemma 2.2.3 we conclude l /∈ fo(Q′). Then, by
the same rules

(νk)(νl)(m?y.0 | Q)
α−→ (νk)(νl)(m?y.0 | Q′)

and
(
(νk)(νl)(m?y.[n = l]π.0 | Q′), (νk)(νl)(m?y.0 | Q′)

)
∈ R holds.

2.4. BEHAVIORAL EQUIVALENCE 27

(ii) if the derivation is carried out using rules (par-r), (res) and (open) we have
that

(νk)(νl)(m?y.[y = l]π.0 | Q)
(νk)α−−−→ (νl)(m?y.[y = l]π.0 | Q′)

then l /∈ n(α). Notice that the scope of channel l cannot be opened this way
since l /∈ fo(Q). Hence, process Q cannot perform output action with object
l. Then by the same rules

(νk)(νl)(m?y.0 | Q)
(νk)α−−−→ (νl)(m?y.0 | Q′)

and, again,
(
(νl)(m?y.[n = l]π.0 | Q′), (νl)(m?y.0 | Q′)

)
∈ R holds.

�Synchronization of branches: We again distinguish two cases:

(i) if the derivation follows from

m?y.[y = l]π.0
m?n−−→ [n = l]π.0 and Q

m!n−−→ Q′

where we can make the same observation on Q as before to conclude that
l 6= n, and the derivation relies on rules (comm-r) and (res) hence

(νk)(νl)(m?y.[y = l]π.0 | Q)
τ−→ (νk)(νl)([n = l]π.0 | Q′)

Then, considering m?y.0
m?n−−→ 0, and the same rules as above we have that

(νk)(νl)(m?y.0 | Q)
τ−→ (νk)(νl)(0 | Q′)

and
(
(νk)(νl)([n = l]π.0 | Q′), (νk)(νl)(0 | Q′)

)
∈ R.

(ii) if the derivation follows from

m?y.[y = l]π.0
m?n−−→ [n = l]π.0 and Q

(νn)m!n−−−−→ Q′

where as before we can assume l 6= n, and derivation relies on rules (close-r)
and (res) hence

(νk)(νl)(m?y.[y = l]π.0 | Q)
τ−→ (νk)(νl)(νn)([n = l]π.0 | Q′)

then using m?y.0
m?n−−→ 0, we may observe

(νk)(νl)(m?y.0 | P)
τ−→ (νk)(νl)(νn)(0 | Q′)

and
(
(νk)(νl)(νn)([n = l]π.0 | Q′), (νk)(νl)(νn)(0 | Q′)

)
∈ R.

The symmetric cases and the rest of the pairs from R are analogous. For
the rest of the pairs note that in all of them the left branch that appears on the
left-hand side of the pairs we have [n = l]π.0, where n 6= l, and hence, it exhibits
no transitions and is observationally equivalent to the inactive process 0, which
appears in the left branch in the right-hand side of the pairs.

28 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

In both processes related by strong bisimilarity in Proposition 2.4.5 the left
thread creates a new channel l and sends it to the right thread over a channel k
that is known only to the two threads. The bisimilarity shows that then the chan-
nel l cannot be received afterwards in the left thread. As discussed above, this is a
consequence of the non-forwarding property of Cπ processes. Furthermore, we may
show that channel l will not be exchanged even between sub-processes of process
P{l/x} (as there would exist a sub-process that violates the non-forwarding prop-
erty). Hence, in this constellation, channel l will be sent only once and afterwards
have a �static" nature since then it can be used only for sending and receiving
along the channel and cannot be sent itself. We say that the two processes given
in the proposition determine a closed domain for channel l.

2.4.1 Strong barbed equivalence

For the purpose of the results in Section 2.6, we introduce a behavioral equivalence
that relies on the reduction relation instead of the labeled transitions. To this end,
we introduce the notion of barbs and strong barbed equivalence. Again we fully
exploit the theory developed for the π-calculus in [102], where all the details and
poofs can be found.

De�nition 2.4.6 (Barbs). For each channel k and process P , we say that P ↓k
holds if P can perform an output action with subject k, and P ↓k holds is P can
perform an input action with subject k.

Based on the de�nition of barbs, we de�ne the strong barbed bisimilarity.

De�nition 2.4.7 (Strong barbed bisimilarity). Strong barged bisimilarity is the
largest symmetric relation ∼̇ such that if P ∼̇ Q then

1. if P ↓k then Q ↓k,

2. if P ↓k then Q ↓k,

3. if P → P ′ then Q→ Q′ and P ′ ∼̇ Q′.

The strong barbed bisimilarity is not a congruence relation, it is not even
preserved by parallel composition. For instance,

k!l.n!m.0 ∼̇ k!l.0

while k!l.n!m.0 | k?x.0 and k!l.0 | k?x.0 are not strong barbed bisimilar since after
the reduction the �rst process has barb n. The relation we are interested in, and
that coincides with the strong bisimilarity, closes the strong barbed bisimilarity
under parallel composition contexts.

De�nition 2.4.8. Two processes P and Q are strong barbed equivalent, P ' Q,
if for any R holds P | R ∼̇ Q | R.

The proof of the next theorem can be found in [102] Theorem 2.2.9(1).

Theorem 2.4.9 (Strong characterization). P ' Q if and only if P ∼ Q.

2.4. BEHAVIORAL EQUIVALENCE 29

As noted, we are going to use strong barbed equivalence formally in the proofs
in Section 2.6, where we are going to deal with the reduction relation. However,
notice that the strong bisimilarity relation o�ers a much more tractable technique
for proving that two processes are related, since relating two processes with strong
barbed equivalence requires that they have to be tested when composed in parallel
with an in�nite number of processes (actually, all of them).

2.4.2 A characterization of the non-forwarding π processes

We have seen in Theorem 2.2.6 that Cπ processes satisfy De�nition 2.2.5: if the
received channel is fresh to the process it will not be forwarded. Considering π
processes, the non-forwarding property, in general, does not hold, so this kind
of privacy property is hard to guarantee. Therefore, it may be worthwhile to
develop a method for distinguishing the π-calculus processes that satisfy the non-
forwarding property relying on the Cπ-calculus developed here. If we focus only
on the π processes that are closed, i.e., do not have free names, we may notice
that these processes vacuously satisfy non-forwarding. Furthermore, we may �nd
examples of π processes that are not part of the Cπ syntax and not closed but still
respect this property. For instance, π process

k?x.(νl)(l!x.0 | l?y.0)

that receives a channel on k and then sends the received channel on l. How-
ever, since l is restricted in the process, the received channel will be exchanged
only between the components of the process and will not be sent to the process
environment. However, statically characterizing the non-forwarding by consider-
ing that forwarding is performed only on restricted channels is not possible, as
restricted channels can be opened. For instance, we may notice that π process
k?x.(νl)(k!l.l!x.0 | l?y.0) does not satisfy the non-forwarding property.

Hence, di�erentiating a non-forwarding π process may not be an easy task.
Here, we propose a method towards the solution of this problem. One may observe
that if a π process P is bisimilar to some Cπ processQ, then P must satisfy the non-
forwarding property (De�nition 2.2.5). This is the idea of our next proposition.
We remark that since we are dealing with sum-free Cπ process, in the proposition
we consider also only sum-free π terms. Also, in the next proposition we use
De�nition 2.4.1 extended here to consider the strong bisimilarity relation over all
π processes (as in [102]).

Proposition 2.4.10 (Non-forwarding π processes). Let P be a π process. If there
is a Cπ process Q, such that P ∼ Q, then P satis�es the non-forwarding property.

Proof. Let P1 = P be a (sum-free) π process and let P1
α1−→ P2

α2−→ . . .
αm−−→ Pm+1.

Let us �x i ∈ {1, . . . ,m− 1}, and assume l /∈ fn(Pi) and αi = k?l. Since without
loss of generality we can assume all bound outputs are fresh, we get αj 6= (νl)k′!l,
for all j = i+ 1, . . . ,m, directly. In addition to the �rst assumption, let us assume
there is j ∈ {i + 1, . . . ,m} such that αj = k′!l. Since P1 ∼ Q1 (where Q1 = Q),
we conclude there are Cπ processes Q2, . . . , Qm+1 such that

Q1
α1−→ Q2

α2−→ . . .
αm−−→ Qm+1

30 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

and Pn ∼ Qn, for all n = 1, . . . ,m + 1, where Qi
k?l−→ Qi+1 and Qj

k′!l−−→ Qj+1. We
now distinguish two cases.

1. If l /∈ fn(Qi) then we get a direct contradiction with Theorem 2.2.6.

2. If l ∈ fn(Qi), we choose a fresh channel l′ and a substitution σ that is de�ned
only on channel l and maps it to l′. Then, from Pj

αj−→ Pj+1, by consequitive

application of [102] Lemma 1.4.8, we conclude (Pj)σ
(αj)σ−−−→ (Pj+1)σ, for all

j = i+ 1, . . . ,m. Since l /∈ fn(Pi) we get (Pi)σ = Pi. Now from

P1
α1−→ . . .

αi−1−−→ Pi
(αi)σ−−−→ (Pi+1)σ

(αi+1)σ−−−−→ . . .
(αm)σ−−−→ (Pm+1)σ,

and P1 ∼ Q1, we again conclude there are Cπ processes Q2, . . . , Qm+1 such
that

Q1
α1−→ . . .

αi−1−−→ Qi
(αi)σ−−−→ Qi+1

(αi+1)σ−−−−→ . . .
(αm)σ−−−→ Qm+1,

where Pj ∼ Qj, for all j = 1, . . . , i and (Pj)σ ∼ Qj, for all j = i+1, . . . ,m+1.
Since l′ has been chosen to be a fresh channel, we get l′ /∈ fn(Qi), and since

Qi
(k)σ?l′−−−−→ Qi+1 and Qj

(k′)σ!l′−−−−→ Qj+1, we fall into the �rst case, and hence,
we again get contradiction with Theorem 2.2.6.

Proposition 2.4.10 opens a number of possible direction for improvements and
modi�cations. For instance, Proposition 2.4.10 shows that if a π process is bisim-
ilar to a Cπ process then it does respect non-forwarding, but it does not give an
algorithm for deriving the respective Cπ process. Also, we can relax the de�nition
of the non-forwarding, to consider processes that do not forward names received
only on some prede�ned set of channels. Another point is answering the question
if a π process respects the non-forwarding property if and only if is bisimilar to a
Cπ process. Such investigations are left for future work.

2.5 Examples

This section presents several examples as a showcase of the possible usefulness
of the Cπ-calculus. We may notice that a Cπ process that creates a channel
always keeps for himself the capability of sending the channel while the other
processes that learn about the channel by receiving it can only use the channel to
communicate on it. Hence, between the processes in which a channel is known,
we may distinguish

� administrators, the processes that create the channel: these have the capa-
bilities of communicating on the channel and also sending the channel;

� users, the processes that at some point have received the channel: these have
only the capabilities of communicating on the channel.

2.5. EXAMPLES 31

As the capability of sending a channel is never transferred between processes,
we can conclude that none of the channel users can become an administrator for
the channel, and furthermore, only administrators can engage new users (but not
administrators) by sending the channel.

Let us consider the process given at the beginning of this chapter

((νsession)chn!session.Alice) | chn?x.Bob | forward?y.Carol

adapted here by considering Alice,Bob and Carol to be Cπ processes. Then, the
administrator of session is the process in the scope of the name restriction, while
Bob becomes a user after the initial synchronization. In our model, Bob cannot
send session to a third party afterwards. Considering that Bob wants to send to
Carol one end-point of channel session, he �rst needs to notify the administrator,
in this case Alice, by connecting her with Carol . Hence, we can have

� Bob = channel !forward .0, where Bob sends to Alice channel forward and
then terminates,

� Alice = channel?y.y!session.Alice ′, where Alice receives the channel from
Bob and decides to send session along the received channel, and

� �nally, Carol can receive session along channel forward directly from Alice.

This example shows that in the Cπ any channel extrusion �rst has to be �approved�
by the channel administrators.

2.5.1 Authentication

We stipulated that specifying (νsession)Alice in the Cπ-calculus de�nes Alice as
the administrator for channel session. Administrator (process Alice) can extrude
the scope of the channel (session) by sending it, but the receiving processes will
only become users and never administrators for the received channel. The admin-
istrator attribute is something that remains with the creator of the channel and
is invariant to process evolution. This locality can be used for authentication of
processes as follows. Assume process Bob is a user of channel session. Then, Bob
can test the other process with whom he is communicating on session to deter-
mine if the other process is an administrator of the channel. For example, we can
specify

Bob = (νprivateChn)session!privateChn.privateChn?x.[x = session].Bob ′

where process Bob �rst establishes a private connection with the other process
listening on session by sending fresh privateChn. Afterwards, Bob speci�es an
input and then matches the received name with session. If the received channel
is session then the other process, say Alice, has proven to Bob that she is in the
domain where session was created.

A similar scenario can be used by two administrators of the channel to test
each other. For instance, we can have process

chn!session.chn?y.[y = session]π.Alice | chn?x.[x = session]chn!session.Dylan

32 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

where the two threads �rst perform a kind of authentication scheme and only then
activate π.Alice and Dylan and their possible interactions. First, the right thread
receives a name and matches it with session, i.e., we get

chn?y.[y = session]π.Alice | [session = session]chn!session.Dylan ′

where Dylan ′ = Dylan{session/x}, and since the received name is session then he
sends the channel by himself. The left thread receives the name and also matches
it with session, i.e., we obtain process [session = session]π′.Alice ′ | Dylan ′, where
π′.Alice ′ = (π.Alice){session/y}. Since the received name is session, Alice ′ con-
tinues interacting with Dylan ′. After this testing, both threads have proven to be
administrators for the channel.

2.5.2 Modeling groups and name hiding

The channel creation construct of the π-calculus introduces a notion of a private
resource. This private resource can be shared with other processes through scope
extrusion, and this is a very important aspect of the π-calculus. On the other
hand, extruding the scope means exposing the private resource to others. We
have seen that the Cπ-calculus does not prevent the scope extrusion, but it simply
con�nes (with the process that creates the channels) this capability.

Several process models have been proposed for controlling the channel sharing
in the π-calculus. The paper by Cardelli et al. [26], extends the π-calculus syntax
with the construct for group creation. A type is assigned to each channel, specify-
ing to which group that channel belongs. The operational semantics instrumented
with the type information ensures that channels of a group cannot be acquired
by a process outside the scope of the group. Furthermore, their typing discipline
provides that grouped channels are never communicated on open channels. The
work of Giunti et al. [46] extends the syntax of the π-calculus with a construct
called hide. The hide construct has similar properties as channel restriction, but
it is more rigorous since construct hide does not allow for scope extrusion. Hence,
a name speci�ed in the hide construct has a predetermined scope.

Determining the scope of a channel can be achieved in Cπ-calculus directly, as
already hinted in Proposition 2.4.5. For instance, if the channel creation is placed
in a separate thread and then sent to a process, as in

(νchn)((νsession)chn!session.0 | chn?x.Groupx)

then, after the initial synchronization channel session will have the �nal scope
determined by Groupsession . This is simply a consequence of Groupsession being
a Cπ-process, and not being capable to send channels that were received. Fur-
thermore, since the resulting process is (νchn)(νsession)(0 | Groupsession), we may
notice that channel session actually loses its mobility altogether and behaves more
like a CCS channel [68]. Notice that the administrator is now the inactive process
so the capability of sending the name is lost. Hence, the scope of a channel can be
permanently restricted this way, but di�ers when comparing to groups and name
hiding where a channel can be communicated inside a prede�ned scope since in
our case the channel cannot be communicated in any process.

2.5. EXAMPLES 33

We may try to get closer to represent groups and name hiding by combining the
channel creation and authentication from Section 2.5.1. The capability of sending
a channel is always kept local with the administrator of the channel. We may use
this fact to localize the �nal scope for a protected channel. For instance, we may
say that in process

(νgroup)((νsession)Alice | Bob)

channel session can be received only by administrators of channel group, which
represents the group which may have access to channel session. To this end, each
time channel session is to be sent by process Alice, she must authenticate the
receiving process as an administrator for channel group, by specifying

(νprivateChn)chn!privateChn.privateChn?x.[x = group]privateChn!session

This way we can ensure channel session will be received only by a process that
originates from (νsession)Alice | Bob. Comparing again with groups and name
hiding we see that now we do have channel mobility only inside a prede�ned
scope. However, in the presence of attackers (that are not Cπ processes), this
mechanism needs to be further strengthened to protect also the channels that rep-
resent groups, such as channel group. We leave this exploration and formalization
of the relationship between Cπ and models with groups and name hiding for future
work.

2.5.3 Open-ended groups

All examples of restricting channel sharing we have considered so far have used
a prede�ned scope for a protected channel. This is also the case with works
with groups [26] and name hiding [46], in which the scope of channels that are
con�dential are statically prescribed. However, we may notice that sometimes
protected resources need to be shared in open-ended environments and that the
above limitation can be considered too restrictive. We believe that the Cπ-calculus,
with its administrator-user hierarchy, o�ers a good base to reason on open-ended
groups. For instance, consider process

(νsession)(chn!session.Alice | Bob) | chn?x.Carol

where the leftmost thread is the administrator for channel session, Bob is a user,
and Carol does not know name session. The administrator (i.e., the process that
created the group), can send the name of the group to other processes, and hence
can engage new users to the group, in our example obtaining

(νsession)(Alice | Bob | Carol ′)

where Carol ′ = Carol{session/x}. Notice that the control of joining new users
to the group is handled by an administrator, as users cannot themselves engage
other members to the group.

34 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

2.6 Encoding forwarding

Even though the speci�cation power of Cπ-calculus is clearly di�erent from the
π-calculus, this is not the case when comparing the expressiveness of the compu-
tational models. In this section, we show how the π-calculus can be implemented
(encoded) in the Cπ-calculus which therefore informs on the expressive power of
the language. The section is divided into three parts. The �rst part informally
introduces the idea of the encoding, Section 2.6.1 formally presents the encoding
and Section 2.6.2 provides the proof of the Operational correspondence result.

As the number of di�erent process models has grown, comparing these various
models in a systematic way has been recognized as an important aspect of the
research in the �eld [81]. There are a number of important results among which are:
encoding the λ-calculus into the π-calculus [69], comparing various subcalculi of
the π-calculus [15, 55, 75], comparing di�erent process calculi and some separation
results [25, 33, 37, 47, 62, 65, 78, 79, 98]. We start this section with an informal
presentation of the idea, and afterwards, we present an encoding from the π-
calculus into our calculus and we attest the encoding is valid by showing the
operational correspondence result, following the criteria given in [47].

In order to represent our encoding in a more compact way we use a fragment
of the polyadic version of our calculus. The only di�erence of the syntax of the
polyadic Cπ with the syntax introduced in Section 2.1 is that the output (k!l) and
the input (k?x) pre�x can have as object a tuple of names. Hence, in polyadic Cπ
we have

π ::= k!(l1, . . . , ln) | k?(x1, . . . , xn) | [a = b]π

When comparing the reduction semantics of the polyadic Cπ with the reduction
semantic introduced in Section 2.3, the only di�erence is that now output and input
involved in the reduction may have as objects tuples of channels and variables,
respectively, and that in order for reduction to take place these two tuples have
to be of the same size (arity). Synchronization of actions of di�erent arity is
considered an error, known as arity mismatch (cf. the polyadic π-calculus [70]).
However, polyadicity in this work is more syntactic sugar, as the fragment of the
polyadic Cπ-calculus that we are going to use here for the purpose of the encoding
of the monadic π-calculus, does not have to deal with arity mismatches and can
be represent in the monadic Cπ following expected lines (we will return to this
point later).

As we noted, the (monadic) Cπ-calculus di�ers from the (monadic) π-calculus
in the restriction that input variables cannot be speci�ed as objects of output
pre�xes. For instance, consider process given at the beginning of this chapter

chn!session.Alice | chn?x.forward !x.Bob | forward?y.Carol (2.2)

in which the leftmost thread sends session on chn to the thread in the middle.
Then the thread in the middle forwards the received channel to the rightmost
thread on forward . This π process is clearly not a Cπ process. We may try to
represent the forwarding of channel session of the middle thread in the Cπ-calculus
using the following idea:

2.6. ENCODING FORWARDING 35

� create a process dedicated for sending channel session, the process we call
handler of channel session,

� whenever channel session is sent it is sent together with a special channel
that allows to communicate with the handler, and

� when a process that received name session wants to forward the name, it
asks the respective handler to carry out the communication identifying on
which channel session is to be sent.

Hence, our �rst attempt to represent the π processes (2.2) in (polyadic) Cπ is to

� in parallel with encoded processes from (2.2) add the handler process

H = handler?x.x!(session, handler).0

that on a special channel handler receives a channel and then sends session
and handler on the received channel,

� Alice sends channel session together with handler , so that the receiving
process (Bob) can address the handler process, i.e., chn!session.Alice is rep-
resented as

A = chn!(session, handler).Alice ′

� Bob now receives the pair (session, handler) and then creates a private con-
nection between the receiving process (Carol) with the handler process by
sending to both of them a fresh channel private. Hence, chn?x.forward !x.Bob
is represented as

B = chn?(x,mx).(νprivate)forward!private.mx!private.Bob
′

� Carol �rst receives the private channel from Bob on channel forward and
then receives the pair (session, handler) from the handler process. Hence,
process forward?y.Carol is represented as

C = forward?z.z?(y,my).Carol
′

Therefore, the process in (2.2) is represented with A | B | C | H. In the �rst
reduction step of the process the pair (session, handler) is sent from A (Alice) to
B (Bob) leading to

Alice ′ | (νprivate)forward!private.handler !private.Bob ′′ | C | H

where Bob ′′ = Bob ′{session/x}{handler/mx}. Then, Bob connects processes C
(Carol) and H (the handler process) in two steps, leading to

Alice ′ | (νprivate)(Bob ′′ | private?(y,my).Carol
′ | private!(session, handler).0)

after which Carol can �nally receive channel session (together with channel handler)
from the handler process

36 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

Alice ′ | (νprivate)(Bob ′′ | Carol ′′ | 0)

where Carol ′′ = Carol ′{session/y}{handler/my}.
There are two additional points we need to take care when following the idea

introduced above:

� forwarding a channel can be required an inde�nite (possibly in�nite) number
of times, hence the handler must be repeatedly available to answer forward-
ing requests,

� for the sake of a faithful representation of the forwarding behavior we need
to ensure that forwarder and (�nal) receiver agree on when the forwarding
has taken place since a direct synchronization ensures this.

To address the last two issues, we can re�ne the A | B | C | H representation of
the process in (2.2), by specifying the handler process to be replicated, i.e.,

H =!handler?x.x!(session, handler).0

and processes B and C to be

B = chn?(x,mx).(νprivate, lock)forward!(private, lock).mx!private.lock !.Bob ′

and
C = forward?(z, z′).z?(y,my).z

′?z′′.Carol ′

wherein the synchronization on channel forward together with channel private
another fresh channel lock is sent from B to C. This channel is used only after C
has received (session, handler) from the handler process, to signal that forwarding
is completed and to unlock processes Bob ′′ and Carol ′′ simultaneously upon the
synchronization.

2.6.1 The encoding

This section introduces the encoding formally. For the purpose of introducing the
renaming policy, used by the encoding, we de�ne three disjoint in�nite sets Nπ,
Nϕ and Nres , all three containing in�nite number of channel and variable names,
such that the union of these three sets is the set of Cπ names N . Here, Nπ is the
set of all π-calculus names, Nϕ is the set of names introduced by the renaming
policy ϕ, and Nres is the set of reserved names (used by the translation function).
We letma,mk,mx, . . . range over Nϕ, and e1, e2, y, z, z′, . . . range over Nres . Notice
that, here we assume the set of π-calculus names Nπ is strictly contained in the
set of Cπ names N . Such assumption is possible since Nπ and N (and also Nϕ
and Nres) are in�nite countable sets.

Formally, our encoding is a pair (J·K, ϕJ K), where J·K is a translation function
and ϕJ K is a renaming policy, cf. [47]. The translation function is a mapping
from the π-calculus, the source terms, into the Cπ-calculus, the target terms.
The translation function J·K relies on the renaming policy ϕJ K, that is a function

2.6. ENCODING FORWARDING 37

J(νk)P K = (νk)(νmk)(JP K | !mk?x.x!(k,mk).0)

J[c̃ = d̃]a!b.P K = (νe1)(νe2)[c̃ = d̃]a!(e1, e2).mb!e1.e2!e1.JP K

J[c̃ = d̃]a?x.P K = [c̃ = d̃]a?(y, z).y?(x,mx).z?z′.JP K

JP1 | P2K = JP1K | JP2K

J!P K = !JP K

J0K = 0

Table 2.5: Encoding of π processes into Cπ processes

ϕJ K : Nπ → Nπ ×Nϕ, mapping each name a of the source language into a pair of
names (a,ma), where for two pairs (a,ma) and (b,mb) if a 6= b then also ma 6= mb.

Table 2.5 introduces the translation function inductively on the source terms.
The �rst rule in the table translates a name restriction. The resulting process
speci�es the encoding of the original scoped process JP K together with the handler
for the restricted channel, both scoped with the restriction for both the channel k
and associated channel name mk (via the renaming policy). The handler process
is repeatedly available to be invoked (on mk) and it receives a channel along which
it outputs the channel k together with the �access point� of the handler (mk). By
sending mk, we make it possible for the process that receives (see the rule for
input) to be able to afterwards directly communicate with the handler for k.

The output process is encoded as a process that creates two fresh channels e1
and e2, then both channels are sent to the receiving process, on the same name
a as in the original process. Then, e1 is also sent to the handler of name b, thus
allowing to create a private connection between the receiving and handler process.
Here, we use [c̃ = d̃]π to abbreviate [c1 = d1] . . . [cn = dn]π or π when the sequence
of matchings is empty. Channel e2 is used only in the synchronization mechanism
to ensure that both continuations of the sending and the receiving processes are
activated only after the forwarding mechanism is completed, so as to mimic the
original behavior (cf. channel lock in the example above). We remark that here
names e1 and e2 are taken to be from the reserved set of names Nres , and hence
cannot appear as free in JP K. The same assumption is made for names y, z and z′

in the rule for input, hence these names cannot appear as free in the continuation
JP K.

The input process is encoded as a reception of a pair of channels (cf. the
encoding of the output pre�xed process). When a pair of names (e1, e2) is received
(from an output process) then the encoding of the input process proceeds by
receiving a pair of names (from a handler process), that are then substituted in
the continuation process. After that, a channel is received on channel e2. The last
reception is used only for activating the continuations of the output and the input
processes (as mentioned above). The encoding is a homomorphism elsewhere.

We may now notice that for the purpose of encoding monadic π-calculus in
Cπ, the polyadicity is used in a controlled way, as the only place where monadic

38 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

communications can take place are the invocation of the handler on channel ml

(from set Nϕ) and unlocking the continuation of the output and input processes
on private channel e2, and the rest of the actions are of arity two. Furthermore,
all the actions of arity two are either conducted on a private channel or carrying
private channel(s) as a message. This implies that we can represent the behavior
of each of the polyadic pre�xes by monadic ones straightforwardly. For example,
a!(e1, e2) in the output process can be represented by a!e1.e1!e2, as channel e1
�rst sent is fresh, and, hence, a?(y, z) in the input process can be represented by
a?y.y?z.

2.6.2 Operational correspondence

Our operational correspondence result relates the sum-free π-calculus and the Cπ-
calculus, relying on the respective reduction semantics. Actually, the reduction
semantics of the Cπ-calculus, presented in Section 2.3, uses the same set of rules as
the reduction semantics given in [102], restricted here only with the syntax of Cπ.
Hence, we will use ≡, → and ' to denote structural congruence, reduction, and
strong barbed equivalence relation, respectively, for both π and Cπ, contextualized
whenever required to clarify to which of these languages they belong. We also use
→∗ to denote the transitive closure of →.

The encoding (Table 2.5) does not introduce any free names, except in the rule
for output, where name mb is introduced. This name is also the one speci�ed in
the renaming policy of name b. Hence, assuming that substitutions on pairs of
names introduced by the renaming policy are de�ned component-wise: the �rst
components are mapped to Nπ, and the second components are mapped to Nϕ,
we have the following result.

Lemma 2.6.1 (Name invariance). Let P be a π process and let substitutions σ and
σ′ be such that ϕJ K(σ(a)) = σ′(ϕJ K(a)), for all a ∈ Nπ. Then J(P)σK = (JP K)σ′.

Proof. The proof is by induction on the structure of process P . We detail only the
case when P = a!l.P1. Assume σ(a) = b and σ(l) = m. If ϕJ K(a) = (a,ma) and
ϕJ K(b) = (b,mb) then from ϕJ K(σ(a)) = σ′(ϕJ K(a)) we conclude σ′(a,ma) = (b,mb).
Likewise, if ϕJ K(l) = (l,ml) and ϕJ K(k) = (k,mk) we have σ′(l,ml) = (k,mk).
Then,

J(a!l.P1)σK = Jb!k.(P1σ)K
= (νe1, e2)b!(e1, e2).mk!e1.e2!e1.J(P1σ)K
= (νe1, e2)b!(e1, e2).mk!e1.e2!e1.(JP1K)σ′
= ((νe1, e2)a!(e1, e2).ml!e1.e2!e1.JP1K)σ′
= (Ja!l.P1K)σ′

by the de�nition of the encoding, and where J(P1σ)K = (JP1K)σ′ holds by induction
hypothesis.

For the operational correspondence, we need only one case of the name invari-
ance result, and we state it in the next corollary.

2.6. ENCODING FORWARDING 39

Corollary 2.6.2 (Encoding and substitution). Let P be a π process and k, x ∈ Nπ
such that ϕJ K(k) = (k,mk) and ϕJ K(x) = (x,mx). Then

JP K{k/x}{mk/mx} = JP{k/x}K.

To simplify notation we use the following abbreviations: (νk̃)P stands for
(νk1) . . . (νkn)P or P (when k̃ is an empty list), and Hl stands for the handler
process !ml?x.x!(l,ml).0, where ϕJ K(l) = (l,ml). We also use (νk,mk)P to abbre-
viate (νk)(νmk)P , and (νk̃, m̃k)P to abbreviate (νk1,mk1), . . . , (νkn,mkn)P or P ,
where ϕJ K(ki) = (ki,mki). Furthermore, whenever we write name ma from Nϕ we
assume that ϕJ K(a) = (a,ma), for a ∈ Nπ.

In order to show that our encoding preserves the structural congruence relation,
up to strong barbed equivalence, we present an auxiliary result showing that a
restricted handler process is behaviorally equivalent to the inactive process.

Proposition 2.6.3 (Restricted handlers). For any channel name k ∈ Nπ we have
that (νmk)Hk ' 0.

Proof. The proof is direct. We show that the two processes are bisimilar, by
noticing that the only possible action of the process

(νmk)Hk = (νmk)!mk?x.x!(k,mk).0

is an input on mk that is blocked due to side condition of rule (res) since the
subject of the action is restricted. Hence, the process is strongly bisimilar with an
inactive process. Then, by Theorem 2.4.9 (which states ∼ = ') we conclude the
proof.

The next lemma shows that the encodings of two structurally equivalent pro-
cesses yield two processes related by the strong barbed equivalence relation. Here
we use structural congruence relation of (sum-free) π processes as de�ned in [102],
which matches the rules given in Section 2.3.

Lemma 2.6.4 (Encoding and structural congruence). If P and Q are π processes
such that P ≡ Q then JP K ' JQK.

Proof. The proof is by induction on the derivation P ≡. We perform the case
analysis on the last rule applied. In all cases, except the case 2., we may directly
show that if P ≡ Q then JP K ≡ JQK, and then to conclude by Proposition 2.4.3
(≡ ⊆∼) and Theorem 2.4.9 (∼ = ').

1. [a = a]π.P ≡ π.P .

We distinguish two cases for pre�x π.

(a) If π = [b̃ = c̃]d?x, then by de�nition of the encoding and de�nition of
the structural congruence (Table 2.3) relation we have that

J[a = a]π.P K = [a = a][b̃ = c̃]d?(y, z).y?(x,mx).z?z′.JP K
≡ [b̃ = c̃]d?(y, z).y?(x,mx).z?z′.JP K
= Jπ.P K.

40 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

(b) If π = [b1 = c1]...[bn = cn]d!g, then, since ≡ is a congruence, hence
preserved also by channel restriction construct, we may show

J[a = a]π.P K = (νe1, e2)[a = a][b̃ = c̃]d!(e1, e2).mg!e1.e2!e1.JP K
≡ (νe1, e2)[b̃ = c̃]d!(e1, e2).mg!e1.e2!e1.JP K
= Jπ.P K.

2. (νk)0 ≡ 0. By the de�nition of the encoding and structural congruence, and
by Proposition 2.6.3 we observe

J(νk)0K = (νk,mk)(0 | Hk) ≡ (νk,mk)Hk ' 0 = J0K.

3. The rest of the cases are analogous.

We may present the �rst main result that attests the correctness of our trans-
lation, which says that if the source process P reduces to Q then the encoding
of P also reduces, in a number of steps, to the encoding of process Q. Since in
the reductions of a source process free names can be exchanged, our result uses
�top-level� handlers for all free names speci�ed as objects of the output pre�xes
of the process. In what follows, we use

∏
i∈I
Pi to abbreviate P1 | . . . | Pn when

I = {1, . . . , n}, and 0 when I = ∅.

Lemma 2.6.5 (Completeness with top-level handlers). If P and Q are π processes
such that P → Q then

JP K | H →∗ ' JQK | H
where H =

∏
n∈N

Hn, for any �nite N ⊂ Nπ, such that fo(P) ⊆ N.

Proof. The proof is by induction on P → Q derivation.

1. Base case: k!l.P | k?x.Q→ P | Q{l/x}. Since l is a free object of the pre�x
in the starting process, we need to show that

Jk!l.P | k?x.QK | H →∗ ' JP | Q{l/x}K | H

where H ≡ Hl | H1, for some H1. If we denote R = Jk!l.P | k?x.QK | Hl | H1,
we have

R = (νe1, e2)k!(e1, e2).ml!e1.e2!e1.JP K | k?(y, z).y?(x,mx).z?z′.JQK
| !ml?x.x!(l,ml).0 | H1

→→ (νe1, e2)(e2!e1.JP K | e1?(x,mx).e2?z
′.JQK | e1!(l,ml).0) | Hl | H1

where the output process �rst synchronizes with the receiving process, send-
ing fresh channels e1 and e2, and then, with the handler of channel l, by
sending e1, and, thus creates a private connection between the receiving
process and the handler. At this point, the handler can synchronize with
the receiving process

(νe1, e2)(e2!e1.JP K | e1?(x,mx).e2?z
′.JQK | e1!(l,ml).0) | Hl | H1 →

2.6. ENCODING FORWARDING 41

(νe1, e2)(e2!e1.JP K | e2?z′.JQK{l/x}{ml/mx} | 0) | Hl | H1

where channels l and ml are �nally received in the input process. The
encoding of processes P and Q is only unlocked in the synchronization on
private channel e2, and since e1 and e2 are from the reserved set of names,
hence not free in JP K | JQK{l/x}{ml/mx}, the last derived process can reduce

(νe1, e2)(e2!e1.JP K | e2?z′.JQK{l/x}{ml/mx} | 0) | Hl | H1 →

JP K | JQK{l/x}{ml/mx} | Hl | H1

By Corollary 2.6.2 we have JQK{l/x}{ml/mx} = JQ{l/x}K. Hence, we have
that

JP K | JQK{l/x}{ml/mx} | Hl | H1 ≡ JP | Q{l/x}K | H

and we may conclude by Proposition 2.4.3 (≡ ⊆ ∼) and Theorem 2.4.9
(∼ = ').

2. Case: P | R→ Q | R is derived from P → Q. By induction hypothesis

JP K | H1 →∗ ' JQK | H1

where H1 =
∏
n∈N

Hn, for any �nite N ⊂ Nπ, such that fo(P) ⊆ N . Now, let

us take H2 =
∏

n∈fo(R)\N
Hn.

Since JP | RK | H1 | H2 ≡ JP K | H1 | JRK | H2 and JQK | H1 | JRK | H2 ≡
JQ | RK | H1 | H2, by (r-par) and (r-stru) we can derive

JP | RK | H1 | H2 →∗ ' JQ | RK | H1 | H2

where H1 | H2 =
∏
n∈N ′

Hn, for any �nite N ′ ⊂ Nπ, such that fo(P | R) ⊆ N ′.

3. Case: (νk)P → (νk)Q is derived from P → Q. Again, by induction hypoth-
esis

JP K | H1 →∗ ' JQK | H1

where H1 =
∏
n∈N

Hn, for any �nite N ⊂ Nπ, such that fo(P) ⊆ N . We now

distinguish two cases.

(a) If k ∈ fo(P) then H1 ≡ Hk | H , for some H . Then, by (r-res) we can
derive

(νk,mk)(JP K | Hk | H)→∗ ' (νk,mk)(JQK | Hk | H)

Since k,mk /∈ fn(H), we have

(νk,mk)(JP K | Hk | H) ≡ (νk,mk)(JP K | Hk) | H = J(νk)P K | H

Similarly, (νk,mk)(JQK | Hk | H) ≡ J(νk)QK | H , and by fo((νk)P) =
fo(P) \ {k}, we can conclude the case.

42 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

(b) If k /∈ fo(P) then by (r-par) and (r-res) we can derive

(νk,mk)(JP K | H1 | Hk)→∗ ' (νk,mk)(JQK | H1 | Hk)

Since now k,mk /∈ fn(H1), similarly as in the previous case we can show
(νk,mk)(JP K | H1 | Hk) ≡ J(νk)P K | H1 and (νk,mk)(JQK | H1 | Hk) ≡
J(νk)QK | H1. Then, by fo((νk)P) = fo(P), we can conclude.

4. Case: P ′ → Q′ is derived from P → Q, where P ≡ P ′ and Q ≡ Q′. By
induction hypothesis

JP K | H1 →∗ ' JQK | H1

where H1 =
∏
n∈N

Hn, for any �nite N ⊂ Nπ, such that fo(P) ⊆ N . By

Lemma 2.6.4, P ≡ P ′ implies JP K ' JP ′K and Q ≡ Q′ implies JQK ' JQ′K.
Also, since P ≡ P ′, by Lemma 2.3.2 we have fo(P) = fo(P ′). Then, by
Proposition 2.4.4 and Theorem 2.4.9 we get JP K | H1 ' JP ′K | H1. Hence,
by de�nition of strong barbed equivalence

JP ′K | H1 →∗ ' JQK | H1 ' JQ′K | H1

which completes the proof.

Notice that the condition P → Q in the previous lemma can be generalized to
the case of a sequence of reductions of the source term (i.e., P →∗ Q). This is for
the arrival state (Q) also satis�es the lemma conditions, as by Lemma 2.3.2 from
P → Q we may conclude fo(Q) ⊆ fo(P). As a direct consequence of Lemma 2.6.5,
we get the operational correspondence result for the encoding of π-calculus pro-
cesses having no free object names.

Corollary 2.6.6 (Operational correspondence: completeness). Let P be a (sum-
free) π process such that fo(P) = ∅. If P → Q then JP K→∗ ' JQK.

We now proceed to show that our encoding also satis�es the soundness property
(cf. [47]). To this end, we de�ne the static contexts in order to determine the active
pre�xes of a Cπ process. Intuitively, an (active) context is a process with a (non-
pre�xed) �hole�, in which processes can be instantiated.

De�nition 2.6.7 (Active contexts). Active contexts for Cπ processes are de�ned
as follows.

C[·] ::= · | (P | C[·]) | (C[·] | P) | ((νk)C[·]) | !C[·]

Hence, pre�x π inside process P is active only if there exists a context C[·]
and process P ′ such that P = C[π.P ′]. Notice that, by the de�nition of the
encoding, only pre�xes of the source terms reproduce sequences of pre�xes in
the target term, except the pre�xes introduced by the handlers. However, active
pre�xes of the handlers are di�erent from others in a target term, as they are
all inputs with subject names introduced by the renaming policy (i.e., from Nϕ),

2.6. ENCODING FORWARDING 43

while the subjects of other pre�xes are the ones given in the source term (i.e.,
from Nπ). Hence, the handlers cannot be engaged in the reduction directly in
the target term but can be engaged only in latter reductions. The next lemma
shows that all active pre�xes of any target term can be singled out using the
structural congruence relation and that the target term can be directly related to
the corresponding source term. Here we focus on the active pre�xes of the target
terms that can be engaged in a reduction, hence not the ones given in the handler
processes.

Lemma 2.6.8 (Normal form of target and source terms). Let P be a π process.
We have that

JP K≡ (νk̃, m̃k)(
∏
i∈I

Jπi.PiK |
∏
j∈J

!JRjK | H) and

P ≡ (νk̃)(
∏
i∈I
πi.Pi |

∏
j∈J

!Rj)

where H =
∏
k∈k̃

Hk, and if JP K = C[Jπ.QK] then there is some i ∈ I such that

π.Q = πi.Pi.

Proof. The proof is by induction on the structure of process P .

1. Case: If P = 0 or P = π.P1, the proof follows directly.

2. Case: P = P1 | P2. By induction hypothesis we have

JPlK≡ (νk̃l, m̃kl)(
∏
i∈Il

Jπi.PiK |
∏
j∈Jl

!JRjK | H l) and

Pl ≡ (νk̃l)(
∏
i∈Il

πi.Pi |
∏
j∈Jl

!Rj)

where H l =
∏
k∈k̃l

Hk, and if JPlK = C[Jπ.QK] then there is i ∈ Il such that

π.Q = πi.Pi, for l in {1, 2}. Without loss of generality we assume the chosen
sets of labels I1, I2, J1 and J2 are pair-wise disjoint. Hence,

JP K = JP1K | JP2K
≡ (νk̃1, m̃k1)(νk̃2, m̃k2)(

∏
i∈I1∪I2

Jπi.PiK |
∏

j∈J1∪J2
!JRjK | H 1 | H 2) and

P = P1 | P2

≡ (νk̃1)(νk̃2)(
∏

i∈I1∪I2
πi.Pi |

∏
j∈J1∪J2

!Rj)

Since the active pre�xes of JP K are the ones of the JP1K and JP2K, we may
conclude the case.

3. Case: P = (νk)P1. By induction hypothesis we have

JP1K≡ (νk̃, m̃k)(
∏
i∈I

Jπi.PiK |
∏
j∈J

!JRjK | H) and

P1 ≡ (νk̃)(
∏
i∈I
πi.Pi |

∏
j∈J

!Rj)

44 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

where H =
∏
k∈k̃

Hk, and if JP1K = C[Jπ.QK] then there is some i ∈ I such that

π.Q = πi.Pi. Since JP K = (νk,mk)(P1 | Hk) and ≡ is a congruence, we have
that

JP K≡ (νk,mk)(νk̃, m̃k)(
∏
i∈I

Jπi.PiK |
∏
j∈J

!JRjK | H | Hk) and

P ≡ (νk)(νk̃)(
∏
i∈I
πi.Pi |

∏
j∈J

!Rj)

Since the active pre�xes of JP K that are images of the source active pre�xes
are the ones of the JP1K we may conclude the case.

4. Case: P =!P1. Again, by induction hypothesis

JP1K≡ (νk̃, m̃k)(
∏
i∈I

Jπi.PiK |
∏
j∈J

!JRjK | H) and

P1 ≡ (νk̃)(
∏
i∈I
πi.Pi |

∏
j∈J

!Rj)

where H =
∏
k∈k̃

Hk, and if JP1K = C[Jπ.QK] then there is some i ∈ I such that

π.Q = πi.Pi. Therefore,

JP K≡!(νk̃, m̃k)(
∏
i∈I

Jπi.PiK |
∏
j∈J

!JRjK | H)

≡(νk̃, m̃k)(
∏
i∈I

Jπi.PiK |
∏
j∈J

!JRjK | H) | !(νk̃′, m̃′k)(
∏
i∈I

Jπ′i.P ′i K |
∏
j∈J

!JR′jK | H ′)

≡(νk̃, m̃k)(
∏
i∈I

Jπi.PiK |
∏
j∈J

!JRjK | !JQK | H) and

P≡!(νk̃)(
∏
i∈I
πi.Pi |

∏
j∈J

!Rj)

≡(νk̃)(
∏
i∈I
πi.Pi |

∏
j∈J

!Rj) | !(νk̃′)(
∏
i∈I
π′i.P

′
i |
∏
j∈J

!R′j)

≡(νk̃)(
∏
i∈I
πi.Pi |

∏
j∈J

!Rj | !Q | H)

where, in both cases we use α-conversion to distinguish between bound
names of the replicated process and the activated copy, and hence, Q =
(νk̃′)(

∏
i∈I
π′i.P

′
i |
∏
j∈J

!R′j) ≡α (νk̃)(
∏
i∈I
πi.Pi |

∏
j∈J

!Rj). Since the active pre�xes

of JP K are also active pre�xes of JP ′K we may conclude the proof.

The reduction steps of the target terms can be divided into four kinds. In
order to refer to each of a kind in the following results, we will explicitly decorate
the reduction arrows. The �rst kind is the �rst reduction of the target term itself.
As we already noted, the �rst reduction of a target term, which we denote with
→1, is always carried out on a channel that is also free in the source term. This is
a consequence of the de�nition of the encoding that the subject of active pre�xes
of the source terms are preserved, while the active pre�xes of the handlers are all
inputs with subject names introduced by the renaming policy (i.e., di�erent from

2.6. ENCODING FORWARDING 45

all source names). The steps after the �rst reduction are then uniquely determined.
The sending process must synchronize with the corresponding handler (kind two,
denoted with→2), as the translating function introduces receiving pre�xes on the
channels which names are introduced by the renaming policy only in the handler
processes. Then, the receiving and the handler process synchronize on a private
channel (kind three, →3), which name is from the reserved set of names, and
afterwards, the sending and the receiving process directly synchronize (kind four,
→4) also on a private channel, hence activating a process that is a target term (up
to structural congruence). Thus, we have

J[ã = ã]g!l.P | [b̃ = b̃]g?x.QK | Hl ≡ (νe1, e2)(g!(e1, e2).ml!e1.e2!e1.JP K
| g?(y, z).y?(x,mx).z?z′.JQK) | Hl

→1

(νe1, e2)(ml!e1.e2!e1.JP K
| e1?(x,mx).e2?z

′.JQK) | Hl

→2

(νe1, e2)(e2!e1.JP K
| e1?(x,mx).e2?z

′.JQK | e1!(l,ml)) | Hl

→3

(νe1, e2)(e2!e1.JP K
| e2?z′.JQ{l/x}K) | Hl

→4

JP | Q{l/x}K | Hl

Notice that the type of reduction is invariant with respect to the application of
reduction rules (r-par), (r-res) and (r-stru). We also denote the intermediate
sub-processes derived in these reductions with

Prl1(P,Q) = (νe1, e2)(ml!e1.e2!e1.JP K | e1?(x,mx).e2?z
′.JQK)

Prl2(P,Q) = (νe1, e2)(e2!e1.JP K | e1?(x,mx).e2?z
′.JQK | e1!(l,ml))

Prl3(P,Q) = (νe1, e2)(e2!e1.JP K | e2?z′.JQ{l/x}K)

We may present now our �rst result characterizing the structure of the reducing
target term and its correlation with the corresponding source term.

Lemma 2.6.9 (A �rst reduction of a target term). Let P be a π process and Q a
Cπ process such that JP K→ Q. Then

JP K≡(νk̃, m̃k)(Jg!l.P1 | g?x.Q1K | JRK | H)

Q ≡(νk̃, m̃k)(Pr
l
1(P1, Q1) | JRK | H) and

P ≡(νk̃)(g!l.P1 | g?x.Q1 | R)

where H =
∏
k∈k̃

Hk.

Proof. Assume JP K → Q. By Lemma 2.6.8 we can single out all active pre�xes,
hence

JP K≡ (νk̃, m̃k)(
∏
i∈I

Jπi.PiK |
∏
j∈J

!JRjK | H) and

P ≡ (νk̃)(
∏
i∈I
πi.Pi |

∏
j∈J

!Rj)

46 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

where H =
∏
k∈k̃

Hk, and if JP K = C[Jπ.QK] then there exist i ∈ I such that π.Q =

πi.Pi. We can now single out the two pre�xes that are involved in the reduction.
Therefore,

JP K≡ (νk̃, m̃k)(Jg!l.PjK | Jg?x.PsK |
∏

i∈I\{j,s}
Jπi.PiK |

∏
j∈J

!JRjK | H) and

P ≡ (νk̃)(g!l.Pj | g?x.Ps |
∏

i∈I\{j,s}
πi.Pi |

∏
j∈J

!Rj)

If we denote R =
∏

i∈I\{j,s}
πi.Pi |

∏
j∈J

!Rj, we have that

JP K≡ (νk̃, m̃k)(Jg!l.Pj | g?x.PsK | JRK | H) and
P ≡ (νk̃)(g!l.Pj | g?x.Ps | R)

Since (νk̃, m̃k)(Jg!l.Pj | g?x.PsK | JRK | H)→ (νk̃, m̃k)(Pr
l
1(Pj, Ps) | JRK | H), and

JP K→ Q, we conclude

Q ≡ (νk̃, m̃k)(Pr
l
1(Pj, Ps) | JRK | H)

Notice that in the previous lemma the reduction is of type 1. Using Lemma 2.6.9
we may characterize all possible evolutions of the target terms after any number of
reduction steps. For the rest of this section with P →n Q we denote that process
P reduces to Q in n reduction steps, i.e., that P → P1 → . . . → Pn−1 → Q. If
P →n Q we denote by ni the number of reduction steps of kind i, for i = 1, 2, 3, 4,
and hence we have that n = n1 + n2 + n3 + n4.

Lemma 2.6.10 (An n-th reduction of the target term). Let P be a π process and
Q a Cπ process, such that JP K | H →n Q, where H =

∏
k∈fo(P)

Hk. Then

Q ≡ (νk̃, m̃k)
(
JRK |

∏
i∈I1

Prli1 (Pi, Qi) |
∏
j∈I2

Pr
lj
2 (Pj, Qj) |

∏
s∈I3

Prls3 (Ps, Qs) | H1

)
| H

where I1, I2 and I3 are pair-wise disjoint sets, H1 ≡
∏
k∈k̃

Hk, and |It| = nt − nt+1,

for t = 1, 2, 3, and there exist P ′ such that P →n4 P ′ and

P ′ ≡ (νk̃)
(
R |

∏
i∈I

(gi!li.Pi | gi?x.Qi)
)

where I = I1 ∪ I2 ∪ I3, and where P ′ = P for n4 = 0.

Proof. The proof is by induction on n. The base case follows directly from
Lemma 2.6.9. Assume now JP K | H →n Q→ Q′. By induction hypothesis

Q ≡ (νk̃, m̃k)
(
JRK |

∏
i∈I1

Prli1 (Pi, Qi) |
∏
j∈I2

Pr
lj
2 (Pj, Qj) |

∏
s∈I3

Prls3 (Ps, Qs) | H1

)
| H

2.6. ENCODING FORWARDING 47

where I1, I2 and I3 are pair-wise disjoint, H1 ≡
∏
k∈k̃

Hk and |It| = nt − nt+1, for

t = 1, 2, 3, and there exist P ′ such that P →n4 P ′ and

P ′ ≡ (νk̃)
(
R |

∏
i∈I

(gi!li.Pi | gi?x.Qi)
)

where I = I1∪ I2∪ I3, and where P ′ = P for n4 = 0. We now have only four cases
for the kind of the reduction Q→ Q′.

1. Kind 1. The reduction originates from JRK→ Q′′. By Lemma 2.6.9 we have
that

JRK≡(νk̃′, m̃k′)(JR′K | Jg!l.P1 | g?x.Q1K | H ′)
Q′′≡(νk̃′, m̃k′)(JR′K | Prl1(P1, Q1) | H ′) and
R ≡(νk̃′)(R′ | g!l.P1 | g?x.Q1)

where H =
∏
k∈k̃′

Hk. The proof for this case follows by noting that processes

Q′ and P ′ have the expected forms, up to structural congruence.

2. Kind 2. The reduction of Q originates from Prli1 (Pi, Qi) and one copy of the
corresponding handler (either from H1 or H), and their parallel composition
evolves to process Prli2 (Pi, Qi). Process P ′ remains unchanged.

3. Kind 3. The reduction of Q originates from Prli2 (Pi, Qi), that evolves to
process Prli3 (Pi, Qi) (using Corollary 2.6.2). Again, process P ′ remains un-
changed.

4. Kind 4. Process Prli3 (Pi, Qi) (in Q) evolves to JPi | Qi{li/x}K, and the
respective g!l.Pi | g?x.Qi (in P ′) evolves to Pi | Qi{li/x}, which completes
the proof.

The above result shows that our encoding does not introduce any unexpected
computations. That is, for each possible evolution of the target term there is a
corresponding evolution of the source term. That is the essence of the soundness
result we aim to prove. Formally, our soundness result states that if a target term
JP K reduces (in a number of steps) to some process Q then the source term P
also reduces (in a number of steps) to a process P ′, where Q can reach JP ′K by
reducing to it (in a number of steps). Similarly to the completeness result, we �rst
show that the soundness of the encoding holds for any π processes if the �top-level�
handlers are used.

Lemma 2.6.11 (Soundness with top-level handlers). Let P be a π-calculus process
and Q be a Cπ process such that JP K | H →n Q, where H =

∏
k∈fo(P)

Hk. Then,

there is a π-calculus process P ′ such that P →n1 P ′ and Q →m JP ′K | H , where
m = 3n1 − n2 − n3 − n4.

48 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

Proof. Assume JP K | H →n Q. By Lemma 2.6.10 we have that

Q ≡ (νk̃, m̃k)
(
JRK |

∏
i∈I1

Prli1 (Pi, Qi) |
∏
j∈I2

Pr
lj
2 (Pj, Qj) |

∏
s∈I3

Prls3 (Ps, Qs) | H1

)
| H

where H1 ≡
∏
k∈k̃

Hk and |It| = nt − nt+1, for t = 1, 2, 3, and there exist a π process

P ′′ such that P →n4 P ′′ and

P ′′ ≡ (νk̃)
(
R |

∏
i∈I

(gi!li.Pi | gi?x.Qi)
)

where I = I1 ∪ I2 ∪ I3, and where P ′′ = P for n4 = 0. Thus, by performing syn-
chronizations of the processes in the product in the process structurally equivalent
to P ′′ we can show that

P ′′ →s (νk̃)
(
R |

∏
i∈I

(Pi | Qi{li/x})
)

where s = n1 − n4. By performing reductions of kind 2, 3 and 4 in the process
structurally equivalent to Q (three for each i ∈ I1, two for each j ∈ I2, and one
for each s ∈ I3) we have that

Q→m J(νk̃)
(
R |

∏
i∈I

(Pi | Qi{li/x})
)
K | H

where m = 3n1 − n2 − n3 − n4.

As a direct consequence of the last lemma, we get the operational soundness
result for our encoding.

Corollary 2.6.12 (Operational correspondence: soundness). Let P be a (sum-
free) π-calculus process and Q be a Cπ process, such that fo(P) = ∅ and JP K→n Q.
Then, there is a π-calculus process P ′ such that P →n1 P ′ and Q→m JP ′K, where
m = 3n1 − n2 − n3 − n4.

Using the observation that whenever JP K→n Q then n1 ≥ n
4
, and Lemma 2.6.11

we can directly conclude that our encoding does not introduce divergence compu-
tations (cf. [47]).

Corollary 2.6.13 (Divergence re�ection). Let P be a π process. If JP K | H →ω,
where H =

∏
k∈fo(P)

Hk, then P →ω.

2.7 Remarks

Notice that translating the π-calculus terms into the Cπ-calculus via the encoding
presented in Section 2.6.1 has one positive consequence to what concerns control-
ling channel sharing. The only processes which are able to send channels originally
speci�ed in the source π process are handlers, i.e., handlers are the administrators
in the target terms for the channels of the source terms. Now, if a channel from the

2.7. REMARKS 49

source language is to be considered con�dential, one has a �xed domain in which
control needs to be established. This is in contrast to the regular π processes where
one cannot statically identify a domain where the channel sending capability is
con�ned to. The mentioned control can be exploited also to bound the number
of times channels are communicated, an exploration we leave for future work. We
remark that such a notion of accounting is to some extent connected with the
notion of accounting of usages of channels via �oating authorizations presented in
the next chapter.

50 CHAPTER 2. A CALCULUS FOR CONFIDENTIAL NAME PASSING

Chapter 3

A calculus of �oating authorizations

As we discussed in the Introduction, controlling access to resources is an important
aspect of distributed systems. The limited capacity of resources imposes a need
for careful control over their usages, such as the case, for instance, of the router
that has limited access points to yield. In order to formally reason on controlling
usages of resources in distributed systems, in this chapter we introduce a calcu-
lus for modeling �oating authorizations, which is based on the work previously
published in [92]. In essence, our model allows us to reason on controlling the
usages of channels relying on the previous developments [43, 44] that extend the
π-calculus [102] with the constructs for authorization manipulation. The main
distinction with respect to previous approaches is that in our model, a �oating
authorization represents the right to use a channel by a process, in such a way
that only one thread of the process can use the channel.

Overview of the chapter. We start this chapter by a sequence of examples
that gradually and informally introduce our process model in Section 3.1, after
which we introduce the syntax in Section 3.2. The operational semantics is then
given by means of a labeled transition system in Section 3.3, and a reduction
in Section 3.4, where we also de�ne the notion of error processes and, via Har-
mony result, we show that the two semantics can be seen as alternatives to each
other. Relying on the labeled transition system, Section 3.5 presents a preliminary
investigation of the behavioral semantics of the model, including some fundamen-
tal results and behavioral (in)equalities that inform on the speci�c nature of our
authorizations. The typing discipline, given in Section 3.6, addresses processes
where authorizations for received names may be provided by the context, re�ned
in Section 3.6.6 so as to allow for a more applicable procedure. In Section 3.7
we present an extended example inspired by the Bring Your Own License notion,
while in Section 3.8 we discuss possible programming language applications of our
formal framework for authorization control, namely by considering an extension
of the Go programming language.

51

52 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

3.1 Preview of the model

This section informally introduces our process model. We make use of concurrent
use licenses [10] setting to place our examples, which should allow for an intuitive
reading of the formalisms introduced throughout later sections.

As noted in the Introduction, we investigate the following dimensions of �oat-
ing authorizations: domain (to capture where access may be implicitly granted),
accounting (to capture the capacity), and delegation (to capture explicit granting).

Domain. Wemodel authorization domains by considering a non-binding scoping
construct. For instance, we may have

(license)University

representing that the process University is a domain that holds one license. In this
case, construct (license) authorizes the usage of license inside domain University
only for one user. This means that if domain University is composed of two
concurrently active students Alice and Bob then we have

(license)(Alice | Bob)

where license (license) is available for both students, but only one of them can
use it. In other words, here (license) is ��oating�, as it can be grabbed by either
Alice or Bob, but not both of them. The authorization is a non-binding scoping
construct, meaning that name license can be also known in other domains except
University .

Accounting. In the example above, the capacity of University includes one li-
cense for usages of license. Hence, if Bob uses the license and evolves to LicensedBob,
for the purpose of accounting, we need to denote that the license is not available
for Alice anymore. In our model, we con�ne the scope of the license to the user
that grabs the license, and the system above evolves to

Alice | (license)LicensedBob (3.1)

in which case Alice loses the ability to use the license. The license is implicitly
granted to Bob only because he was the �rst one to use it, and afterwards he can
continue using the license. If now Alice tries to use license she will get �stuck� as
the proper authorization is now missing. Notice that, since the authorization is a
non-binding construct, the con�nement of the license in (3.1) does not mean that
the name is privately held by LicensedBob, just the authorization.

In our model resources are used in a non-eager way, as we do not allow a user
to be con�ned with a shared license if his domain already includes the respective
license. For instance, in

(license)(Alice | (license)LicensedBob)

the user LicensedBob shares one (license) with Alice and also possesses one by
himself. If LicensedBob needs the license, he will be granted with the �private�
one �rst, not interfering with Alice, but can be also granted the shared license if
he really needs two licenses.

3.1. PREVIEW OF THE MODEL 53

Delegation. In our model, the licenses can be explicitly exchanged between the
users via a delegation mechanism, that allows for sending and receiving a license
over a communication channel. For instance, if Bob wants to explicitly delegate
one authorization (license) to Carol , we may write process

auth〈license〉.UnlicensedBob

to represent that Bob sends on channel auth one authorization for license, and
then evolves to UnlicensedBob. Then, if Carol wants to receive the authorization,
we may write

auth(license).LicensedCarol

to represent the dual primitive that allows receiving one authorization for license
on channel auth, after which the process evolves to LicensedCarol . Then, the
con�guration

(license)(auth)auth〈license〉.UnlicensedBob | (auth)auth(license).LicensedCarol

represents a system where the authorization for license can be transferred from
Bob to Carol , evolving to

(auth)UnlicensedBob | (auth)(license)LicensedCarol

where the scope of (license) primitive changes accordingly. Notice that the au-
thorizations for channel auth, on which the communication is carried, are present
at both sending and receiving end. As we noted, the only resources in our model
are channels and their usages are always subject to the authorization granting
mechanism.

In addition to authorization manipulation constructs, our model comprehends
π-calculus constructs for name passing, name generation and replicated input.

Name passing. The authorization delegation mechanism illustrated above does
not involve name passing since the name license is known to both Bob and Carol in
the �rst place. Name passing is supported by dedicated primitives. For example,
process

(comm)comm!license.Alice | (comm)comm?x .Dylan

represents a system where the name license can be passed via a synchronization
on channel comm. If the synchronization take place, continuations Alice and
Dylan ′ are activated, where Dylan ′ is obtained from process Dylan by replacing
each occurrence of placeholder x with license. Again, we remark that the sending
and receiving actions on channel comm are properly authorized, enabling that the
synchronization can take place. The authorizations can also be �oating, like in

(comm)(comm)(comm!license.Alice | comm?x .Dylan)

where the synchronization may also occur. However, the synchronization in

(comm)(comm!license.Alice | comm?x .Dylan)

is not properly authorized since there is only one authorization available for both
actions on channel comm.

54 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

Name restriction and replicated input. The two last constructs of our lan-
guage are name restriction and replicated input. As an example, consider process

!(license)license?x.(x)license〈x〉.0 | (νfresh)(license)license!fresh.license(fresh).0

representing a system in which in the left-hand side thread a licensing server is
speci�ed, used in the right-hand side thread. Construct (νfresh)Domain represents
the creation of a new name fresh, which is known only to scoped process Domain,
in contrast with authorization scoping (cf. discussion after (3.1)). The thread
on the right-hand side represents a process that �rst creates a name and then
sends it via channel license. Then, via channel license, the thread receives the
authorization to use channel fresh and then terminates (denoted with 0). The
thread on the left-hand side is repeatably available to receive a name on channel
license. After that, one authorization scope for the received name is speci�ed that
may then be delegated away.

A remark on authorization delegation and name passing. As the com-
municated names refer to channels the name passing is the mechanism that allows
to model systems in which access to channels changes dynamically. However,
knowing a name does not mean being authorized to use it. For example, process

(comm)comm?x .x !reply .0

speci�es an authorized reception on comm, after which the process outputs reply
on the received name and then terminates. If the received name is license, the
process evolves to (comm)license!reply .0 where the authorization for comm is still
present but no authorization for license is acquired as a result of the commu-
nication. Therefore, the output on license is not authorized and cannot take
place. However, notice that we do not require an authorization for the name
reply speci�ed in the output, as communicating a name does not entail usage
for the purpose of authorization control. Our design choice to separate name
passing and authorization delegation allows us to model systems where unautho-
rized intermediaries (e.g., brokers) may forward names between authorized parties,
without ever being authorized to use such names. For instance, consider process
(comm)comm?x .(forward)forward !x .0. that requires no further authorizations.

There are two patterns for authorizing names that are received and new to the
process. To illustrate the �rst, consider process

(comm)comm?x .(auth)auth(x).LicensedDylan

where, for the name received on comm, an authorization reception (using place-
holder x) on auth is speci�ed. This enables to acquire an authorization to use the
received name. Another pattern for acquiring authorizations for received names
is to use the authorization scoping directly. For instance, in process

(comm)comm?x .(x)LicensedDylan

the authorization (x) is instantiated by the received name (cf. example with the
licensing server above). The last example shows that the authorization scoping

3.2. SYNTAX 55

P ::= Process terms
0 (termination)

| P | P (parallel composition)
| (νa)P (name restriction)
| a!b.P (output)
| a?x.P (input)
| (a)P (authorization)
| a〈b〉.P (send authorization)
| a(b).P (receive authorization)
| !(a)a?x.P (replicated input)

Table 3.1: Syntax of processes.

is a powerful mechanism, as it allows for the generation of authorizations for any
received name, that therefore should be reserved only to the Trusted Computing
Base, while the authorization delegation should be used elsewhere. We may notice
that the above combination of name reception and authorization scoping resem-
bles the authorization reception since the result is also an acquired authorization.
However, we do not see a direct way to represent authorization delegation with
this combination of name passing and authorization scoping, as in the former the
delegating party actually loses the respective authorization, while in the latter an
additional authorization is created.

3.2 Syntax

This section presents the syntax of our process calculus, which builds on previous
work on process calculi for authorizations [43, 44]. We do not introduce any new
syntax constructs and we fully exploit the syntax from [43]. Our calculus departs
semantically in the interpretation of the accounting principle, and this appears
to be crucial to capture the �oating nature of the authorizations investigated in
this work. We will point to the similarities/di�erences of the two process algebras
throughout the presentation.

Our language also relies on names. We assume a countable set of names N ,
and we let a, b, c, . . . , x, y, z, . . . range over N . Hence, here we do not make an
explicit distinction between channels and variables, as we did in the previous
chapter. Table 3.1 presents the syntax of the language. The �rst �ve constructs
are adopted from the π-calculus. Their interpretation is the same as for the Cπ. To
make the chapter self-contained, we brie�y repeat the explanations: 0 represents
the terminated process; P | P represents two processes simultaneously active (that
can interact via synchronization in channels); (νa)P represents the creation of a
channel name a, known only to process P ; a!b.P represents the output pre�xed
process that can send name b on name a and proceed as P ; and a?x.P represents
the input pre�xed process that receives a name on channel a and replaces name x
in P with the received name. Notice that here we do not restrict forwarding as in
the previous chapter, since it does not serve the goals of the work presented here.

56 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

The remaining language constructs, except the replicated input, are adopted
from [43] but are given a di�erent interpretation:

� Authorization scoping (a)P represents that process P has one authorization
to use channel a for any actions that are composed sequentially. For instance,
if P = a!b.a?x.0 then both sending and receiving on a are considered to be
authorized in (a)P . Conversely, if P = a!b.0 | a?x.0 then only one of the
actions is authorized in (a)P . In contrast with name restriction, in (a)P
name a is not private to P , hence the name can be known to other processes.

� Authorization sending a〈b〉.P represents the process that delegates one au-
thorization for name b along name a and evolves to P . For instance, if
(b)a〈b〉.P then performing the authorization sending the scoping authoriza-
tion for b will be delegated, and the process evolves to P .

� Authorization receiving a(b).P represents the (dual) process that receives
one authorization for name b along name a and evolves to (b)P . Notice that
the authorization that is lost in the output action now appears in the input
action. Hence, the number of authorizations remains stable.

� Replicated input !(a)a?x.P represents the process with an in�nite behavior.
It receives a name on authorized name a and in P replaces x with the
received name, and in parallel activates the original process. For instance, if
the received name is b, the above process evolves to (a)P ′ | !(a)a?x.P , where
P ′ is obtained from P by replacing x with b.

When compared with the Cπ-calculus syntax introduced in Section 2.1, one may
notice that here we are adopting a restricted and more controlled version of the
replicated processes. However, we will show later that a general replication con-
struct can be encoded using replicated input following standard lines.

As in Cπ, name restriction and input are binding names (cf. De�nition 2.1.1).
Hence, in (νx)P, a?x.P and !(a)a?x.P the name x is binding with scope P. As in
Section 2.1, we use fn(P), bn(P) and n(P) to denote the sets of free, bound and
all names in P , respectively. In (a)P the name a is free and the names a and b in
processes a〈b〉.P and a(b).P are also free. Hence, we extend here De�nition 2.1.1
of Section 2.1 to consider constructs for authorization manipulation and we de�ne
fn((a)P) = {a} ∪ fn(P) and fn(a〈b〉.P) = fn(a(b).P) = {a, b} ∪ fn(P), and also
fn(!(a)a?x.P) = ({a} ∪ fn(P)) \ {x}. For the rest of presentation we use αa to
abbreviate a!b, a?x, a〈b〉 or a(b) (including when b = a) and (νã) to abbreviate
(νa1) . . . (νan).

Same as in the previous chapter, here we also do not consider the sum operator
of the π-calculus [102]. Our aim is to study �oating authorizations in a minimal
setting and we believe the sum operator can be added to our development following
standard lines, as the interplay between choice and authorization scope is the same
with respect to the one between communication pre�xes and authorization scope.
The principal relation that is addressed here in a central way is the one between
parallel composition and authorization scope, so as to capture the desired notion
of accounting.

3.2. SYNTAX 57

The communication can be seen as a core of the behavior of processes (same
as in π and Cπ). Our model imposes control on this behavior: two processes can
communicate on a channel only if both are authorized to use the channel. We
present two examples that motivate our operational semantics introduced in the
next section. The examples informally describe what sort of communications are
to be considered authorized.

Example 3.2.1 (Authorized communications).

1. Two processes

(a)a!b.P | (a)a?x.Q and (a)(a)(a!b.P | a?x.Q)

have their output and input actions authorized and can both evolve to the
same process (a)P | (a)Q{b/x}, where the con�nement of the authorizations
takes place as described in Section 3.1.

2. Authorization delegation is another aspect of our language. For instance,
process

(a)(b)a〈b〉.P | (a)a(b).Q

has both actions authorized on name a and the delegating process has the
authorization on b. Therefore, two processes can synchronize evolving to
(a)P | (a)(b)Q where the scope of authorization for b changes accordingly.
Notice that for the delegation to take place three authorizations are needed,
one for each of the two processes on name a and one for the delegating
process for name b.

3. As already noted, in the communication the authorizations are only con�ned
and are not consumed. These can further be used to authorize the actions of
the continuations. For instance,

(a)a!b.a?y.0 | (a)a?x.a!c.0

can evolve to (a)a?y.0 | (a)a!c.0, that in turn can further evolve to (a)0 | (a)0.

Example 3.2.2 (Unauthorized communications).

1. Both of the processes

(a)a!b.P | a?x.Q and (a)(a!b.P | a?x.Q)

are considered as stuck, as in both the synchronization is not possible only
due to lack of one authorization for a. The left-hand side process lacks
one authorization for name a on the receiving end and the right-hand side
process also lacks one authorization for name a since only one is available,
while two are required for the synchronization to occur. This is one of the
main di�erences with respect to [43, 44], where the operational semantics
allows the latter process to evolve, since there both communication ends are
considered to be authorized by (a), due to a di�erent interpretation of the
accounting principle.

58 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

2. Process
(a)a〈b〉.P | (a)a(b).Q

is again stuck as it cannot evolve only due to lack of one authorization. The
delegation in left-hand side is not authorized as authorization for name b is
missing.

We formally de�ne the evolutions of processes in two alternative ways, using a
labeled transition system and a reduction semantics, and we show that these are
equivalent. Compared to Cπ and π, the reduction semantics of this model is more
involved, but still more convenient to be used in the proofs than the labeled tran-
sition system. Furthermore, we believe our authorization accounting principle can
be explained in a more appropriate way when considering the reduction semantics
(in particular when addressing the structural congruence relation), so we leave a
more detailed account of this principle (including the main di�erence w.r.t. [44])
for the beginning of Section 3.4.

3.3 Action semantics

As we noted in Section 2.2, a labeled transition system (LTS) can be used to
describe the behavior of a process by observing the actions of its sub-processes.
We now characterize the observable labels.

De�nition 3.3.1 (Actions). The set of observable actions A, ranged over by α,
is de�ned as

α ::= (a)ia!b | (a)ia?b | (a)i(b)ja〈b〉 | (a)ia(b) | (a)i(νb)a!b | τω

where ω is of the form (a)i+j(b)k and i, j, k ∈ {0, 1} and it may be the case that
a = b.

When compared with De�nition 2.2.1, we may recognize the communication
actions decorated here with annotations that capture lacking authorizations. In-
tuitively, a communication action is decorated with (a)0 when the action carries
su�cient authorizations on a, and (a)1, represents the action lacks an authoriza-
tion on a. In the action for authorization delegation two such annotations are
present, one for each name involved. As in the Cπ-calculus, (νb) denotes that the
name in the object of the output is bound. In the case of internal steps, the ω
identi�es the lacking authorizations. Whenever possible, we omit (a)0 annotations
and, thus, we use τ to abbreviate τ(a)0 and τ(a)0(b)0 where no authorizations are
lacking. As expected, we also abbreviate tags (a)1 with (a).

By n(α), fn(α) and bn(α) we denote the set of all, free and bound names
of α. As in De�nition 2.2.2, only the object name of the bound output action
is bound, while the rest of the names in all actions are free. Also, we de�ne
n(τ) = ∅ and fn(τ(a)) = fn(τ(a)(b)0) = fn(τ(a)2(b)0) = {a}. Hence, if the internal
action is not lacking authorizations for a name, the name is not considered as
exposed in the label. The substitution of names is de�ned analogously as for the
Cπ processes (cf. De�nition 2.1.3). We also identify here α-convertible processes

3.3. ACTION SEMANTICS 59

(l-out)

a!b.P
(a)a!b−−−→ (a)P

(l-in)

a?x.P
(a)a?b−−−→ (a)P{b/x}

(l-out-a)

a〈b〉.P (a)(b)a〈b〉−−−−−→ (a)P

(l-in-a)

a(b).P
(a)a(b)−−−−→ (a)(b)P

(l-in-rep)

!(a)a?x.P
a?b−−→ (a)P{b/x} | !(a)a?x.P

(l-par)

P
α−→ Q bn(α) ∩ fn(R) = ∅

P | R α−→ Q | R

(l-res)

P
α−→ Q a /∈ n(α)

(νa)P
α−→ (νa)Q

(l-open)

P
(a)ia!b−−−→ Q a 6= b

(νb)P
(a)i(νb)a!b−−−−−−→ Q

(l-scope-int)

P
τω(a)−−−→ Q

(a)P
τω−→ Q

(l-scope-ext)

P
(a)σa−−−→ Q

(a)P
σa−→ Q

(l-scope)

P
α−→ Q τω(a) 6= α 6= (a)σa

(a)P
α−→ (a)Q

(l-comm)

P
(a)ia!b−−−→ P ′ Q

(a)ja?b−−−−→ Q′ ω = (a)i+j

P | Q τω−→ P ′ | Q′

(l-close)

P
(b)i(νa)b!a−−−−−−→ P ′ Q

(b)jb?a−−−−→ Q′ ω = (b)i+j a /∈ fn(Q)

P | Q τω−→ (νa)(P ′ | Q′)

(l-auth)

P
(b)k(a)ia〈b〉−−−−−−→ P ′ Q

(a)ja(b)−−−−→ Q′ ω = (a)i+j(b)k

P | Q τω−→ P ′ | Q′

Table 3.2: LTS rules.

(cf. De�nition 2.1.4), and we use the convention that all bound and free names
are distinct in all processes, substitutions and actions under consideration.

The labeled transition relation is the least relation included in P × A × P ,
where P is the set of all processes, that satis�es the rules given in Table 3.2. We
now describe the rules.

� Rules (l-out), (l-in), (l-out-a), (l-in-a) directly correspond to explana-
tions given for the communication pre�xes. Each label is tagged with the
authorizations needed to complete the action, as at this point none of the
actions is authorized. Also, the resulting processes are scoped with the au-
thorizations required for the action (and provided in case of authorization
reception), so as to implement con�nement.

� Rule (l-in-rep) describes the only possible action of the replicated input.
Notice that the replicated input is authorized by de�nition, for which the

60 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

action is authorized and the label is not decorated (tag (a)0 is omitted).

� Rule (l-par) lifts the action of one of the branches at the level of parallel
composition and the side condition ensures the bound name of the action is
not speci�ed as free in the parallel process;

� In rule (l-res) the action of P is lifted at the level of the scoped process,
ensuring that the restricted name is not a name of the action.

� Rule (l-open) supports the scope extrusion of the sent restricted name a by
opening its scope, which is then to be closed by rule (l-close), following the
lines of the semantics of Cπ.

� Rules (l-scope-int) and (l-scope-ext) deal with the case of an action that
lacks (at least) one authorization on a. This is represented with labels τω(a)
and (a)σa. In the conclusions of the rules, the actions exhibited no longer lack
the respective authorization and in the resulting processes the authorization
scope is no longer present. With ω(a) we abbreviate (a)2(b)k, (a)1(b)k, and
(b)i+j(a)1, for a given b (including the case b = a). With (a)σa we abbreviate
the communication actions lacking authorization on a ((a)αa, (a)(νb)a!b, and
(a)(b)ib〈a〉 where i ∈ {0, 1}, which includes (a)1a〈a〉). In both cases τω and
σa are obtained from τω(a) and (a)σa by the respective exponent decrement
for a. We remark that in contrast to the extrusion of a restricted name
via bound output, where the scope �oats up to the point a synchronization
(rule (l-close) explained below), authorization scopes actually �oat down
to the level of communication pre�xes (cf. rules (l-out), (l-in), (l-out-a),
(l-in-a)), so as to capture con�nement.

� In rule (l-scope) the action of P is not lacking an authorization on a, thus,
the action is lifted at the level of the scoped process.

� In rule (l-comm) two parallel processes synchronize their dual actions: one
process is sending and the other is receiving a name b on a. The autho-
rizations lacking in sending and receiving actions are then speci�ed in the
resulting internal action in ω.

� In rule (l-close) two parallel processes are also synchronizing their dual
actions, only now the sent name b is bound. The scope of the sent name is
closed in the �nal process (the scope was previously opened in (l-open)).
The side condition ensures avoiding unintended name capture.

� In rule (l-auth) the processes synchronize their dual actions: one is sending
(delegating) and the other receiving authorization for b on channel a. The
lacking authorizations of the sending and receiving authorization actions are
again speci�ed in ω.

Symmetric cases of rules (l-comm), (l-close), (l-auth) and (l-par) are omit-
ted from the table. Let us notice that carried authorization annotations, consid-
ered here up to permutation, thus identify, in a compositional way, the require-
ments for a synchronization to occur.

3.3. ACTION SEMANTICS 61

To illustrate the rules, consider process

(b)((a)a!b.a〈b〉.0 | (a)a?x.a(x).x!c.0)

By (l-out) and (l-in) we have that

a!b.a〈b〉.0 (a)a!b−−−→ (a)a〈b〉.0 and a?x.a(x).x!c.0
(a)a?b−−−→ (a)a(b).b!c.0

Then, the lacking authorizations in labels, that are already con�ned to the con-
tinuation processes, are removed by (l-scope-ext), obtaining

(a)a!b.a〈b〉.0 a!b−→ (a)a〈b〉.0 and (a)a?x.a(x).x!c.0
a?b−−→ (a)a(b).b!c.0

The two branches now can synchronize their actions by rule (l-comm)

(a)a!b.a〈b〉.0 | (a)a?x.a(x).x!c.0
τ−→ (a)a〈b〉.0 | (a)a(b).b!c.0

The authorization for b scoping over both branches is not lacking in the action,
hence by (l-scope) the action is seamlessly lifted

(b)((a)a!b.a〈b〉.0 | (a)a?x.a(x).x!c.0)
τ−→ (b)((a)a〈b〉.0 | (a)a(b).b!c.0)

Now the name b is received in the right branch, and the respective authorization,
that is �oating over both branches, can be explicitly delegated from the left to the
right branch. By rules (l-out-a) and (l-in-a) we have

a〈b〉.0 (a)(b)a〈b〉−−−−−→ (a)0 and a(b).b!c.0
(a)a(b)−−−−→ (a)(b)b!c.0

and again by rule (l-scope-ext)

(a)a〈b〉.0 (b)a〈b〉−−−→ (a)0 and (a)a(b).b!c.0
a(b)−−→ (a)(b)b!c.0

Then, the two branches can synchronize by rule (l-auth)

(a)a〈b〉.0 | (a)a(b).b!c.0
τ(b)−−→ (a)0 | (a)(b)b!c.0

where the authorization for b is lacking to �nish the synchronization. Since the
respective authorization is scoping over the process, by (l-scope-int) we obtain

(b)((a)a〈b〉.0 | (a)a(b).b!c.0)
τ−→ (a)0 | (a)(b)b!c.0

where the action on b is now authorized explicitly, and by (l-out), (l-scope-ext),
(l-scope), and (l-par) we conclude

(a)0 | (a)(b)b!c.0
b!c−→ (a)0 | (a)(b)0

Notice, however that we do not need the delegation in order for the �nal output
on b to take place. If we consider process

(b)((a)a!b.0 | (a)a?x.x!c.0)

after the initial synchronization

(b)((a)a!b.0 | (a)a?x.x!c.0)
τ−→ (b)((a)0 | (a)b!c.0)

the right branch is �contextually� authorized by the �oating authorization for b.
Thus, by (l-out) (l-scope), (l-par), and (l-scope-ext)

(b)((a)0 | (a)b!c.0)
b!c−→ (a)0 | (a)(b)0

and we end up with the same con�guration as with the �rst process.

62 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

(sc-par-inact)

P | 0 ≡ P

(sc-par-comm)

P | Q ≡ Q | P
(sc-par-assoc)

(P | Q) | R ≡ P | (Q | R)

(sc-res-inact)

(νa)0 ≡ 0

(sc-res-swap)

(νa)(νb)P ≡ (νb)(νa)P

(sc-res-extr)

P | (νa)Q ≡ (νa)(P | Q) if a /∈ fn(P))

(sc-rep)

!(a)a?x.P ≡ !(a)a?x.P | (a)a?x.P

(sc-auth-swap)

(a)(b)P ≡ (b)(a)P

(sc-auth-inact)

(a)0 ≡ 0

(sc-scope-auth)

(a)(νb)P ≡ (νb)(a)P if a 6= b

Table 3.3: Structural congruence.

3.4 Reduction semantics

This section introduces the reduction semantics of our process model. Informally,
a reduction P → Q speci�es that process P evolves to process Q in one compu-
tational step. The reduction relation relies on the structural congruence relation
that allows for term manipulation. The structural congruence relation, denoted
≡, is the least binary congruence on processes that satis�es the rules given in
Table 3.3. All rules except the last three are standard also in the π-calculus (and
also in Cπ, cf. Table 2.3). These allow for: (P , | , 0) to be a commutative monoid,
discard name restrictions scoping terminated process, two name restrictions to be
swapped, name extrusion, and activation of one copy of a replicated input process.
The last three rules address authorization scopes, and allow for: swapping the two
authorizations, discarding unused authorizations and swapping authorization and
name restriction, provided that the two speci�ed names are distinct. These last
three rules are adopted from [44]. Structural congruence also provides an insight
to the main di�erence of our work with respect to the work in [44], which is to be
explained after Example 3.4.1.

Considering the structural congruence rules in Table 3.3, we may notice that
the scope of name restrictions can be extruded by rule (sc-res-extr), but there
is no similar rule for extruding the scope of (a). This is a consequence of the fact
that the former binds the name, while in the latter the speci�ed name is free. We
elaborate this di�erence in the next example.

Example 3.4.1 (Extrusion of authorization scope). Consider the process compre-
hending two branches

(b)b?x.x!c.0 | (νa)(a)(b)b!a.0

In the right branch a fresh name a is created and one authorization for the same
name. Applying structural congruence axiom (sc-res-extr), the scope of name a
can be extruded to the left branch, obtaining

(b)b?x.x!c.0 | (νa)(a)(b)b!a.0 ≡ (νa) ((b)b?x.x!c.0 | (a)(b)b!a.0)

3.4. REDUCTION SEMANTICS 63

On the contrary, even though the name a is not speci�ed as free in the left branch,
the scope of the authorization for a cannot be extruded in the same way, as the rules
given in Table 3.3 do not allow for this to happen. Thus, we have the inequality

(νa) ((b)b?x.x!c.0 | (a)(b)b!a.0) 6≡ (νa)(a) ((b)b?x.x!c.0 | (b)b!a.0)

To see why processes related with the last inequality are to be considered as having
di�erent behavior, observe that the lhs process evolves (by the standard π-calculus
rule for communication) to

(νa) ((b)a!c.0 | (a)(b)0)

where the output a is unauthorized. On the other hand, the rhs process evolves to

(νa)(a) ((b)a!c.0 | (b)0)

where the action on a is authorized.

The last example shows that authorization scoping construct cannot be ma-
nipulated over the parallel composition in the same way as the name restriction.
In [44] the structural congruence relation included rule (a)(P | Q) ≡ (a)P | (a)Q.
Adopting this rule in our model would represent introducing/discarding one au-
thorization, thus interfering with our notion of authorization accounting. In our
model, we distinguish (a)(P | Q) where the authorization is �oating over P and Q,
while in (a)P | (a)Q two authorizations are speci�ed, one for each process. This
leads us to believe that the authorization scoping construct cannot be manipu-
lated over parallel composition statically, hence, without examining the behavior
of the parallel branches, and also that the structural congruence relation cannot
be used in an obvious way to obtain a normal form characterization of processes,
as it is the case in [44]. This brings us to a novel development of a non-standard
approach.

Intuitively, for reduction to take place the two active pre�xes willing to syn-
chronize must be properly authorized, i.e., in the scope of the respective autho-
rizations. In order to statically determine if the communication can occur, we
de�ne static contexts and operator drift . The static context is a process with one
(two) non-pre�xed, not scoped with name restrictions and not replicated hole(s)
in which processes can be instantiated (cf. De�nition 2.6.7).

De�nition 3.4.2 (Static Contexts). Static contexts with one and two holes are
de�ned as follows.

C[·] ::= · | (P | C[·]) | (a)C[·]
C[·1, ·2] ::= (C[·1] | C[·2]) | (P | C[·1, ·2]) | (a)C[·1, ·2]

We annotate the holes with ·1 and ·2 to avoid ambiguity, i.e., when C[·1, ·2] =
C ′[·1] | C ′′[·2] then C[P,Q]=C ′[P] | C ′′[Q]. Note that the de�nition of the contexts
does not mention the name restriction construct (νa). This allows us to single out
speci�c names and avoid name clashes. Remaining cases de�ne holes can occur
in parallel composition and underneath the authorization scope, the only other

64 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

(c-end)

drift(· ; ∅; ρ′) = ·

(c-rem)

drift(C[·]; ρ; ρ′] {a}) = C ′[·]
drift((a)C[·]; ρ] {a} ; ρ′) = C ′[·]

(c-skip)

drift(C[·]; ρ; ρ′) = C ′[·] a 6∈ ρ′

drift((a)C[·]; ρ; ρ′) = (a)C ′[·]

(c-par)

drift(C[·]; ρ; ρ′) = C ′[·]
drift(C[·] | R; ρ; ρ′) = C ′[·] | R

Table 3.4: drift on contexts with one hole

contexts underneath which processes are deemed active. We omit the symmetric
cases for parallel composition since contexts are used up to structural congruence.
For instance, if in context C[·1, ·2] = (b)((a) ·1 | (a) ·2) we instantiate processes
a!b.0 and a?x.0 we obtain process (b)((a)a!b.0 | (a)a?x.0).

Operator drift has two roles. Firstly, the operator works as a predicate over
contexts as it singles out contexts in which hole(s) is(are) under the scope of
the requested authorizations. Secondly, when de�ned, the operator removes the
speci�c authorizations from the original context, so as to capture con�nement
in the resulting context. In addition, in the presence of a larger number of the
authorizations that are to be removed from the context, the operator removes the
ones that occur nearest to the hole (for the purpose of fairness).

Operator drift for contexts with one hole is de�ned inductively on the structure
of contexts by the rules given in Table 3.4. The operator

drift(C[·]; ρ; ρ′)

takes a one-hole context C[·] and two multisets of names ρ and ρ′. The multiset
notation is used since the same name can appear more than once. The �rst multiset
ρ contains the names of authorizations that the operator should remove from the
context, while the second contains the names of authorizations that have already
been removed.

We comment on the rules given in Table 3.4, reading from conclusion to
premises.

� In rule (c-end) the operator is de�ned only if the �rst multiset is empty.
Thus, the operator is de�ned only in case all authorizations from the �rst
multiset have been actually removed from the context up to the point the
hole is reached.

� In rule (c-rem) the operator removes the authorization from the context,
that was speci�ed in the �rst multiset. The removed name is passed from the
�rst multiset (�to be removed�) to the second multiset (�has been removed�).
The multiset addition operation ρ] {a} (or just ρ] a) sums the frequencies
of the elements.

� In rule (c-skip) the operator seamlessly passes the authorization, but only
if the name does not occur in the second multiset. The last restriction

3.4. REDUCTION SEMANTICS 65

ensures that the removed authorizations are the ones nearest to the hole,
since only authorizations that were not already removed proceeding towards
the hole can be preserved. For instance, drift((a) · ; ∅; {a}) is unde�ned
since the authorization is not speci�ed to be removed from the context by
the operator (rule (c-rem) cannot be applied), and also the authorization
is speci�ed as already removed from the context (rule (c-skip) cannot be
applied).

� In rule (c-par) the operator seamlessly proceeds towards the one of the
branches.

When de�ning the operator one speci�es the context and the names of autho-
rizations that are to be removed, while the multiset of names of authorizations
that have been removed is obviously empty. We illustrate the application of the
operator with two simple examples.

Example 3.4.3 (drift for one hole contexts).

drift((a) · ; a; ∅) = ·
drift((a)((a) · | R); a; ∅) = (a)(· | R)

drift(· ; a; ∅) is unde�ned

drift((a)(a) · ; a, a; ∅) = ·
drift((a) · ; a, b; ∅) is unde�ned

drift((a) · | (b)0; a, b; ∅) is unde�ned.

Example 3.4.4 (drift derivation). Let us again consider the second application
of the operator in the example above

drift((a)((a) · | R); a; ∅) = (a)(· | R)

and let us show the derivation conducted. Necessarily, at the top of the derivation,
only an axiom can be applied. The only axiom in Table 3.4 rule (c-end) requires
that the �rst multiset must be empty at the root, in order for the derivation to be
de�ned. Observing all rules, we may notice that only (c-rem) manipulates names
in the two multisets by transferring names from the �rst to the second multiset.
Hence, the sum of the two multisets is preserved invariant in the rules. Thus, we
can conclude the derivation in our example is rooted by drift(·; ∅; a) = · by axiom
(c-end). We then consider the authorization (a) that directly scopes the hole, and
by (c-rem) we have that

drift(· ; ∅; a) = ·
drift((a) · ; a; ∅) = ·

In this case, rule (c-skip) could not be applied instead, since a is in the second
multiset. After that, the process in parallel in the context is handled by rule (c-par)

drift((a) · ; a; ∅) = ·
drift((a) · | R; a; ∅) = · | R

66 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

(c2-spl)

drift(C1[·1]; ρ1; ρ′1) = C ′1[·] drift(C2[·2]; ρ2; ρ′2) = C ′2[·]
drift(C1[·1] | C2[·2]; ρ1; ρ2; ρ′1; ρ′2) = C ′1[·1] | C ′2[·2]

(c2-rem-l)

drift(C[·1, ·2]; ρ1; ρ2; ρ′1] {a}; ρ′2) = C ′[·1, ·2]
drift((a)C[·1, ·2]; ρ1] {a}; ρ2; ρ′1; ρ′2) = C ′[·1, ·2]

(c2-rem-r)

drift(C[·1, ·2]; ρ1; ρ2; ρ′1; ρ′2] {a}) = C ′[·1, ·2]
drift((a)C[·1, ·2]; ρ1; ρ2] {a}; ρ′1; ρ′2) = C ′[·1, ·2]

(c2-skip)

drift(C[·1, ·2]; ρ1; ρ2; ρ′1; ρ′2) = C ′[·1, ·2] a 6∈ ρ′1] ρ′2
drift((a)C[·1, ·2]; ρ1; ρ2; ρ′1; ρ′2) = (a)C ′[·1, ·2]

(c2-par)

drift(C[·1, ·2]; ρ1; ρ2; ρ′1; ρ′2) = C ′[·1, ·2]
drift(C[·1, ·2] | R; ρ1; ρ2; ρ

′
1; ρ
′
2) = C ′[·1, ·2] | R

Table 3.5: drift on contexts with two holes.

Then, we can complete the derivation by rule (c-skip)

drift((a) · | R; a; ∅) = · | R
drift((a)((a) · | R); a; ∅) = (a)(· | R)

We may observe that starting the derivation from the bottom we could �rst
apply (c-rem) and deduce drift((a)((a) · | R); a; ∅) = C[·], for some C. However,
in that case the name a is transferred to the �has been removed� multiset, and
moving up in the derivation, after applying (c-par), the derivation gets stuck as
none of the rules (c-rem) nor (c-skip) can be applied for the authorization that
directly scopes the hole (cf. the example given in the explanation of rule (c-skip)).

The only derivations for the operator we are interested in consider in the bot-
tom of the derivation the set of removed authorizations is empty, while at the top
of the derivation the set of to be removed authorizations is empty. This implies
that in order for the operator to be de�ned all the authorizations speci�ed as to
be removed from the context at the beginning were found and have been removed
in the resulting context. Furthermore, in the derivation tree, the rule (c-rem)

is always used above the rule (c-skip) for a given name, as ensured by the side
condition of the latter rule.

Operator drift for contexts with two holes is de�ned by the rules given in
Table 3.5. In this case, the operator

drift(C[·1, ·2]; ρ1; ρ2; ρ′1; ρ′2)

takes as arguments a two-hole context, two multisets of names ρ1 and ρ2 repre-
senting the names of authorizations which are to be removed and two multisets of

3.4. REDUCTION SEMANTICS 67

(r-comm)

drift(C[·1, ·2]; a; a) = C−[·1, ·2]
C[a!b.P, a?x.Q]→ C−[(a)P, (a)Q{b/x}]

(r-auth)

drift(C[·1, ·2]; a, b; a) = C−[·1, ·2]
C[a〈b〉.P, a(b).Q]→ C−[(a)P, (a)(b)Q)]

(r-stru)

P ≡ P ′ → Q′ ≡ Q

P → Q

(r-newc)

P → Q

(νa)P → (νa)Q

Table 3.6: Reduction rules.

names ρ′1 and ρ
′
2 representing names of authorizations already removed. Multisets

indexed with 1 refer to the ·1 hole, and multisets indexed with 2 refer to the ·2
hole.

In rule (c2-spl) the operator for the two-hole context, where the context is
a parallel composition of two one-hole contexts, is decomposed into two opera-
tors for one-hole context, considering the multisets of names ρ1 and ρ′1 for the 1
indexed context, and ρ2 and ρ′2 for the 2 indexed context. The rest of the rules
in Table 3.5 follow exactly the same lines of the ones for contexts with one hole,
where authorization removal addresses left and right hole in a dedicated way. We
illustrate the applications of the operator for contexts with two holes by the next
example.

Example 3.4.5 (drift for two hole contexts).

drift((b)(a)(a)(·1 | ·2); a, b; a; ∅; ∅) = ·1 | ·2
drift((b)(a)(·1 | (a) ·2); a, b; a; ∅; ∅) = ·1 | ·2
drift((a)(a) ·1 | (a) ·2 ; a, a; a; ∅; ∅) = ·1 | ·2
drift((b)(a)(·1 | ·2); a, b; a; ∅; ∅) is unde�ned.
drift((a) ·1 | (a)(b) ·2; a, b; a; ∅; ∅) is unde�ned.
drift((b)(·1 | (a)(a) ·2); a, b; a; ∅; ∅) is unde�ned.

Rule (c2-spl) makes the derivation for the case of two holes to rely on the
derivations for the cases of one hole and is possible only if the axioms for empty
contexts hold (cf. (c-end)). Hence, the operator for a two-hole context is unde-
�ned if the required authorizations for any of the holes are lacking. Again, when
de�ning the operator, none of the authorizations have been removed and multisets
ρ′1 and ρ′2 are empty. Therefore, we abbreviate drift(C[·]; ρ; ∅) with drift(C[·]; ρ)
and drift(C[·1, ·2]; ρ1; ρ2; ∅; ∅) with drift(C[·1, ·2]; ρ1; ρ2).

At this point, we may now proceed to present the reduction rules. The reduc-
tion relation (→) is the least sub-relation of P × P that satis�es the rules shown
in Table 3.6.

� In rule (r-comm) the two processes can synchronize their dual actions send-
ing and receiving b on name a only if the actions of both processes are
authorized in the context, that is if both are under the scope of, at least one
per each process, authorization for name a. The resulting process speci�es

68 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

the context where the two authorizations for a have been removed by the
drift operator, and are con�ned to the continuations of the communication
pre�xes P and Q.

� Similarly to the previous rule, in (r-auth) the two processes can synchronize
delegating and receiving authorization for name b on name a only if in the
context the �rst hole is scoped with authorizations for b and a, and the
second hole is scoped with authorization for a. The resulting process uses
the context where the three authorizations have been removed by the drift
operator. The authorization for b is explicitly exchanged since the operator
removes the authorization for the delegating process, while the authorization
is con�ned to the receiving process.

� In rule (r-stru) the reduction relation is closed under structural congruence
relation.

� Finally, in rule (r-newc) the reduction relation is closed under the restriction
construct (νa).

When compared with the reduction rules for Cπ given in Table 2.4, we may notice
that here we do not have rules that deal with parallel composition and authoriza-
tion scoping. These constructs are already addressed by the contexts in (r-comm)

and (r-auth). Similarly to Cπ, here we also have no rule dealing with the repli-
cated input, since using the structural congruence rule (sc-rep), a single copy of
replicated process may be secluded and take a part in a synchronization captured
by (r-comm).

We may now show how a general form of replication !P (used in the previous
chapter) can be represented by the replicated input. If we consider process

(νa)((a)(P | a!a.0) | !(a)a?x.(P | a!a.0))

where a 6∈ fn(P), we may observe that in one step it reduces to

P | (νa)((a)(P | a!a.0) | !(a)a?x.(P | a!a.0)).

where in parallel with the original process a copy of process P is activated. Hence,
this way we may mimic the behavior of process !P .

When our work is compared with the previous works for authorizations, one
may notice that reduction semantics of [44] relies on more standard machinery.
Their structural congruence relation is expressive enough to isolate the active
pre�xes willing to synchronize, while our reduction relation relies on the de�ntions
of static contexts and the drift operator. However, one may also notice that the
LTS of [44] is more complex than the one presented in the previous section. As we
already discussed, our de�nition of reduction relation relies on the novel technical
machinery so as to cope with the notion of accounting we explore here. These
di�erences are further elaborated with technical insights given in Section 3.5.

By an example, we now show a key di�erence in accounting principles consid-
ered in [44] and here.

3.4. REDUCTION SEMANTICS 69

Example 3.4.6 (On authorization accounting). As we have noted, reduction se-
mantics of process algebra in [43, 44] introduces the structural congruence rule
(a)(P | Q) ≡ (a)P | (a)Q. The logic behind is that an authorization for a name
given to a process should make all of its threads authorized to use the name. Now
consider that this implies

(b)((a)a〈b〉.P |(a)a(b).Q) ≡ (b)(a)a〈b〉.P |(b)(a)a(b).Q→ (a)P |(b)(b)(a).Q

where in the original process one authorization for b is shared between the two
branches, but after applying the mentioned structural congruence rule and au-
thorization delegation we end up in a situation where the rhs branch owns two
authorizations for b. This is directly in con�ict with our authorization accounting
principle, since it allows changing the number of authorizations in the system. In
our model, process

(b)((a)a〈b〉.P |(a)a(b).Q) can evolve in one step to (a)P |(b)(a)Q

where the number of authorizations is stable, since upon delegation the only au-
thorization for b is con�ned to the process on the rhs.

3.4.1 Harmony result

In Section 2.3 we have seen that the result of matching tau transitions of the
LTS and reductions of the reduction semantics in Cπ is simply inherited from
the π-calculus (Theorem 2.3.1). In this section, we show the analogous result
for our calculus of �oating authorizations. We aim to prove that a process P
reduces to Q if and only if P has fully authorized transition τ to a process that is
structurally equivalent to Q. To this end we present several auxiliary results. Our
�rst auxiliary result allows distinguishing free and bound names of the action.

Lemma 3.4.7 (Inversion on labelling). Let P α−→ Q.

1. If α = (a)ia!b then a, b ∈ fn(P).

2. If α = (a)i(νb)a!b then a ∈ fn(P) and b ∈ bn(P).

3. If α = (a)ia?b then a ∈ fn(P).

4. If α = (a)i(b)ja〈b〉 then a, b ∈ fn(P).

5. If α = (a)ia(b) then a, b ∈ fn(P).

Proof. The proof is by induction on the inference of P α−→ Q, and it follows the
same lines as proof of Lemma 2.2.3.

We may now show that the structural congruence relation �agrees� with the
LTS, in the sense that if a process can perform an action then a structurally
equivalent process can perform the same action and the two resulting processes
are again related by structural congruence.

70 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

Lemma 3.4.8 (LTS and structural congruence). If P ≡ P ′ and P
α−→ Q, then

there exists some Q′ such that P ′
α−→ Q′ and Q ≡ Q′.

Proof. The proof is by induction on the length of the derivation of P ≡ P ′. We
only detail the case when the last applied rule is (sc-res-extr), i.e., P1 | (νa)P2 ≡
(νa)(P1 | P2), for a /∈ fn(P1). We have two possibilities to derive (νa)(P1 | P2)

α−→
P ′, and that is by (l-res) and (l-open).

� Case (l-res): Assume that (νa)(P1 | P1)
α−→ (νa)R, where a /∈ n(α) is

derived from (P1 | P2)
α−→ R. Then, the possible transitions for P1 | P2 are:

-(l-par): Assume P1 | P2
α−→ P1 | P ′2, where bn(α) ∩ fn(P1) = ∅, is derived

from P2
α−→ P ′2. We have that

(νa)(P1 | P1)
α−→ (νa)(P1 | P ′2)

Since a /∈ n(α), by (l-res) we have (νa)P2
α−→ (νa)P ′2 and by (l-par)we

conclude
P1 | (νa)P2

α−→ P1 | (νa)P ′2

If the symmetric case of rule (l-par) is applied, the proof follows the same
lines.

-(l-comm): Assume P1 | P2
α−→ P ′1 | P ′2, where α = τω and ω = (b)i+j,

is derived from P1
α1−→ P ′1 and P2

α2−→ P ′2, where α1, α2 ∈ {(b)ib!c, (b)jb?c}.
Then, we have

(νa)(P1 | P1)
τω−→ (νa)(P ′1 | P ′2)

By Lemma 3.4.7 we conclude b ∈ fn(P1, P2). Thus, from a /∈ fn(P1) we have
that b 6= a. We now distinguish two cases:

* if c = a and α2 = (b)ib!a. By (l-open) (νa)P2
(b)i(νa)b!a−−−−−−→ P ′2 and by

(l-close)

P1 | (νa)P2
τω−→ (νa)(P ′1 | P ′2)

* if c 6= a, then by (l-res) (νa)P2
α2−→ (νa)P ′2 and by (l-comm)

P1 | (νa)P2
τω−→ P ′1 | (νa)P ′2

- (l-close): Assume P1 | P2
α−→ (νc)(P ′1 | P ′2), where α = τω and ω = (b)i+j,

is derived from P1
α1−→ P ′1 and P2

α2−→ P ′2, where α1, α2 ∈ {(b)i(νc)b!c, (b)jb?c}.
Hence,

(νa)(P1 | P1)
τω−→ (νa)(νc)(P ′1 | P ′2)

By Lemma 3.4.7 we have b ∈ fn(P1, P2). Since a /∈ fn(P1) and assuming
all bound names are di�erent, we conclude a /∈ {b, c}. Thus, by (l-res)

(νa)P2
α2−→ (νa)P ′2 and by (l-close) we conclude

P1 | (νa)P2
τω−→ (νc)(P ′1 | (νa)P ′2)

3.4. REDUCTION SEMANTICS 71

- (l-auth): Assume P1 | P2
α−→ P ′1 | P ′2, where α = τω and ω = (b)i+j(c)k, is

derived from P1
α1−→ P ′1 and P2

α2−→ P ′2, where α1, α2 ∈ {(b)i(c)kb〈c〉, (b)jb(c)}.
Thus,

(νa)(P1 | P1)
τω−→ (νa)(P ′1 | P ′2)

By Lemma 3.4.7 we have c, b ∈ fn(P1, P2). Since a /∈ fn(P1) we conclude
a /∈ {b, c}. Therefore, by (l-res) (νa)P2

α2−→ (νa)P ′2 and by (l-auth)

P1 | (νa)P2
τω−→ P ′1 | (νa)P ′2

� Case (l-open): Assume that (νa)(P1 | P2)
(b)i(νa)b!a−−−−−−→ R is derived from

P1 | P2
(b)ib!a−−−→ R, where a 6= b. Since a /∈ fn(P1), by Lemma 3.4.7 we

conclude P1 | P2
(b)ib!a−−−→ R could only be derived using rule (l-par). Hence,

R = P1 | P ′2 and P2
(b)ib!a−−−→ P ′2. Then, by (l-open) (νa)P2

(b)i(νa)b!a−−−−−−→ P ′2 and
by (l-par) we conclude

P1 | (νa)P2
(b)i(νa)b!a−−−−−−→ P1 | P ′2

Using the structural congruence relation, static contexts and the operator drift
we can characterize a process performing an action and the process that is the
result of the action. This is given in our next result.

Lemma 3.4.9 (Inversion on LTS). Let P and Q be processes.

1. If P
(a)a!b−−−→ Q then P ≡ (νd̃)C[a!b.P ′] and Q ≡ (νd̃)C[(a)P ′] and drift(C[·]; a)

is unde�ned.

2. If P
a!b−→ Q then P ≡ (νd̃)C[a!b.P ′] and Q ≡ (νd̃)C−[(a)P ′], for C−[·] =

drift(C[·]; a).

3. If P
(a)(νb)a!b−−−−−→ Q then P ≡ (νd̃)(νb)C[a!b.P ′] and Q ≡ (νd̃)C[(a)P ′] and

drift(C[·]; a) is unde�ned.

4. If P
(νb)a!b−−−−→ Q then P ≡ (νd̃)(νb)C[a!b.P ′] and Q ≡ (νd̃)C−[(a)P ′], for C−[·] =

drift(C[·]; a).

5. If P
(a)a?b−−−→ Q then P ≡ (νd̃)C[a?x.P ′] and Q ≡ (νd̃)C[(a)P ′{b/x}] and

drift(C[·]; a) is unde�ned.

6. If P
a?b−−→ Q then P ≡ (νd̃)C[a?x.P ′] and Q ≡ (νd̃)C−[(a)P ′{b/x}], for C−[·] =

drift(C[·]; a).

7. If P
(b)a〈b〉−−−→ Q then P ≡ (νd̃)C[a〈b〉.P ′] and Q ≡ (νd̃)C−[(a)P ′], for C−[·] =

drift(C[·]; a) and drift(C[·]; a, b) is unde�ned.

72 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

8. If P
(a)a〈b〉−−−−→ Q then P ≡ (νd̃)C[a〈b〉.P ′] and Q ≡ (νd̃)C−[(a)P ′], for C−[·] =

drift(C[·]; b) and drift(C[·]; a, b) is unde�ned.

9. If P
a〈b〉−−→ Q then P ≡ (νd̃)C[a〈b〉.P ′] and Q ≡ (νd̃)C−[(a)P ′], for C−[·] =

drift(C[·]; a, b).

10. If P
(a)a(b)−−−−→ Q then P ≡ (νd̃)C[a(b).P ′] and Q ≡ (νd̃)C[(a)(b)P ′] and

drift(C[·]; a) is unde�ned;

11. If P
a(b)−−→ Q then P ≡ (νd̃)C[a(b).P ′] and Q ≡ (νd̃)C−[(a)(b)P ′], for C−[·] =

drift(C[·]; a).

12. If P
τ−→ Q then either

� P ≡ (νd̃)C[a!b.P ′, a?x.P ′′] and Q ≡ (νd̃)C−[(a)P ′, (a)P ′′{b/x}], for
C−[·1, ·2] = drift(C[·1, ·2]; a; a), or

� P ≡ (νd̃)C[a〈b〉.P ′, a(b).P ′′] and Q ≡ (νd̃)C−[(a)P ′, (a)(b)P ′′], for
C−[·1, ·2] = drift(C[·1, ·2]; a, b; a).

13. If P
τ(a)−−→ Q then either

� P ≡ (νd̃)C[a!b.P ′, a?x.P ′′] and Q ≡ (νd̃)C−[(a)P ′, (a)P ′′{b/x}], for
C−[·1, ·2] = drift(C[·1, ·2]; a; ∅), or C−[·1, ·2] = drift(C[·1, ·2]; ∅; a), and
drift(C[·1, ·2]; a; a) is unde�ned, or

� P ≡ (νd̃)C[a〈b〉.P ′, a(b).P ′′] and Q ≡ (νd̃)C−[(a)P ′, (a)(b)P ′′], for
C−[·1, ·2] = drift(C[·1, ·2]; a, b; ∅), or C−[·1, ·2] = drift(C[·1, ·2]; b; a), and
drift(C[·1, ·2]; a, b; a) is unde�ned, or

� P ≡ (νd̃)C[b〈a〉.P ′, b(a).P ′′] and Q ≡ (νd̃)C−[(b)P ′, (b)(a)P ′′], for
C−[·1, ·2] = drift(C[·1, ·2]; b; b) and drift(C[·1, ·2]; b, a; b) is unde�ned.

14. If P
τ(a)(a)−−−→ Q then either

� P ≡ (νd̃)C[a!b.P ′, a?x.P ′′] and Q ≡ (νd̃)C[(a)P ′, (a)P ′′{b/x}] and
drift(C[·1, ·2]; a; a) is unde�ned, or

� P ≡ (νd̃)C[a〈b〉.P ′, a(b).P ′′] and Q ≡ (νd̃)C−[(a)P ′, (a)(b)P ′′], for
C−[·1, ·2] = drift(C[·1, ·2]; b; ∅), and drift(C[·1, ·2]; a, b; a) is unde�ned, or

� P ≡ (νd̃)C[a〈a〉.P ′, a(a).P ′′] and Q ≡ (νd̃)C−[(a)P ′, (a)(a)P ′′], for
C−[·1, ·2] = drift(C[·1, ·2]; ∅; a) or C−[·1, ·2] = drift(C[·1, ·2]; a; ∅), and
drift(C[·1, ·2]; a, a; a) is unde�ned.

15. If P
τ(a)(b)−−−→ Q and a 6= b then P ≡ (νd̃)C[a〈b〉.P ′, a(b).P ′′] and

Q ≡ (νd̃)C−[(a)P ′, (a)(b)P ′′], for C−[·1, ·2] = drift(C[·1, ·2]; a; ∅) or C−[·1, ·2] =
drift(C[·1, ·2]; ∅; a), and drift(C[·1, ·2]; a, b; a) is unde�ned.

16. If P
τ(a)2(b)−−−−→ Q then P ≡ (νd̃)C[a〈b〉.P ′, a(b).P ′′] and

Q ≡ (νd̃)C[(a)P ′, (a)(b)P ′′] and drift(C[·1, ·2]; a, b; a) is unde�ned.

3.4. REDUCTION SEMANTICS 73

Proof. The proof is by induction on the derivation of P α−→ Q. We comment just
on the �rst two assertions.

1 . Suppose P
(a)a!b−−−→ Q and let us show P ≡ (νd̃)C[a!b.P ′], andQ ≡ (νd̃)C[(a)P ′],

and drift(C[·]; a) is unde�ned. The base case follows by rule (l-out) a!bP
(a)a!b−−−→

(a)P. Here, a!bP = C[a!bP] and (a)P = C[(a)P], where C[·] = ·. The operator
drift(C[·]; a) is unde�ned since the second parameter of the operator is not an
empty multiset. For induction steps we have next cases of the last applied rule:
(l-res), (l-scope) and (l-par).

� Case (l-res): the proof immediately follows from the induction hypothesis.

� Case (l-scope): here P = (c)P1 and Q = (c)Q1 and P
(a)a!b−−−→ Q is derived

from P1
(a)a!b−−−→ Q1, where c 6= a. By induction hypothesis

P1 ≡ (νd̃)C[a!b.P ′] and Q1 ≡ (νd̃)C[(a)P ′] and drift(C[·]; a) is unde�ned.

Considering all free and bound names are di�erent, by (sc-scope-auth) we
conclude (c)P1 ≡ (νd̃)(c)C[a!b.P ′] and (c)Q1 ≡ (νd̃)(c)C[(a)P ′]. For C ′[·] =
(c)C[·] we have that

P ≡ (νd̃)C ′[a!b.P ′] and Q ≡ (νd̃)C ′[(a)P ′] and drift(C ′[·]; a) is unde�ned

since c 6= a.

� Case (l-par): follows by similar reasoning.

2 . The base case follows by rule (l-scope-int): (a)P
a!b−→ Q is derived from

P
(a)a!b−−−→ Q. By statement 1. of this Lemma we have

P ≡ (νd̃)C ′[a!b.P ′] and Q ≡ (νd̃)C ′[(a)P ′] and drift(C ′[·]; a) is unde�ned.

By Lemma 3.4.7 we have a ∈ fn(P), thus we conclude a 6∈ d̃. If we de�ne C[·] =
(a)C ′[·], by (sc-scope-auth) we have that (a)P ≡ (νd̃)C[a!b.P ′]. Now we only need
to notice that

drift(C[·]; a) = C ′[·]

Again, for the induction step we have that the last applied rule can be (l-res),
(l-scope) or (l-par), and in all three cases the proof follows similar lines as in the
�rst part.

We are now ready to show the �rst implication of our main statement: if a
process has τ transition, then it can also reduce to the same process.

Lemma 3.4.10 (Harmony: reduction). If P τ−→ Q then P → Q.

Proof. The proof is by induction on the derivation P τ−→ Q. We have three base
cases.

74 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

� Case (l-comm): P1 | Q1
τ−→ P2 | Q2 is derived from P1

α−→ P2 and Q1
α−→ Q2,

where α, α ∈ {a!b, a?b}. By Lemma 3.4.9 we conclude that

P1, Q1 ∈ {(νd̃1)C1[a!b.P ′1], (νd̃2)C2[a?x.Q′1]} and

P2, Q2 ∈ {(νd̃)C−1 [(a)P ′1], (νd̃2)C−2 [(a)Q′1{b/x}]}

up to structural congruence relation, and where C−1 = drift(C1[·]; a) and
C−2 = drift(C2[·]; a). If we de�ne C[·1, ·2] = C1[·1] | C[·2], by (sc-res-extr) we
have

(νd̃1)C1[a!b.P ′1] | (νd̃2)C2[a?x.Q′1] ≡ (νd̃1, d̃2)(C[a!b.P ′1, a?x.Q′1]) and

(νd̃1)C−1 [(a)P ′1] | (νd̃2)C−2 [(a)Q′1{b/x}] ≡ (νd̃1, d̃2)C−[(a)P ′1, (a)Q′1{b/x}]

where C−[·1, ·2] = drift(C[·1, ·2]; a; a). Then, by (r-comm) and (r-newc) we
conclude

(νd̃1, d̃2)C[a!b.P ′1, a?x.Q′1]→ (νd̃1, d̃2)C−[(a)P ′1, (a), Q′1{b/x}]

� Cases (l-close) and (l-auth): follow by similar reasoning.

We have four cases for the last applied rule.

� Case (l-res): (νa)P
τ−→ (νa)Q is derived from P

τ−→ Q. By induction hy-
pothesis P → Q and by (r-newc) we conclude (νa)P → (νa)Q.

� Case (l-scope-ext): (a)P
τ−→ Q is derived from P

τ(a)−−→ Q. By Lemma 3.4.9
we have three cases for the shape of processes P and Q. We only detail the
�rst case, i.e., when

P ≡ (νd̃)C[a!b.P ′, a?x.P ′′] and Q ≡ (νd̃)C−[(a)P ′, (a)P ′′{b/x}]

where C−[·1, ·2] = drift(C[·1, ·2]; a; ∅), or C−[·1; ·2] = drift(C[·1, ·2]; ∅; a), and
drift(C[·1, ·2]; a; a) is unde�ned. By rule (sc-scope-auth) we derive

(a)P ≡ (νd̃)(a)C[a!b.P ′, a?x.P ′′]

Since drift((a)C[·1, ·2]; a; a) = C−[·1, ·2], the proof for this case follows.

� Case (l-scope): (c)P
τ−→ (c)Q is derived from P

τ−→ Q. By Lemma 3.4.9 we
distinguish two cases. We comment only the �rst one, i.e., when

P ≡ (νd̃)C[a!b.P1, a?b.P2] and Q ≡ (νd̃)C−[(a)P1, (a)P2{b/a}]

where C−[·1, ·2] = drift(C[·1, ·2]; a; a). Then, by (sc-scope-auth) we have

(c)P ≡ (νd̃)(c)C[a!b.P1, a?b.P2] and (c)Q ≡ (νd̃)(c)C−[(a)P1, (a)P2{b/a}]

� Case (l-par): the proof is analogous as for (l-scope).

3.4. REDUCTION SEMANTICS 75

To show the other direction of our main result, we need to be able to reason
on the structure of the contexts that appear in the reduction rules (r-comm) and
(r-auth), for which the respective drift operator is de�ned. In the next result,
we characterize the structure of the context for which the drift of (r-comm) is
de�ned. The proof follows by a non-surprising induction on the structure of the
contexts using the de�nition of the drift operator and is omitted.

Proposition 3.4.11 (Inversion on drift). Let drift(C[·1, ·2]; a; a) be de�ned and let
C[·1, ·2] = C ′[C1[·] | C2[·]]. Then, we distinguish four cases.

� Case (a) in C1 and in C2:

C1[·] = C ′1[(a)C ′′1 [·]] and C2[·] = C ′2[(a)C ′′2 [·]]

where drift(C ′′1 [·]; a) and drift(C ′′2 [·]; a) are unde�ned.

� Case (a) in C1 and not in C2:

C1[·] = C ′1[(a)C ′′1 [·]] and C ′[·] = C ′3[(a)C ′′3 [·]]

where drift(C ′′1 [·]; a), drift(C2[·]; a) and drift(C ′′3 [·]; a) are unde�ned.

� Case (a) in C2 and not in C1:

C2[·] = C ′2[(a)C ′′2 [·]] and C ′[·] = C ′3[(a)C ′′3 [·]]

where drift(C ′′2 [·]; a), drift(C1[·]; a) and drift(C ′′3 [·]; a) are unde�ned.

� Case (a) not in C1 and not in C2:

C ′[·] = C3[(a)C ′3[·]] and C ′3[·] = C4[(a)C ′4[·]]

where drift(C1[·]; a), drift(C2[·]; a), drift(C4[·]; a, a) and drift(C ′4[·]; a) are un-
de�ned.

The same kind of property can also be stated for the case of (r-auth), by
considering drift(C[·1, ·2]; a, b; a) is de�ned and C[·1, ·2] = C ′[C1[·] | C2[·]]. Then,
similarly as in the previous proposition, we may distinguish (up to) 14. cases for
the distribution of the three authorizations (depending on if a and b are di�erent
names).

By the last result and Lemma 3.4.8 we are then able to prove that if a process
can reduce it can also have a τ transition, where the two resulting processes are
structurally equivalent. This is attested in our next result.

Lemma 3.4.12 (Harmony: LTS). If P → Q then there is Q′ such that Q ≡ Q′

and P
τ−→ Q′.

Proof. The proof is by induction on the derivation P → Q. We obtain two base
cases.

76 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

� Case (r-comm):

C[a!b.P ′, a?x.Q′]→ C−[(a)P ′, (a)Q′{b/x}]

where C−[·1, ·2] = drift(C[·1, ·2]; a; a). By rules (l-out) and (l-in) we have
that

a!b.P ′
(a)a!b−−−→ (a)P ′ and a?x.Q′

(a)a?b−−−→ (a)Q′{b/x}

By Proposition 3.4.11 we distinguish four cases for the structure of the con-
text C[·1, ·2] = C ′[C1[·] | C2[·]]. We comment only the case when

C1[·] = C ′1[(a)C ′′1 [·]] and C2[·] = C ′2[(a)C ′′2 [·]]

where drift(C ′′1 [·]; a) and drift(C ′′2 [·]; a) are unde�ned. Thus, in contexts C ′′1 [·]
and C ′′2 [·] the holes are not in the scope of authorizations (a). Proceeding by
induction on contexts C ′′1 [·] and C ′′2 [·] using rules (l-par) and (l-scope) we
may show that

C ′′1 [a!b.P ′]
(a)a!b−−−→ C ′′1 [(a)P ′] and C ′′2 [a?x.Q′]

(a)a?b−−−→ C ′′2 [(a)Q′{b/x}]

By (l-scope-ext) we obtain

(a)C ′′1 [a!b.P ′]
a!b−→ C ′′1 [(a)P ′] and (a)C ′′2 [a?x.Q′]

a?b−−→ C ′′2 [(a)Q′{b/x}]

Again, by induction on contexts C ′1[·] and C ′2[·] using rules (l-par) and
(l-scope) we have

C ′1[(a)C ′′1 [a!b.P ′]]
a!b−→ C ′1[C ′′1 [(a)P ′]] and

C ′2[(a)C ′′2 [a?x.Q′]]
a?b−−→ C ′2[C ′′2 [(a)Q′{b/x}]]

By (l-comm)

C ′1[(a)C ′′1 [a!b.P ′]] | C ′2[(a)C ′′2 [a?x.Q′]]
τ−→ C ′1[C ′′1 [(a)P ′]] | C ′2[C ′′2 [(a)Q′{b/x}]]

and again applying induction on the structure of context C ′[·] and using rules
(l-par) and (l-scope) we conclude

C[a!b.P ′, a?x.Q′]
τ−→ C ′[C ′1[C ′′1 [(a)P ′]] | C ′2[C ′′2 [(a)Q′{b/x}]]]

Now we just need to notice that drift(C[·1, ·2]; a; a) = C ′[C ′1[C ′′1 [·]] | C ′2[C ′′2 [·]].

� Case (r-auth): apply similar reasoning.

In the induction step, we have two possibilities for the last applied rule.

� Case (r-newc): (νa)P → (νa)Q is derived from P → Q. By induction
hypothesis P τ−→ Q′, for Q ≡ Q′. By (l-res) we have (νa)P

τ−→ (νa)Q′. Since
≡ is a congruence, from Q ≡ Q′ we conclude (νa)Q ≡ (νa)Q′.

3.4. REDUCTION SEMANTICS 77

� Case (r-stru): P → Q is derived from P ≡ P ′ → Q′ ≡ Q. By induction
hypothesis P ′ τ−→ Q′′, for Q′ ≡ Q′′. By Lemma 3.4.8 we get P τ−→ Q′′′,
where Q′′′ ≡ Q′′. Now we can conclude the case by noting that we have
Q′′′ ≡ Q′′ ≡ Q′ ≡ Q.

We are now ready to state our Harmony result. The proof follows directly from
Lemma 3.4.12 and Lemma 3.4.10.

Corollary 3.4.13 (Harmony). P → Q if and only if P
τ−→≡ Q.

3.4.2 Error processes

In this section, we de�ne a notion of an error process, which is a process that uses
its resources in an unauthorized way. In our model, in order for synchronization
to take place the proper authorizations are needed. In the case of LTS semantics,
a process cannot evolve internally, i.e., have a τ transition, if the actions are
not authorized. In the case of the reduction semantics, a process cannot reduce
if it does not have the proper authorizations. This is how we de�ne the error
processes, as processes that cannot reduce only because of the lack of the required
authorizations. By the closer inspection of the reduction rules, we may notice
that this characterization actually says that the premise of the rules (r-comm)

and (r-auth) is not satis�ed and that the drift operator is not de�ned.

De�nition 3.4.14 (Error). Process P is an error if P ≡ (νc̃)C[αa.Q, α′a.R] and

1. αa = a!b, α′a = a?x and drift(C[·1, ·2]; a; a) is unde�ned, or

2. αa = a〈b〉, α′a = a(b) and drift(C[·1, ·2]; a, b; a) is unde�ned.

The de�nition of the error processes directly relies on the de�nition of the
reduction relation: the structural congruence relation and the de�nition of contexts
are used to identify the pre�xes ready to synchronize, for which the respective
authorizations are missing as the application of drift is unde�ned.

An alternative would be to characterize the error processes using the LTS,
as having only incomplete τ transitions, i.e., τω transitions, when ω is di�erent
from (a)0(b)0. The rest of this section is devoted to showing this claim is cor-
rect. First, we identify some auxiliary results. Our �rst result shows that if a
one-hole context, in which a pre�xed process is inserted, does not provide the
proper authorization(s), then the action of the overall process will also lack the
authorization(s). The proof, which we omit, follows in expected lines by induction
on the structure of the context.

Lemma 3.4.15 (Unauthorized processes: external actions).

1. If drift(C[·]; a) is unde�ned then

� C[a!b.P ′]
(a)a!b−−−→ C[P ′], and

78 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

� C[a?x.P ′]
(a)a?b−−−→ C[P ′{b/x}], and

� C[a(b).P ′]
(a)a(b)−−−−→ C[(a)(b)P ′].

2. If drift(C[·]; a, b) is unde�ned then either

� drift(C[·]; a) is unde�ned and drift(C[·]; b) is unde�ned and

C[a〈b〉.P ′] (a)(b)a〈b〉−−−−−→ C[(a)P ′], or

� drift(C[·]; a) is unde�ned and C[a〈b〉.P ′] (a)a〈b〉−−−−→ C−[(a)P ′], where
C−[·] = drift(C[·]; b), or

� drift(C[·]; b) is unde�ned and C[a〈b〉.P ′] (b)a〈b〉−−−→ C−[(a)P ′], where
C−[·] = drift(C[·]; a).

We are ready to characterize the internal actions of the process obtained by
inserting two pre�xed processes in a two-hole context that does not provide the
proper authorizations. Our �rst result focuses on the case when the internal action
is a result of name passing.

Lemma 3.4.16 (Unauthorized processes: name passing).

(i) If drift(C[·1, ·2]; a; a), drift(C[·1, ·2]; a; ∅), and drift(C[·1, ·2]; ∅; a) are all three
unde�ned then C[a!b.P ′, a?x.P ′′]

τω−→ Q, for some Q and ω = (a)(a).

(ii) If drift(C[·1, ·2]; a; a), and only one of drift(C[·1, ·2]; a; ∅) or drift(C[·1, ·2]; ∅; a)
are unde�ned then C[a!b.P ′, a?x.P ′′]

τω−→ Q, for some Q and ω = (a).

Proof. The proof proceeds by induction on the structure of context C[·1, ·2]. We
detail only the �rst assertion.

� Case C[·1, ·2] = C1[·1] | C2[·2] : by rule (c2-spl) we observe that both
drift(C1[·1], a) and drift(C2[·2], a) are unde�ned. By Lemma 3.4.15, we have
that

C1[a!b.P ′]
(a)a!b−−−→ C1[P ′] and C2[a?x.P ′′]

(a)a?b−−−→ C2[P ′′{b/x}]

By rule (l-comm), we conclude

C1[a!b.P ′] | C2[a?x.P ′′]
τ(a)(a)−−−→ C1[P ′] | C2[P ′′{b/x}]

� Case C[·1, ·2] = C1[·1, ·2] | R : by (c2-par) we may observe drift(C1[·1, ·2]; a; a),
drift(C1[·1, ·2]; a; ∅), and drift(C1[·1, ·2]; ∅; a) are all three unde�ned. By in-
duction hypothesis, C1[a!b.P ′, a?x.P ′′]

τω−→ Q, for some Q and ω = (a)(a).
Finally, by (l-par) we derive C1[a!b.P ′, a?x.P ′′]|R τω−→ Q|R.

� Case C[·1, ·2] = (c)C1[·1, ·2] and a 6= c: by (c2-skip), drift(C1[·1, ·2]; a; a),
drift(C1[·1, ·2]; a; ∅), and drift(C1[·1, ·2]; ∅; a) are all three unde�ned. By in-
duction hypothesis, C1[a!b.P ′, a?x.P ′′]

τω−→ Q, for some Q and ω = (a)(a).
Applying (l-scope) the proof completes.

3.5. BEHAVIORAL SEMANTICS 79

A similar result can be stated for the reduction that is a result of authorization
delegation. The proof of our next lemma follows similar reasoning as the proof of
Lemma 3.4.16.

Lemma 3.4.17 (Unauthorized processes: delegation). If drift(C[·1, ·2]; a, b; a) is
unde�ned then C[a〈b〉.Q, a(b).R]

τω−→ Q and ω = (a)i(b)j, where i+ j ≥ 1.

We can now state the main result.

Proposition 3.4.18 (Error Transitions). Process P is an error if and only if
P

τω−→ Q for some Q and τω 6= τ .

Proof. (⇐) The proof follows directly from cases 13.-16. of Lemma 3.4.9.
(⇒) If P is an error, then, by De�nition 3.4.14, P ≡ (νc̃)C[αa.P ′, α′a.P ′′], where
we distinguish two cases:

1. αa = a!b, α′a = a?x and drift(C[·1, ·2]; a; a) is unde�ned. By Lemma 3.4.16
we have that C[a!b.P ′, a?x.P ′′]

τω−→ Q, for some Q and ω ∈ {(a), (a)(a)}. By
successive application of (l-res)

(νc̃)C[a!b.P ′, a?x.P ′′]
τω−→ (νc̃)Q,

and by Lemma 3.4.8 we conclude P τω−→ Q′, for someQ′ such thatQ′ ≡ (νc̃)Q.

2. αa = a〈b〉, α′a = a(b) and drift(C[·1, ·2]; a, b; a) is unde�ned. Follows the same
reasoning as the previous case, by application of Lemma 3.4.17.

We remark that we adopt De�nition 3.4.14 for the purpose of our typing anal-
ysis. The labeled transition system and the reduction semantics inform di�erently
on our model. The labeled transition system is more explicit when considering
authorization manipulation, while the reduction semantics explicitly identi�es the
two processes ready to synchronize, which makes the latter more suitable to be
used in Section 3.6 in the proofs of our typing system.

3.5 Behavioral semantics

In Section 2.4 we introduced a behavioral equivalence relation in Cπ, strong bisim-
ilarity, that is actually the same relation as in the π-calculus. This section presents
a preliminary investigation of the behavioral semantics of our authorization model.
We introduce the strong bisimilarity relation by relying on the labeled transition
system given in the previous section. The de�nition of the strong bisimilarity here
follows the same lines as De�nition 2.4.1.

De�nition 3.5.1 (Strong bisimilarity). A binary relation R is a strong bisimula-
tion on processes if R is a symmetric relation and for all (P,Q) ∈ R the following
holds:

If P
α−→ P ′, for some α and P ′ where bn(α)∩ fn(Q) = ∅, then Q α−→ Q′ for some

Q′ such that (P ′, Q′) ∈ R.
Strong bisimilarity, noted with ∼, is the union of all strong bisimulations.

80 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

Same as in the π-calculus (and in the Cπ), the strong bisimilarity de�ned
above is also an equivalence relation (cf. Proposition 2.4.2). The re�exive and
symmetric property are direct from the de�nition and the transitive property can
be shown, up to α-conversion, in expected lines. Our aim is to �rst show some
standard properties for the strong bisimilarity de�ned in this section, as the ones
given in Section 2.4. The �rst result shows that the strong bisimilarity embeds
the structural congruence.

Proposition 3.5.2 (Structural congruence). ≡ ⊆ ∼.

Proof. The proof proceeds by coinduction on the de�nition of strong bisimulation,
showing that relation

R = {(P,Q) | P ≡ Q}

is a strong bisimulation, hence R ⊆∼. Let (P,Q) ∈ R. By Lemma 3.4.8 we have
that if P ≡ Q and P

α−→ P ′, then there exists some Q′, such that Q α−→ Q′ and
P ′ ≡ Q′. Thus, R is a strong bisimulation relation.

The last result attests that structurally congruent processes exhibit the same
behavior and as such is a form of a sanity check of our reduction semantics. Next,
we show another standard property, that the strong bisimilarity is a non-input
congruence.

Theorem 3.5.3 (Non-input congruence).

(a) If P ∼ Q then

1. P | R ∼ Q | R
2. (νa)P ∼ (νa)Q

3. a!b.P ∼ a!b.Q

4. (a)P ∼ (a)Q

5. a〈b〉.P ∼ a〈b〉.Q
6. a(b).P ∼ a(b).Q

(b) If P{b/x} ∼ Q{b/x}, for all b, then

1. a?x.P ∼ a?x.Q

2. !(a)a?x.P ∼!(a)a?x.Q

Proof. The proof is by coinduction on the de�nition of strong bisimulation.

(a) 1. Follows by coinduction considering the relation

R = {((νã)(P | R), (νã)(Q | R)) | P ∼ Q}

and showing that it is a strong bisimulation, i.e., R ⊆∼. Let us assume
that ((νã)(P | R), (νã)(Q | R)) ∈ R and

(νã)(P | R)
α−→ P1 (3.2)

3.5. BEHAVIORAL SEMANTICS 81

for some P1 and α, where bn(α) ∩ fn((νã)(Q | R)) = ∅. We show that
then there is some Q1 such that (νã)(Q | R)

α−→ Q1 and (P1, Q1) ∈ R.
The proof is analogous when �rst considering an action of (νã)(Q | R).
We distinguish three cases for deriving (3.2): either it is derived from
the observation on P or on R or from the synchronization between P
and R.
-Observation on P : In this case we have

(νã)(P | R)
α−→ (νã′)(P ′ | R)

is derived from
P

α′−→ P ′

where either α = α′ and ã = ã′, or α = (b)i(νc)b!c and α′ = (b)ib!c and

ã = ã′, c. By bn(α′) ∩ fn(Q) = ∅ and P ∼ Q we conclude that Q α′−→ Q′

where P ′ ∼ Q′. Thus, we can derive

(νã)(Q | R)
α−→ (νã′)(Q′ | R)

and we conclude ((νã′)(P ′ | R), (νã′)(Q′ | R)) ∈ R.
-Observation on R : Follows similar lines.
-Synchronization between P and R :
We give only the case when (3.2) is derived by (l-close), since other
cases, including the symmetric case for (l-close), follow similar lines.
Consider

(νã)(P | R)
τω−→ (νã)(νb)(P ′ | R′)

is derived from

P
(νb)σ1−−−→ P ′ and R

σ1−→ R′

Since without loss of generality we can assume b /∈ fn(Q), by P ∼ Q we

have Q
(νb)σ1−−−→ Q′ and P ′ ∼ Q′. Thus,

(νã)(Q | R)
τω−→ (νã)(νb)(Q′ | R′)

and we conclude ((νã)(νb)(P ′ | R′), (νã)(νb)(Q′ | R′)) ∈ R.
2. Follows similar lines, by showing that relation

R = {((νa)P ∼ (νa)Q) | P ∼ Q} ∪ ∼

is contained in ∼ by conduction on the de�nition of strong bisimulation.

3. Follows by showing that relation

R = {(a!b.P, a!b.Q) | P ∼ Q} ∪ ∼

is contained in ∼ by coinduction on the de�nition of strong bisimula-
tion. Notice that the pair of processes related by R are either in ∼,
in which case we conclude the proof directly, or have only the same
observable (the output), in which case the pair of continuing processes
is in ∼.

82 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

4. Follows by showing that relation

R = {((a)P, (a)Q) | P ∼ Q} ∪ ∼

is contained in ∼ by coinduction on the de�nition of strong bisimula-
tion. Let ((a)P, (a)Q) ∈ R. and let

(a)P
α−→ P ′.

There are three cases for the last applied rule while deriving the latter.
We detail only the case when the last applied rule is (l-scope-int).
Then, α = τω and (a)P

τω−→ P ′ is derived from P
τω(a)−−−→ P ′. By P ∼ Q

we have that Q
τω(a)−−−→ Q′, where P ′ ∼ Q′. By (l-scope-int) we have

(a)Q
τa−→ Q′, which �nishes the proof.

5. Follows by showing that relation

R = {(a〈b〉.P, a〈b〉.Q) | P ∼ Q} ∪ ∼

is contained in ∼ by coinduction on the de�nition of strong bisimu-
lation. Note that both process a〈b〉.P and a〈b〉.Q have only one ob-
servable action leading them to processes (a)P and (a)Q, which are
bisimilar by P ∼ Q and statement 4. of this Theorem.

6. Follows similar lines as 5., with witnessing relation

R = {(a(b).P, a(b).Q) | P ∼ Q} ∪ ∼

(b) 1. Follows the similar lines as 3., considering relation

R = {(a?x.P, a?x.Q) | (∀b)P{b/x} ∼ Q{b/x}} ∪ ∼

Notice that if (a?x.P, a?x.Q) ∈ R the two processes have only input
observable. Performing the same input leads to processes P{b/x} and
Q{b/x}, for some b, that are bisimilar by the assumption.

2. Follows by showing that relation

R = {(R | !(a)a?x.P, S | !(a)a?x.Q) | R ∼ S ∧ (∀b)P{b/x} ∼ Q{b/x}}

is a strong bisimulation, i.e.,R ⊆∼. Let (R | !(a)a?x.P, S | !(a)a?x.Q) ∈
R and let

R | !(a)a?x.P
α−→ P ′ (3.3)

for some P ′ and α such that bn(α) ∩ fn(S | !(a)a?x.Q) = ∅. We dis-
tinguish three cases for deriving (3.3): either it is derived from the
observation on R or on !(a)a?x.P or from the synchronization between
R and !(a)a?x.P .
-Observation on R :

R | !(a)a?x.P
α−→ R′ | !(a)a?x.P

3.5. BEHAVIORAL SEMANTICS 83

is derived from R
α−→ R′. Since bn(α) ∩ fn(S) = ∅ and R ∼ S it follows

that S α−→ S ′, where R′ ∼ S ′. By bn(α)∩ fn(!(a)a?x.Q) = ∅ we conclude

S | !(a)a?x.Q
α−→ S ′ | !(a)a?x.Q

and (R′ | !(a)a?x.P, S ′ | !(a)a?x.Q) ∈ R.
-Observation on !(a)a?x.P :

R | !(a)a?x.P
a?b−−→ R | (a)P{b/x} | !(a)a?x.P

is derived from !(a)a?x.P
a?b−−→ (a)P{b/x} | !(a)a?x.P . Then, we can

also derive

S | !(a)a?x.Q
a?b−−→ S | (a)Q{b/x} | !(a)a?x.Q

and we only have to show that R | (a)P{b/x} ∼ S | (a)Q{b/x}. Since
P{b/x} ∼ Q{b/x} for any b, by statement (a) 4. of this Theorem, we
have (a)P{b/x} ∼ (a)Q{b/x}. Using R ∼ S, statement (a) 1. of this
Theorem and transitivity and commutativity of strong bisimilarity we
conclude R | (a)P{b/x} ∼ S | (a)Q{b/x}.
-Synchronization between R and !(a)a?x.P :
We will detail only the case when the synchronization is derived by rule
(l-comm). In this case

R | !(a)a?x.P
τω−→ R′|(a)P{b/x} | !(a)a?x.P

is derived from

R
(a)ia!b−−−→ R′ and !(a)a?x.P

a?b−−→ (a)P{b/x} | !(a)a?x.P

By R ∼ S we derive S
(a)ia!b−−−→ S ′, where R′ ∼ S ′. Then, also

S | !(a)a?x.Q
τω−→ S ′|(a)Q{b/x} | !(a)a?x.Q.

Similarly as in the previous case, we can show that R′|(a)P{b/x} ∼
S ′|(a)Q{b/x}.

Theorem 3.5.3 asserts that a computational context cannot distinguish between
the behaviors of the bisimilar processes, as placing two bisimilar processes in the
same context results in two processes that are also bisimilar. Thus, each language
construct can be seen as a proper function of behavior, as their composition with
equivalent (object) behaviors yields equivalent (image) behaviors.

As we noted in Section 3.4, our accounting principle makes it di�cult to ma-
nipulate authorization scope construct over the parallel composition. Using the
strong bisimilarity relation we can formalize these intuitions. In the following, by
P 6∼ Q we denote that P and Q are not bisimilar.

84 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

Proposition 3.5.4 (Behavioral inequalities). For each of the following inequalities
there exist processes P and Q and name a that witness them.

1. (a)(P | Q) 6∼ (a)P | (a)Q.

2. (a)(a)(P | Q) 6∼ (a)P | (a)Q.

3. (a)(P | Q) 6∼ P | (a)Q if a /∈ fn(P).

4. (a)(a)P 6∼ (a)P .

5. (a)P 6∼ P if a /∈ fn(P).

Proof. To prove each inequality we give a proper counter-example.

1. Consider processes P = a!b.0 and Q = a?x.0. Then, process (a)P | (a)Q has
τ -transition

(a)a!b.0 | (a)a?x.0
τ−→ (a)0 | (a)0

while process (a)(P | Q) has only τ -transition with pending authorization

(a)(a!b.0 | a?x.0)
τ(a)−−→ (a)0 | (a)0

2. Consider processes P = a〈a〉.0 and Q = 0. We have that

(a)(a)(P | Q)
a〈a〉−−→ (a)0 | 0

while the only possible action for (a)P | (a)Q is

(a)P | (a)Q
(a)a〈a〉−−−−→ (a)0 | (a)0

3. Consider processes P = b?x.x!c.0 and Q = 0. Then, we have

(a)(P | Q)
(b)b?a−−−→ (a)((b)a!c.0 | 0)

a!c−→ (b)(a)0 | 0

while the only possible action for P | (a)Q after receiving a on b is pending
on authorization (a)

P | (a)Q
(b)b?a−−−→ (b)a!c.0 | (a)0

(a)a!c−−−→ (b)(a)0 | (a)0

4. Consider P = a〈a〉.0. We may observe

(a)(a)P
a〈a〉−−→ (a)0 while (a)P

(a)a〈a〉−−−−→ (a)0

5. Consider again process P = b?x.x!c.0. Then,

(a)P
(b)b?a−−−→ (a)(b)a!c.0

a!c−→ (b)(a)0

On the other hand

P
(b)b?a−−−→ (b)a!c.0

(a)a!c−−−→ (b)(a)0

3.5. BEHAVIORAL SEMANTICS 85

The last proposition formally attests our reduction semantics design choices.
The results given in 1. and 3. show that the structural congruence rules that
we do not adopt (that relate authorization scoping and parallel composition) as
mentioned in Section 3.4 indeed are unsound. Regardless if an authorization is
distributed to both or to a single branch of the parallel composition the obtained
process may exhibit a di�erent behavior. Even if the name speci�ed in the autho-
rization is not free in one of the branches, the mentioned distribution may a�ect
the behavior of a process. We remark that (a)(P | Q) 6∼ P | (a)Q given in 3. also
hold when a ∈ fn(P) (e.g., (a)(a!b.0 | 0) 6∼ a!b.0 | (a)0). Statement 1. provides
the main evidence that the structural congruence rule (a)(P | Q) ≡ (a)P | (a)Q
introduced in the operational semantics of [44] con�icts with our design choices,
namely with our accounting principle. Notice also that the di�erence of authoriza-
tion scoping and name restriction is exposed in 3., showing that scope extrusion
of the �rst operator is not safe since the name speci�ed in the authorization is free
while the name restriction is a binder.

Statement 2. attests that even the symmetric distribution of two authoriza-
tions over parallel composition may change the process behavior. Our accounting
authorizations principle is attested in 4.: providing a di�erent number of the same
authorization to a process can yield processes that exhibit di�erent behaviors.
Similarly to 3., statement 5. re�ects the fact that the authorization is a non-
binder construct. Therefore, as a result of name passing, authorizations for names
not free in the process may eventually be used.

Next, we present several equations relating authorization scoping and active
pre�xes.

Proposition 3.5.5 (Behavioral (in)equalities).

1. For any process P , names a, b and pre�x αb such that b 6= a and αb 6= b〈a〉
we have that (a)αb.P ∼ αb.(a)P .

2. There exist process P , name a and pre�xes αb, αc, where a does not occur,
such that (a)αb.αc.P 6∼ αb.αc.(a)P .

3. For any process P , name a and pre�x αb such that αb 6= a〈a〉, we have that
(a)(a)αb.P ∼ (a)αb.(a)P .

4. For any process P and name a we have that (a)(a)(a)a〈a〉.P ∼ (a)(a)a〈a〉.(a)P .

5. For any process P , names a, b, c1, . . . , cn we have that (c1) . . . (cn)(a)(b)a〈b〉.P ∼
(a)(b)a〈b〉.(c1) . . . (cn)P .

Proof.

1. Follows by showing that relation

R = {((a)α.P, α.(a)P) | α /∈ {a!b, a?x, !(a)a?x, a〈b〉, b〈a〉, a(b)}} ∪ ∼

is contained in ∼ by coinduction on the de�nition of strong bisimulation.
Note that the only action of both processes (a)α.P and α.(a)P is determined

86 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

by the pre�x α, and that the action is not pending on the authorization (a).
Each action of one process can be mimicked by the other leading to the same
process, hence the proof follows by re�exivity of strong bisimilarity.

2. Consider α = b?x and β = x!c. Then one possible transition for the �rst
process is

(a)α.β.P
(b)b?a−−−→ (a)(b)a!c.P{a/x} a!c−→ (b)(a)P{a/x}

while
α.β.(a)P

(b)b?a−−−→ (b)a!c.(a)P{a/x} (a)a!c−−−→ (b)(a)P{a/x}

3. The witnessing relation in this case is

R = {((a)(a)α.P, (a)α.(a)P) | α ∈ {a!b, a?x, a〈c〉, c〈a〉, a(b)}, c 6= a} ∪ ∼

4. The proof follows by considering witnessing relation

R = {((a)(a)(a)a〈a〉.P, (a)(a)a〈a〉.(a)P)} ∪ ∼

5. Follows directly from statements 1., 2., and 4. of this Proposition, Theo-
rem 3.5.3 and Proposition 3.5.2.

The last proposition shows principles that can be used when trying to obtain
a semantic normal form characterization of processes. Statements 1., 3. and 4.
attest that an authorization can be pushed and pulled across the active pre�x if
the authorization is not needed to perform the action speci�ed by the pre�x, or in
the presence the needed authorizations. Statement 2. shows that the authorization
can only be pushed across the immediately active pre�x. The �rst four statements
are generalized in 5.: in the presence of the required authorizations all others can
be pushed across the active pre�x.

To conclude, we remark that the inequalities we have presented in this section
can be seen as a justi�cation of our novel approach to de�ne the reduction seman-
tics (using contexts and the drift operator) since a normal form characterization
of processes in our model seems hard to obtain. Regardless of the fact that the
equalities given in Proposition 3.5.5 show we can manipulate authorizations over
active pre�xes, the inequalities given in Proposition 3.5.4 inform on the di�culty
in manipulating authorization scoping over parallel composition.

3.6 Type analysis

Thus far, we have identi�ed the syntax and semantics of our process algebra aiming
to model �oating authorizations. We also recognized undesired con�gurations as
error processes (De�nition 3.4.14) in which resources are used in an unauthorized
way. In that perspective, a natural question arises if there is a way of identifying
processes in which all possible usages of channels are properly authorized. In this

3.6. TYPE ANALYSIS 87

section, we introduce a typing discipline that can statically identify safe processes,
that are not errors and never reduce to errors. This section is divided into �ve
parts. In Section 3.6.1 we give a brief overview of the background on type theory
and type systems. Section 3.6.2 presents the idea of our types by means of exam-
ples. The type system is then formalized in Section 3.6.3, and the results are given
in Section 3.6.4. We further elaborate on our typing principles in Section 3.6.5.
In Section 3.6.6 we propose another type system that allows for a more e�cient
type-checking procedure, and we show the equivalence of the two type systems in
Section 3.6.6.1.

3.6.1 Background on types

Type theory, in computer science also referred to as type systems, covers the wide
�eld of mathematics, logic and computer science. The �rst type system appears
at the beginning of the 20th century in the work of Whitehead and Russel [115],
presenting the rami�ed type theory as a response to Russell's paradox. The core
idea there was to avoid interpreting mathematical entities as sets, but instead to
assign a type to any mathematical entity. The idea of using the type theory as an
alternative to the set theory as a fundamental of mathematics has been explored
also by Chwistek and Ramsey in work on the simple theory of types [28, 93],
Church in the simply typed lambda calculus [27], Martin-Löf in the intuitionistic
type theory [64], Coquand in the calculus of constructions [29], the homotopy-type
theory [107], etc.

In computer science, type systems are extensively studied in many aspects.
An important direction in the study of type systems is the Curry-Howard cor-
respondence, that connects the two distinct research �elds: computation and
logic [22, 31, 45, 57, 112]. Type theories have also been used as foundations
for developing programming languages. For instance, Agda [19] is based on the
uni�ed theory of depended types [63], that is an extension of Martin-Löf's type
theory. Also, an interactive theorem prover Coq [13] works within Coquand's
calculus of constructions.

Another application directed �eld of the study of type systems is within the
programming languages �eld. Many programming languages have integrated type
systems that ensure programs do not go wrong. The type system is responsible for
excluding bad behaviors called type errors. A typing system maps the language
terms into types and �can be regarded as calculating a kind of static approximation
to the run-time behaviors of the terms in a program� [84]. A type system should
o�er the safety guarantee, i.e., that a typable program does not produce errors
at run-time. Another guarantee, called completeness, ensures that a type system
does not discard any programs that behave well at run time, but is sometimes
hard or not worthwhile to obtain (e.g., because of the cost). Let us notice that
a type system does not prevent all possible bad behaviors, but only speci�c ones.
The design of the type system heavily depends on the kind of errors one wants
to eliminate. When compared to traditional programs, concurrent programs may
introduce new kinds of errors, e.g., races and deadlocks, which can be hard to deal
with.

88 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

Various type systems have been proposed for the π-calculus based process
models. The �rst one is a sorting system [70] proposed by Milner, developed to
deal with arity mismatch errors in the polyadic π-calculus. After that, types have
been used to impose control on the usages of the π-calculus channels, including:
linearity [59], groups [26], i/o types [85], etc. Later on, more sophisticated type
disciplines appeared, where types more precisely inform on how the channels are
to be used. Such types are also referred to as behavioral types [58], which includes
session types [24, 56, 103] and conversation types [23].

The type systems usually use a notion of a type assignment, typing environ-
ment, and a typing judgment. By writing a : T we mean that a type T has been
assigned to name a. A typing environment ∆ is a �nite collection of the type
assignments, and writing ∆(a) = T , or equivalently ∆ ` a : T , we mean that in
environment ∆ type T has been assigned to name a. A typing judgment ∆ ` P
means that process P uses its channels as prescribed by ∆. These notions are
used in what follows.

3.6.2 Introducing types by examples

To informally introduce our type analysis we return to the university scenario
presented in Section 3.1. Let us consider process

(exam)(minitest)(alice)alice?x.x!value.0

that can receive a channel and afterwards output value on the received channel.
The reception on alice is authorized directly, since the respective authorization is
present. On the other hand, the later output action is authorized only for names
exam and minitest . If on channel alice only exam or minitest can be received,
then the two speci�ed authorizations su�ce. Depending on the received name,
one of the authorizations can be used. If a name viva is received then the two
authorizations obviously cannot authorize the later output action.

We may conclude the above process is authorization safe if it is placed in a
context that matches the assumptions for names communicated in alice. This is
the information our types record: which are the names that can be safely commu-
nicated in a channel. For the process above, we may say that only names exam
and minitest can be communicated in channel alice. Furthermore, if we take that
exam and minitest can only receive values that are not subject to authorization
control, then {alice}({exam,minitest}(∅)) can represent the type of channel alice.
Here, the type registers that alice is a �nal name (cf. type of x below), and that
the channel can be used to communicate names exam and minitest . The last
information the above type carries is that exam and minitest cannot be used for
communication (typed with ∅). Thus, the type information can ensure that the
above process is safe since all names that will possibly be used for communications
are contextually authorized.

We now return to analyze the use of the input variable x . Considering that x
can be substituted by either exam or minitest (that, as noted above, are not to be
used for channel communication) the type of x is {exam,minitest}(∅). Here, we
need to consider all possible replacements of a name, so as to uniformly address

3.6. TYPE ANALYSIS 89

names that are bound in inputs. Our types, denoted γ(T), are having two parts,
one addressing possible replacements of the name identity itself (γ), and the other
informing on the (type of the) names that may be exchanged in the channel (T).
The type assignment

alice : {alice}({exam,minitest}(∅))

provides the information on the contexts in which the process above can be safely
placed. For example, we may compose the above process with (alice)alice!minitest
where on alice name minitest can be sent, since minitest is one of the names
expected on alice. Let us now consider process

(exam)(minitest)((alice)alice?x.x!value.0 | (bob)bob?x.x!value.0) (3.4)

where authorizations for exam and minitest are now shared between the two
threads, that both receive a name and then output a value on the received name.
This process is also safe if the typing assignments

alice : {alice}({exam}(∅)) and bob : {bob}({minitest}(∅))

are respected also by the context in which process is inserted. The assumptions in
types speci�es what a process anticipates from a (typed) context. Thus, we may
also type the process (3.4) with assumptions

alice : {alice}({minitest}(∅)) and bob : {bob}({exam}(∅)).

where now context should provide only minitest is to be sent on alice and exam
is to be sent on bob.

We remark that the information of which student will be using which autho-
rization is something that is not statically prescribed in the system, since the
students share the authorizations. However, if both names exam and minitest are
used by the two students we may ensure that the system is authorization safe, since
the students will grab the corresponding authorizations (one per each student).
Each of the typing speci�cations above ensures that only exam and minitest can
be received by the students, but also clearly provide a speci�c association between
which name can be received by each student (Alice can receive exam and that Bob
can receive minitest , or with the order reversed).

3.6.3 Typing discipline

Following the intuition provided in the previous section, in this section we formalize
our typing system. Before that, we �rst introduce some auxiliary notions that deal
with name generation: symbol annotations and well-formedness.

We may observe that our process model includes name restrictions and our
types carry name identi�ers. Since bound names are subject to α-conversion, we
introduce a symbolic representation of bound names when they are carried in
type speci�cations. Without loss of generality, we re�ne the process model for
the purpose of the type analysis by adding an explicit symbolic representation of

90 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

name restrictions. This allows us to avoid more involved handling of bound names
in typing environments.

To this end, we introduce a countable set of symbols S, disjoint with the set of
names N . We let r, s, t, . . . range over S. Also, we introduce a special symbol κ,
that is not in N ∪ S. We introduce a unique association of restricted names and
symbols, by re�ning the syntax of the construct (νa)P with two constructs

(νa : r)P and (νa : κ)P

tagged with a symbol from S or with symbol κ, respectively. By sym(P) we denote
the set of all symbols from S in process P. Names associated with symbols from S
may be provided contextual authorizations (cf. rule (t-new) below), while names
associated with symbol κ may not (cf. rule (t-new-rep) below).

In this section, we adopt the reduction semantics, which we adapt here to con-
sider decorated name restrictions. We re�ne de�nition of structural congruence
by omitting axiom (sc-res-inact) (νa)0 ≡ 0 and we decorate name restriction
accordingly in rules (sc-res-swap), (sc-res-extr) and (sc-scope-auth)�e.g.,
P | (νa : r)Q ≡ (νa : r)(P | Q) and P | (νa : κ)Q ≡ (νa : κ)(P | Q) keep-
ing the condition a /∈ fn(P). We remark that omitting of (sc-res-inact) is not
new in process models where name restriction carries a type information (cf. [3]).

Since we want symbols from S to uniquely represent restricted channels, we are
actually interested only in processes that have unique occurrences of such symbols.

De�nition 3.6.1 (Well-formedness). A process is well-formed if it has unique
occurrences of symbols from S, and no occurrences of symbols from S in the body
of replicated inputs.

We may now show that well-formedness is invariant with respect to (adapted)
structural congruence and reduction.

Proposition 3.6.2 (Preservation of well-formedness). If P is well-formed and
P ≡ Q or P → Q then Q is also well-formed and sym(P) = sym(Q).

Proof. The proof is by induction on the derivations, performing the case analysis
on the last rule applied. We detail only the case when the last applied reduction
rule is (r-newc). Let P = (νa : r)P ′, Q = (νa : r)Q′, and P → Q be derived
from P ′ → Q′. Since P is well-formed r /∈ sym(P ′) and P ′ is well-formed. By
induction hypothesis we have that Q′ is well-formed and sym(P ′) = sym(Q′).
Thus, r /∈ sym(Q′), Q is well-formed and sym(P) = sym(Q).

The syntax of types is formally de�ned as

γ ::= ϕ | κ and T ::= γ(T) | ∅

where ϕ ⊂ N ∪ S. Types inform on safe instantiations of names that are subject
to contextual authorizations. Type γ stands for a subset of N ∪ S, in which case
is denoted with ϕ, or symbol κ. In γ(T) type T characterizes the names that
can be communicated in the channel, and type ∅ represents names that cannot be

3.6. TYPE ANALYSIS 91

(t-stop)

∆ `ρ 0

(t-par)

∆ `ρ1 P1 ∆ `ρ2 P2 sym(P1) ∩ sym(P2) = ∅
∆ `ρ1]ρ2 P1 | P2

(t-new)

∆, a : {a}(T) `ρ P ∆′ = ∆{r/a} r /∈ sym(P) a /∈ ρ, names(T)

∆′ `ρ (νa : r)P

(t-new-rep)

∆, a : κ(T) `ρ P a /∈ ρ, names(T,∆)

∆ `ρ (νa : κ)P

(t-auth)

∆ `ρ]{a} P
∆ `ρ (a)P

(t-out)

∆ `ρ P ∆(a) = γ(γ′(T)) ∆(b) = γ′′(T) γ′′ ⊆ γ′ a /∈ ρ⇒ γ ⊆ ρ

∆ `ρ a!b.P

(t-in)

∆, x : T `ρ P ∆(a) = γ(T) x /∈ ρ, names(∆) a /∈ ρ⇒ γ ⊆ ρ

∆ `ρ a?x.P

(t-rep-in)

∆, x : T `{a} P ∆(a) = γ(T) x /∈ ρ, names(∆) sym(P) = ∅
∆ `ρ !(a)a?x.P

(t-deleg)

∆ `ρ P ∆(a) = γ(T) a /∈ ρ⇒ γ ⊆ ρ

∆ `ρ]{b} a〈b〉.P
(t-recep)

∆ `ρ]{b} P ∆(a) = γ(T) a /∈ ρ⇒ γ ⊆ ρ

∆ `ρ a(b).P

Table 3.7: Typing rules.

used for communication. A typing environment ∆ is a set of typing assumptions
of the form a : T . If a : γ(T), then for γ = ϕ the set γ characterizes with what
names a may be instantiated. If instead γ = κ, then a is not subject to contextual
authorizations. By names(T) we denote the set of names that occur in T and by
names(∆) the set of names that occur in all entries of ∆.

Table 3.7 shows the rules for our typing system. A typing judgment ∆ `ρ P
states that P uses channels as prescribed by ∆ and that P is safe if it is placed in
a context that provides the authorizations given in ρ, which is a multiset of names
(from N). To illustrate why a notion of multiset is required consider that process
a!b.0 | a?x.0 can be typed with a : {a}({b}(∅)), b : {b}(∅) `ρ a!b.0 | a?x.0 where
certainly {a, a} is contained in ρ, identifying that the process can only be inserted
in contexts that provide two authorizations on name a, for one sending and the
other for receiving on a.

We now describe the typing rules.

92 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

� Axiom (t-stop) asserts that a terminated process can be typed by any ∆
and ρ.

� In rule (t-par) processes P1, P2 and their parallel composition are typed
using the same ∆. Furthermore, if P1 and P2 are safe when inserted in
contexts that provide authorizations ρ1 and ρ2, respectively, then P1 | P2 is
safe if inserted in the context that provides the sum of authorizations from
ρ1 and ρ2. The well-formedness is ensured with sym(P1) ∩ sym(P2) = ∅.

� In rule (t-new) process P is typed with an environment that includes an en-
try for a, and process (νa : r)P is typed by removing that entry and replacing
each occurrence of name a in the environment by the corresponding symbol
r. We use ∆{r/a} to denote the environment obtained by substituting a by
r in every assumption in ∆, hence in every type. The well-formedness is
ensured by r /∈ sym(P). Condition a /∈ ρ, names(T) claims that the con-
text cannot provide authorization for name a and ensures consistency of the
typing assumption.

� The only di�erence of rule (t-new-rep) with respect to rule (t-new) is that
no replacement is performed in ∆ and that a is also not mentioned in the
environment. The environment must already refer to symbol κ in whatever
pertains to the restricted name. For instance, process (νb : κ)(a)a!b.0 can
be typed only if the assumption for a is γ(κ(T)), for some γ and T , where κ
represents that the names communicated in a (hence, including b) are never
subject to contextual authorizations.

� In rule (t-auth) processes (a)P and P are typed using the same ∆, since
authorization scoping is non-binding construct. If P is safe when the context
provides authorizations ρ] {a}, then (a)P can be safely placed in a context
that provides authorizations ρ.

� In rule (t-out) process P is typed using an environment with entries for a
and b. In the type of b all possible instantiations for the name (identi�ed in
γ′′) are safe to be communicated on name a (formalized by γ′′ ⊆ γ′, where
γ′ is from the type of a). Furthermore, the continuation type T of b must be
the same as T given in the type of a. Then, process a!b.P is typed using the
same environment. The rule speci�es two ways in which the action on a is
authorized: (1) authorization is provided by the context directly (a ∈ ρ); (2)
authorizations for all instantiations of name a are provided by the context
(γ ⊆ ρ). To illustrate case (1) consider that in (b)b?a.(a)a!c.0 the latter
output is authorized regardless of name replacements. For case (2), con-
sider that if we assume a can be replaced only by d, processes (b)b?a.(d)a!c.0
and (b)(d)b?a.a!c.0 are safe, while (b)b?a.(e)a!c.0 and (b)(e)b?a.a!c.0 are not.
The option given in case (2) is fundamental to address contextual authoriza-
tions. Notice that the condition γ ⊆ ρ implies γ contain only names and no
symbols, since ρ is de�ned as a multiset of names.

� Rule (t-in) follows similar principles as the previous one.

3.6. TYPE ANALYSIS 93

� In rule (t-rep-in) process P is typed under an environment with an entry
for x and the process is safe if inserted in a context that provides one autho-
rization for a. Then, the replicated input is typed by removing the entry for
x from the environment, which must precisely match the speci�cation given
in the type of a. The input variable should not be mentioned in any type,
provided with x /∈ ρ, names(∆). The restriction that P contains no symbols
from S ensures the unique association of symbols and names when copies
of the replicated process are activated (see example (3.8) in Section 3.6.5).
Process !(a)a?x.P can be inserted in any context that conforms with ∆ and
provides any authorizations.

� In rules (t-deleg) and (t-recep) the typing environment does not change
from premises to conclusion. The authorization(s) required to use the subject
name a is(are) addressed in the same way as in rules (t-out) and (t-in).
The authorization for b in rule (t-recep) is handled as in rule (t-auth). In
rule (t-deleg), the authorization for b is added to ρ, as the context in which
the process may be inserted needs to provide an additional authorization for
this name.

We may now observe that the symbolic representation of a bound name in the
typing environment re�ects the fact that a contextual authorization cannot be
provided by the process that receives such (unforgeable) name via name extrusion.
For instance, process (a)(d)a?x.x!c.0 | (νb : r)(a)a!b.0 is not safe, as regardless of
provided contextual authorization (that includes (a) and (d)) for the received name
in the left branch, the name sent by the right branch is fresh and necessary di�erent
from all names of the mentioned authorizations. This process is excluded by our
type analysis since the assumption for the type of channel a carries a symbol (e.g.,
a : {a}({r}(∅))) for which no contextual authorizations can be provided. Notice
that the typing of the process in the scope of the restriction uniformly handles the
name, which leaves open the possibility of considering contextual authorizations
for the name within the scope of the restriction.

3.6.4 Type safety

In this section, we provide a proof that a typed process is safe, i.e., that it is not an
error and that it never reduces to an error. First, we assert that a typed process
is always well-formed. The proof follows directly from the typing rules.

Proposition 3.6.3 (Typed implies well-formed). If ∆ `ρ P then P is well-formed.

We now introduce a notion of well-typed processes.

De�nition 3.6.4 (Well-typed processes). Process P is well-typed if ∆ `∅ P and
∆ only contains assumptions of the form a : {a}(T) or a : κ(T).

The assumption that a typed process is at top level also well-typed, used in
the later results, should seem as natural. Entries of the typing environment are
associated only to free names of the typed process, that at top level are all names
of channels. Hence, names are typed by the assumption a : {a}(T) (cf. (t-new)),

94 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

or by a : κ(T) (cf, (t-new-rep)). Also, at top-level, a typed process should own
enough authorizations for all of his actions. In that case, no authorizations need
to be provided by the context (ρ = ∅).

We now proceed to present our results. First we identify the properties that
follow directly from the typing rules.

Lemma 3.6.5 (Inversion on typing). Directly from Table 3.7 we have the follow-
ing.

1. If ∆ `ρ (νa : r)P then ∆′, a : {a}(T) `ρ P, where ∆ = ∆′{r/a} and
r /∈ sym(P) and a /∈ ρ, names(T).

2. If ∆ `ρ (νa : κ)P then ∆, a : κ(T) `ρ P, where a /∈ ρ, names(T,∆).

3. If ∆ `ρ (a)P then ∆ `ρ]{a} P.

4. If ∆ `ρ a!b.P then ∆ `ρ P, where ∆(a) = γ(γ′(T)), ∆(b) = γ′′(T), γ′′ ⊆ γ′

and if a /∈ ρ then γ ⊆ ρ.

5. If ∆ `ρ a?x.P then ∆, x : T `ρ P, where ∆(a) = γ(T), x /∈ ρ, names(∆) and
if a /∈ ρ then γ ⊆ ρ.

6. If ∆ `ρ!(a)a?x.P then ∆, x : T `{a} P where sym(P) = ∅ and ∆(a) = γ(T)
and x /∈ ρ, names(∆).

7. If ∆ `ρ a〈b〉.P then ∆ `ρ′ P, ∆(a) = γ(T), where ρ = ρ′] {b} and if a /∈ ρ′
then γ ⊆ ρ′.

8. If ∆ `ρ a(b).P then ∆ `ρ]{b} P, where ∆(a) = γ(T) and if a /∈ ρ then γ ⊆ ρ.

9. If ∆ `ρ P1 | P2 then ∆ `ρ1 P1 and ∆ `ρ2 P2, where ρ = ρ1] ρ2 and
sym(P1) ∩ sym(P2) = ∅.

The following two results (Weakening and Strengthening) are fundamental to
prove Subject Congruence, which in turn is crucial to prove Subject Reduction.
The Weakening result shows how in the typing judgment the typing environment
∆ can be enlarged by an entry, and, also, that the multiset ρ can be enlarged.
The Strengthening result shows how in the typing judgment an entry in the typing
environment ∆ can be removed. We write a ↔ r (resp. a ↔ κ) to denote that
name a is bound in the process, or the process is in a context were the name a is
bound with (νa : r) (resp. (νa : κ)).

Lemma 3.6.6 (Weakening). Let ∆ `ρ P .

1. If a /∈ fn(P) ∪ ρ, then

(a) a↔ r and r /∈ sym(P) and ∆′ = ∆{a/r} implies ∆′, a : {a}(T) `ρ P ;

(b) a↔ κ implies ∆, a : κ(T) `ρ P.

2. ∆ `ρ]ρ′ P.

3.6. TYPE ANALYSIS 95

Proof. The proof is by induction on the depth of the derivation ∆ `ρ P.
1 . We detail only two cases, when the last applied rule is (t-out) or (t-rep-in).

� Case (t-out): Let ∆ `ρ b!c.P be derived from ∆ `ρ P, where ∆(b) =
γ(γ′(T ′)), ∆(c) = γ′′(T ′), γ′′ ⊆ γ′, and if b /∈ ρ then γ ⊆ ρ. Then, we
distinguish two cases.

(a): If a ↔ r and r /∈ sym(P) and ∆′ = ∆{a/r}, by induction hypothesis
∆′, a : {a}(T) `ρ P . By ∆′(b) = (γ(γ′(T ′))){a/r} and ∆′(c) = (γ′′(T ′)){a/r},
we conclude γ′′{a/r} ⊆ γ′{a/r}. Since b /∈ ρ implies γ ⊆ ρ, and ρ is a mul-
tiset of names, then r ∈ γ implies b ∈ ρ. If r /∈ γ then γ{a/r} = γ. Thus, by
(t-out) we may conclude ∆′, a : {a}(T) `ρ b!c.P.
(b): If a↔ κ then by induction hypothesis ∆, a : κ(T) `ρ P. Since ∆ is not
changed, the result follows directly by (t-out).

� Case (t-rep-in): Let ∆ `ρ!(b)b?xP be derived from ∆, x : T ′ `{b} P, with
∆(b) = γ(T ′), where without loss of generality we can assume that x 6= a.
Again, we have two cases.

(a): If a ↔ r and r /∈ sym(P) and ∆′ = ∆{a/r}, by induction hypothesis
∆′, x : T ′{a/r}, a : {a}(T) `{b} P. Since ∆′(b) = (γ(T ′)){a/r} by (t-rep-in)

we may conclude ∆′, a : {a}(T) `ρ!(b)b?xP.
(b): If a↔ κ then by induction hypothesis ∆, x : T ′, a : κ(T) `{b} P. Again,
by (t-rep-in) the proof for this case follows.

2 . We detail only the case when the last applied rule is (t-in). Let ∆ `ρ a?x.P
be derived from ∆, x : T `ρ P, where ∆(a) = ω(T), x /∈ ρ, names(∆) and a /∈ ρ
implies ω ⊆ ρ. By induction hypothesis ∆, x : T `ρ]ρ′ P.Without loss of generality
we can assume that x is new to ρ′, i.e. x /∈ ρ′. Observing that a /∈ ρ] ρ′ implies
ω ⊆ ρ] ρ′, by (t-in) we conclude ∆ `ρ]ρ′ a?x.P.

Lemma 3.6.7 (Strengthening). Let a /∈ fn(P) ∪ ρ.

(a) If ∆, a : {a}(T) `ρ P and a ↔ r and r /∈ sym(P) then ∆′ `ρ P, where
∆′ = ∆{r/a}.

(b) If ∆, a : κ(T) `ρ P then ∆ `ρ P.

Proof. The proof is by induction on the depth of the derivation ∆ `ρ P. We
comment only the case when the last applied rule is (t-in). We distinguish two
cases.

(a) Let a ↔ r and r /∈ sym(P) and ∆′ = ∆{r/a}, and ∆, a : {a}(T) `ρ b?x.P.
Since a /∈ fn(b?xP), and without loss of generality, we can conclude a 6= b
and a 6= x. By Lemma 3.6.5 we have that ∆, a : {a}(T), x : T ′ `ρ P and
∆(b) = γ(T ′), and b /∈ ρ implies γ ⊆ ρ. By induction hypothesis we have
∆′, x : T ′{r/a} `ρ P. Since a /∈ ρ then a ∈ γ implies b ∈ ρ. If a /∈ γ then
γ{r/a} = γ. Thus, by (t-in) we derive ∆′ `ρ b?x.P.

96 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

(b) If a ↔ κ and ∆, a : {a}(T) `ρ b?x.P. Using the same arguments as in the
�rst part of the proof, we can again assume a 6= b and a 6= x. By Lemma
3.6.5 we again have that ∆, a : κ(T), x : T ′ `ρ P and ∆(b) = γ(T ′), and
b /∈ ρ implies γ ⊆ ρ. By induction hypothesis ∆, x : T ′ `ρ P. Thus, by (t-in)

we derive ∆ `ρ b?x.P.

Our next result shows that typing is preserved under the structural congruence.

Lemma 3.6.8 (Subject congruence). If ∆ `ρ P and P ≡ Q then ∆ `ρ Q.

Proof. The proof is by induction on the depth of the derivation P ≡ Q. We com-
ment only three cases, when the last applied rule is (sc-par-inact), (sc-res-extr)
or (sc-rep).

� Case P | 0 ≡ P . Assume ∆ `ρ P | 0. By Lemma 3.6.5 we have ∆ `ρ1 P
and ∆ `ρ2 0, where ρ1] ρ2 = ρ. By Lemma 3.6.6 we get ∆ `ρ P.
Now assume ∆ `ρ P . By (t-stop) we obtain ∆ `∅ 0 and by (t-par) we
conclude ∆ `ρ P | 0.

� Case P | (νa : r)Q ≡ (νa : r)(P | Q) or P | (νa : κ)Q ≡ (νa : κ)(P | Q), if
a /∈ fn(P).

To show implication from right to the left we have two cases.

(a) If a↔ r then from ∆ `ρ P | (νa : r)Q by Lemma 3.6.5 we have that

∆ `ρ1 P and ∆ `ρ2 (νa : r)Q

where ρ1] ρ2 = ρ, and sym(P) ∩ sym((νa : r)Q) = ∅. Applying
Lemma 3.6.5 again we obtain

∆′, a : {a}(T) `ρ2 Q

where ∆′ = ∆{a/r} and a /∈ ρ2 and r /∈ sym(Q). Since sym(P) ∩
sym((νa : r)Q) = ∅ we conclude r /∈ sym(P), and from a /∈ fn(P) and
a ∈ bn((νa : r)Q) without loss of generality can conclude a /∈ ρ1. Then,
by Lemma 3.6.6 we have

∆′, a : {a}(T) `ρ1 P

where ∆′ = ∆{a/r}. By (t-par) we obtain ∆′, a : {a}(T) `ρ P | Q and
by (t-new) we conclude ∆ `ρ (νa : r)(P | Q).

(b) If a↔ κ then from ∆ `ρ P | (νa : κ)Q by Lemma 3.6.5 we have

∆ `ρ1 P and ∆ `ρ2 (νa : κ)Q

where ρ1] ρ2 = ρ. By Lemma 3.6.5 again

∆, a : κ(T) `ρ2 Q

where a /∈ ρ2. By Lemma 3.6.6 we have ∆, a : κ(T) `ρ1 P. By (t-par)

we derive ∆, a : κ(T) `ρ P | Q and by (t-new-rep) we conclude
∆ `ρ (νa : κ)(P | Q).

3.6. TYPE ANALYSIS 97

To show implication from left to the right we again have two cases.

(a) If a ↔ r then from ∆ `ρ (νa : r)(P | Q) by Lemma 3.6.5 we obtain
∆′, a : a(T) `ρ P | Q, where ∆′ = ∆{a/r} and r /∈ sym(P | Q) and
a /∈ ρ. By Lemma 3.6.5

∆′, a : {a}(T) `ρ1 P and ∆′, a : {a}(T) `ρ2 Q

where ρ1] ρ2 = ρ and sym(P) ∩ sym(Q) = ∅. Since a /∈ fn(P) ∪ ρ1 and
r /∈ sym(P) by Lemma 3.6.7 we have ∆ `ρ1 P. Using r /∈ sym(Q) and
a /∈ ρ2 by (t-new) we derive ∆ `ρ2 (νa : r)Q, and by (t-par) follows
∆ `ρ P | (νa : r)Q.

(b) If a ↔ κ then from ∆ `ρ (νa : κ)(P | Q) by Lemma 3.6.5 we have
∆, a : κ(T) `ρ P | Q where a /∈ ρ. By Lemma 3.6.5

∆, a : {a}(T) `ρ1 P and ∆, a : {a}(T) `ρ2 Q

where ρ1] ρ2 = ρ. Since a /∈ fn(P) ∪ ρ1 by Lemma 3.6.7 we obtain
∆ `ρ1 P. Using (t-new-rep) we have ∆ `ρ2 (νa : κ)Q, and by (t-par)

∆ `ρ P | (νa : κ)Q.

� Case !(a)a?x.P ≡!(a)a?x.P | (a)a?x.P. We show only one implication. As-
sume ∆ `ρ!(a)a?x.P | (a)a?x.P. By Lemma 3.6.5 we have

∆ `ρ1 !(a)a?x.P and ∆ `ρ2 (a)a?x.P

where ρ1] ρ2 = ρ. By the same Lemma we derive sym(P) = ∅ and ∆, x :
T `{a} P, where ∆(a) = γ(T) and x /∈ ρ1, names(∆). By (t-rep-in) we
conclude ∆ `ρ!(a)a?x.P.

In order to prove that reduction preserves typing we also need another auxiliary
result that connects a typing and name substitutions of a process.

Lemma 3.6.9 (Substitution). Let ∆, x : γ(T) `ρ P and x /∈ names(∆).

1. If ∆(a) = {a}(T) and a ∈ γ then ∆ `ρ{a/x} P{a/x}.

2. If ∆(a) = κ(T) and κ = γ then ∆ `ρ{a/x} P{a/x}.

Proof. The proof is by induction on the depth of the derivation ∆ `ρ P.We detail
two cases:

� Case ∆, x : γ(γ′(T)) `ρ x!b.P. By Lemma 3.6.5 we have ∆, x : γ(γ′(T)) `ρ P,
where ∆(b) = γ′′(T) and γ′′ ⊆ γ′, and x /∈ ρ implies γ ⊆ ρ. By induction
hypothesis ∆ `ρ{a/x} P{a/x}. We now distinguish two cases.

1. ∆(a) = {a}(γ′(T)) and a ∈ γ. Then, x ∈ ρ implies a ∈ ρ{a/x}, and if
x 6∈ ρ by γ ⊆ ρ we again derive a ∈ γ ⊆ ρ = ρ{a/x}.

98 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

2. ∆(a) = κ(γ′(T)) and κ = γ. Since ρ is a multiset of names, we conclude
x ∈ ρ must hold. Hence, a ∈ ρ{a/x}.

In both cases by (t-out) we conclude ∆ `ρ{a/x} (x!b.P){a/x}.

� Case ∆, x : γ(T) `ρ b!x.P. By Lemma 3.6.5 we have ∆, x : γ(T) `ρ P, where
∆(b) = γ′(γ′′(T)), and γ ⊆ γ′′, and b /∈ ρ implies γ ⊆ ρ. By induction
hypothesis ∆ `ρ{a/x} P{a/x}. Again, we distinguish two cases.

1. ∆(a) = {a}(γ′(T)) and a ∈ γ. Then, a ∈ γ ⊆ γ′′.

2. ∆(a) = κ(γ′(T)) and κ = γ. Then, κ = γ ⊆ γ′′.

Thus, in both cases by (t-out) we derive ∆ `ρ{a/x} (b!x.P){a/x}.

We may notice that, even though subtyping is not present, the last result uses
an inclusion principle (a ∈ γ) that already hints on substitutability. Our next
results shows that if two processes that both need authorization for the same
name are placed in a two-hole context and then typed with ρ = ∅, then the two
authorizations are present in the context and the corresponding drift operator
is consequently de�ned. The proof of next lemma follows in expected lines by
induction on the structure of the context and here is omitted.

Lemma 3.6.10 (Authorization Safety). If ∆ `∅ C[P1, P2] and ∆ `ρ1 P1 and
∆ `ρ2 P2 and a ∈ ρ1 ∩ ρ2 then drift(C[·1, ·2]; a; a) is de�ned.

We can now show that a well-typed process is not an error. For the rest of
the section, we use (νc̃ : Ω̃) to abbreviate (νc1 : Ω1) . . . (νcn : Ωn), where Ω ranges
over symbols from S and ν.

Lemma 3.6.11 (Interaction Safety). Let P be well-typed with ∆ `∅ P .

1. If P ≡ (νc̃ : Ω̃)C[a!b.P1, a?x.P2] then drift(C[·1, ·2]; a; a) is de�ned and for
C ′[·1, ·2] = drift(C[·1, ·2]; a; a) and Q ≡ (νc̃ : Ω̃)C ′[(a)P1, (a)P2{b/x}] we have
that ∆ `∅ Q.

2. If P ≡ (νc̃ : Ω̃)C[a〈b〉.P1, a(b).P2] then drift(C[·1, ·2]; a, b; a) is de�ned and for
C ′[·1, ·2] = drift(C[·1, ·2]; a, b; a) and Q ≡ (νc̃ : Ω̃)C ′[(a)P1, (a)(b)P2] we have
that ∆ `∅ Q.

Proof. The proof is by induction on the structure of the context C[·1, ·2].We detail
only the �rst statement. If ∆ `∅ P by Lemma 3.6.8 we have

∆ `∅ (νc̃ : Ω̃)C[a!b.P1, a?x.P2]

and by consecutive application of Lemma 3.6.5. 1 and 2, we derive

∆′ `∅ C[a!b.P1, a?x.P2]

3.6. TYPE ANALYSIS 99

where ∆′ = ∆,∆′′, and for each c ∈ dom(∆′′) we have that ∆′′(c) = c(T) or
∆′′(c) = κ(T). By consecutive application of Lemma 3.6.5. 3 and 9

∆′ `ρ1 a!b.P1 and ∆′ `ρ2 a?x.P2

for some multisets of names ρ1, ρ2. By the same Lemma again

∆′ `ρ1 P1 and ∆′, x : γ(T) `ρ2 P2

where ∆′(a) = {a}(γ(T)) or ∆′(a) = κ(γ(T)), and, thus, we may conclude a ∈ ρ1,
a ∈ ρ2. Furthermore, we may observe that ∆′(b) = {b}(T) or ∆′(b) = κ(T), and
b ∈ γ and x /∈ ρ2∪names(∆′). Hence, we have ρ2{b/x} = ρ2, and by Lemma 3.6.9
we obtain ∆′ `ρ2 P2{b/x}. By (t-auth) we derive

∆′ `ρ′1 (a)P1 and ∆′ `ρ′2 (a)P2{b/x},

where ρ1 = ρ′1] {a} and ρ2 = ρ′2] {a}.
Since ∆′ `∅ C[a!b.P1, a?x.P2], and a ∈ ρ1 ∩ ρ2, by Lemma 3.6.10 we conclude

drift(C[·1, ·2]; a; a) is de�ned. Thus, by Proposition 3.4.11 we distinguish four cases
for the structure of the context

C[·1, ·2] = C ′′[C1[·1] | C2[·2]]

We comment only the case when C1[·] = C ′1[(a)C ′′1 [·]] and C2[·] = C ′2[(a)C ′′2 [·]], where
drift(C ′′1 [·]; a) and drift(C ′′2 [·]; a) are unde�ned. The latter implies that in contexts
C ′′1 [·] and C ′′2 [·] the holes are not in the scope of authorizations (a). By consecutive
application of (t-par) and (t-auth) we derive

∆′ `ρ′′1 (a)C ′′1 [a!b.P1] and ∆′ `ρ′′2 (a)C ′′2 [a?x.P2]

and also
∆′ `ρ′′1 C

′′
1 [(a)P1] and ∆′ `ρ′′2 C

′′
2 [(a)P2{b/x}]

for some ρ′′1 and ρ′′2. Since C ′[·1, ·2] = C ′′[C ′1[C ′′1 [·1]] | C ′2[C ′′2 [·2]]], by consecutive ap-
plication of (t-par) and (t-auth) we have ∆′ `∅ C ′[(a)P1, (a)P2{b/x}]. Then, by
consecutive application of (t-new) and (t-new-rep) we have

∆ `∅ (νc̃ : Ω̃)C ′[(a)P1, (a)P2{b/x}]

By Lemma 3.6.8 we conclude ∆ `∅ Q.

Since errors involve redexes, the proof of Lemma 3.6.11 is intertwined with the
proof of the error absence property. As a direct consequence of Lemma 3.6.11 we
get the soundness of our typing analysis.

Proposition 3.6.12 (Type Soundness). If P is well-typed then P is not an error.

We may also show that reduction also preserves typing.

Theorem 3.6.13 (Subject Reduction). If P is well-typed, ∆ `∅ P and P → Q
then ∆ `∅ Q.

100 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

Proof. The proof follows by induction on the derivation of P → Q. We have
two base cases by rules (r-comm) or (r-auth), both of which follow directly by
Lemma 3.6.11. For the induction steps we have two cases.

� If the last applied rule is (r-newc) we again distinguish two cases.

(a) (νa : r)P ′ → (νa : r)Q′ is derived from P ′ → Q′. Let ∆ `∅ (νa :
r)P ′. By Proposition 3.6.2 we conclude (νa : r)Q′ is well-formed, thus
r /∈ sym(Q′). By Lemma 3.6.5 we have that ∆′, a : {a}(T) `∅ P ′,
where r /∈ sym(P ′) and ∆′ = ∆{a/r}. By induction hypothesis ∆′, a :
{a}(T) `∅ Q′, and by (t-new) we derive ∆ `∅ (νa : r)Q′.

(b) (νa : κ)P ′ → (νa : κ)Q′ is derived from P ′ → Q′.Follows similar
reasoning, by application of rule (t-new-rep).

� If the last applied rule is (r-struc) then P → Q is derived from P ′ → Q′,
where P ≡ P ′ and Q ≡ Q′. Let ∆ `∅ P. By Lemma 3.6.8 we have ∆ `∅ P ′.
By induction hypothesis ∆ `∅ Q′ and again by Lemma 3.6.8 we conclude
∆ `∅ Q.

Combining Proposition 3.6.12 and Theorem 3.6.13 we may observe that a well-
typed process is not an error and also that it never reduces to an error, which is
the main result of this section.

Corollary 3.6.14 (Type Safety). If P is well-typed and P →∗ Q then Q is not
an error.

3.6.5 Illustrating typing rules by examples

In this section, we further explain the principles behind our typing discipline by
extending the example given in Section 3.6.2. Let us consider that the �rst process
shown in Section 3.6.2 is composed with another process willing to send a name
along alice, speci�cally

(alice)alice!exam.0 | (exam)(minitest)(alice)alice?x.x!value.0 (3.5)

Considering assignments alice : {alice}({exam,minitest}({value}(∅))) and exam :
{exam}({value}(∅)), by rule (t-out) we may observe that sending name exam on
alice is safe, for the only replacement of exam given in its type (which is the name
itself) is also speci�ed as safe to be communicated in alice (since it is included in
{exam,minitest}). To exemplify the symbolic representation of names in types,
let us consider process (3.5) is placed in the context that restricts exam:

(νexam : r)((alice)alice!exam.0 | (exam)(minitest)(alice)alice?x.x!value.0)
(3.6)

The assignment given above for alice changes to {alice}({r,minitest}({value}(∅))),
by rule (t-new). The introduced symbol represents that a restricted name can be
communicated in alice, and that the restricted process cannot be composed with

3.6. TYPE ANALYSIS 101

others that rely on contextual authorizations for names exchanged in alice. Never-
theless, the process in (3.6) can be composed with processes (alice)alice?x.(x)x!value
and (alice)alice?x.alice(x)x!value, in which the name received in alice is autho-
rized directly. Let us now consider replicated process

!(license)license?x.(νexam : r)((x)x!exam.0 | (x)(exam)x?y.y!value.0) (3.7)

that can serve as a model of a server repeatedly available to receive a name and
then, on the received name to receive (in the left thread) and/or to send a fresh
name (in the right thread). This process is rejected by our typing analysis since
a symbol (r) appears in the body of a replicated input (cf. (t-rep-in)). In fact,
this process can reduce to an error. For instance, the process in (3.7) can receive
alice twice, activating two copies of the replicated process

(νexam1 : r)((alice)alice!exam1 .0 | (exam1)(alice)alice?y.y!value.0)
| (νexam2 : r)((alice)alice!exam2 .0 | (exam2)(alice)alice?y.y!value.0)

(3.8)

The two �copies� of the restricted name exam are actually di�erent names. Since
both names can be sent on alice the error can be reached if the received name
does not match the contextual authorization (e.g., (exam2)(alice)exam1 !value.0).

Our typing analysis ensures that names created inside replicated input are
distinguished with special symbol κ. The symbol represents that the associated
name is never subject to contextual authorizations, not even within the restriction
scope (cf. (t-new-rep)). Now, if we consider κ instead of r annotation in the
process given in (3.7) we again obtain a process that cannot be typed, but now
the reason can be found explicitly in the replicated process: we are trying to rely
on the contextual authorizations for name marked with κ, which is not allowed.
Hence, for names created in the body of replicated inputs we cannot rely on
contextual authorizations in any part of the process. Still, process

!(license)license?x.(νexam : κ)(alice)alice!exam.0 (3.9)

can be typed, e.g., using assumption alice : {alice}(κ({value}(∅)). Thus, the
process can be composed with processes that do not rely on contextual authoriza-
tions for names communicated in alice. We may observe that the carried type
{value}(∅) does not change regardless of type κ, and that channels communicated
in alice can in turn only be used to communicate value.

In our model we can directly represent servers that allow for an in�nite autho-
rization generation. For instance, process

!(public)public?x.((x)public〈x〉.0 | (public)public!x .0)

can delegate an unbounded number of authorizations for a received name, through
delegation on channel public. Composing the above process in parallel with
(public)public!comm.0 yields a process that can generate in�nite number of copies
of (public)(comm)public〈comm〉.0. For this, anyone authorized to use public can
also be authorized to use comm. Using assumption public : {public}(γ(T)), for
some γ, we can type the authorization generator process, and assuming comm ∈ γ
we may also type the composition using comm : {comm}(T).

102 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

3.6.6 Type-checking

The type analysis presented in the last section can single out processes that are
authorization safe, i.e., are not errors and do not evolve to errors. However, we
may notice that it raises some questions on the applicability of the induced type-
checking procedure. This section presents a re�ned type system that deals with
some of the issues and in Section 3.6.6.1 we show the two typing systems are
equivalent in what concerns typability of processes.

The �rst problem we can observe is the inference of the type of a bound name
in rules (t-new) and (t-new-rep). We solve this issue in the usual way by adding
the type information to name restrictions. Therefore, we now write

(νa : r(T)) and (νa : κ(T)),

instead of (νa : r) and (νa : κ), respectively. The second problem is e�ciency of
guessing how to split the multiset ρ to the branches in rule (t-par). We tackle
this problem by re�ning the type discilpine following the idea of [110].

The idea is instead of dividing the multiset ρ in two randomly, we �rst pass
the whole ρ to the left branch, after which the part of ρ that is unused by the left
branch is passed to the right branch. Our �rst attempt to implement this idea
is to extend the typing judgment ∆ `ρ P to ∆ `ρ P ; ρ′, where ρ′ represents the
multiset of names of authorizations that are not used by P , and that, hence, serves
as the �output� of the algorithm. Following this intuition, let us try to type process
(a)((b)0 | P). We may observe that both authorizations (a) and (b) are scoping
the left branch and that both are unused by the process there (process 0). Hence,
the intuition says to consider names a and b as part of the output multiset when
typing 0 and pass them on to the right branch (process P) in the veri�cation. This
leads us to a situation in which authorization (b) can be used for the veri�cation of
the process P without even scoping over the process. Therefore, we further re�ne
the typing judgment by splitting the multiset ρ in two, obtaining ∆; ρ1 : ρ2 ` P ; ρ′,
where ρ1 represents a multiset of names of authorizations that can be considered
to be passed as unused, and names of authorizations in ρ2 cannot be passed (ρ′

does not change). Following this intuition and considering again the same process
(a)((b)0 | P) we would have that when verifying process 0, name a is in ρ1, while
b is in ρ2 (not to be passed), resulting in ρ′ = {a}.

The third problem of the typing rules given in the last section is also connected
to rule (t-par): we need to deduce if the two sets of symbols mentioned in the two
branches are disjoint. We use similar reasoning as before, and once again re�ne
the typing judgment to

∆; ρ1 : ρ2; ξ ` P ; ρ′; ξ′,

where ξ is a set that incrementally collects all used symbols from S mentioned in
the process, and ξ′ is the output of the algorithm, which in this case is the set of
used symbols. The idea is to use set ξ to collect used symbols, that are then passed
in the output ξ′. Hence, when parallel composition is considered, starting set if
symbols ξ should be �rst passed to the left branch. Then, all symbols discovered
in the veri�cation of the left branch are added to ξ and passed to the right branch
in the output ξ′. We remark that there are no changes in the interpretation of the
typing environment ∆ with respect to typing discipline given in Section 3.6.

3.6. TYPE ANALYSIS 103

(a-stop)

∆; ρ1 : ρ2; ξ ` 0; ρ1; ξ

(a-auth)

∆; ρ1 : ρ2] {a}; ξ ` P ; ρ′; ξ′

∆; ρ1 : ρ2; ξ ` (a)P ; ρ′; ξ′

(a-par)

∆; ρ1] ρ2 : ∅; ξ ` P1; ρ3; ξ
′ ∆; ρ3 : ∅; ξ′ ` P2; ρ4; ξ

′′

∆; ρ1 : ρ2; ξ ` P1 | P2; ρ1 ∩ ρ4; ξ′′
(a-new)

∆, a : {a}(T); ρ1 : ρ2; ξ ∪ r ` P ; ρ′; ξ′ ∆′ = ∆{r/a} r /∈ ξ a /∈ ρ1, ρ2, names(T)

∆′; ρ1 : ρ2; ξ ` (νa : r(T))P ; ρ′; ξ′

(a-new-rep)

∆, a : κ(T); ρ1 : ρ2; ξ ` P ; ρ′; ξ′ a /∈ ρ1, ρ2, names(T,∆)

∆; ρ1 : ρ2; ξ ` (νa : κ(T))P ; ρ′; ξ′

Table 3.8: Type-checking rules (part 1).

We noted that in the typing judgment multiset ρ1 represents authorizations
that can be passed to a process placed in parallel and typed afterwards, while ρ2
represents authorizations that are not for passing. Consider now process a!b.a!c.0 is
typed with ρ1 = {a, a} and ρ2 = ∅. When typing the �rst output one authorization
in ρ1 should be considered as used, and hence, not to be considered as to be passed.
However, the authorization should be considered as still available for the second
output of the process (representing the con�nement of the operational semantics).
To this end, while typing the �rst output we need only to transfer one name from
ρ1 to ρ2. Then, the second output is typed with ρ1 = a and ρ2 = a, in which
case no transfer is needed as one a is already in ρ2 (representing the fairness). We
formalize this idea by introducing an auxiliary operation, called move, dedicated
for transferring names between multisets.

Similar to operator drift from Section 3.4, operator move also has a twofold
meaning. On one hand, move(ρ1 : ρ2, b) represents the transfer of name b from
multiset ρ1 to multiset ρ2, provided the name is not already contained in ρ2 in the
�rst place. If the name is contained in ρ2 the operation is idempotent. On the
other hand, if the name is not present in both multisets, i.e., if b /∈ ρ1] ρ2, the
operator is unde�ned, signaling insu�cient authorizations.

De�nition 3.6.15 (Operator move). Operator move takes as arguments a pair
of multisets ρ1 : ρ2 and a name b and is de�ned as follows

move(ρ1 : ρ2, b) = ρ1\({b}\ρ2) : ρ2]({b}\ρ2), if b ∈ ρ1]ρ2 (unde�ned otherwise).

Operator move is directly generalized for the case of transferring a set of names γ,
by transferring it name by name, namely if γ = b, γ′ then for arbitrary multisets
ρ1 and ρ2, we write move(ρ1 : ρ2, γ) = move(move(ρ1 : ρ2, b), γ

′).

We may now present the type-checking rules. Table 3.8 presents the rules for
typing non-pre�xing language constructs, explained next reading from conclusion
to premises.

104 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

� In rule (a-stop) multiset of names ρ1 and the set of symbols ξ are passed as
the output, while ρ2 is discarded.

� In (a-auth) the name of authorization that scopes over process P , is added to
multiset ρ2 since after type-checking the process P the authorization should
not be considered as available outside of this scope.

� In (a-par) multisets of names of authorizations ρ1 and ρ2 given for the paral-
lel composition are passed to the left branch (process P1) as authorizations
that can be passed (to the right branch). The second multiset of names,
which refers to authorizations exclusively scoping the left branch, is empty.
In the same way, the starting set of symbols ξ is passed to process P1. The
part of ρ1] ρ2 that is unused in the veri�cation of process P1 is given in ρ3
and is thus passed to the veri�cation of the right branch (process P2). Also,
the set of symbols ξ′, which is ξ enlarged with symbols from P1, is passed to
the veri�cation of P2. The output of the checking the parallel composition
is: a multiset ρ1∩ρ4, which is a multiset of names of authorizations that are
unused by both P1 and P2 obtained in the veri�cation of the right branch
(ρ4), and originally considered to be passed as unused for the parallel com-
position process (ρ1); the set of symbols ξ′′, obtained as the result of the
veri�cation of the right branch (ξ with symbols from P1 and P2).

� The only novelty in rule (a-new) is that the symbol associated with restricted
name is added to the set of used symbols, and rule (a-new-rep) follows
exactly the same lines as (t-new-rep) (except using the explicit types given
in the syntax).

Table 3.9 introduces typing pre�xes.

� In (a-out-1) the output process is typed if names of authorizations required
for the output (a or γ), are contained in the multiset of names ρ2, hence
authorizations that are not considered to be passed. In this case, the con-
tinuation process P is typed under the unchanged conditions.

� In (a-out-2) the process is typed if the names of authorizations required for
the output are not contained in ρ2 (hence (a-out-1) cannot be applied), but
are contained in ρ1]ρ2. This is the case when name a or (a subset of) names
γ included in ρ1 \ ρ2, should not be considered as to be passed anymore (for
they are used by the pre�x) and thus must be transferred from ρ1 to ρ2 by
operator move. This means that for β = a the name is transferred from ρ1
to ρ2, and for β = γ only names from γ that are in ρ1 but are not in ρ2 are
transferred from ρ1 to ρ2.

� Rules (a-in-1) and (a-in-2) follow the same lines as rules (a-out-1) and
(a-out-2).

� In rule (a-rep-in) only one authorization for a is speci�ed as available for
the process P . The process P must contain no symbols, as the input and
the output set of symbols are empty. In conclusion, the input multiset of
names ρ1 and the set of symbols ξ are both passed to the output directly.

3.6. TYPE ANALYSIS 105

(a-out-1)

∆; ρ1 : ρ2; ξ ` P ; ρ′; ξ′ ∆(a) = γ(γ′(T)) ∆(b) = γ′′(T) γ′′ ⊆ γ′

a ∈ ρ2 ∨ γ ⊆ ρ2

∆; ρ1 : ρ2; ξ ` a!b.P ; ρ′; ξ′

(a-out-2)

∆; ρ′1 : ρ′2; ξ ` P ; ρ′; ξ′ ∆(a) = γ(γ′(T)) ∆(b) = γ′′(T) γ′′ ⊆ γ′

a 6∈ ρ2 ∧ γ 6⊆ ρ2 β = a ∨ β = γ ρ′1 : ρ′2 = move(ρ1 : ρ2, β)

∆; ρ1 : ρ2; ξ ` a!b.P ; ρ′; ξ′

(a-in-1)

∆, x : T ; ρ1 : ρ2; ξ ` P ; ρ′; ξ′ ∆(a) = γ(T) x /∈ ρ1, ρ2, names(∆)
a ∈ ρ2 ∨ γ ⊆ ρ2

∆; ρ1 : ρ2; ξ ` a?x.P ; ρ′; ξ′

(a-in-2)

∆, x : T ; ρ′1 : ρ′2; ξ ` P ; ρ′; ξ′ ∆(a) = γ(T) x /∈ ρ1, ρ2, names(∆)
a 6∈ ρ2 ∧ γ 6⊆ ρ2 β = a ∨ β = γ ρ′1 : ρ′2 = move(ρ1 : ρ2, β)

∆; ρ1 : ρ2; ξ ` a?x.P ; ρ′; ξ′

(a-rep-in)

∆, x : T ; ∅ : {a}; ∅ ` P ; ∅; ∅ ∆(a) = γ(T) x /∈ ρ1, ρ2, names(∆)

∆; ρ1 : ρ2; ξ ` !(a)a?x.P ; ρ1; ξ
(a-deleg-1)

∆; ρ′1 : ρ′2; ξ `ρ P ; ρ′; ξ′ ∆(a) = γ(T) ρ′1 : (ρ′2] {b}) = move(ρ1 : ρ2, b)
a ∈ ρ′2 ∨ γ ⊆ ρ′2

∆; ρ1 : ρ2; ξ ` a〈b〉.P ; ρ′; ξ′

(a-deleg-2)

∆; ρ′1 : ρ′2; ξ `ρ P ; ρ′; ξ′ ∆(a) = γ(T) ρ′′1 : (ρ′′2] {b}) = move(ρ1 : ρ2, b)
a 6∈ ρ′′2 ∧ γ 6⊆ ρ′′2 β = a ∨ β = γ ρ′1 : ρ′2 = move(ρ′′1 : ρ′′2, β)

∆; ρ1 : ρ2; ξ ` a〈b〉.P ; ρ′; ξ′

(a-recep-1)

∆; ρ1 : ρ2] {b}; ξ ` P ; ρ′; ξ′ ∆(a) = γ(T) a ∈ ρ2 ∨ γ ⊆ ρ2

∆; ρ1 : ρ2; ξ `ρ a(b).P ; ρ′; ξ′

(a-recep-2)

∆; ρ′1 : ρ′2] {b}; ξ ` P ; ρ′; ξ′ ∆(a) = γ(T) a 6∈ ρ2 ∧ γ 6⊆ ρ2
β = a ∨ β = γ ρ′1 : ρ′2 = move(ρ1 : ρ2, β)

∆; ρ1 : ρ2; ξ `ρ a(b).P ; ρ′; ξ′

Table 3.9: Type-checking rules (part 2).

106 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

� In both rules (a-deleg-1) and (a-deleg-2) the name of the delegated au-
thorization must be present in ρ1] ρ2 by application of operator move. The
operator moves b from ρ1 to ρ2 if not already present in the former. As the
authorization is to be delegated away by the pre�x, the name b is then taken
out from the last multiset. After that, name(s) of authorization(s) required
for the action on a is(are) manipulated following the same reasoning as in
(a-out-1) and (a-out-2).

� Rules (a-recep-1) and (a-recep-2) follow the same lines as (a-deleg-1)

and (a-deleg-2), except that the name b is not taken out but added to
the multiset of names that are directly scoping the process, and hence, not
considered to be passed (as in (a-auth)).

We remark that rule (a-out-2) is non-deterministic in the case when both a
and also (a subset) of γ are contained in ρ1 \ ρ2, as both options of transferring
via move are left open. Furthermore, the non-determinism appears only if also
the name a is not considered as �nal in its type, i.e., if γ 6= a and γ 6= κ. Notice
that a similar condition (a /∈ ρ ⇒ γ ∈ ρ) o�ering a choice is also present in the
original system in rule (t-out), but here we actually must commit to one of them
so as to �mark� which names are used. For the purpose of the induced veri�cation
procedure, we need to check both possibilities in every application of the rule, up
to the point the veri�cation is successful or all options have been explored.

Nevertheless, the type-checking procedure following rules given in Table 3.8
and Table 3.9 is more e�cient than the one following the original rules shown
in Table 3.7. We may observe that rule (t-par) requires the exploration of all
possible decompositions of ρ, for which a direct implementation is exponential on
the size of ρ. On the other hand, the rules (a-out-2), (a-in-2), (a-deleg-2) and
(a-recep-2) also involve some exploration (because of premise β = a∨ β = γ). In
these rules we have two options for β when move is de�ned for both a and γ and
we need to explore both of options to determine typability. In case move is de�ned
only for one option no further exploration is necessary. Therefore, if a program is
not typable we need to explore all such options, as for the decompositions of rule
(t-par), for which the exponential complexity can be reached. Still, we can show
the e�ciency is improved by observing that:

� the two options for β in the mentioned rules are present only once for each
name in between applications of the rule for parallel composition, since we
can rely on rule (a-out-1) once a choice has already been taken, and

� the number of possible decompositions of the set {a} ∪ γ is smaller than
the number of possible decompositions of ρ, since the former is necessarily
contained in the latter.

Furthermore, moving away from the worst case analysis, since we are only
interested in well-typed processes (see De�nition 3.6.4), we have that at top level
all assumptions in ∆ are of the form a : a(T) or a : κ(T) and also that rules
(a-new) and (a-new-rep) only introduce such assumptions. We also have that
typing pre�xes with subject names with types of the form a : a(T) or a : κ(T) do

3.6. TYPE ANALYSIS 107

not involve such exploration (since β = γ = a in one case and in the other case κ is
not a valid option). Hence, only when typing a pre�x with a variable x as a subject
may originate the exploration, and only in very speci�c cases. In particular, only
when construct (x) and/or a(x) are present in addition to authorizations for all
possible instantiations for x (given by the type), of which some are scoping over
parallel composition(s). Consider also that even in the case when (x) and/or
a(x) and authorizations for all instantiations for x are present, but none of these
are scoping over a parallel composition, the operator move is idempotent so no
exploration is necessary.

Even more important than the argued improvement of the e�ciency is that
the rules of Table 3.8 and Table 3.9 pave the way for a polynomial type-checking
procedure. The idea here is to change the rules to consider only one option, re-
gardless if both are available. We believe this would have a minimal a�ect on
the expressiveness. However, this change would a�ect our result that the two type
systems directly correspond, as shown in the next section. Informally, by changing
the rules the complexity should be polynomial, since: the rules of Table 3.8 and
Table 3.9 are syntax-directed (except for the alerted condition β = a ∨ β = γ),
where all elements in the premises are operationally obtained considering the ele-
ments in the conclusion and where rules are mutually exclusive. Any two typing
rules for the same pre�x are also mutually exclusive, e.g., a ∈ ρ2 ∨ γ ⊆ ρ2 in
rule (a-in-1) and a 6∈ ρ2 ∧ γ 6⊆ ρ2 in rule (a-in-2). And �nally, consider that all
operations, such as environment access and update, (multi)set union, intersection
and inclusion may be implemented with polynomial complexity.

3.6.6.1 Correspondence result

In this section, we show that the type system given in Section 3.6.3 is equivalent to
the type system given in Section 3.6.6. In order to compare the two type systems,
we �rst need to compare the two syntaxes considered, one only with symbols and
the other with full type annotations in the name restriction constructs. To this
end, we de�ne function erase(P) that removes the extra annotations.

De�nition 3.6.16 (Erasing type annotations). Function erase is de�ned as a
homomorphism except for

1. erase((νa : r(T))P) = (νa : r)erase(P)

2. erase((νa : κ(T))P) = (νa : κ)erase(P)

In order to show the correspondence of the two type systems, we �rst establish
the correlation between the input and the output information when typing process
with the re�ned type system. Namely, the output multiset of names is always
contained in the multiset of names that are considered as to be passed, while the
output set of symbols always contains the input set.

Lemma 3.6.17 (Monotonicity). If ∆; ρ1 : ρ2; ξ ` P ; ρ′; ξ′ then

1. sym(P) = ξ′ \ ξ and ξ ⊆ ξ′,

2. ρ′ ⊆ ρ1.

108 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

Proof. The proof is by induction on the depth of the type checking derivation.

1. We detail only when the last applied rules is (a-new) or (a-rep-in).

� Case (a-new): Let ∆′; ρ1 : ρ2; ξ ` (νa : r(T))P ; ρ′; ξ′ be derived from
∆, a : {a}(T); ρ1 : ρ2; ξ ∪ r ` P ; ρ′; ξ′, where ∆′ = ∆{r/a}, r /∈ ξ and
a /∈ ρ1, ρ2, names(T). By induction hypothesis we have ξ′ \ (ξ ∪ r) =
sym(P) and ξ∪r ⊆ ξ′. Then, ξ′\ξ = sym(P)∪{r} = sym((νa : r(T))P)
and ξ ⊆ ξ′.

� Case (a-rep-in): Let ∆; ρ1 : ρ2; ξ `!(a)a?x.P ; ρ1; ξ be derived from
∆, x : T ; ∅ : {a}; ∅ ` P ; ∅; ∅, ∆(a) = γ(T) and x /∈ ρ1, ρ2, names(∆).
By induction hypothesis sym(P) = ∅ \ ∅ = ∅ and since sym(P) =
sym(!(a)a?x.P), we can conclude ξ \ ξ = ∅ = sym(!(a)a?x.P).

2. We detail only when the last applied rule is (a-out-1) or (a-par).

� Case (a-out-2): Let ∆; ρ1 : ρ2; ξ ` a!b.P ; ρ′; ξ′ be derived from ∆; ρ′1 :
ρ′2; ξ ` P ; ρ′; ξ′, where ρ′1 : ρ′2 = move(ρ1 : ρ2; β), ∆(a) = γ(γ′(T)),
∆(b) = γ′′(T), a 6∈ ρ2 ∧ γ 6⊆ ρ2, β = a ∨ β = γ, and γ′′ ⊆ γ′. By
induction hypothesis we have ρ′ ⊆ ρ′1. By the de�nition of the operator
move we may conclude ρ′1 ⊂ ρ1. Hence, ρ′ ⊆ ρ1.

� Case (a-par): Directly, since ρ1 ∩ ρ4 ⊆ ρ1.

We may now show one direction of our correspondence result: if a process is
typed using the re�ned system then the corresponding process obtained by the
application of the erase function can also be typed with the original type system.

Lemma 3.6.18 (Typing correspondence: soundness). If ∆; ρ1 : ρ2; ξ ` P ; ρ′; ξ′,
then ∆ `ρ erase(P), where ρ = (ρ1] ρ2)− ρ′.

Proof. The proof is by induction on the depth of the type checking derivation. We
detail only the base case obtained by rule (a-stop), and, for the induction step,
only when the last applied rule is (a-par) or (a-rep-in).

� Case (a-stop): Let ∆; ρ1 : ρ2; ξ ` 0; ρ1; ξ. By (t-stop) we can directly
derive ∆ `ρ2 0.

� Case (a-par): Let ∆; ρ1 : ρ2; ξ ` P1 | P2; ρ1 ∩ ρ4; ξ′′ be derived from

∆; ρ1] ρ2 : ∅; ξ ` P1; ρ3; ξ
′ and ∆; ρ3 : ∅; ξ′ ` P2; ρ4; ξ

′′

By Lemma 3.6.17 we have sym(P1) = ξ′ \ ξ and ξ ⊆ ξ′ and ρ3 ⊆ ρ1] ρ2, but
also sym(P2) = ξ′′ \ ξ′ and ξ′ ⊆ ξ′′ and ρ4 ⊆ ρ3. Hence, we may conclude
that sym(P1) ∩ sym(P2) = ∅. By induction hypothesis we have

∆ `(ρ1]ρ2)−ρ3 erase(P1) and ∆ `ρ3−ρ4 erase(P2).

Since sym(P1)∩sym(P2) = ∅, by (t-par) we obtain ∆ `(ρ1]ρ2)−ρ4 erase(P1 | P2).
By Lemma 3.6.6, we conclude

∆ `(ρ1]ρ2)−(ρ1∩ρ4) erase(P1 | P2).

3.6. TYPE ANALYSIS 109

� Case (a-rep-in): Let ∆; ρ1 : ρ2; ξ `!(a)a?x.P ; ρ1; ξ be derived from ∆, x :
T ; ∅ : {a}; ∅ ` P ; ∅; ∅. By Lemma 3.6.17 we have sym(P) = ∅. By induc-
tion hypothesis we obtain ∆, x : T `{a} erase(P). Since sym(P) = ∅, by
(t-rep-in) follows ∆ `ρ2 erase(!(a)a?x.P).

To obtain the completeness result we �rst show a form of Weakening result for
the re�ned type system (cf. Lemma 3.6.6).

Lemma 3.6.19 (Weakening). If ∆; ρ1 : ρ2; ξ ` P ; ρ′; ξ′ then ∆; ρ1] ρ; ρ2; ξ `
P ; ρ′] ρ; ξ′.

Proof. The proof is by induction on the depth of the type checking derivation. We
detail only the base case, given by (a-stop), and the case of (a-par).

� Case (a-stop): Let ∆; ρ1 : ρ2; ξ ` 0; ρ1; ξ. By the same rule we may also
observe ∆; ρ1] ρ : ρ2; ξ ` 0; ρ1] ρ; ξ.

� Case (a-par): Let ∆; ρ1 : ρ2; ξ ` P1 | P2; ρ1 ∩ ρ4; ξ′′ be derived from

∆; ρ1] ρ2; ∅; ξ ` P1; ρ3; ξ
′ and ∆; ρ3 : ∅; ξ′ ` P2; ρ4; ξ

′′

By induction hypothesis we have

∆; ρ1] ρ2] ρ : ∅; ξ ` P1; ρ3] ρ; ξ′ and ∆; ρ3] ρ; ∅; ξ′ ` P2; ρ4] ρ; ξ′′

Then, by (a-par) we derive

∆; ρ1] ρ : ρ2; ξ ` P1 | P2; (ρ1] ρ) ∩ (ρ4] ρ); ξ′′

which concludes the proof since (ρ1] ρ) ∩ (ρ4] ρ) = (ρ1 ∩ ρ4)] ρ.

The completeness result shows that if a process is typed with the original
system, then it can also be typed with the re�ned one (again, up to the erase
function).

Lemma 3.6.20 (Typing correspondence: completeness). If ∆ `ρ erase(P) then
for any ρ1, ρ2 multisets of names, and any ξ, ξ′ sets of symbols from S, such that
ρ1] ρ2 = ρ and ξ′ \ ξ = sym(P), we have that ∆; ρ1 : ρ2; ξ ` P ; ρ′; ξ′, for some ρ′.

Proof. The proof is by induction on the derivation of the original type system.
We detail the base case, induced by (t-stop), and for the induction step we detail
only the cases of (t-par) and (t-in).

� Case (t-stop): Let ∆ `ρ 0. By (a-stop) we can derive ∆; ρ1 : ρ2; ξ ` 0; ρ1; ξ,
for any ρ1, ρ2 and ξ, such that ρ1] ρ2 = ρ.

110 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

� Case (t-par): Let ∆ `ρ erase(P1 | P2) be derived from ∆ `ρ′ erase(P1) and
∆ `ρ′′ erase(P2) where ρ′]ρ′′ = ρ and sym(P1)∩ sym(P2) = ∅. By induction
hypothesis we can derive

∆; ρ′ : ∅; ξ1 ` P1; ρ
′
1; ξ2 and ∆; ρ′′ : ∅; ξ2 ` P2; ρ

′
2; ξ3

for any ξ1, ξ2 and ξ3, such that ξ2\ξ1 = sym(P1), ξ3\ξ2 = sym(P2), and where
ξ1∩sym(P2) = ∅. Using ξ2 to type process P2 is possible since ξ2∩sym(P2) = ∅
holds by ξ1 ∩ sym(P2) = ∅ and the assumption sym(P1) ∩ sym(P2) = ∅. By
Lemma 3.6.19 we derive

∆; ρ : ∅; ξ1 ` P1; ρ
′
1] ρ′′; ξ2 and ∆; ρ′′] ρ′1 : ∅; ξ2 ` P2; ρ

′
2] ρ′1; ξ3

and by (a-par) we conclude

∆; ρ1 : ρ2; ξ1 ` P1 | P2; ρ1 ∩ (ρ′2] ρ′1); ξ3

� Case (t-out): Let ∆ `ρ erase(a!b.P) be derived from ∆ `ρ P , where ∆(a) =
γ(γ′(T)), ∆(b) = γ′′(T) and γ′′ ⊆ γ′, and where a /∈ ρ implies γ ∈ ρ. By
induction hypothesis

∆; ρ′1 : ρ′2; ξ ` P ; ρ′; ξ′

for any ρ′1, ρ
′
2 and ξ, ξ

′, such that ρ′1] ρ′2 = ρ and ξ′ \ ξ = sym(P). We now
have to show that ∆; ρ1 : ρ2; ξ ` a!b.P ; ρ′; ξ′ for any ρ1 and ρ2 such that
ρ1] ρ2 = ρ. We distinguish four cases.

(i) If a ∈ ρ and a ∈ ρ2 we chose ρ′2 = ρ2 and by (a-out-1) we derive
∆; ρ1 : ρ2; ξ ` a!b.P ; ρ′; ξ′.

(ii) If a ∈ ρ and a /∈ ρ2 we chose ρ′2 = ρ2] {a} and by (a-out-2) we derive
∆; ρ1 : ρ2; ξ ` a!b.P ; ρ′; ξ′.

(iii) If γ ∈ ρ and γ ∈ ρ2 we chose ρ′2 = ρ2 and by (a-out-1) we derive
∆; ρ1 : ρ2; ξ ` a!b.P ; ρ′; ξ′.

(iv) If γ ∈ ρ and γ /∈ ρ2 we chose ρ′2 = ρ2] (γ \ ρ2) and by (a-out-2) we
derive ∆; ρ1 : ρ2; ξ ` a!b.P ; ρ′; ξ′.

We may now state the main result of this section.

Theorem 3.6.21 (Typing correspondence). ∆ `ρ erase(P) if and only if ∆; ρ1 :
ρ2; ξ ` P ; ρ′; ξ′, for any ρ1, ρ2 and ξ such that ρ1] ρ2 = ρ and ξ′ \ ξ = sym(P).

Proof.

(⇐) Let ∆; ρ1 : ρ2; ξ ` P ; ρ′; ξ′. For ρ = ρ1] ρ2, by Lemma 3.6.18 we obtain
∆ `ρ−ρ′ erase(P). Then, by Lemma 3.6.6 we can conclude ∆ `ρ erase(P).

(⇒) Directly by Lemma 3.6.20.

3.7. EXTENDED EXAMPLE 111

Theorem 3.6.21 shows that the type-checking procedures induced by the orig-
inal and the re�ned type rules perfectly correspond, while the latter rules o�er
for a more e�cient implementation. For future work, we plan to make a precise
complexity analysis so as to characterize the e�ciency improvement. Also, we
plan to make a precise characterization of the loss of expressiveness that results
from the pragmatical (polynomial time) option.

3.7 Extended example

This section presents an example motivated by the Bring Your Own License
(BYOL) notion, that should provide further insights in our model and our type
discipline, and also to provide a link to a relevant domain in practice. The BYOL
is a licensing model that is closely related to the cloud-based based computing.
The cloud computing provides on-demand availability of resources, such as deploy-
ing and running applications, data storage, etc. Typically, these resources can be
accessed by many users (over the internet), but are not directly maintained by
users. The core of the BYOL model is that it provides �exibility to a user that is
willing to deploy a software application in the cloud to also deploy his own license.
Here, we can recognize the pattern of delegation, as the user can lose the ability
to run the application elsewhere by deploying his license in the cloud.

To provide a proper mindset, let us consider an example in which a Company is
willing to deploy a query service (that may require some exhaustive computations)
in the cloud and to store the resulting data on a cloud database. For instance,
Company may consider o�ers from two cloud service providers, Amazon Web
Service (AWS) and IBM Cloud (IBM), and is licensed to use Microsoft Azure
SQL Database (SQL). We may then model this scenario with

Company | AWS | IBM | SQL

where we consider processes can run concurrently. The communication protocol
of the two providers AWS and IBM may be represented as

AWS =!(aws)aws?service.aws(service).service!data.0

IBM =!(ibm)ibm?service.ibm(service).service!data.0

specifying that the providers can repeatably receive a service name, and then to
receive the respective authorization, which would allow for the provider to use
service for sending some data. We abstract here from the computation task itself,
given that we focus exclusively on the communication pattern, so running the
service amounts to sending the data.

We now model Company by specifying two managers and two workers that run
concurrently. A manager should decide which service provider is to be used and
a worker is responsible for interaction with the providers. Therefore, we de�ne

Company = (query)2(ibm)2(aws)2(Manager | Manager |Worker |Worker)

where the company owns two of each of authorizations to interact with services
IBM and AWS and with the database center SQL (through query). Consider

112 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

that a manager's decision of which cloud service should be used depends on the
quality of service (qos), and that the manager noti�es a worker about the decision
via channel choice. For the purpose of modeling this process, we make a simple
extension of our language with a conditional statement �if then else�. Therefore,

Manager = (choice) if (qos) then choice!aws .0 else choice!ibm.0

Once a manager has made the decision and noti�ed the worker by sending the
name of the chosen service provider, one of the workers receives the name and
then sends query and the respective authorization to the provider

Worker = (choice)choice?csp.csp!query .csp〈query〉.0

We may notice that the authorization for query is at �rst implicitly available
for the whole Company and that a Worker will grab and explicitly delegate the
authorization in order to allow the provider to use query . Also, two of each of
authorizations for aws and ibm are originally available to all processes in the
domain of the company, hence the two Managers can choose the two providers
can be used zero, one or two times. In any of the four cases, the query is used
exactly twice (by each of the two Workers).

We model the cloud database so as to be able repeatably to receive a request
along query , hence

SQL =!(query)query?x.0

For the sake of simplicity, we abstract away from possible later interactions, since
these may also require isolation (e.g., via dedicated private channels).

We now observe possible interactions in the system. Consider that one of the
Managers makes a decision to use ibm service provider and sends the name to
one of the Workers. If we assume a usual extension of the LTS with rules to deal
with the �if then else� statement by considering the evolution, via a τ transition,
to the then branch when the condition is true, and otherwise to the else branch,
together with (l-out) and (l-scope-ext) we may derive

Manager
τ−→ choice!ibm−−−−−−→ (choice)0

Then, one of the Workers performs the (authorized)reception by rules (l-in) and
(l-scope-ext)

Worker
choice?ibm−−−−−−→Worker ′

where Worker ′ = (choice)ibm!query .ibm〈query〉.0. The two dual actions along
choice can then synchronize when the two processes are composed in parallel.
Thus, by rule (l-comm) we have

Manager |Worker
τ−→ τ−→ (choice)0 |Worker ′

Now, the decision has been made, and Worker ′ can send the request to the chosen
provider by rule (l-out)

Worker ′
(ibm)ibm!query−−−−−−−−→Worker ′′

3.7. EXTENDED EXAMPLE 113

where Worker ′′ = (choice)(ibm)ibm〈query〉.0. We may observe that the action is
not authorized for name ibm, that is con�ned to Worker ′′ as the result of the
transition. However, it becomes authorized at the level of the company where the
authorization is �oating

(query)2(ibm)2(aws)2(Manager | (choice)0 |Worker ′ |Worker)
ibm!query−−−−−→

(query)2(ibm)(aws)2(Manager | (choice)0 |Worker ′′ |Worker)

by rules (l-scope-ext), (l-par) and (l-scope). Following the same reasoning, the
company, via process Worker ′′, can delegate authorization for query on channel
ibm, as by rule (l-out-a)

Worker ′′
(query)ibm〈query〉−−−−−−−−−−→ (choice)(ibm).0

and by rules (l-par), (l-scope-ext) and (l-scope), we may derive

(query)2(ibm)(aws)2(Manager | (choice)0 |Worker ′′ |Worker)
ibm〈query〉−−−−−−→

(query)(ibm)(aws)2(Manager | (choice)0 | (choice)(ibm)0 |Worker)

causing the Company to lose one authorization for query .
The IBM process �rst receives name query , and then receives the authoriza-

tion, by the rules (l-in-rep), (l-in-a), (l-scope-ext) and (l-par)

IBM
ibm?query−−−−−−→ ibm(query)−−−−−−→ IBM ′,

where IBM ′ = IBM | (query)(ibm)query !data.0. Finally, the service provider
IBM ′ is connected with SQL through channel query and also authorized to use
the channel. Hence, IBM ′ can send the data to SQL.

We may now attest that the above scenario contains no errors by applying
our typing analysis. We assume an additional typing rule that deals with the
conditional statement in a standard way: both branches and the whole conditional
should have the same type. Let us consider the type assignments collected in a
typing environment

∆ = aws : {aws}(T),
ibm : {ibm}(T),
query : T,
choice : {choice}({aws , ibm}(T))

where T = {query}({data}(∅)). We can then check

∆ `∅ Company | AWS | IBM | SQL

Thus, the system is well-typed and owns enough authorizations, so it never gets
stuck.

We may now derive
∆ `ρ Worker

114 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

where ρ = {query , ibm, aws}. Let us recall

Worker = (choice)choice?csp.csp!query .csp〈query〉.0.

Since rule (t-stop) claims that the inactive process can be typed by any assump-
tions, we may observe

∆, csp : {aws , ibm}(T) `ρ1 0

where ρ1 = {choice, ibm, aws}. Then, by rule (t-deleg), we may derive

∆, csp : {aws , ibm}(T) `ρ1,{query} csp〈query〉.0

since all replacements for csp given in its type ({aws , ibm}) are contained in ρ1,
to which we add the name of the delegated authorization in the conclusion. The
added name ensures that the process must be placed in a context that provides
all the necessary authorizations. If we now apply rule (t-out), we observe

∆, csp : {aws , ibm}(T) `ρ1,{query} csp!query .csp〈query〉.0

where we again have the same check for csp (now considering ρ1, {query}), and we
also check that all possible replacements for query , which is only query itself, are
contained in the carried type of csp, which holds since T = {query}({data}(∅)).
Then, by (t-in)

∆ `ρ1,{query} choice?csp.csp!query .csp〈query〉.0

since choice is in ρ1, {query} and the type of csp is equal to the carried type of
choice. Finally, by (t-auth) we conclude

∆ `ρ Worker

where ρ is obtained from ρ1, {query} by removing choice. Hence, each Worker is
safe if placed in a context that provides authorizations for names query , ibm, and
aws . We remark that authorizations for ibm and aws will not be both actually
needed since only one of them can be received in choice. However, to ensure any
possible evolution of the system is safe, both authorizations (for ibm and aws)
must be provided.

3.8 Towards applications

This section provides an intuition of how our model can lead to developments in a
practical setting. Speci�cally, we consider an extension of a programming language
that embeds the principles presented in this work. We remark that authorizations
and many other security concerns are often handled separately with respect to the
application layer. However, it may be the case that the application domain and
the security concerns are closely entangled. Thus, establishing the correspondence
between application requirements and security layer guarantees, in general, may
not be a trivial task. For instance, a resource management can be tightly related

3.8. TOWARDS APPLICATIONS 115

to the application due to service contracts that are subject to optimization by the
application business logic. Providing programming language direct support for
the resource management in such cases might be an important solution. Following
these lines, we believe introducing programming language support for our notion
of �oating authorizations can produce some bene�ts in practice.

To illustrate the idea let us consider Figure 3.1 that presents the code of a
program written in Go. Here, the language of Go is endowed with a construct
auth() that represents our authorization scoping construct. The construct is
used in lines 12, 17, 18, 22, 29, 34, and 38, and marked with the comment //

Language extension). The program represents the Company process described
in Section 3.7, simpli�ed here by considering there is only one manager thread that
sends a channel to two worker threads. For simplicity, we only use anonymous
goroutines for which the intended authorization scoping is given directly by the
syntax.

First, the program creates three channels choice, aws, and ibm with the proper
type assignments (lines 6-8). Channel choice can be used to communicate mes-
sages of type chan string, meaning that choice is used to communicate channel
endpoints that can be used to communicate strings. Types of aws and ibm spec-
ify that these two channels can be used to communicate strings. After that, in
lines 11-15, a goroutine, that represents a manager process, is de�ned and directly
invoked so as to spawn a thread that will run the code given in the body of the
routine, in lines 12-14. Speci�cally, in line 12 an authorization for channel choice
is created, after which in lines 13 and 14 channel endpoints for aws and ibm, re-
spectively, are sent via channel choice. We may observe that the manager thread
is self-su�cient in terms of authorizations as both communications are carried out
using channel choice, for which the respective authorization is present.

The main thread continues to lines 17 and 18 where the authorizations for aws
and ibm are created. Then, in lines 21-25 and 28-32 the goroutines for two worker
threads the de�ned and invoked. The code for the workers speci�es the creation
of an authorization for channel choice in lines 22 and 29, after which in lines 23
and 30 the reception of a channel on channel choice is performed, and �nally the
emission of a text message on the received channel is conducted in lines 24 and
31. The main thread then carries out the receptions of the text messages in lines
35 and 39, for which the respective authorizations are provided in lines 34 and 38,
and �nally, their onscreen display in lines 36 and 40.

We may observe that the two workers receive the aws and ibm endpoints on
channel choice sent by the manger. Thus, the workers output the text messages
(lines 24 and 31) on the aws and ibm channels. Notice that the two authorizations
for aws and ibm are created in the main thread (lines 17-18). Hence, these are
�oating over both worker threads spawned by the goroutine invocation, and each
one of the authorizations can be con�ned to either one of the threads. Also, we may
observe that each worker thread receives a di�erent channel and which one is not
prescribed by the code. Therefore, "worker1" can be sent on aws and "worker2"

on ibm, or "worker2" can be sent on aws and "worker1" on ibm. In both cases,
the program can be considered as authorization safe since the respective �oating
authorization can be con�ned to the thread at the moment it uses the channel.

116 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

1 package main

2
3 import "fmt"

4
5 func main() {

6 choice := make(chan chan string)

7 aws := make(chan string)

8 ibm := make(chan string)

9
10 // MANAGER

11 go func() {

12 auth(choice) // Language extension

13 choice <- aws

14 choice <- ibm

15 }()

16
17 auth(ibm) // Language extension

18 auth(aws) // Language extension

19
20 // WORKER 1

21 go func() {

22 auth(choice) // Language extension

23 csp := <-choice

24 csp <- "worker1"

25 }()

26
27 // WORKER 2

28 go func() {

29 auth(choice) // Language extension

30 csp := <-choice

31 csp <- "worker2"

32 }()

33
34 auth(aws) // Language extension

35 msg1 := <-aws

36 fmt.Println ("aws", msg1)

37
38 auth(ibm) // Language extension

39 msg2 := <-ibm

40 fmt.Println ("ibm", msg2)

41
42 }

Figure 3.1: Example Extended Go Program

3.8. TOWARDS APPLICATIONS 117

We may now consider re�nements of the resource management in the context
of this simple example. If channel endpoints are subject to a rigorous accounting,
for instance, according to an established service contract (for instance, with third
parties, such as Amazon or IBM, where the number of active channel endpoints
may be restricted), it is important to have language mechanisms that give direct
support to conform to the service contract. The creation of the authorizations
in lines 17-18 gives a precise operational speci�cation of the resources available.
Notice that we could also reason on authorization reception replacing the creation
in lines 17-18 so as to, for instance, rely on a communication with the service
provider to establish the authorizations. Furthermore, the �oating authorizations
provide the �exibility for the resources to be accessible among concurrent threads
while keeping track of the resource control.

We can also build on our typing analysis to devise static veri�cation tech-
niques that can ensure programs like the one shown never get stuck due to lacking
authorizations. However, notice that a direct application of our typing discipline
would exclude the example given in Figure 3.1, since in the carried type of channel
choice both aws and ibm names would have to be mentioned, as both indeed can
be communicated in the channel. Following these lines, to ensure that both work-
ers do not lack authorizations we would require two authorizations for each aws

and ibm. We conceive that our typing analysis can be extended so as to address
this con�guration and, moreover, that our language principles can already be used
as the basis for runtime veri�cation techniques that would allow to transparently
run the example program. We also conceive that our language principles can be
embedded in a programming language by means of a specialized API, instead of
a proper extension, relying on the appropriate library calls for authorization cre-
ation and resource usage, up to some ingenuity for authorization scoping. We do
retain the necessity of considering specialized language constructs for the sake of
the dedicated theoretical investigation presented in this thesis.

118 CHAPTER 3. A CALCULUS OF FLOATING AUTHORIZATIONS

Chapter 4

Conclusion

In this chapter, we summarize the contributions, present related work, and give
some initial ideas for future work.

4.1 Summary of contributions

In this thesis, we have presented two formal models: one modeling con�dential
information passing via restricting forwarding, and the other modeling controlled
usages of resources via �oating authorizations.

In Chapter 2, we have presented a model for con�dential name passing, called
Con�dential π-calculus (Cπ). Our model, which is a simple fragment of the π-
calculus [102], was previously introduced in [89]. The Cπ-calculus disables for-
warding of received names directly at the syntax level by restricting the π-calculus
feature that input variables can appear as objects of the output pre�xes. To the
best of our knowledge, this is the �rst process model based on the π-calculus
that represents the controlled name passing by constraining and not extending
the original syntax. We have de�ned the non-forwarding property, which claims
that a process cannot forward any of its received names, and as a sanity check
we have shown that Cπ processes satisfy this property. We have also shown that
a π process respects the non-forwarding property when it can be related to a Cπ
process via strong bisimilarity relation. The same relation is then used to show
that in Cπ-calculus one can directly represent the creation of closed domains for
channels.

We have provided some insight on the usefulness of our model by presenting
examples that show the Cπ can be used to model restricted information passing,
authentication, closed and open-ended groups. The encoding presented in this
thesis, which simpli�es the one presented in [89], shows that the π-calculus pro-
cesses can be represented in the Cπ-calculus. We have proved the correctness of
the encoding in the form of an operational correspondence result (Completeness
in Corollary 2.6.6 and Soundness in Corollary 2.6.12).

In Chapter 3, we have presented a model of �oating authorizations, which was
previously introduced in [80, 92]. We took advantage of already existing work on
authorizations [44] to directly adopt the syntax presented there. Hence, our aim
was to investigate the accounting principle associated to �oating authorizations,

119

120 CHAPTER 4. CONCLUSION

by changing an existing model in the minimal necessary way. We de�ned the se-
mantics for our model in terms of a labeled transition system and also a reduction
relation, and we showed these two indeed represent alternatives to each other via
a harmony result (Corollary 3.4.13). We motivated our work by showing that
the starting process model [44] directly con�icts with our notion of accounting, as
it allows to change the number of authorizations in the system directly, e.g., by
rewriting rules of the structural congruence. We also de�ned error processes as un-
desired con�gurations that cannot reduce due to lacking authorizations. We have
shown there is an alternative way to de�ne errors by using the labeled transition
system.

The thesis also provides a preliminary investigation of the behavioral seman-
tics of our authorization model. We have used the strong bisimilarity relation to
show some fundamental properties and to validate our design principles, but also
to provide insight on the di�culty of obtaining a normal form characterization of
processes. To statically single out processes that are not errors and that never
reduce to errors, we devised a typing analysis that addresses contextual autho-
rizations. We have proved a soundness result (Corollary 3.6.14) for our typing
discipline. We also presented a re�nement of our typing discipline that lead to
a more e�cient type-checking procedure, and we showed a correspondence result
(Theorem 3.6.21) for the two type systems. Finally, we presented an extended
example showing a scenario that involves the notion of Bring Your Own License,
and we exploit this example to provide an insight on a possible application of our
model in programming language design.

Apart from the work reported in this thesis, during his PhD studies the candi-
date was also involved in research in the �eld of multiple-valued logic, speci�cally
in the encodings of threshold functions. The results thus far include showing that
the well-known results of Chow and Nomura can be generalized to the case of
generalized multi-layer S-threshold functions [91, 90], and a characterization of
multiple-valued threshold function in the Vilenkin-Chrestenson basis [88, 87].

4.2 Related work

In past, a plethora of approaches have been proposed both for controlling name
sharing and name usages. We �rst address work related to our calculus for con�-
dential name passing, presented in Chapter 2.

Con�dentiality and secrecy has been extensively studied in the �eld of process
calculi. We found the process models based on the π-calculus, such as [26, 30, 46,
49, 61, 111], as the most related to our Cπ-calculus. Building on the π-calculus,
Cardelli et al. [26] introduce an additional language construct that represents the
group creation. Groups are then associated to channels as types. The semantics
of the model disables the scope extrusion of groups, and their devised typing
discipline ensures that grouped names are never communicated on open channels,
hence preventing the leakage of protected channels. The work of [26] is used by
Kouzapas and Philippou [61] to extend the model with groups with constructs
that permit reasoning about the private data in information systems.

4.2. RELATED WORK 121

The work of Giunti et. al. [46] considers the π-calculus with an additional
operator, called hide. The hide operator resembles the name restriction, as it
binds the name speci�ed inside, but is, in a sense, more constraining than name
restriction since it blocks extrusion of the name. Hence, the name speci�ed inside
the hide operator has closed scope, which again prevents that the name leaks
outside its originally de�ned scope. Vivas and Yoshida [111] have introduced
an operator called �lter. Filter is statically associated to a process and allow
interaction of the process with its environment only on names that are contained
in the (polarized) �lter, while blocking any other actions of the process. We also
mention [30, 49] where the types associate the security levels to channels. In
the latter work, the security level of a channel can be downgraded via special
declassi�ed input and output pre�x constructs.

All models mentioned so far share one property: to be able to reason on a
speci�c aspect of secrecy in a proper way they extend the π-calculus with addi-
tional language constructs and/or introduce a typing discipline. In contrast, the
Cπ-calculus does not extend but uses only a fragment of the π-calculus. For this,
we believe that many aspects of secrecy can be modeled and studied in a more
canonical way when using our model. As a �rst step to strengthen this claim, we
plan to make a precise representation of group creation [26] in the Cπ-calculus,
following the intuition provided in Section 2.5.2.

Studying fragments of the π-calculus is not a new idea by itself. We �nd several
proposals following these lines. The most famous probably is the asynchronous
π-calculus, proposed by Honda and Takoro [55] and by Boudol [18] independently.
The asynchronous π puts a constrain on the π-calculus syntax that only an inactive
process can be speci�ed as the continuation of an output pre�x. Thus, the output
does not block any continuation as it is always performed independently of the rest
of the process, which allows to modeling asynchronous communications. Merro
and Sangiorgi proposed the Localized π-calculus [67], which restricts the input
capability for the received names (and does not consider the matching operator).
Hence, similarly to the Cπ-calculus, the Localized π-calculus also puts a restriction
on the input variable, but now such a variable cannot appear as a subject of an
input pre�x (and can appear as the object of an output action).

Sangiorgi has also proposed the Private π-calculus [99], that restricts the π-
calculus syntax so that objects of output pre�xes are always bound. This induces
a simpli�cation in the theory of the Private π, coming from the fact that there
is now symmetry between the output and the input pre�xes (both bind object
of the pre�x) and that substitution rising in a synchronization can be considered
as α-conversion (renaming of a bound name). A similarity between the Cπ and
the Private π is that in both forwarding of names is not possible. A signi�cant
di�erence is that in the Private π each name can be sent only once, hence our
notion of channel handlers does not seems to be directly representable there. The
common goal of all these models is investigating speci�c notions in a dedicated way,
without requiring the introduction of specialized primitives, instead by considering
a suitable fragment of the π-calculus.

We now turn to comment on work related to our calculus for �oating authoriza-
tions, presented in Chapter 3. We �nd many approaches that address controlling

122 CHAPTER 4. CONCLUSION

resource usage, such as locks (for mutual exclusion in critical code blocks) and
communication protocols (e.g., token ring), just to name a few. A number of type
systems have been developed to this end, such as [34, 48, 106], where the types
specify capabilities over resources. We believe our model provides more �exibility
than those considering type systems, as it directly separates resource and capa-
bility. Thus, in our model one can communicate a resource without granting the
capabilities, that are provided separately (cf. example with the �unauthorized�
brokers given in Section 3.1). We point out that in [34] the types specify the
number of messages that may be exchanged, therefore related to the accounting
notion investigated here.

We also �nd a number of models that introduce capabilities as �rst class enti-
ties. The work on which ours directly relies is the one that introduced authoriza-
tions [43, 44]. A detailed comparison is given by a number of examples throughout
Chapter 3, basically showing that the original work on authorizations directly con-
�icts with our notion of accounting. Papers such as [14, 46, 60, 111] address usage
of channels and of resources as communication objects. Among these are already
mentioned models that consider constructs hide and �lter that restrict the behav-
iors allowed on channels [46, 111]. Both models di�er from ours as their constructs
are static and therefore not able to capture our �oating resource capabilities.

We also mention models that specify usages in a (binding) name scope con-
struct [60], and authorization scopes for resources based on given access poli-
cies [14]. In [60], the usage speci�cation that corresponds to a type is directly
inserted in the model in a binding scoping construct, which contrasts with our
non-binding authorization scoping. Also, [14] provides detailed usage policies that
are associated with the authorization scopes for resources. We believe both mod-
els [14, 60] are less adequate to represent our notion of �oating authorizations,
since there access is granted explicitly and controlled via the usage/policy speci-
�cation. This leads us to think that our notion of con�nement cannot be directly
represented in these two models in a direct way.

4.3 Future work

Our work on the Cπ-calculus is at an early stage and leaves many open ques-
tions. For instance, our initial work on testing forwarding of the π processes using
the Cπ processes, presented in Section 2.4.2, has already opened the question of
providing an algorithmic procedure for deriving Cπ processes considered in Propo-
sition 2.4.10. Another question is a representation of models with groups and
hiding [26, 46] in our calculus, for which the initial ideas are already presented
in Section 2.5.2. Also, one direction for the future work is considering the Cπ for
modeling and analyzing some already existing protocols, such as OAuth2.0 [77],
where we can also �nd restricted information sharing in the context of an authen-
tication scheme.

Regarding our work on �oating authorizations, we also �nd several directions
for possible future work. Our model shows a way to deal with accountable re-
sources that can be accessed in a shared way. This general idea is then made
concrete with our design choice to con�ne authorizations when they are used, this

4.3. FUTURE WORK 123

way (permanently) restricting their scope. It would be interesting to consider non-
consumptive authorizations, that return to their original scope after (complete)
use.

We believe the principles of our work can be applied when considering also
�one-shot� authorizations. By one-shot authorizations we think of authorizations
that can be used only once, i.e., only for a single action. Considering such au-
thorizations the induced model would be able to make a precise accounting on
how many times channels can be used. We remark that such a model would rely
on the same technical machinery as the work presented here. For instance, we
would use the same reduction rules (relying on the drift operator), with a sim-
ple twist that the deleted authorizations are not reintroduced as they are in our
model (for the con�nement purposes). Along these lines, we can consider building
our calculus for �oating authorizations by considering the Cπ-calculus instead of
the π-calculus as the underlying model, since the obtained model would combine
control over usages with the control over sharing.

By endowing authorizations with type information we would get another layer
in the control of usages of channels. For instance, this can be achieved by con-
sidering input/output types, where the authorization can be used only for input
or output, or session types, where the authorization is to be used according to a
speci�ed protocol.

Our type system, presented in Section 3.6, can also be subject to possible
improvements and extensions. For instance, a notion of substitutability naturally
arises in our typing analysis and we leave to future work a detailed investigation
of a subtyping relation that captures such notion. Our model can be extended
also by some form of usage speci�cations like the ones mentioned above [14, 60],
and by endowing authorizations as indicated in the previous paragraph. This
would also allow us to generalize our approach addressing certain forms of in�nite
behavior, namely considering recursion together with linearity constraints that
ensure race freedom. It would also be interesting to resort to re�nement types [41]
to carry out our typing analysis, given that our types can be seen to some extent
as re�nements on the domain of names. Our typing analysis can be improved also
to address names created in the body of replicated input in a uniform way, by
considering the approach presented in [40] that provides the unique identi�cation
of private names even in the presence of replicated processes.

Even though we have presented a theoretical investigation in this document,
we believe our principles developed for �oating authorizations can be conveyed to
more practical settings. One such setting is the licensing domain (as already men-
tioned in the Introduction), where we already have identi�ed patents [6, 10, 38]
for the purpose of certifying license usage. Another is the setting of recently intro-
duced permissioned blockchain systems such as Hyperledger Fabric [4]. We believe
it would be interesting to provide high-level descriptions and prove properties of
the Membership Service Provider (MSP), the part of the Fabric system which is re-
sponsible for issuing node credentials (used for authorization and authentication).
We intend to pursue this idea, starting by aiming at the formal veri�cation of smart
contracts (chaincode) in Fabric, exploiting recently introduced developments for
smartcontracts [7, 12] in the context of contract-oriented programming [11]. In

124 CHAPTER 4. CONCLUSION

particular, we have already identi�ed notions of active contract [12], which en-
compasses a running balance, and of authorizations to perform operations, hence
where we expect to also �nd the dimensions of domain, accounting and delega-
tion. And the last setting we would like to mention is again protocol OAuth2.0,
where we believe some of our principles can be used to reason on Access Token
manipulation, since there we also �nd the notions of domain and delegation.

Bibliography

[1] M. Abadi and C. Fournet. Mobile values, new names, and secure commu-
nication. In Conference Record of POPL 2001: The 28th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 104�
115. ACM, 2001.

[2] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The
spi calculus. Information and Computation, 148(1):1�70, 1999.

[3] L. Acciai and M. Boreale. Spatial and behavioral types in the pi-calculus.
Information and Computation, 208(10):1118�1153, 2010.

[4] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin, K. Christidis, A. D.
Caro, D. Enyeart, C. Ferris, G. Laventman, Y. Manevich, S. Muralidha-
ran, C. Murthy, B. Nguyen, M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolic, S. W. Cocco, and J. Yellick. Hyperledger
fabric: a distributed operating system for permissioned blockchains. In
R. Oliveira, P. Felber, and Y. C. Hu, editors, Proceedings of the Thir-
teenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26,
2018, pages 30:1�30:15. ACM, 2018.

[5] W. J. Armstrong, N. Nayar, and K. P. Stamschror. Management of a con-
current use license in a logically-partitioned computer, Oct. 25 2005. US
Patent 6,959,291.

[6] W. J. Armstrong, N. Nayar, and K. P. Stamschror. Management of a con-
current use license in a logically-partitioned computer, Oct. 25 2005. US
Patent 6,959,291.

[7] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino. Sok: Unraveling
bitcoin smart contracts. In L. Bauer and R. Küsters, editors, Principles
of Security and Trust - 7th International Conference, POST 2018, Held as
Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2018, Thessaloniki, Greece, April 14-20, 2018, Proceedings, volume
10804 of Lecture Notes in Computer Science, pages 217�242. Springer, 2018.

[8] J. C. M. Baeten. A brief history of process algebra. Theoretical Computer
Science, 335(2-3):131�146, 2005.

[9] J. C. M. Baeten and D. Sangiorgi. Concurrency theory: A historical per-
spective on coinduction and process calculi. In J. H. Siekmann, editor,

125

126 BIBLIOGRAPHY

Computational Logic, volume 9 of Handbook of the History of Logic, pages
399�442. Elsevier, 2014.

[10] P. Baratti and P. Squartini. License management system, June 3 2003. US
Patent 6,574,612.

[11] M. Bartoletti and R. Zunino. A calculus of contracting processes. In Proceed-
ings of the 25th Annual IEEE Symposium on Logic in Computer Science,
LICS 2010, 11-14 July 2010, Edinburgh, United Kingdom, pages 332�341.
IEEE Computer Society, 2010.

[12] M. Bartoletti and R. Zunino. Bitml: A calculus for bitcoin smart contracts.
In D. Lie, M. Mannan, M. Backes, and X. Wang, editors, Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications Secu-
rity, CCS 2018, Toronto, ON, Canada, October 15-19, 2018, pages 83�100.
ACM, 2018.

[13] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program De-
velopment - Coq'Art: The Calculus of Inductive Constructions. Springer,
2004.

[14] C. Bodei, V. D. Dinh, and G. L. Ferrari. Checking global usage of resources
handled with local policies. Science of Computer Programming, 133:20�50,
2017.

[15] M. Boreale. On the expressiveness of internal mobility in name-passing
calculi. Theoretical Computer Science, 195(2):205�226, 1998.

[16] M. Boreale and D. Sangiorgi. A fully abstract semantics for causality in the
π-calculus. Acta Informatica, 35(5):353�400, 1998.

[17] M. Boreale and D. Sangiorgi. Some congruence properties for pi-calculus
bisimilarities. Theoretical Computer Science, 198(1-2):159�176, 1998.

[18] G. Boudol. Asynchrony and the Pi-calculus. Research Report RR-1702,
INRIA, 1992.

[19] A. Bove, P. Dybjer, and U. Norell. A brief overview of agda - A functional
language with dependent types. In S. Berghofer, T. Nipkow, C. Urban,
and M. Wenzel, editors, Theorem Proving in Higher Order Logics, 22nd
International Conference, TPHOLs 2009, Munich, Germany, August 17-20,
2009. Proceedings, volume 5674 of Lecture Notes in Computer Science, pages
73�78. Springer, 2009.

[20] D. Brand and P. Za�ropulo. On communicating �nite-state machines. Jour-
nal of the ACM, 30(2):323�342, 1983.

[21] M. Bugliesi, S. Calzavara, and R. Focardi. Formal methods for web security.
Journal of Logical and Algebraic Methods in Programming, 87:110�126, 2017.

BIBLIOGRAPHY 127

[22] L. Caires, F. Pfenning, and B. Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367�423, 2016.

[23] L. Caires and H. T. Vieira. Conversation types. Theoretical Computer
Science, 411(51-52):4399�4440, 2010.

[24] M. Carbone, K. Honda, and N. Yoshida. Structured interactional exceptions
in session types. In F. van Breugel and M. Chechik, editors, CONCUR
2008 - Concurrency Theory, 19th International Conference, CONCUR 2008,
Toronto, Canada, August 19-22, 2008. Proceedings, volume 5201 of Lecture
Notes in Computer Science, pages 402�417. Springer, 2008.

[25] M. Carbone and S. Ma�eis. On the expressive power of polyadic synchroni-
sation in pi-calculus. Nordic Journal of Computing, 10(2):70�98, 2003.

[26] L. Cardelli, G. Ghelli, and A. D. Gordon. Secrecy and group creation.
Information and Computation, 196(2):127�155, 2005.

[27] A. Church. A formulation of the simple theory of types. Jurnal of Symbolic
Logic, 5(2):56�68, 1940.

[28] L. Chwistek. The theory of constructive types. University Press, 1925.

[29] T. Coquand and G. P. Huet. The calculus of constructions. Information
and Computation, 76(2/3):95�120, 1988.

[30] S. Crafa and S. Rossi. Controlling information release in the pi-calculus.
Information and Computation, 205(8):1235�1273, 2007.

[31] H. B. Curry. Functionality in combinatory logic. Proceedings of the National
Academy of Sciences of the United States of America, 20(11):584, 1934.

[32] S. Dal-Zilio and A. D. Gordon. Region analysis and a pi-calculus with groups.
Journal of Functional Programming, 12(3):229�292, 2002.

[33] O. Dardha, E. Giachino, and D. Sangiorgi. Session types revisited. Infor-
mation and Computation, 256:253�286, 2017.

[34] A. Das, J. Ho�mann, and F. Pfenning. Work analysis with resource-aware
session types. In A. Dawar and E. Grädel, editors, Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018,
Oxford, UK, July 09-12, 2018, pages 305�314. ACM, 2018.

[35] N. de Bruijn. Lambda calculus notation with nameless dummies, a tool
for automatic formula manipulation, with application to the church-rosser
theorem. Indagationes Mathematicae (Proceedings), 75(5):381 � 392, 1972.

[36] R. De Nicola. Behavioral equivalences. In D. A. Padua, editor, Encyclopedia
of Parallel Computing, pages 120�127. Springer, 2011.

128 BIBLIOGRAPHY

[37] J. Dedei¢, J. Pantovi¢, and J. A. Pérez. On compensation primitives as
adaptable processes. In S. Crafa and D. Gebler, editors, Proceedings of the
Combined 22th International Workshop on Expressiveness in Concurrency
and 12th Workshop on Structural Operational Semantics, and 12th Workshop
on Structural Operational Semantics, EXPRESS/SOS 2015, Madrid, Spain,
31st August 2015., volume 190 of EPTCS, pages 16�30, 2015.

[38] J. M. Ferris and G. E. Riveros. O�ering additional license terms during
conversion of standard software licenses for use in cloud computing environ-
ments, June 9 2015. US Patent 9,053,472.

[39] C. Fournet, F. L. Fessant, L. Maranget, and A. Schmitt. Jocaml: A language
for concurrent distributed and mobile programming. In J. Jeuring and S. L.
Peyton Jones, editors, Advanced Functional Programming, 4th International
School, AFP 2002, Oxford, UK, August 19-24, 2002, Revised Lectures, vol-
ume 2638 of Lecture Notes in Computer Science, pages 129�158. Springer,
2002.

[40] A. Francalanza, M. Giunti, and A. Ravara. Pointing to private names.
EasyChair Preprint no. 439, EasyChair, 2018.

[41] T. S. Freeman and F. Pfenning. Re�nement types for ML. In D. S. Wise,
editor, Proceedings of the ACM SIGPLAN'91 Conference on Programming
Language Design and Implementation (PLDI), Toronto, Ontario, Canada,
June 26-28, 1991, pages 268�277. ACM, 1991.

[42] S. J. Gay. A framework for the formalisation of pi calculus type systems in
isabelle/hol. In R. J. Boulton and P. B. Jackson, editors, Theorem Prov-
ing in Higher Order Logics, 14th International Conference, TPHOLs 2001,
Edinburgh, Scotland, UK, September 3-6, 2001, Proceedings, volume 2152 of
Lecture Notes in Computer Science, pages 217�232. Springer, 2001.

[43] S. Ghilezan, S. Jak²i¢, J. Pantovi¢, J. A. Pérez, and H. T. Vieira. A
typed model for dynamic authorizations. In S. Gay and J. Alglave, editors,
Proceedings Eighth International Workshop on Programming Language Ap-
proaches to Concurrency- and Communication-cEntric Software, PLACES
2015, London, UK, 18th April 2015., volume 203 of EPTCS, pages 73�84,
2015.

[44] S. Ghilezan, S. Jak²i¢, J. Pantovi¢, J. A. Pérez, and H. T. Vieira. Dynamic
role authorization in multiparty conversations. Formal Aspects of Comput-
ing, 28(4):643�667, 2016.

[45] J.-Y. Girard, P. Taylor, and Y. Lafont. Proofs and types. Cambridge Uni-
versity Press, 1989.

[46] M. Giunti, C. Palamidessi, and F. D. Valencia. Hide and new in the pi-
calculus. In B. Luttik and M. A. Reniers, editors, Proceedings Combined 19th

BIBLIOGRAPHY 129

International Workshop on Expressiveness in Concurrency and 9th Work-
shop on Structured Operational Semantics, EXPRESS/SOS 2012, Newcas-
tle upon Tyne, UK, September 3, 2012., volume 89 of EPTCS, pages 65�79,
2012.

[47] D. Gorla. Towards a uni�ed approach to encodability and separation results
for process calculi. Information and Computation, 208(9):1031�1053, 2010.

[48] D. Gorla and R. Pugliese. Dynamic management of capabilities in a network
aware coordination language. Journal of Logic and Algebraic Programming,
78(8):665�689, 2009.

[49] M. Hennessy. The security pi-calculus and non-interference. Journal of Logic
and Algebraic Programming, 63(1):3�34, 2005.

[50] M. Hennessy. A distributed Pi-calculus. Cambridge University Press, 2007.

[51] D. Hirschko�. A full formalisation of pi-calculus theory in the calculus of
constructions. In E. L. Gunter and A. P. Felty, editors, Theorem Proving in
Higher Order Logics, 10th International Conference, TPHOLs'97, Murray
Hill, NJ, USA, August 19-22, 1997, Proceedings, volume 1275 of Lecture
Notes in Computer Science, pages 153�169. Springer, 1997.

[52] D. Hirschko� and D. Pous. A distribution law for CCS and a new congruence
result for the π-calculus. Logical Methods in Computer Science, 4(2), 2008.

[53] D. Hirschko� and D. Pous. On bisimilarity and substitution in presence of
replication. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der
Heide, and P. G. Spirakis, editors, Automata, Languages and Programming,
37th International Colloquium, ICALP 2010, Bordeaux, France, July 6-10,
2010, Proceedings, Part II, volume 6199 of Lecture Notes in Computer Sci-
ence, pages 454�465. Springer, 2010.

[54] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[55] K. Honda and M. Tokoro. An object calculus for asynchronous communi-
cation. In P. America, editor, ECOOP'91 European Conference on Object-
Oriented Programming, Geneva, Switzerland, July 15-19, 1991, Proceedings,
volume 512 of Lecture Notes in Computer Science, pages 133�147. Springer,
1991.

[56] K. Honda, V. T. Vasconcelos, and M. Kubo. Language primitives and type
discipline for structured communication-based programming. In Program-
ming Languages and Systems, 7th European Symposium on Programming,
ESOP 1998, Proceedings, volume 1381 of LNCS, pages 122�138. Springer,
1998.

[57] W. A. Howard. The formulae-as-types notion of construction. To HB Curry:
essays on combinatory logic, lambda calculus and formalism, 44:479�490,
1980.

130 BIBLIOGRAPHY

[58] H. Hüttel, I. Lanese, V. T. Vasconcelos, L. Caires, M. Carbone, P. Deniélou,
D. Mostrous, L. Padovani, A. Ravara, E. Tuosto, H. T. Vieira, and G. Za-
vattaro. Foundations of session types and behavioural contracts. ACM
Computing Surveys, 49(1):3:1�3:36, 2016.

[59] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus.
ACM Transactions on Programming Languages and Systems, 21(5):914�947,
1999.

[60] N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis for the
p-calculus. Logical Methods in Computer Science, 2(3), 2006.

[61] D. Kouzapas and A. Philippou. Privacy by typing in the π-calculus. Logical
Methods in Computer Science, 13(4), 2017.

[62] I. Lanese, J. A. Pérez, D. Sangiorgi, and A. Schmitt. On the expressiveness
and decidability of higher-order process calculi. Information and Computa-
tion, 209(2):198�226, 2011.

[63] Z. Luo. Computation and reasoning - a type theory for computer science.
Oxford University Press, 1994.

[64] P. Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[65] D. Medi¢ and C. A. Mezzina. Static VS dynamic reversibility in CCS. In S. J.
Devitt and I. Lanese, editors, Reversible Computation - 8th International
Conference, RC 2016, Bologna, Italy, July 7-8, 2016, Proceedings, volume
9720 of Lecture Notes in Computer Science, pages 36�51. Springer, 2016.

[66] L. G. Meredith and M. Radestock. A re�ective higher-order calculus. Elec-
tronic Notes in Theoretical Computer Science, 141(5):49�67, 2005.

[67] M. Merro and D. Sangiorgi. On asynchrony in name-passing calculi. Math-
ematical Structures in Computer Science, 14(5):715�767, 2004.

[68] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer, 1980.

[69] R. Milner. Functions as processes. Mathematical Structures in Computer
Science, 2(2):119�141, 1992.

[70] R. Milner. The polyadic pi-calculus (abstract). In R. Cleaveland, edi-
tor, CONCUR '92, Third International Conference on Concurrency The-
ory, Stony Brook, NY, USA, August 24-27, 1992, Proceedings, volume 630
of Lecture Notes in Computer Science, page 1. Springer, 1992.

[71] R. Milner. Higher-order action calculi. In E. Börger, Y. Gurevich, and
K. Meinke, editors, Computer Science Logic, 7th Workshop, CSL '93,
Swansea, United Kingdom, September 13-17, 1993, Selected Papers, volume
832 of Lecture Notes in Computer Science, pages 238�260. Springer, 1993.

BIBLIOGRAPHY 131

[72] R. Milner. Communicating and mobile systems - the Pi-calculus. Cambridge
University Press, 1999.

[73] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I.
Information and Computation, 100(1):1�40, 1992.

[74] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II.
Information and Computation, 100(1):41�77, 1992.

[75] U. Nestmann and B. C. Pierce. Decoding choice encodings. Information and
Computation, 163(1):1�59, 2000.

[76] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assistant
for Higher-Order Logic, volume 2283 of Lecture Notes in Computer Science.
Springer, 2002.

[77] OAuthWorking Group. RFC 6749: OAuth 2.0 Framework. https://tools.
ietf.org/html/rfc6749.

[78] C. Palamidessi. Comparing the expressive power of the synchronous and
asynchronous pi-calculi. Mathematical Structures in Computer Science,
13(5):685�719, 2003.

[79] C. Palamidessi, V. A. Saraswat, F. D. Valencia, and B. Victor. On the
expressiveness of linearity vs persistence in the asychronous pi-calculus. In
21th IEEE Symposium on Logic in Computer Science (LICS 2006), 12-15
August 2006, Seattle, WA, USA, Proceedings, pages 59�68. IEEE Computer
Society, 2006.

[80] J. Pantovi¢, I. Proki¢, and H. T. Vieira. A calculus for modeling �oating
authorizations. In C. Baier and L. Caires, editors, Formal Techniques for
Distributed Objects, Components, and Systems - 38th IFIP WG 6.1 Inter-
national Conference, FORTE 2018, Held as Part of the 13th International
Federated Conference on Distributed Computing Techniques, DisCoTec 2018,
Madrid, Spain, June 18-21, 2018, Proceedings, volume 10854 of Lecture
Notes in Computer Science, pages 101�120. Springer, 2018.

[81] J. Parrow. Expressiveness of process algebras. Electronic Notes in Theoret-
ical Computer Science, 209:173�186, 2008.

[82] R. Perera and J. Cheney. Proof-relevant π-calculus: a constructive account
of concurrency and causality. Mathematical Structures in Computer Science,
28(9):1541�1577, 2018.

[83] C. A. Petri. Kommunikation mit automaten. PhD thesis, Universitat Ham-
burg, DE, 1962.

[84] B. C. Pierce. Types and programming languages. MIT Press, 2002.

[85] B. C. Pierce and D. Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409�453, 1996.

https://tools.ietf.org/html/rfc6749
https://tools.ietf.org/html/rfc6749

132 BIBLIOGRAPHY

[86] B. C. Pierce and D. N. Turner. Pict: a programming language based on
the pi-calculus. In G. D. Plotkin, C. Stirling, and M. Tofte, editors, Proof,
Language, and Interaction, Essays in Honour of Robin Milner, pages 455�
494. The MIT Press, 2000.

[87] I. Proki¢. Characterizations of multiple-valued threshold functions in the
Vilenkin-Chrestenson basis. Journal of Multiple-Valued Logic and Soft Com-
puting, (accepted).

[88] I. Proki¢. Characterization of quaternary threshold functions in the Vilenkin-
Chrestenson basis. In 48th IEEE International Symposium on Multiple-
Valued Logic, ISMVL 2018, Linz, Austria, May 16-18, 2018, pages 13�18.
IEEE Computer Society, 2018.

[89] I. Proki¢. The Cpi-calculus: a model for con�dential name passing. In
M. Bartoletti, L. Henrio, A. Mavridou, and A. Scalas, editors, Proceedings
12th Interaction and Concurrency Experience, ICE 2019, Copenhagen,
Denmark, 20-21 June 2019, volume 304 of Electronic Proceedings in The-
oretical Computer Science, pages 115�136. Open Publishing Association,
2019.

[90] I. Proki¢ and J. Pantovi¢. Nomura parameters for s-threshold functions.
In 47th IEEE International Symposium on Multiple-Valued Logic, ISMVL
2017, Novi Sad, Serbia, May 22-24, 2017, pages 248�253. IEEE Computer
Society, 2017.

[91] I. Proki¢ and J. Pantovi¢. Characterization of generalized s-threshold func-
tions by Nomura parameters. Journal of Multiple-Valued Logic and Soft
Computing, 33:271 � 290, 2019.

[92] I. Proki¢, J. Pantovi¢, and H. T. Vieira. A calculus for modeling �oating
authorizations. Journal of Logical and Algebraic Methods in Programming,
107:136 � 174, 2019.

[93] F. P. Ramsey. The foundations of mathematics. Proceedings of the London
Mathematical Society, 2(1):338�384, 1926.

[94] W. Reisig. Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, 2013.

[95] G. Rosen. Security update. https://newsroom.fb.com/news/2018/09/security-
update/.

[96] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-based
access control models. Computer, 29(2):38�47, 1996.

[97] R. S. Sandhu and P. Samarati. Access control: principle and practice. IEEE
communications magazine, 32(9):40�48, 1994.

[98] D. Sangiorgi. Expressing mobility in process algebras : �rst-order and higher-
order paradigms. PhD thesis, University of Edinburgh, UK, 1993.

BIBLIOGRAPHY 133

[99] D. Sangiorgi. pi-calculus, internal mobility, and agent-passing calculi. The-
oretical Computer Science, 167(1&2):235�274, 1996.

[100] D. Sangiorgi. On the origins of bisimulation and coinduction. ACM Trans-
actions on Programming Languages and Systems, 31(4):15:1�15:41, 2009.

[101] D. Sangiorgi. Introduction to bisimulation and coinduction. Cambridge Uni-
versity Press, 2011.

[102] D. Sangiorgi and D. Walker. The Pi-Calculus - a theory of mobile processes.
Cambridge University Press, 2001.

[103] A. Scalas and N. Yoshida. Less is more: multiparty session types revisited.
PACMPL, 3(POPL):30:1�30:29, 2019.

[104] P. Sewell, J. J. Leifer, K. Wansbrough, F. Z. Nardelli, M. Allen-Williams,
P. Habouzit, and V. Vafeiadis. Acute: High-level programming language
design for distributed computation. Journal of Functional Programming,
17(4-5):547�612, 2007.

[105] D. J. Solove. A taxonomy of privacy. University of Pennsylvania Law Review,
154:477, 2005.

[106] N. Swamy, J. Chen, and R. Chugh. Enforcing stateful authorization and
information �ow policies in �ne. In A. D. Gordon, editor, Programming
Languages and Systems, 19th European Symposium on Programming, ESOP
2010, Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Pro-
ceedings, volume 6012 of Lecture Notes in Computer Science, pages 529�549.
Springer, 2010.

[107] The Univalent Foundations Program. Homotopy type theory: Univa-
lent foundations of mathematics. http://homotopytypetheory.org/book,
2013.

[108] R. K. Thiagarajan, A. K. Srivastava, A. K. Pujari, and V. K. Bulusu.
BPML: A process modeling language for dynamic business models. In
Fourth IEEE International Workshop on Advanced Issues of E-Commerce
and Web-Based Information Systems (WECWIS'02), Newport Beach, Cal-
ifornia, USA, June 26-28, 2002, pages 239�241. IEEE Computer Society,
2002.

[109] M. C. Tschantz and J. M. Wing. Formal methods for privacy. In A. Cav-
alcanti and D. Dams, editors, FM 2009: Formal Methods, Second World
Congress, Eindhoven, The Netherlands, November 2-6, 2009. Proceedings,
volume 5850 of Lecture Notes in Computer Science, pages 1�15. Springer,
2009.

[110] V. T. Vasconcelos. Fundamentals of session types. Information and Com-
putation, 217:52�70, 2012.

http://homotopytypetheory.org/book

134 BIBLIOGRAPHY

[111] J. Vivas and N. Yoshida. Dynamic channel screening in the higher order pi-
calculus. Electronic Notes in Theoretical Computer Science, 66(3):170�184,
2002.

[112] P. Wadler. Propositions as types. Commun. ACM, 58(12):75�84, 2015.

[113] P. H. Welch and F. R. M. Barnes. Communicating mobile processes. In
A. E. Abdallah, C. B. Jones, and J. W. Sanders, editors, Communicating
Sequential Processes: The First 25 Years, Symposium on the Occasion of 25
Years of CSP, London, UK, July 7-8, 2004, Revised Invited Papers, volume
3525 of Lecture Notes in Computer Science, pages 175�210. Springer, 2004.

[114] A. F. Westin. Social and political dimensions of privacy. Journal of social
issues, 59(2):431�453, 2003.

[115] A. N. Whitehead and B. Russell. Principia Mathematica. Cambridge Uni-
versity Press, 1910�1913.

[116] Y. Zhao. Behavioural access control in distributed environments. PhD thesis,
University of York, 2013.

	Rezime
	Abstract
	Introduction
	Controlling information sharing
	Access control
	Publications and structure of the thesis

	A calculus for confidential name passing
	Syntax
	Action semantics
	Properties of the labeled transition system

	Reduction semantics
	Behavioral equivalence
	Strong barbed equivalence
	A characterization of the non-forwarding processes

	Examples
	Authentication
	Modeling groups and name hiding
	Open-ended groups

	Encoding forwarding
	The encoding
	Operational correspondence

	Remarks

	A calculus of floating authorizations
	Preview of the model
	Syntax
	Action semantics
	Reduction semantics
	Harmony result
	Error processes

	Behavioral semantics
	Type analysis
	Background on types
	Introducing types by examples
	Typing discipline
	Type safety
	Illustrating typing rules by examples
	Type-checking

	Extended example
	Towards applications

	Conclusion
	Summary of contributions
	Related work
	Future work

	Bibliography

