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Sažetak 

Rezultati aktuelnih istraživanja u oblasti automatskog prepoznavanja govornika pokazuju da 

metode dubokog mašinskog učenja bazirane na neuralnim mrežama omogućavaju bolje 

performance of drugih klasifikatora baziranih na skrivenim Markovljevim modelima i Gausovim 

smešama. Sa druge strane, ove metode zahtevaju dosta podešavanja vrednosti parametara da bi 

se njihove performanse optimizovale za različite zadatke nadgledanog mašinskog učenja. 

Cilj ove teze je da se demonstrira da adekvatni izbor vrednosti parametara može značajno da 

unapredi performanse metoda automatskog prepoznavanja govornika baziranih na dubokim 

neuralnim mrežama. Izložena studija predlaže jedan pristup automatskom prepoznavanju 

govornika zasnovan na neuralnim mrežama i algoritmu za stohastički gradijent. Poseban fokus se 

stavlja na tri parametra algoritma za stohastički gradijent: stopa učenja, stopa uklanjanja ulaznih 

neurona, i stopa uklanjanja skrivenih neurona. Dodatna pažnja je posvećena istraživačkom 

pitanju prepoznavanja govornika u uslovima povećane buke. 

U skladu sa tim su izvedena dva eksperimenta. Cilj prvog eksperimenta je da se demonstrira da 

se optimizacijom vrednosti posmatranih parametara algoritma za stohastički gradijent mogu 

unaprediti performanse prepoznavanja govornika u uslovima bez buke. Ovaj eksperiment je 

organizovan u dve faze. U prvoj fazi je posmatrana stopa prepoznavanja za različite vrednosti 

stope uklanjanja skrivenih neurona i stope učenja, dok je stopa uklanjanja ulaznih neurona bila 

konstantna. U drugoj fazi ovog eksperimenta je posmatrana stopa prepoznavanja za različite 

vrednosti stope uklanjanja ulaznih neurona i stope učenja, dok je stopa uklanjanja skrivenih 

neurona bila konstantna. 

Cilj drugog eksperimenta je da se demonstrira da se optimizacijom vrednosti posmatranih 

parametara algoritma za stohastički gradijent mogu unaprediti performanse prepoznavanja 
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govornika u uslovima povećane buke. Stoga su različiti nivoi buke veštački dodati izvornom 

govornom signalu. 

Dobijeni rezultati pokazuju da se optimizovanjem stope uklanjanja neurona unapreñuju 

performanse prepoznavanja govornika baziranog na stohastičkom gradijentu, čak i u uslovima 

povećane buke. Takoñe je pokazano da izbor adekvatne vrednosti stope učenja predstavlja važan 

zadatak, jer neke vrednosti ovog parametra negativno utiču na performanse prepoznavanja 



Abstract 

Recent researches in the field of automatic speaker recognition have shown that methods based 

on deep learning neural networks provide better performance than other statistical classifiers. On 

the other hand, these methods usually require adjustment of a significant number of parameters. 

The goal of this thesis is to show that selecting appropriate value of parameters can significantly 

improve speaker recognition performance of methods based on deep learning neural networks. 

The reported study introduces an approach to automatic speaker recognition based on deep 

neural networks and the stochastic gradient descent algorithm. It particularly focuses on three 

parameters of the stochastic gradient descent algorithm: the learning rate, and the hidden and 

input layer dropout rates. Additional attention was devoted to the research question of speaker 

recognition under noisy conditions. 

Thus, two experiments were conducted in the scope of this thesis. The first experiment was 

intended to demonstrate that the optimization of the observed parameters of the stochastic 

gradient descent algorithm can improve speaker recognition performance under no presence of 

noise. This experiment was conducted in two phases. In the first phase, the recognition rate is 

observed when the hidden layer dropout rate and the learning rate are varied, while the input 

layer dropout rate was constant. In the second phase of this experiment, the recognition rate is 

observed when the input layers dropout rate and learning rate are varied, while the hidden layer 

dropout rate was constant. The second experiment was intended to show that the optimization of 

the observed parameters of the stochastic gradient descent algorithm can improve speaker 

recognition performance even under noisy conditions. Thus, different noise levels were 

artificially applied on the original speech signal. 
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The obtained results show that dropout optimization can significantly enhance the performance 

of stochastic gradient descent method in automatic speaker recognition even under noisy 

conditions. It is also shown that selecting an appropriate value of the learning rate is also a very 

important task, since for some values of this parameter, the performance of the method is 

negatively affected. 
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Chapter 1 

Introduction 

1.1 Motivation and aim of research 

The speech signal contains the information about the language (acoustic phonetic symbols), 

prosody (intonation signals), gender (vocal tract and pitch – frequency of voiced sounds), age, 

accent (formants), speaker's identity, emotion and health (Gold et al. 2011, Vaseghi 2007, 

Rashmi 2014). While the aim of speech recognition is to recognize the spoken words in speech, 

speaker recognition identifies the speaker by recognizing the spoken phrase, and verifies the 

speaker (Srinivas et al 2014). The abilities of decoding the speech signals, understanding the 

linguistic and speaker information in speech, and recognizing the speaker, are needed in many 

speech aided applications, such as access control, access to confidential information, voice 

command control, transaction authentication, and audio archive indexing (Desai and Joshi 2014, 

Beigi 2011, pp.16-22). 

Recent researches have shown that speaker recognition methods based on deep learning neural 

network provide better performance than other classifiers (e.g. based on n-grams, hidden Markov 

models and Gaussian mixture models, cf. Chapter 2). However, these methods usually require 

adjustment of a significant number of parameters. 

The main goal of this thesis is to show that selecting a good combination of parameters can 

significantly improve speaker recognition performance of methods based on deep learning neural 
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networks even in a noisy environment. More precisely, the thesis demonstrates that selecting an 

appropriate combination of parameters of the stochastic gradient descent algorithm (i.e. the 

learning rate, and the hidden and input layer dropout rates) can improve performance for the 

speaker recognition task. Two experiments were conducted for this purpose. The first experiment 

shows that the optimization of the observed parameters of the stochastic gradient descent 

algorithm can improve speaker recognition performance under no presence of noise. The second 

experiment shows that the optimization of the observed parameters of the stochastic gradient 

descent algorithm can improve speaker recognition performance when different noise levels are 

applied on the original speech signal. 

1.2 Outline of the thesis 

The rest of this introductory chapter briefly considers the tasks of speech recognition and speaker 

recognition, and selected applications of these technologies.  

The Chapter 2 provides an overview of work in the field of speech recognition. It discusses in 

detail the statistical approach to speech recognition, including language modeling, acoustic 

modeling, and decoding, and emphasizes some limitations of the statistical approaches, 

especially those related to speech variations due to environmental noise. In addition, the chapter 

overviews of the relevant research on neural networks aimed at overcoming the shortcomings of 

the statistical approaches, while a more detailed technical discussion on methods based on neural 

networks is given in Chapter 4. 

The speaker recognition process is fundamentally based on acoustic feature matching. Thus, 

Chapter 3 reports on 83 state-of-the-art acoustic features that are considered in this study, 

including pitch, intensity, and four orders of formants family, four orders of formants bandwidth, 

standard deviation, mean autocorrelation, mean noise-to-harmonics ratio and mean harmonics-
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to-noise ratio. In addition, this chapter discusses in more detail different phases of the extraction 

process for the frequently used Mel-Frequency Cepstral Coefficients. 

Chapter 4 first considers the theoretical concepts and methods that are relevant to neural 

networks and deep learning, including the notions of a sigmoid neuron and a deep feedforward 

neural network, the stochastic gradient descent algorithm, the backpropagation algorithm for 

computing gradient of a cost function, and the dropout method for addressing the problem of 

overfitting a neural network. Finally, the chapter introduces the neural network-based approach 

applied in the scope of this thesis for the purpose of automatic speaker recognition.  

Chapter 5 reports on the experiments conducted in order to demonstrate the appropriateness of 

the approach in Chapter 4 for realistic conditions. The chapter first describes the VidTIMIT 

corpus that was used in the experiments, and then reports on the experimental settings and 

discusses the experimental results. 

Chapter 6 makes concluding remarks. 

1.3 Speech recognition 

The term automatic speech recognition can be seen as computational mapping an acoustic signal 

to a sequence of words (Jurafsky and Martin 2009). Specification requirements for speaker 

recognition systems can vary significantly. Jurafsky and Martin (2009) differentiate among four 

dimensions of variation: 

• The size of vocabulary. On the one side of the spectrum there are systems that are 

designed to recognize a very limited set of words, e.g., digits, etc. On the other side of the 

spectrum there are systems designed to recognize words form large vocabulary. 

Currently, large vocabularies contain 20,000 to 60,000 words. 



Ashrf Nasef                                  

 

22 

 

• Fluency of speech. This dimension is related to the naturalness of speech. Recognition of 

isolated words is a relatively simple problem, but a user interface that integrates an 

isolated word recognition system is limited and not very natural. Continuous speech 

recognition systems are much more natural and useful, but their design is also more 

difficult. 

• Variation in channel and noise. The quality of microphone and the noise level influence 

speech recognition to a great extent. Thus, design requirements for a speech recognition 

system intended to be used in a relatively silent laboratory settings and with a head 

mounted microphone will differ from design requirement for a system intended to be 

used in noisy settings and with a table microphone. 

• Speaker-class characteristics. Speech recognition systems are usually designed for a 

target group of users described by a given speech corpus. Thus, such systems are tuned to 

recognize speech in that is considered standard with respect to the target group. However, 

any nonstandard speech makes recognition harder and prone to errors. 

One of the fundamental assumptions of automatic speech recognition relates to the noisy channel 

model (Jurafsky and Martin 2009). Namely, the acoustic waveform is considered as being noisy 

version of the source sentence due to passing through a communication channel. The speech 

recognition task can be described as a search through a space of all possible sentences in order to 

select a sentence with the highest estimated probability of giving the noisy sentence (cf. Fig. 

1.1). The process of searching and selection is called decoding, and will be discussed in more 

detail in Chapter 2. 

 

Figure 1.1: The noisy channel model (cf. Jurafsky and Martin 2009). 
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1.4 Speaker recognition 

The term automatic speaker recognition is widely and sometimes confusingly used. Beigi (2011) 

states that this term broadly refers to:  

[…] any procedure which involves knowledge of the identity of a person based on 

his/her voice (Beigi 2011, p. 3). 

According to Beigi, speaker recognition braches can be classified in two broad groups. The first 

group includes self-contained branches: speaker verification (or speaker authentication), speaker 

identification, and speaker classification. The second group includes branches that extend the 

simple branches by some additional functionality, i.e. speaker segmentation, speaker detection, 

and speaker tracking (Beigi 2011, pp. 3- 5). The following subsections will briefly discuss these 

branches. 

Alternatively, speaker recognition tasks can be classified as text-dependent or text-independent. 

Text-dependent speaker recognition systems take into account the linguistic content of the user’s 

utterance. Therefore, the user is required to utter a predefined sequence of words. Text-

dependent speaker recognition is nowadays applied only for the verification task, because it is 

prone to spoofing attack from impostors, such as replay of pre-recorded utterances, advanced 

text-to-speech syntehsis or voice conversion (Shiota et al. 2016, Beigi 2011, pp. 12-14). In 

contrast to this, text-independent speaker recognition does not take into account linguistic 

content of uttered sentences, and is thus applicable to various speaker recognition tasks. 

1.4.1 Speaker verification 

In the speaker verification task, a given speaker makes an identity claim, and the verification task 

can be described as determining whether this claim holds or not. A speaker verification system 
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uses the user’s identity claim to retrieve a target speaker model from an underlying database of 

user models, and compares it with the speech signal of the test speaker. The aim of this 

comparison is to evaluate the similarity of the test and target speaker. Two approaches that are 

usually applied for the purpose of this comparison rely on a universal background model and a 

cohort model, respectively (Beigi 2011, pp. 6-7). A universal background model is a model 

derived from a large population of speakers, and in this approach the test speaker is compared 

not only to the target speaker but also to the average population. If the system determines that the 

test speaker is closer to the average speaker than to the target speaker, the probability that the 

identity claim holds will be evaluated as low. In the second approach, each target speaker is 

associated with a cohort of other similar target speakers. If the system determines that the test 

speaker is closer to the target speaker than to the associated cohort, the probability that the 

identity claim holds will be evaluated as high (Beigi 2011, pp. 6-7). 

In any case, the decision of an automatic verification system is always binary, it either accepts of 

rejects the identity claim of the test speaker. The identity claim is accepted only if the probability 

that a given sentence is uttered by the target speaker is greater than a threshold (Wildermoth 

2001, p. 3): 



 >

=
otherwisereject

thresholdsPaccept
decision i

,

)(,
, (1.1) 

where: 

• s is the uttered sentence, 

• )(sPi is the probability that sentence s is uttered by the ith speaker, 

• threshold is an experimentally derived value. 
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Figure 1.2: Speaker verification diagram. 

A diagram describing the speaker verification task is given in Fig. 1.2. 

1.4.2 Speaker identification 

A speaker identification system is designed to recognize a given set of speakers. The 

identification task can be described as relating a given speech signal of an unknown speaker to 

one of the known speakers (Mølgaard  and Jørgensen 2005). In addition, this task is further 

divided in closed-set identification and open-set identification. In closed-set identification, a 

given test speaker is compared to all speakers in an underlying database, and related to the most 

similar of the available speakers. Open-set identification includes a rejection scheme, and may be 

described as a combination of closed-set identification and verification: first, the test speaker is 

mapped to one of the speakers available in a database, and then the selected target speaker is 

verified (Beigi 2011, pp. 7-8). 

A diagram describing closed-set identification task is given in Fig. 1.3 and 1.4. For closed-set 

identification, the resulting speaker belongs to the set the speakers available in the database. For 

open-set identification, the result may also include a rejection of the test speaker.  
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Figure 1.3: Closed-set identification diagram. The resulting speaker ID belongs to one of the 

speakers available in the database. 

 

Figure 1.4: Open-set identification diagram. The result may also include a rejection of the test 

speaker. 

1.4.3 Speaker classification 

The aim of the speaker classification task is to group speech signals that are similar according to 

some criterion. Speaker classification has various manifestations, such as gender classification, 
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age classification, etc. Similarly to speaker verification and identification, the classification task 

is also based on a set of acoustic features. However, the informative value of a certain feature 

may vary accross different classification tasks. For example, pitch is often used for the gender 

classification task,  while jitter, shimmer and spectral envelopes are used to determine the age of 

a speaker (Beigi 2011, pp. 8-9). 

1.4.4 Compound branches of speaker recognition 

The currently most popular compound branches of automatic speaker recognition are speaker 

segmentation, speaker detection, and speaker tracking (Beigi 2011, pp.9-12). 

The speaker segmentation task can be described as dividing an audio stream into portions that 

contain speech of separate speakers and other sounds such as music, noise, etc. It is an important 

practical step both for speech recognition and speaker recognition, since recognizable speech in 

an input audio stream must first be separated from other sounds. In a general case of speaker 

segmentation, both the identities of speakers in an audio stream and their number are not known 

in advance. In a special case when the identities of the speakers are known, the segmentation task 

is reduced to the identification task.  

The main goal of the speaker detection task is to detect speakers in an audio stream. This task 

includes speaker segmentation, since the observed stream may contains more speakers and 

additional sounds. In addition, this task also includes speaker verification, speaker identification, 

or their combination, depending on specification requirements for a speaker detection system. If 

all speakers in the audio stream are known, and there are no additional sounds, the closed-set 

identification can be applied for each segment. Otherwise, if not all speakers are known or there 

are additional sounds, the number of speakers that should be detected is used to determine the 

approach. If this number is small, verification can be applied on each segment and for each 
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speaker. If the number of speakers is large, then open-set identification (i.e. with  verification of 

the identified speaker, cf. Fig. 1.4) can be applied.  

The goal of the speaker tracking task is to tag different speakers in a given audio stream. 

Compared with the speaker detection task, speaker tracking does not require enrolment data, i.e. 

when the identities of speakers are not known, it is enough if a speaker tracking system identifies 

different speakers with different labels that do not necessarily relate to the speakers’ identities 

(Beigi 2011, pp.9-12). 

1.5 Applications 

The speaker recognition technology is still not mature, but its applications are manifold, 

including the following (Beigi 2011, pp.5, 16-22): 

• Forensic, legal applications, surveillance. The important characteristics of utilizing 

speech for such applications are that it can be collected relatively easily, on a large scale, 

and without the user knowldegde. Speaker recognition for these purposes is usually 

applied in the passive manner, i.e. a speaker recognition system does not influence the 

flow or type of the speeech data. However, surveillance applications have induced legal 

and ethnical concerns recently. 

• Audio indexing. Audio indexing is the most common application of autimatic speaker 

recognition. It integrates speaker segmentation, detecting and tracking. In addition, 

indexing can be combined with speech recognition for the purpose of transcription of a 

given audio stream. One of the domains that can utilize audio indexing is 

teleconferencing. 
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• Access control. Exploiting speech as biometric for the purpose of access control has a 

distinguished advantage over other biometric sensors in application scenarios when the 

user is physically dislocated. In such applications, speech can be transmitted through a 

computer network or a telephony network, which is usually not a challenging task 

because these networks are well distributed. 

The abovementioned applications certainly do not represent a complete list, and it may be said 

that speaker recognition has a potential to be utilized in many real-world application, especially 

keeping in mind ever growing number of mobile phones and other mobile devices with 

integrated microphones. 
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Chapter 2 

Related work 

2.1 Introduction 

This chapter provides an overview of related work in the field of speech recognition. The 

currently dominant approach relates to statistical pattern matching. Thus, this chapter first reports 

on the statistical approach to speech recognition (cf. Section 2.2), including language modeling 

based on n-grams (Subsection 2.2.1), acoustic modeling based on hidden Markov models 

(Subsection 2.2.2), and decoding, i.e. determining the most probable sequence of words 

(Subsection 2.2.3). Subsection 2.2.4 emphasizes some limitations of the statistical approaches, 

especially those related to speech variations due to environmental noise. Neural networks 

represent a promising research direction to overcome the shortcomings of the statistical 

approaches. Section 2.3 briefly discusses the deep learning for speech recognition (a more 

detailed discussion is provided in Chapter 4), and provides an overview of the relevant research 

on neural networks in the context of speech recognition. Section 2.4 concludes this chapter. 

2.2 The statistical approach to speech recognition 

An important assumption in the context of speech processing is that a speech signal can be 

observed as a sequence of short segments, each of which can be considered as the output of a 

linear time-invariant system (Rabiner and Schafer 1978, p. 355). Therefore, each of these 
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segments can be appropriately described by a numeric value, with respect to its frequency, 

energy, etc. Let nwwwW K21=  be a sentence, and toooO K21=  a representation of a 

corresponding acoustic signal that consists of a sequence of observations, where observation 

tioi ≤≤1, , describes the thi  segment of the acoustic signal. The probabilistic approach to speech 

recognition can be formulated as (Jurafsky and Martin 2009): 

)|(maxarg OWPW
LW∈

∧
= , (2.1) 

i.e. sentence W with the largest probability )|( OWP is selected as optimal. To estimate the 

probabilities in the above equation, the Bayes’ rule is applied (Jurafsky and Martin 2009): 

)(

)()|(
maxarg

OP

WPWOP
W

LW∈

∧
= , (2.2) 

where the prior probability of the sentence )(WP may be calculated by a language model, and the 

observation likelihood )|( WOP may be evaluated by an acoustic model. In contrast to these 

probabilities, the probability of a sequence of observations )(OP  cannot be evaluated. However, 

)(OP  is a constant value for each sentence LW ∈ , so the above equation can be simplified 

(Jurafsky and Martin 2009): 

)()|(maxarg WPWOPW
LW∈

∧
= . (2.3) 

The process of selecting an optimal sentence is illustrated in Fig. 2.1.  
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Figure 2.1: Illustration of a speech recognition process (cf. Jurafsky and Martin 2009). 

The following three subsections discuss the language and acoustic models, and the decoding 

process in model details, while Chapter 3 reports on the process of generating acoustic 

observations (so-called feature extraction). 

2.2.1 Language modeling 

N-grams are statistical language models that can estimate a probability of a sentence or a 

probability of a word that follows a given sequence of words, based on a given language corpus 

(Jurafsky and Martin 2009). For the purpose of clarity, and without loss of generality, a special 

case of n-grams, so-called bigrams, is considered here.  

To estimate a probability of a sequence of words nwwwW K,2,1= , the conditional probability rule 

may be applied, i.e. )|()()( ABPAPABP = . Thus, the probability of a sequence of words can be 

represented as (Jurafsky and Martin 2009): 

),2,|()2,|()|()(),2,()( 11131211 −== nnn wwwwPwwwPwwPwPwwwPWP KLK . (2.4) 
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But the conditional probabilities in the equation (2.4) cannot be estimated directly, due to limited 

size of underlying linguistic corpora. In order to compute them, the Markov assumption is 

adopted, i.e., that the conditional probability of a word does not depend on the whole preceding 

sequence of words, but only on the immediately preceding word (Jurafsky and Martin 2009): 

)|(),2,|( 111 −− = nnnn wwPwwwwP K . (2.5) 

Now, the equation (2.4) can be simplified: 

)|()2|()|()(),2,()( 131211 −== nnn wwPwwPwwPwPwwwPWP LK  (2.6) 

In contrast to equation (2.4), the conditional probabilities in equation (2.6) can be estimated 

directly, using the maximum likelihood estimation (Jurafsky and Martin 2009): 

)(

)(
)|(

1

1
1

−

−
− =

n

nn
nn wC

wwC
wwP ,  (2.7) 

where: 

• )( 1 nn wwC −  is the number of occurrences of bigrams nn ww 1−  in a given language corpus, 

• )( 1−nwC  – is the number of occurrences word 1−nw  in a given language corpus. 

In a general case of n-grams, when (N-1) preceding words are considered when estimating the 

probability of a given word, the equation for maximum likelihood estimation is (Jurafsky and 

Martin 2009): 

)(

)(
)|(

11

1
11

−+−

+−
−+− =

nNn

nNn
nNnn wwC

wwC
wwwP

K

K
K .  (2.8) 
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Keeping in mind that the maximum likelihood estimation is based on a given language corpus, it 

is possible that the probability of some realistic sequences of words is evaluated to zero or close 

to zero, simply because they contain a bigram that is not present in the corpus or appears rarely. 

To overcome this problem we can apply the Laplace smoothing to n-gram probabilities. For the 

case of bigrams, the Laplace smoothing is represented as (Jurafsky and Martin 2009): 

VwC

wwC
wwP

n

nn
nn +

+
=

−

−
− )(

1)(
)|(

1

1
1 ,  (2.9) 

where V is the number of word types in the given corpus. 

A language corpus is very important for the purpose of training an n-gram model. A usual 

approach is to divide a corpus in at least two parts: a training set and a test set. The n-gram 

probabilities are calculated over the training set, and afterwards tested over the test set. When 

dividing a language corpus, one must ensure that these two data sets do not contain same 

sentences, because it would result in a model that is biased, i.e. the probabilities of such 

sentences would be estimated as higher than they should be.  An alternative division of language 

corpora has tree data sets: a training set, a development set, and a test set. A development set is 

used to set other parameters of a model or to provide additional test set. Jurafky and Martin 

(2009) state that, in practice, a language corpus is usually divided into 80% training, 10% 

development, and 10% test. 

Perplexity is often used for the evaluation of n-gram models. The perplexity of a given test 

sentence nwwwW K,2,1=  is (Jurafky and Martin 2009): 

N
nn wwPwwPwwPwPWPP

1

13121 ))|()2|()|()(()(
−

−= L  (2.10) 
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Lower perplexity signals more adequate test set probabilities. The basic idea is that the quality of 

a language model can be evaluated to the extent to which it fits to test data. Thus, perplexity can 

be used to compare between different language models. 

2.2.2 Acoustic modeling 

Modern speech recognition systems very often apply hidden Markov models for acoustic 

modeling (Jurafsky and Martin 2009, Bishop 2006, Rabiner and Juang 1993, Rabiner 1989). A 

hidden Markov model is determined by: 

• Q  – set of hidden states, including a start stat and a final state. 

• nnA ×  – transition probability matrix, where element ija  is the probability of transition 

from state i to state j, 

• )( ti obB =  – a sequence of observation likelihoods (i.e. emission probabilities), where 

element )( ti ob  is the probability that observation to  is emitted from state iq . 

 

Figure 2.2: Five-state hidden Markov model of a phone. States s0 and s4 are the start and final states, 

respectively. The emitting states s1, s2 and s3 correspond to entry-transition, steady-state and exit-

transition parts of a phone, respectively. 
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Acoustic models are based on hidden Markov models in which phones represent hidden states, 

and acoustic feature vectors represent observations. A phone is modeled by a hidden Markov 

model that contains five states, as illustrated in Figure 2.2. Two of these states are non-emitting 

states, i.e., the start and the final states, while the rest three states correspond to entry-transition, 

steady-state and exit-transition parts of a phone (cf. Jurafsky and Martin 2009). 

For the purpose of illustration, a hidden Markov model of a word consisting of three phones is 

depicted in Fig. 2.3. It can be observed that such hidden Markov models have a so-called Bakis 

network, which means that they do not contains transitions to earlier states. 

 

Figure 2.3: A hidden Markov model of a word consisting of three phones. 

Let },,,{ 21 kwwwV K= be a vocabulary consisting of k words. For each word Vwi ∈ , a hidden 

Markov model iλ  that represents the given word may be defined. The estimation of parameters 

of these models is based on a training set, i.e. they optimize the likelihood of acoustic 

observations. Recognition of an isolated word from the vocabulary represented by observation 

sequence O can be formulated as (Rabiner 1989, p. 276, cf. fig. 2.4): 

)|(maxarg
||1

i
Vi

OPv λ
≤≤

∧
= . (2.11) 
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For each hidden Markov model iλ , the likelihood )|( iOP λ is calculated, and the word represented 

by a hidden Markov model that generates the maximum likelihood is selected. The likelihood of 

observation toooO K21=  is estimated as follows (Jurafsky and Martin 2009): 

∑ ∑==
Q Q

QPQOPQOPOP )()|(),()( , (2.12) 

where: 

∏∏
=

−
=

⋅==
t

i
ii

t

i
ii qqPqoPQPQOPQOP

1
1

1

)|()|()()|(),( . (2.13) 

 

Figure 2.4: Illustration of isolated word recognition. Hidden Markov model iλ  represents word Vwi ∈  

(cf. Rabiner 1989, p. 276). 

However, the described calculation is time-consuming and can be optimized by applying the 

forward algorithm, given in fig. 2.5 (Jurafsky and Martin 2009). To explain the algorithm, the 

forward path probability )( jlα  is conceptualized to represent the probability that a given hidden 

Markov model will be in state j  after the observation sequence looo K21  is emitted, i.e.,  
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),()( 21 jqoooPj tll == Kα . (2.14) 

 

Initialization: 

)()( 101 obaj jj=α , where nj ≤≤1 . 

Recursive step: 

∑
=

−=
n

i
ljijll obaij

1
1 )()()( αα , where tlnj ≤≤≤≤ 1,1 .                                                      (2.15) 

Final step: 

∑
=

==
n

i
iftft aiqOP

1

)()()|( ααλ , where fq is the final state. 

Figure 2.5: The forward algorithm. 

This probability can be defined recursively. If the model was in state i  in the previous time step, 

and its forward path probability was )(1 il −α , then the probability )( jlα is equal to: 

)()()( 1 ljijll obaij −= αα . (2.16) 

Since the above probability is evaluated under the assumption that the model was in a specific 

state i , it does not allow for arbitrary transitions in state j . Thus, it represents only one portion 

of the probability )( jlα  in a general case. The equation (2.16) can be generalized, so that the 

forward path probability )( jlα is calculated by summing partially calculated probabilities over all 

possible states, as formulated in equation (2.15). This recursive step is illustrated by the forward 

trellis given in fig. 2.6. The forward algorithm significantly reduces the calculation complexity, 

i.e. to )( 2tnO . 
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Figure 2.6: The forward trellis. 

2.2.3 Decoding 

The decoding problem relates to discovering the most probable path through states of a given 

hidden Markov model for a given sequence of observation. For this purpose, the Viterbi 

algorithms is often applied (Jurafsky and Martin 2009, cf. fig. 2.7). 

The Viterbi path probability )( jvl  represents the probability that a given hidden Markov model 

will be in state j  after the observation sequence looo K21  has been emitted and the model passed 

through the most likely sequence of hidden states 121 −lqqq K , i.e.,  

),,()( 21121 jqoooqqqPjv tlll == − KK . (2.18) 
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This probability can be defined recursively, similarly as the forward path probability (Jurafsky 

and Martin 2009): 

)()(max)( 1
1

ljijl
ni

l obaivjv −
≤≤

= ,  (2.19) 

where:  

• )(1 ivl −  is the Viterbi path probability for state i  in the previous time step 1−l ,  

• ija  is the transition probability, 

• )( lj ob  is the state observation likelihood, 

as defined at the beginning of the previous section. In addition, the Viterbi algorithm recursively 

defines a sequence of backpointers )( jlβ  that enable backtracking in order to determine the 

optimal sequence of hidden states (Jurafsky and Martin 2009).  

Initialization: 

)()( 101 obajv jj= , where nj ≤≤1 , 

0)(1 =jβ , where nj ≤≤1 . 

Recursive step: 

)()(max)( 1
1

ljijl
ni

l obaivjv −
≤≤

= , where tlnj ≤≤≤≤ 1,1 ,                                                 (2.17) 

 )()(maxarg)( 1
1

ljijl
ni

l obaivj −
≤≤

=β , where tlnj ≤≤≤≤ 1,1 . 

Final step: 

)(max 1
1

tvP l
ni

−
≤≤

= ,  

 )(maxarg)( 1
1

tvq l
ni

ft −
≤≤

=β , where fq is the final state.  

Figure 2.7: The Viterbi algorithm. 
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Isolated word recognition was already illustrated in fig. 2.4. However, large vocabulary 

continuous speech recognition requires also cross-word decoding, so the observed set of hidden 

Markov models, each of which represents a word from a vocabulary, has to be extended. For the 

purpose of clarity, we assume that the observed vocabulary contains only two words: 21, ww .  

 

Figure 2.8: Cross-word decoding: (a) illustration of a hidden Markov model of an isolated word, 

containing only intra-word transitions, (b) Viterbi trellis for an isolated word, (c) illustration of a hidden 

Markov model for a vocabulary, extended with inter-word transitions, (d) extended Viterbi trellis. The 

intra-word transitions are denoted by solid arrows. The inter-word transitions are denoted by dashed 

arrows. 

Fig. 2.8(a) illustrates a hidden Markov model that describes an isolated word. This model 

includes only intra-word transitions, denoted by solid arrows. The corresponding Viterbi trellis 
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is given in Fig. 2.8(b). However, a hidden Markov model that describes both words in the 

vocabulary consists of models for each word extended with inter-word transitions, e.g. the 

bigram probabilities of transitions from one word to another: 

)|(),|(),|(),|( 22211211 wwPwwPwwPwwP , as shown in 2.8(c). The Viterbi trellis for the extended 

model is given in 2.8(d). The inter-word transitions are denoted by dashed arrows. It is important 

to emphasize that the probabilities of inter-word transitions are derived from the language model. 

Such an extension allows for calculation of a Viterbi trellis for a sentence. Still, the Viterbi 

algorithm has to be further optimized in order to be appropriate for large vocabulary speech 

recognition. Usually, when considering inter-word transitions, paths of low probability are 

pruned. In other words, not all words are considered in each step (Jurafsky and Martin 2009).  

2.2.4 Limitations of the statistical approaches 

Dealing with environmental noise (such as car engine, traffic noise, white noise, crowd noise, 

etc.) and speech signal variations caused by modifications of articulation (that can be found in 

the speaker’s pitch, etc.) represents an important issue in automatic speech recognition (Santos et 

al. 2015, Kacur 2004). The current speech recognition systems are designed to work in 

controlled environments using clean speech, and so far have reached high levels of performance 

(Alam et al. 2015). However, when exposed to noisy environments, the performance of these 

systems degrades rapidly. Due to ever increasing use of speech-based user-centric applications 

(such as voice interactions with mobile devices like Bing voice search, Siri on iPhone, etc.), 

noise robustness is becoming an important requirement (Li et al. 2014, Cui and Alwan 2005). 

Noise may be broadly classified as additive noise generated by external sound sources, and 

convolutional noise caused by channel characteristics (Jurafsky and Martin 2009). Diverse 

techniques are applied to improve speech recognition in noisy conditions. Noise resistance 

features and similarity measurements techniques focus on the effects of noise on the speech 

signal, rather than on the noise removal, attempting to derive features which are noise resistant. 
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Speech enhancement techniques attempt to remove the corrupting noise without altering 

parameters of the acoustic model (Kumar and Florencio 2016). Model adaptation technique aim 

at changing acoustic model parameters in accordance with the noisy speech signal, i.e. the 

statistical modeling techniques are trained using clean speech and then are adapted to noisy 

speech.  

The majority of speech recognition systems use hidden Markov models combined with Gaussian 

mixture model probability density functions to compute the likelihood of an acoustic feature 

vector. The output likelihood probability function is defined as (Jurafsky and Martin 2009): 

∑
=

− −Σ−⋅
Σ

=
jG

i
jitji

t
ji

ji

ji
lj ox

c
ob

1

1 ))()exp((
||2

)( µµ
π

, (2.20) 

where: 

• jG  is the total number of Gaussian mixture models probability density functions assigned 

to state j , 

• jic  is the mixture weight assigned to i th mixture model, 

• jiµ  – mean of the Gaussian distribution assigned to ith model, 

• jiΣ  – covariance matrix of the Gaussian distribution assigned to i th model. 

However, Gaussian mixture models suffer from severe disadvantage reflected in the fact that the 

modeling of even small non-linear deviations may require a large number of Gaussians, which 

makes them inefficient for acoustic modeling of data (Hinton et al. 2012). Thus, this approach is 

easily affected by speech variations in daily conversations, particularly are sensitive to mismatch 

introduced by environmental noise (Seltzer et al. 2013). 
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2.3 Deep learning for speech recognition 

Developments in the field of deep neural networks demonstrated convincing improvements in 

speech recognition performance, and suggest that neural networks may be applied to overcoming 

the disadvantages of the statistical approaches. The fundamental architecture across deep neural 

network systems is a network that consists of several hidden layers of connected neurons whose 

activations are a nonlinear function of a linear combination of the activations of the previous 

layer. The most used hidden neuron activation function is the sigmoid function. However, in this 

thesis the rectified linear unit is applied (cf. Chapter 4, Nasef et al. 2017a, Nasef and Marjanović-

Jakovljević 2017b). Compared to the sigmoid function, it is found that a rectified linear unit 

significantly accelerates the convergence of stochastic gradient descent, since the activation is 

simply setting the threshold at zero (Maas et al. 2013). Networks with such a function are often 

trained with a dropout regularization technique for improved generalization for large models 

(Srivastava et al. 2015). The final layer usually does not have an activation function, because it is 

taken to represent the class scores which are either real-valued numbers or a target. 

Gradient descent learning algorithms minimize neural network loss functions by iteratively 

computing the gradient to adjust the weights, and using them to update parameters at every step. 

Parameter update requires the learning rate to be set to an appropriate value. The learning rate 

determines how fast the algorithm moves towards the optimal weights. If the learning rate is too 

low, then the algorithm will perform too many iterations while converging to optimal values, and 

thus be inefficient, and if the learning rate is too high, the progress will be faster, but with a risk 

that the optimal solution will be omitted. Therefore, using a good learning rate is crucial.  

Gradient descent learning algorithms estimate the gradient on a large dataset (batch), performing 

redundant computations (as recomputed gradients for similar examples before each parameter 

update). The stochastic gradient descent is usually much faster because it estimates the gradient 

from just a few examples at a time instead of the entire training set. Mini-batch stochastic 
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gradient descent takes the best of the both approaches and performs an update for every mini-

batch whose size is usually between 50 and 256. A more detailed elaboration of neural networks 

is provided in Chapter 4. 

Recently, researchers have started to explore several different strategies for using deep neural 

networks for speech recognition, speaker recognition, and spoken language recognition tasks 

(Srinivas et al. 2014, Richardson et al. 2015, McLaren et al. 2015). Among the first results, in 

2000, was the use of deep belief networks, which are based on restricted Boltzmann machines, 

and deep autoencoders (Vasilakakis et al. 2013). However, training deep neural networks with 

big number of hidden layers with autoencoders has shown to be a quite difficult task (Le 2015). 

From 2006, dimensionality of data with autoencoder networks was reduced by gradient descent 

which is used for fine-tuning the weights (Hinton and Salakhutdinov 2006). Furthermore, this 

approach has branched into major variants, such as batch gradient descent, stochastic gradient 

descent, and mini-batch gradient descent (Le et al. 2011). When dealing with continuous speech 

recognition, the recurrent neural networks were proposed (Robinson et al. 1996). 

One of the recent advances in deep neural networks, that improve its performance, optimization, 

and prediction quality, are rectified linear units, and dropout (to overcome the problem of 

overfitting) (Dahl et al. 2013). However, there are still challenges that remain to be addressed. 

Sutskever et al. (2013) showed the importance of momentum-accelerated stochastic gradient 

descent that uses well-designed random initialization. Le et al. (2011) introduced more 

sophisticated optimization methods such as Limited memory Broyden-Fletcher-Goldfarb-Shanno 

and conjugate gradient that simplify and speed up the process of pre-training deep algorithms. 

Senior, et al. (2013) trained deep neural networks for large vocabulary speech recognition with 

mini-batch stochastic gradient descent by using a variety of learning rate schemes. They show 

that adequate choice of learning rate schemes leads to faster convergence, and lower word error 

rates. 
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There are few research works that have addressed the robustness of automatic speech recognition 

systems under noisy conditions using deep neural networks. Kumar and Florencio (2016) studied 

speech enhancement in office environment conditions where multiple stationary or non-

stationary noises can be simultaneously present in speech. They collected 95 noise samples 

observed in office environment that are then mixed and added to the clean utterance of the 

TIMIT training set at a random signal-to-noise ratio chosen uniformly from -5dB to 20dB. Their 

results show that strategies based on deep neural networks provide an increment in average 

perceptual evaluation of speech quality of 24%. 

In order to evaluate the performance of a deep neural network-based acoustic model for noise 

robust speech recognition, Seltzer et al. (2013) performed a series of experiments on the Aurora 

4 medium vocabulary task that is based on the Wall Street Journal corpus. The 7137 utterances 

recorded from 83 speakers include a combination of clean speech and speech corrupted by one of 

the six noises (car, street traffic, train, airport, restaurant and babble) at 10-20dB signal-to-noise 

ratio. They obtained the best performance when applying the combination of noise-aware 

training and dropout, with improvement of 7.5%. 

Mitra et al. (2014) evaluated robust features on deep and convolutional neural networks for noisy 

English continuous speech recognition task of Aurora 4, and demonstrated that they can improve 

the recognition performance compared to the mel-filterbank energies. They show that the vocal 

tract length normalization has a positive impact on improving the performance of the robust 

acoustic features. 

De-la-Calle-Silos et al. (2014) tested the robustness of different automatic speech recognition 

systems based on deep neural networks (e.g., basic deep neural networks, deep neural networks  

with dropout, and deep maxout networks) by digitally adding four different types of noises 

(white, street, music, and speaker) at four different signal-to-noise ratios to the clean speech. The 

experiments, performed on the TIMIT corpus, show improvement in the recognition accuracy 

over traditional techniques for both clean and noisy conditions. 
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Noda et al. (2015) demonstrated that a deep denoising autoencoder can effectively filter out the 

effect of noise superimposed on original clean audio inputs, and such denoised audio features 

attain noise robustness in an isolated word recognition task.  

Misamadi and Hansen (2015) explored deep neural network acoustic model adaptation in order 

to achieve improved noisy robust automatic speech recognition systems. They adapted the clean-

trained neural network model to speech data selected from the Aspire challenge data. The 

experiment uses 10 passes of adaptation data, with a mini-batch size of 256, and a fixed learning 

rate of 0.001. They obtained relative word error rate improvement of 16%. 

Kim et al. (2016) proposed a noise adaptation framework that employs knowledge of background 

noise and learns low-dimensional noise features from a trained deep neural network. In order to 

evaluate the proposed method, they trained the model using datasets, RM (Resource 

Management), and CHiME-3, and then tested it with the Aurora 4 task. They verified the 

effectiveness of the proposed noise adaptation approach in which a trained deep neural network 

dynamically adapts a speech recognition system to its usage environment. 

2.4 Conclusion 

This chapter provided an overview of related work in two broad research directions. The first 

research direction, which is currently dominant in the field, is primarily statistical and based on a 

combination of hidden Markov models and Gaussian mixture models for modeling acoustic 

representations of features extracted from the signal. Another research direction is related to 

promising and rapidly emerging methodological approach based on neural networks. 

The further chapters of this thesis will focus on the latter research direction. However, the next 

chapter considers acoustic feature extraction, which is an aspect of pattern recognition that is 
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important for both these research directions. Special attention will be devoted to acoustic features 

relevant for speaker recognition. 
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Chapter 3 

Feature extraction 

 

3.1 Introduction 

Feature matching is an important part of the speaker recognition process. In its first part, this 

chapter introduces the basic notion of feature extraction (Section 3.2), and reports on the selected 

83 state-of-the-art acoustic features that are applied in the scope of this research (Section 3.3). In 

the second part (Section 3.4), this chapter discusses in more detail different phases of the 

extraction process for the frequently used Mel-Frequency Cepstral Coefficients, including 

preemphasis, windowing, Discrete Fourier Transform, Mel filter-bank, log, Inverse Discrete 

Fourier Transform, etc. Section 3.5 concludes the chapter.  

3.2 Basic notion of feature extraction 

The purpose of feature matching is to find the best match that is used to identify the unknown 

speaker (cf. Nasef et al. 2017a). E.g., in speaker verification, the unknown speaker first claims 

identity, and then one-to-one matching is done, i.e. the claimed model is used for the 

identification. As already mentioned in Chapter 1, if the match is above a predefined threshold, 
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the identity claim is accepted. A general speaker recognition system architecture is shown in Fig. 

3.1 (Sturim et al. 2007). 

To recognize the speaker, the first step in speaker recognition system is to convert the speech 

waveform, using digital signal processing tools to a set of features for further analysis. During 

signal preprocessing, sometimes when removing unwanted information, some useful information 

can be lost. After preprocessing of the speech signal in the signal modeling, the next step is 

parameterization of speech signal, which is called feature extraction. The aim of this process is to 

produce a meaningful representation of the speech signal. Some main tasks of feature extraction 

are the conversion of the speech signal to a digital form (signal conditioning), measuring 

important characters of the signal (signal measurement), augmenting these measurements with 

derived measurements (signal parameterization), and statistical modeling. For parametrically 

representing the speech signals there are several common methods, such as Mel-Frequency 

Cepstrum Coefficients, Filter Bank Energy analysis, and others (Anusuya  and Katti 2009). 

Figure 3.1: General speaker recognition system architecture (Sturim et al. 2007). 

The result of feature extraction is a sequence of acoustic vectors that serve as a set of training 

vectors for the observed speaker (Hinton et al. 2012). The next step is pattern/feature matching 

that identifies a test speaker by matching extracted features with a set of known speakers. The 

pattern classification measures the similarity of the input feature vectors, and groups the patterns 
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that share the same properties. According to the result of the pattern classification, a recognition 

system decides whether to accept or reject a speaker (Campbell 1997). 

3.3 Selected features 

Mølgaard and Jørgensen (2005, p. 2) state some of the requirements for acoustic features 

intended to be used for the purpose of automatic speech recognition. According to them, optimal 

acoustic features: 

• differ between speakers, but are resistant to intra-speaker variations, 

• can be easily measured, 

• do not vary, or vary slowly over time, 

• are frequent and naturally-occurring, 

• do not change significantly across different environments, 

• are hard to imitate. 

In addition, Mølgaard and Jørgensen emphasize that the optimal features are based on spectral 

analysis. Indeed, speaker recognition systems usually exploit spectral features obtained from 

short time speech segments (Shriberg et al. 2005). 

In this study, we use 83 state-of-the-art features that are extracted using MATLAB or PRAAT 

software (Boersma and Weenink 2016), namely pitch, intensity, and four orders of formants 

family, four orders of formants bandwidth, standard deviation, mean autocorrelation, mean 
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noise-to-harmonics ratio and mean harmonics-to-noise ratio. These features are explained in 

more detail below (cf. Nasef et al. 2017a). 

(1) Formant frequencies (F) indicate resonating frequencies of the vocal tract. F is determined 

as: 

)(

)(
arctan

2 sre

simF
F s

π
= , (3.1) 

where: 

• Fs is sampling frequency, 

• im(s) and re(s) are imaginary and real parts of the sound signal s.  

For the purpose of this study, the maximum value (formant_max), the minimum value 

(formant_min), the standard deviation, (formant_std), the mean (formant_mean), and the median 

(formant_median) for formant bandwidths are calculated. 

(2) Pitch estimation algorithms can be divided in three approaches: time domain, frequency 

domain, and statistical approaches (Joho et al. 2007). In the scope of time domain approaches, 

for the purpose of this work, the Zero Crossing Rate (ZCR) and autocorrelation are used. From 

speech signal s, pitch can be calculated as:
 

( ){ }sss H
nωψψρ .(log)(0 = , (3.2) 

where: 

• )(0 sρ is the pitch, 
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• ψ shows  the Discrete Fourier transform function,  

• s  represents a length of the signal s, 

• ( )sH
nω  is the Hamming window, calculated as follows: 


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


−=
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nH
n

πϖ 2
cos46.054.0 , 11 −≤≤ Nn . (3.3) 

For every sequence of pitch values, a set of features is calculated, including the maximum, the 

mean and the minimum pitch, etc. These features are normalized using percentile value.   

(3) Zero Crossing Rate (ZCR) is calculated using Chen's formula (Chen 1988): 
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(3.4) 

where st, and st-1 are the values of the sound signals at time t and t-1, respectively and П{A} is 

the indicator function, i.e., if the argument A is true then the function П is equal to 1, otherwise it 

is 0. 

(4) Autocorrelation function r(τ) of a signal with time lag τ aims to maximize the product 

between the waveform and its shifted version. It is defined as: 
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r ττ .  (3.5) 

(5) Harmonics-to-Noise ratio (HNR) features can be used to quantify a perceptual impression 

of a rough voice. For example, if 99% of the energy of the signal is periodic and 1% is noise, 



Ashrf Nasef                                  

 

56 

 

then HNR=20dB. Usually young speakers can produce approximately 20 dB of HNR (Friedland 

et al. 2009). 

(6) Cepstrum coefficients (CC) are useful because they separate source and filter. Truncating 

the cepstrum at different frequency values allows for preserving different amounts of spectral 

detail. Cepstrum is defined as the inverse Discrete Fourier Transform of the log magnitude of the 

Discrete Fourier Transform of a signal.  

(7) Mel-filterbank is typical short-term spectral analysis technique where speech data is split 

into overlapping time-frames where spectrum of each frame is analyzed with Discrete Fourier 

Transform. 

(8) Mel-frequency cepstral coefficients (MFCC) are calculated using Davis and Mermelstein 

model (Davis and Mermelstein 1980, Maesa et al.2012): 
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 −=∑
=

π ,  (3.6) 

where: 

• M is the number of cepstrum coefficients, 

• Xk, k=1,2,...,N are log energy output of the kth filter,  

• N represents the number of triangular band pass filters. 

(9) Filter-bank energy (FBE) is a small set of parameters describing the speech spectrum 

envelope in the observed frame. In order to take out information about pitch and to lower down 

estimation error, this approach integrates the periodogram in frequency bands (Hernando and 

Nadeu 1997). 
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(10) Percentile normalization of region duration (Holube et al. 2010). 

Figures 3.2 and 3.3 show the speech signal in time domain and spectrogram of the speech signals 

for a female sample and a male sample, respectively. Both speakers utter the same sentence. 

Observing the time domain of the speech signal from these figures during the interval of silence, 

it can be concluded that the recording was performed in a noisy environment. The lower parts of 

the figures show the spectrograms of the signals where formants are denoted in red, intensity is 

denoted in yellow, and pitches are denoted in blue.  

 

Figure 3.2. Speech signal in time and frequency domains for a female sample (and the same utterance as 

in Fig. 3 3). The lower part shows the spectrogram of the signal where formants (denoted in red), intensity 

(denoted in yellow) and pitches (denoted in blue) are extracted using the software PRAAT (Boersma and 

Weenink 2016). 

Comparing the given female and male spectrograms for the same utterance, one can observe that 

formant frequencies of the female speaker are higher. This was expected because women 

generally have shorter vocal tracts than man. The higher voice fundamental frequency means that 

there is a longer interval between voice harmonics and therefore weaker definition of formants. 

Additionally, one can observe that pitch of a man's voice is lower than pitch of a woman's voice. 

Pitches and intensity are proportional to each other, therefore it is expected that women speak 
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higher than men. In general, speakers significantly differ among each other in term of prosodic 

patterns. 

 

Figure 3.3. Speech signal in time and frequency domains for a male sample (and the same utterance as in 

Fig. 3.2). The lower part shows the spectrogram of the signal where formants (denoted in red), intensity 

(denoted in yellow) and pitches (denoted in blue) are extracted using the software PRAAT (Boersma and 

Weenink 2016). 

3.4 Extraction of Mel-Frequency Cepstral Coefficients 

As already noted, feature extraction may be described as a process of mapping an input 

waveform into acoustic feature vectors, each of which represents a short time frame of the signal. 

The Mel-Frequency Cepstral Coefficients are important for this discussion in so far as they are 

one of the most popular feature group in the field of speech and speaker recognition. The 

extraction process for the Mel-Frequency Cepstral Coefficients includes several phases, as 

denoted in Fig 3.4, and this section discusses all of them. 
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Figure 3.4. Block diagram illustrating the extraction of the Mel-Frequency Cepstral Coefficients (cf. 

Jurafsky and Martin 2009). 

3.4.1 Preemphasis 

A fundamental characteristics of speech is that lower frequencies are assigned more energy than 

the higher frequencies.  Beigi (2011, pp. 154-156) notes that it has been estimated that 

approximately 80% of the power in a speech signal is related to frequencies lower than 1,000 Hz. 

In the range from 1,000 Hz to 8,000Hz, the power is reduced at an approximate rate 

2/12 Octavedb− , while for frequencies greater than 8,000Hz it becomes practically insignificant. 

In order to make information from higher formants more available, the higher frequency energy 

is boosted, which is referred to as the preemphasis of the signal (Jurafsky and Martin 2009). 

Preemphasis is conducted on analog signals, before the sampling, e.g. applying a differentiator: 
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11)( −−= zzH p α ,  (3.7) 

where the value of parameterα is usually set somewhere between 0.95 and 0.97 (Beigi 2011, p. 

155). 

3.4.2 Sampling and quantization of a speech signal 

Periodic sampling at a fixed frequency is usually applied for the purpose of sampling a speech 

signal. The sampling frequency is determined in accordance with the Sampling theorem: if the 

maximum frequency of a function is cf (which is referred to as the Nyquist Critical Frequency), 

then the sampling rate should be greater or equal to cf2 , i.e. the function  should be sampled at a 

period less or equal to 
cf2

1 . Such a selection of a sampling rate ensures that the observed signal 

can be reconstructed with a sufficient level of accuracy (Beigi 2011, pp. 79-81): 
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• cc fw π2=  is the Nyquist Critical Angular Frequency. 

The theorem is illustrated in Fig. 3.5, for the sampling frequency set to 2f, 3f, 4f, 8f, respectively, 

where f is the signal frequency. It may be observed that sampling frequences lower than 2f do not 

allow for complete reconstruction accuracy. A proof of the Sampling Theorem is provided by 

Beigi (2011, pp. 80-83). As illustration of practical applications, Jurafky and Martin (2009) note 

that frequencies of human speech are primarily below 10,000Hz, so the sampling rate of 
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20,000Hz is necessary for the accuracy. However, frequencies of telephone speech is under 

4,000Hz, so the sampling rate for telephone speech is 8,000Hz, while the sampling rate for 

microphone speech is usually set to 16,000Hz. The sampled values are further quantized, e.g. 

stored as 8-bit or 16-bit integer values. 

 

Figure 3.5. Illustration of the Sampling theorem. The sampling frequency is set to a) 2f, b) 3f, c)4f, and 

d) 8f, respectively, where f is the signal frequency. Sampling frequencies lower than 2f do not allow for 

complete reconstruction accuracy. 
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3.4.3 Framing and windowing a speech signal 

Speech may be treated as a stationary signal over short time periods, and thus is usually 

segmented into frames for the purpose of analysis.  Although these time periods range to 100ms, 

a typical frame width is much smaller (e.g. 20-30ms), and in addition frames are overlapped (e.g. 

shifted by 10ms), in order not to miss short speech phenomena such as stops, and onsets and 

offsets of phones (Beigi 2011, p. 161, Mølgaard and Jørgensen 2005, p. 2). 

The windowing process can be described as multiplication of each frame by a windowing 

function (Beigi 2011, p. 162): 

)10()( −≤≤∀= Nnnwhh nlnl ,  (3.9) 

where: 

• N  is the length of a frame (i.e. number of samples in a frame), 

• nl h is the nth sample of the l th frame, 

• w(n) is a window function. 

Beigi (2011, p.162) makes a practical remark that frames positioned at the start or the end of a 

speech sequence do not necessarily contain data for each sample in a frame. Data in such frames 

are padded with zeros. 

Table 3.1 gives contains definitions of selected window functions. Each of these window 

functions has its advantages and disdvantages, as discussed by Beigi (2011, p.163-167). For an 

illustration, Figures 3.6, 3.7 and 3.8 illustrate the Hamming window, the Hann window and the 

Triangualer window, respectively. The Hamming window is selected as the most popular, the 

Hann window as a variation of the Hammings window, and, finally, the Triangular window is 
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illustrated because it is used for the extraction of Mel-Frequency Cepstral Coefficients. The 

advantage of the the Hamming window is that its spectrum drops quickly, which in turn enables 

isolation. On the other hand, its side-lobes relating to the higher frequencies remain flat. When 

compared to the Haming window, it can be observed that the Hann window falls off more slowly 

at lower frequncies, but quickly at higher frequencies. In contrast to them, the Triangular 

window drops rapidly and has significantly wider side-lobes. 

 
Figure 3.6. The Hamming window and its spectrum: a) time domain, b) frequency domain 

(adjusted from Beigi 2011, p.164). 

 

Figure 3.7. The Hann window and its spectrum: a) time domain, b) frequency domain 

(adjusted from Beigi 2011, p.164). 
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Figure 3.8. The Triangular window: a) time domain, b) frequency domain 

(adjusted from Beigi 2011, p.166). 

3.4.4 Discrete Fourier Transform 

For extracting spectral information from a windowed signal, the Discrete Fourier Transform 

(DFT) is applied. It is often based on the Fast Fourier Transform algorithm (Beigi 2011, pp. 167-168): 
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where: 

• N  is the length of a frame, 

• nl h is the nth sample of the l th frame, 

• nl H is the Descrete Fourier Transform of nl h , 

• w(n) is a window function, 



Ashrf Nasef                                  

 

65 

 

after which magnitudes of the calculated Fast Fourier Transform bins are determined: 

22 )Im()Re( klklkl HHH += .  (3.10) 

Table 3.1 Selected window functions. N  is the length of a frame (cf. Beigi 2011, pp.163-167). 
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3.4.5 Mel filter-bank and log 

An important property of human hearing is less sensitive to frequencies greater than 1,000Hz. 

Mel-Frequency Cepstral Coefficients are intended to model this property. In line with this, the 

frequency scale is mapped onto the mel scale:  
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for frequencies below 1,000Hz, the mapping is linear, and for frequencies above 1,000Hz it is 

logarithmic. In this way, perceptually equidistant sounds are separated by equal number of mels 

(Jurafsky and Martin 2009).  

In a typical implementation, a mel filter bank contains triangular filters that collect energy from 

different frequency ranges. Ten filters are set linearly for frequencies lower than 1,000Hz, while 

the others are set logarithmically for frequencies greater than 1,000Hz. A mel filter bank is 

illustrated in Fig. 3.9. The obtained values are represented as log-values. 

 

Figure 3.9. Illustration of a mel filter bank (adjusted from Mølgaard and Jørgensen 2005, p. 6). 
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3.4.6 Inverse Discrete Fourier Transform 

The cepstrum is defined as the inverse Discrete Fourier Transform of the log magnitude of the 

Discrete Fourier Transform of a signal (Jurafsky and Martin 2009): 
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where: 

• N  is the length of a frame, 

• nl h is the nth sample of the l th frame, 

• w(n) is a window function. 

Typically, the first twelve cepstral values are used. These coefficients carry information on the 

vocal tract filter, excluding information on the glottal source, and have a practical advantage that 

their variance is uncorrelated (Jurafsky and Martin 2009). 

3.4.7 Energy and delta coefficients 

The set containing twelve Mel-Frequency Cepstral Coefficients per frame calculated by the 

Inverse Discrete Fourier Transform can be further extended. First, it is extended by the energy 

coefficient (i.e. energy from the frame) that is calculated as follows (Jurafsky and Martin 2009): 
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where  

• N  is the length of a frame, 

• nl h is the nth sample of the l th frame, 

• w(n) is a window function. 

In addition, the dynamics of Mel-Frequency Cepstral Coefficients are reflected through the first 

and second order differences of these thirteenth features. The first order difference is also called 

a delta or velocity feature, while the second order difference is called a double delta or 

acceleration feature. 

Deltas can be computed  in a simple manner, e.g.: the delta value of a cepstral value c at time t 

may be obtained as (Jurafsky and Martin 2009): 

2

)1()1(
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−−+
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or it can be estimated in a more advanced manner. 

In total, there are 39 Mel-Frequency Cepstral Coefficients, including twelve cepstral coefficients, 

twelve delta cepstral coefficients, twelve double delta cepstral coefficients, one energy 

coefficient, one delta energy coefficient and one double delta energy coefficient (Jurafsky and 

Martin 2009). Beigi notes that for practical purposes (e.g. for the purpose of optimization), 

smaller number of delta and double delta coefficients can be applied without significant decries 

in recognition performance (Beigi 2011, p. 175-176). 



Ashrf Nasef                                  

 

69 

 

3.5 Conclusion 

This chapter discussed different phases of the feature extraction process for the purpose of 

speaker recognition. Thus, in the context of the statistical approaches to automatic speaker 

recognition, discussed in Section 2.2 of the previous chapter, the Mel-Frequency Cepstral 

Coefficients represent input for Gaussian Mixture Models. However, these features can serve as 

input in a neural network model, which is discussed in the next chapter. 
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Chapter 4 

Learning with neural networks 

4.1 Introduction 

The previous chapter described the feature extraction for the purpose of automatic speaker 

recognition. Here we discuss additional aspect of our approach to speaker recognition. Namely, 

the observed acoustic features serve as input to a neural network model for speaker 

classification. Therefore, we first consider the theoretical concepts and methods that are relevant 

to neural networks and deep learning, and then report on how we apply neural network learning 

for the purpose of automatic speaker recognition (Nasef et al. 2017a).  

The structure of this chapter is as follows. Section 4.2 introduces the basic notions of a sigmoid 

neuron and a deep feedforward neural network. Section 4.3 discusses the stochastic gradient 

descent algorithm for determining appropriate values of weights and biases in the process of the 

training a deep feedforward neural network. A general algorithm for stochastic gradient update at 

a training iteration is given. Section 4.4 introduces the backpropagation algorithm for computing 

gradient of a cost function. Section 4.5 discusses the problem of overfitting a neural network, and 

one of the regularization methods intended to address this problem, i.e. the dropout method. 

Section 4.6 briefly describes convolutional neural networks and three important underlying 

concepts, i.e. sparse interactions, parameter sharing, and equivariant representations. Finally, 
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Section 4.7 introduces our approach to automatic speaker recognition based on deep neural 

networks and the stochastic gradient descent algorithm. Section 4.8 concludes this chapter. 

4.2 The notions of sigmoid neuron and deep feedforward neural network 

One of the most fundamental conceptualizations in the field of neural networks relates to a 

model of artificial neuron (Nielsen 2015, cf. the first chapter). The basic model of artificial 

neuron is a perceptron. In its basic form, a perceptron takes a set of binary values as its input 

},,,{ 21 nxxx K , and generates a binary output o , as illustrated in fig. 4.1.  

 

Figure 4.1: Illustration of a perceptron. 

Each input value ix , ni ≤≤1 , is assigned a real-valued weight ℜ∈iw , ni ≤≤1 , that reflects the 

importance of variableix  to the output o . The output is defined as follows: 



 ≤+⋅

=
,,1

,0,0

otherwise

bxw
o  (4.1) 

where: 

• x  is the vector of inputs nxxx ,,, 21 K , 

• w  is the vector of weights nwww ,,, 21 K , 
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• xw ⋅ is a dot product of vectors x  and w , i.e., ∑
≤≤ ni

ii xw
1

. 

• ℜ∈b is a real-valued bias assigned to the perceptron. 

The output of a perceptron is always a binary value, i.e. either zero or one. This means that even 

a small change in input bias or weights can complement the output. For practical purposes of 

machine learning, it is often more convenient to have a more-fine grained output. To achieve 

such an output, the sigmoid neuron model is introduced. The sigmoid neuron model is an 

extension of the perceptron model of artificial neuron that allows the output to take value from 

zero to one. The output of a sigmoid neuron is defined by the so-called sigmoid function: 
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Fig. 4.2 illustrates the step function relating to the output of a perceptron, and the sigmoid 

function relating to the output of a sigmoid neuron. It may be observed that the perceptron model 

is just a special case of the sigmoid neuron model. In comparison to the step function, the 

sigmoid function is rather smooth, which enables a more-fine grained output. The main idea of 

the sigmoid neuron model is that small changes in weights and bias produce a small change in 

output. 

 

Figure 4.2: Illustration of (a) the step function and (b) the sigmoid function. 
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The output of a sigmoid function may be approximated as follows: 
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where 
iw

o

∂
∂ and 

b

o

∂
∂  represent partial derivates. This also implies that the change in output may 

be approximated as a linear function of changes in bias and weights. This property of a sigmoid 

neuron is important for neural network training. This is discussed in the following sections. 

 

Figure 4.3: Direct, acyclic graph illustrating a deep feedforward neural network. 

At the structural level, a neural network consists of a set of neurons whose organization is 

illustrated by a directed graph given in fig. 4.3. Each node in this graph represents a neuron. The 

output of the first layer of neurons serves as the input for the second layer of neurons, the second 

layer of neurons produces the input for the third layer of neurons, and so on. This transition of 

information through the network is denoted by directed edges. Neural networks that contain no 

loops (i.e. no feedback connections) are called feedforward neural networks. They may be 

represented as a directed, acyclic graph, as already shown in fig. 4.3. The length of a path 
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starting at a node in the input layer and ending at a node in the output layer defines the depth of 

the model (hence the adjective deep in deep feedforward networks). 

The main purpose of deep feedforward neural networks is to approximate a given function )(* xf   

(Goodfellow et al. 2016, pp. 100, 168–169; Nielsen 2015, cf. the first chapter). Without loss of 

generality, let us assume that function )(* xf  classifies input x  to one of given categories, e.g., 

},,2,1{:* kf n
K→ℜ . The task of a deep feedforward neural network is to define function 

),( θxf and to learn the value of θ , so that function f  approximates sufficiently well function 

*f .  

4.3 The stochastic gradient descent algorithm 

As stated above, the training of a deep feedforward neural network may be briefly described as 

finding weights and biases so that the output approximates, as good as possible, a given function 

for all training inputs. To assess how well a neural network approximate a given function, a cost 

function is applied, which may be defined as an average over the training set, e.g. (Goodfellow et 

al. 2016, pp. 275–276): 

)),,(()(
datap~),( yxfLJ yx θθ Ε= , (4.4) 

where: 

• L  represents a loss function, 

• ),( θxf  represents the output from a given network when the input is x , 

• y represents function that should be approximated, 
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• datap represents the empirical data distribution. 

In the context of machine learning, the true data distribution is usually not available, so the 

empirical data distribution is used. The training of a neural network is based on minimizing the 

cost function )(θJ , i.e. (Goodfellow et al. 2016, pp. 275–276): 
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where m represents the number of training samples. This training process is also called empirical 

risk minimization. To illustrate this, let as assume that we apply the quadratic cost function to 

assess how well a neural network approximate a given function (Nielsen 2015, cf. the first 

chapter): 
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where: 

• y represents function that should be approximated, 

• w  represents all weights in neural network, 

• b  represents all biases in neural network, 

• x represents all training inputs, 

• a  represents the vector of neural network outputs corresponding to given inputs. 
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When the cost ),( bwC  is close to zero, it means that function defined by the observed neural 

network is approximatelly equal to function y . 

To determine appropriate values of weights and biases, the gradient descent algorithm may be 

applied (Nielsen 2015, cf. the first chapter). For the purpose of explanation, we assume that the 

cost function has a set of real-valued variables mvvvv K,, 21= . The main idea of the algorithm may 

be briefly described as follows. We may randomly choose a starting point ),,,( 21 mvvv K  in the 

observed vector space. Than we can modify each variable iv by a small amount iv∆ , which 

produce a small change of the value of the cost function: 
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If we choose mvvv ∆∆∆ ,,, 21 K  such that C∆  is negative, and apply a sequence of such 

modifications, we may eventually reach a global minimum of the cost function. A vector 

representation of equation (4.7) is: 

vCC ∆⋅∇=∆ , (4.8) 

where: 

• T
mvvvv ),,,( 21 ∆∆∆=∆ K is the vector of changes in v , 

• T

mv

C

v

C

v

C
C ),,,(

21 ∂
∂

∂
∂

∂
∂

=∇ L  is the gradient vector of the cost function. 

To assure that the change of the value of the cost function is negative, we may choose: 

 Cv ∇−=∆ η , (4.9) 
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where η is a small positive value, called the learning rate. Now we have: 

2
CC ∇−=∆ η , (4.10) 

which implies that 0≤∆C . Thus, in each iteration of the algorithm, the gradient vector C∇  of the 

cost function is computed, and then the vector of changes v∆  is determined, according to the 

equation: 

Cvv ∇−= η' , (4.11) 

so that the value of the cost function decreases with each iteration. The selected value of the 

learning rate is also important. It should be small enough, in order that the algorithm could work 

properly, but it must not be too small because it could significantly slow down the algorithm’s 

performance. 

To illustrate this, we go back to the above example with the quadratic cost function. The last 

equation can be reformulated to reflect the changes in weights and biases: 

k
kk w

C
ww

∂
∂

−= η' , (4.12) 

l
ll b

C
bb

∂
∂

−= η' . (4.13) 

However, it is important to note that to compute the gradient vector C∇  of the cost function, it is 

mandatory to compute the gradients of each term in the sum given in equation (4.6), separately 

for each training input.  This is time consuming when we have a very large number of inputs. To 

improve the efficiency, the gradients of each term in the sum given in equation (4.6) are 

computed only for a restricted sample or randomly selected inputs, instead for each training 
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input. A set of randomly selected training inputs is called mini-batch, and this modification of 

the algorithm is known as stochastic gradient descent.  

Require: Learning rate η . 

Require: Initial parameterθ . 

while not(stopping criterion) do 

Select a mini-batch containing m  training inputs: },,,{ )()2()1( mxxx K  with corresponding 

targets },,,{ )()2()1( myyy K . 

Compute gradient: ∑∇+←
i

ii yxfL
m

g )),,((
1 )()( θθ . 

Update θ : gηθθ −← . 

end while 

Figure 4.4: A general algorithm for stochastic gradient update 

at training iteration k  (Goodfellow et al. 2016, p. 294). 

Determining the size of a mini-batch is a trade-off. Goodfellow et al. (2016, p. 279) discuss that 

applying batches of larger size can result in a more accurate, but less than linear estimate. In 

addition, some hardware architectures, such as multicore architectures, graphical processing 

units, and architectures for parallel processing, imply restrictions on the size of a mini-batch – 

they are either very small or of a fixed size. A general algorithm for stochastic gradient update at 

training iteration k  is given in fig. 4.4 (Goodfellow et al. 2016, p. 294). 
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4.4 The backpropagation algorithm 

The backpropagation algorithm is a fast algorithm for computing gradient of a cost function. To 

introduce this algorithm, we first adopt the following notation (Nielsen 2015, cf. the second 

chapter): 

• l
jkw  – weight of the edge starting at the thk  neuron in the thl )1( −  layer and ending at the 

thj  neuron in the thl layer, 

• l
jb  – bias of the thj neuron in the thl  layer, 

• l
ja  – activation of the thj neuron in the thl  layer, 

which is also illustrated in fig. 4.5. 

 

Figure 4.5: Illustration of the adopted notation for the backpropagation algorithm (Nielsen 2015, cf. the 

second chapter). 
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Recalling equation (4.2), the activation l
ja  can now be represented as the following sum over 

neurons in the thl )1( −  layer: 

)( 1 l
j

l
k

k

l
jk

l
j bawa += −∑σ . (4.14) 

In a vector form, the above equation is: 

)()( 1 lllll zbawa σσ =+= − , (4.15) 

where: 

• lw  – the weight matrix for the thl  layer, 

• lb  – the bias vector for the thl  layer, 

• la  – the activation vector for the thl  layer. 

The parameter of function σ in the above equation, i.e. llll bawz += −1 , is known as the weighted 

input of the thl  layer.  For each thj  neuron in the thl layer, the error of neuron is defined as: 

l
j

l
j

z

C

∂
∂

=δ , (4.16) 

while, in line with the adopted notation, lδ  represents the error vector for the thl  layer. 

Here we briefly describe the main idea of the backpropagation algorithm, while more detailed 

explanations of this algorithm, including selected aspects of its implementation, are provided by 

Nielsen (2015, cf. the second chapter), Goodfellow et al. (2016, pp. 180–192), and others. Let as 
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assume that a small change ljkw∆ is made in the weight of the edge starting at the thk  neuron in 

the thl )1( −  layer and ending at the thj  neuron in the thl layer. It affects the output of the latter 

neuron and produces a small change in it, l
ja∆ . However, this change affects all activations in the 

next layers, and eventually, in the output layer and the cost function. If we consider only one 

path of activations starting  at the thj  neuron in the thl layer and ending at the output node L
ma , 

e.g., L
m

L
n

l
q

l
j aaaa ,,,, 11 −+

K , it produces the following change in the cost function: 

l
jkl

jk

l
j

l
j

l
q

L
p

L
n

L
n

l
m

l
m

w
w

a

a

a

a

a

a

a

a

C
∆

∂

∂

∂

∂

∂
∂

∂
∂

∂
∂ +

−

−

−

1

2

1

1
L . The total change in the cost function, calculated for all 

available paths, may be approximated as: 

∑ ∆
∂

∂

∂

∂

∂
∂

∂
∂

∂
∂

=∆
+

−

−

−
qpnm

l
jkl

jk

l
j

l
j

l
q

L
p

L
n

L
n

l
m

l
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w
w

a

a

a

a

a

a

a

a

C
C

K

L

1

2

1

1
. (4.17) 

Thus, a way to compute 
l
jkw

C

∂
∂  is to analyze how a small change w∆  causes a small change C∆ . 

Four equations that underlay the backpropagation algorithm are (Nielsen 2015, cf. the second 

chapter): 

)(' L
a

L zC σδ ∗∇= , (4.18) 

)('))(( 11 llTll zw σδδ ∗= ++ , (4.19) 

l
jl

jb

C δ=
∂
∂ , (4.20) 

l
j

l
kl

jk

a
w

C δ1−=
∂
∂ , (4.21) 
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where ∗  is the element-wise product, and Ca∇  in equation (4.18) is a vector whose elements 

L
ja

C

∂
∂  is the rate of change of the cost function. A general backpropagation algorithm is given in 

fig. 4.6 (Nielsen 2015, cf. the second chapter). 

1. Input: 1a  , the activation of the input layer 

2. Feedforward:  

for l = 2 to L 

Compute llll bawz += −1  

Compute )( ll za σ=  

end for 

3. Output error: 

Compute )(' L
a

L zC σδ ∗∇=  

4. Backpropagate the error 

for l = L-1 down to 2 

Compute )('))(( 11 llTll zw σδδ ∗= ++  

end for 

5. Output (i.e. the gradient of the cost function): 

l
j

l
kl

jk

a
w

C δ1−=
∂
∂  and l

jl
jb

C δ=
∂
∂ . 

Figure 4.6: A general backpropagation algorithm (Nielsen 2015, cf. the second chapter). 
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Finally, there are two assumptions about the cost functions that are needed for the 

backpropagation algorithm. The first assumption is that the cost function can be represented as 

an average ∑=
x

Cx
n

C
1 . This assumption allows for computing of partial derivates for a single 

training input, and then averaging them over a training corpus. The second assumption is that the 

cost function can be represented as a function of the output activations la . 

4.5 The problem of overfitting a neural network and the dropout method 

Mathematical models, including neural networks, with a large number of free parameters can 

successfully cover diverse phenomena (Nielsen 2015, cf. the third chapter). A large number of 

free parameters allows for adjusting the observed model to describe diverse data sets. However, 

although such a model works successfully for the given training data, it may perform poor for 

new test data. This problem is known as overfitting. 

The dropout method is a regularization method intended to address this problem. In this method, 

we train the ensemble containing all sub-networks derived from the observed neural network by 

removing non-output nodes, as illustrated in fig. 4.7, where dashed nodes represent dropout 

neurons (Goodfellow 2016 et al., pp.258– 259). For the purpose of this discussion, we reduce the 

process of removing a node from a network to multiplication of its output by zero. Each time we 

select a mini-batch, we also select a binary mask that is applied to all input and hidden nodes in 

the observed network in order to derive a sub-network. A mask is selected randomly and 

independently from other masks. Usually, an input node is included in a sub-network with 

probability 0.8, and a hidden node is included with probability 0.5. In any case, these probability 

values are set in advance, and remain constant through the training. After applying a binary 

mask, the training is performed as ordinarily, including forward propagation, back-propagation, 

and the learning update. 
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Figure 4.7: Illustration of the dropout method. The dashed nodes represent dropout neurons. 

Let µ  be a mask vector, and ),( µθJ  the cost of the model derived when µ  is applied. The 

dropout training of a neural network can be described as minimizing the average over the 

training set, i.e., ),( µθµ JΕ . For a given neural network, we can derive exponentially many 

models, and it is not possible to train all of them. However, it is not necessary, because all 

models derived from the starting neural network share parameters. Thus, only a small portion of 

all possible sub-networks are trained, each of which for a single step (Goodfellow et al. 2016, 

pp.258–259). It should be noted that although different derived sub-networks may overfit, the 

averaging presented in the dropout method reduces the overfitting of a neural network (Nielsen 

2015, cf. the third chapter). 

4.6 Convolutional neural networks 

Convolutional neural networks represent a class of neural networks suitable for processing time-

series data, such as one-dimensional audio signals, two-dimensional image data, and other data 

with grid-like structure. More formally, a convolutional neural network is a neural network that 
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uses the convolution mathematical operation instead of general matrix multiplication in at least 

one of its layers (Goodfellow et al. 2016, pp.330– 339). 

Convolution is an operation of two functions. It will be illustrated here for two functions, both of 

which take one real-valued argument. Let )(tx be a noisy function that provides a single real-

valued output at any time t . A way to improve a better estimation of the output of this function is 

to calculate its weighted average, i.e. more weight will be assigned to recent measurements. 

Thus, let )(aw be a weight function, where a  is the age of a measurement. In this example, 

convolution is represented by the function (Goodfellow et al. 2016, p.331): 

daatwaxts ∫ −= )()()( , (4.22) 

which is usually written as: 

))(()( twxts ∗= . (4.23) 

A discretized form of the convolution equation, which is more suitable for managing discrete, 

computer-generated time-series data is (Goodfellow et al. 2016, p.332): 

)()()( atwaxts
a

−= ∑
+∞

−∞=

. (4.24) 

When convolution is applied to a neural network, function x  represents the input, while function 

w  represents the kernel. The input and the kernel are usually represented as multidimensional 

arrays of parameters. Thus, for a two-dimensional input that represents image I , the above 

equation may be reformulated as (Goodfellow et al. 2016, p.332): 

∑∑ −−=
m n

njmiKnmIjis ),(),(),( , (4.25) 
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where K is two-dimensional kernel, which is illustrated in fig. 4.8. 

 

Figure 4.8: Illustration of two-dimensional discrete convolution (Goodfellow et al. 2016, p.334). 

Three important concepts that underlay the convolution operation are: sparse interactions, 

parameter sharing, and equivariant representations, and they will be briefly discussed 

(Goodfellow et al. 2016, pp.335–339). 

 

Figure 4.9: Illustration of sparse interactions in convolutional neural networks. (a) Each input neuron 

directly affects only k output neuron. (b) Each output neuron is directly affected by only k input neuron. 

(c) Indirect interaction between neurons is possible (Goodfellow et al. 2016, pp.336–337). The affecting 

and affected nodes are gray. Only relevant interactions are represented. 
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Sparse interactions. In traditional neural networks, each input node interacts with each output 

neuron, which is represented through a time-consuming matrix manipulation. In contrast to this, 

convolution neural networks improve the efficiency of the learning process by using a kernel that 

is significantly smaller than the input. This means that a convolutional network is not fully 

connected, but that each output has only a limited number of connections. Practically, the 

number of connections is significantly reduced when compared with the original number of 

connections in a fully-connected neural network, which improves the learning performance. It 

should be also noted that a restricted number of connections still does not prevent nodes at 

different levels to interact indirectly. This is illustrated in fig. 4.9. 

Parameter sharing. The parameter sharing in convolutional neural networks means that each 

member of the kernel is applied to each input position. In other words, the same set of 

parameters is learned for all positions, which further reduces the memory-consumption of the 

learning algorithm.  

Equivariant representations. An important property of the convolution function is that it is 

equivariant to translation of the input. E.g. in the context of processing time series data, if an 

event is shifted later in time in the input, its representation will be also shifted in the output. Or 

in the context of image processing, if an object is translated in the input, its representation will be 

also translated by the same amount in the output. More generally, the equivariance of the 

convolution function means that the input and the output change in the same way. 

4.7 The introduced approach to speaker recognition with neural networks 

In this section, we introduce our approach (Nasef et al. 2017a) to automatic speaker recognition 

based on deep neural networks and the stochastic gradient descent algorithm (Bottou 2010, 

Robinds and Monro 1951). 
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Consider that { })()( , ii yx  represents a training set, where )(ix ∈RNf  is a vector of extracted features 

for the i th sample, while vector )(iy  represents its associated class. The objective is to obtain 

decision function h(x) in order to approximate y. 

This function can be represented as a linear function of the extracted features: 

bxxxbθxh NfNf ++++= θθθ ...),;( 2211  
(4.26) 

This equation can also be presented in a vector form as: bxθbθxh T +=),;( . 

In order to limit the decision function h(x) so that its output value is always in the range [0,1], it 

is mapped by another function known as rectified linear units function, i.e.: 

)1log()( zezg += . (4.27) 

Therefore, the decision function from (4.26) can be presented in a form: 

)(),;( bxθgbθxh T += ,  (4.28) 

where )1log()( )( bxT T

ebxθg ++=+ θ  represents the rectified linear units function. 

The objective is to obtain parameters θ and b in order to minimize function 2)),;(( ybθxh − . This is 

achieved by updating the parametersθ and b in the following way: 

,jjj θθθ ∆−= α ,1 fNj ≤≤
 (4.29)  

bbb ∆−= α , (4.30)  

where: 
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[ ][ ] j
TTT

j xbxθgbxθgybxθgθ )()(1)(2 ++−−+=∆ ,  (4.31) 

[ ][ ] )()(1)(2 bxθgbxθgybxθgb TTT ++−−+=∆  (4.32) 

represent the partial derivatives of jθ  and b, respectively, andα represents the learning rate. 

In the literature, there is no strict rule how to pick the value for this parameter. If the learning 

rate is too large, it can speed up learning, but can also change the parameters too aggressively. 

On the other hand, if it is too small, it can change the parameters too conservatively. Robinds and 

Monro (1951) recommended that in order to select a good value for the learning rate, the 

progress of the training should be monitored.  

The algorithm for stochastic gradient descent is given in fig. 4.10 (Nasef et al. 2017a). 

Require: θ,b : input random variables 

Require: { })()( , ii yx : training set 

Ensure: N : number of labeled samples   

Ensure: α : input learning rate 

for i = 1 to N 

Compute )1log()( )()( )( bxθiT iT

ebxθg ++=+  

Compute jθ∆  and b∆ according to equations (4.31) and (4.32) 

Update θ and b according to equations (4.26) and (4.28) 

end for 

Figure 4.10: The algorithm for stochastic gradient descent (Nasef et al. 2017a). 
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Overfitting of deep neural networks may cause a big problem. This can be solved using input and 

hidden layer dropout (Srivastava et al. 2014). The basic idea is to drop out random units of 

neural network during the training. This is achieved by retaining the hidden unit with determined 

probability p. This probability is called probability of retaining. This parameter controls the 

density of dropout. The higher the value p, the less dropout is applied. Selection of value is a 

difficult task and depends on dataset that is used. 

For the sake of simplicity, we use a neural network without dropout, and set its weights to the 

trained weights multiplied by p. This model is verified by the fact that the outgoing weights of a 

neuron that was retained with probability p are multiplied by p. Fig. 4.11 illustrates the adopted 

dropout neural network model, where vector )( jr  contains independent Bernoulli random 

variables for the jth hidden unit, i.e. )( jr ~Bernoulli(p) and ∗  is the element-wise product 

(Srivastava et al. 2014). 

 

Figure 4.11: Dropout Neural Network model. The weights are multiplied by p (L is the number of hidden 

units) (Srivastava et al. 2014, Nasef et al. 2017a). 

As discussed above, the difference between the stochastic gradient descent algorithms with and 

without dropout is that for each training input in the latter case we create a subnetwork by 
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applying drop out of random units. In this case, the decision function defined by (4.28)  may be 

presented as: 

)1log()(),;( )()( )( bxθrTj Tj

ebxθrgbθxh +∗+=+∗=  (4.33)  

 
The algorithm for stochastic gradient descent with dropout is given in fig. 4.12 (Nasef et al. 

2017a). 

Require: θ,b : input random variables 

Require: { })()( , ii yx : training set 

Ensure: N : number of labeled samples   

Ensure: α : input learning rate 

Ensure: p: probability of retaining 

for i = 1 to N 

Compute )Bernoulli(~)( pr j
 

Compute )1log()( )()()( )()( bxθriTj iTj

ebxθrg +∗+=+∗  

Compute jθ∆  and b∆ according to equations (4.31) and (4.32) 

Update θ and b according to equations (4.26) and (4.28) 

end for 

Figure 4.12: The algorithm for stochastic gradient descent with dropout (Nasef et al. 2017a). 
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4.8 Conclusion 

This chapter and the previous chapter introduced the theoretical foundations of our approach to 

automatic speaker recognition. In order to demonstrate the appropriateness of the introduced 

approach under realistic conditions, we conducted two classification experiments using a spoken 

corpus. The next chapter reports on the experimental settings of the conducted experiments and 

discusses the obtained results. 
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Chapter 5 

Experiments and results 

 

5.1 Introduction 

This chapter reports on two experiments conducted in the scope of this thesis. Both experiments 

relate to the model of stochastic gradient descent proposed in the previous chapter. In the first 

experiment, the speaker recognition performance is observed when optimizing the parameters of 

the stochastic gradient descent algorithm: the learning rate, and the hidden and input layer 

dropout rates. The second experiment basically focuses on the improvement of speaker 

identification in noisy environment using deep neural networks with stochastic gradient descent. 

We analyze how different combinations of its parameters, such as the learning rate and the 

dropout rate, influence automatic speaker recognition performances when different noise levels 

are applied on the original speech signal. 

The chapter is organized as follows. Section 5.2 describes the VidTIMIT corpus that was used in 

both experiments. Sections 5.3 and 5.4 report on the experimental settings and results. Section 

5.5 concludes the chapter. 
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5.2 The corpus 

VidTIMIT is a multimodal corpus produced for the purposes of speech recognition and person 

authentication (Sanderson 2002). It contains video and audio recordings of 43 subjects (19 

female, 24 male) uttering short sentences in a noisy office environment, with mean duration 4.25 

seconds per sentence. In further text, only details relevant to audio recordings are discussed. 

Each subject uttered ten sentences, two of which were common for all subjects, and the other 

sentences were different for each subject. All sentences were selected from the NTIMIT corpus 

(Jankowski et al. 1990). The production of the VidTIMIT corpus was conducted in three phases. 

The first session may be considered as the training set, and the other two sessions as the test set.  

It is important to note that there is no sentence overlapping between these sets. This is an 

important requirement, because if a training sentence was also included in a test set, it would 

cause the following bias reflected in higher probability assigned to the overlapped sentence and 

inaccuracy in perplexity. This bias is also referred to as training on the test set (Jurafsky and 

Martin 2009). In addition, the mean delay between the first and the second phases was seven 

days, and six days between the second and the third phases. These delays were introduced to 

make a possibility for change in a subject’s voice (e.g. due to the change of mood, etc.). The 

audio recordings were produced as mono 16 bit, 32 kHz WAV files (Sanderson 2002, Sanderson 

and Paliwal 2002). 

 5.3 Experiment 1 

In this experiment (cf. Nasef et al. 2017a), a deep neural network with stochastic gradient 

descent is trained for a classification problem on a data set in the domain of speaker recognition. 

For the sake of simplicity, the neural network uses only one hidden layer with L=100 units. The 

experiment was conducted in two phases. 
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In the first phase, the recognition rate is observed when the hidden layer dropout rate and 

learning rate are varied. The dropout is applied at all layers. The hidden layer dropout rate was 

varied from 0.0 to 0.9, with the step of 0.1, while the input layer dropout rate was set to 0.2. The 

learning rate was varied from 0.0=α (auto detection) to 9.0=α , with the step of 0.1. The results 

are given in Table 5.1. 

Table 5.1: Recognition rate [%] when the hidden layer dropout rate and learning rate are varied. 

 learning rate 

dropout 

rate 
α=0.0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 

0.0 67.90 65.81 68.60 68.60 68.60 67.67 70 67.67 68.83 65.58 

0.1 71.16 63.72 67.44 70.46 72.09 71.86 69.30 71.39 73.02 71.86 

0.2 71.86 6.51 66.97 69.76 71.62 71.39 70.46 71.62 70.46 70.46 

0.3 70.93 5.81 65.81 68.60 70.23 70.46 71.86 70 69.53 72.32 

0.4 71.16 3.72 64.65 67.67 69.30 70.93 70.69 70.93 72.09 71.62 

0.5 70.46 3.25 8.13 63.72 66.51 67.90 68.83 69.30 71.62 70.23 

0.6 64.18 2.79 4.88 7.67 12.09 64.65 66.27 68.60 67.20 67.20 

0.7 62.79 3.02 5.11 7.20 6.27 9.53 10.46 24.41 58.13 64.41 

0.8 63.25 3.48 4.65 4.65 4.65 6.04 8.60 8.83 11.39 11.16 

0.9 55.34 2.79 3.02 2.79 4.18 3.95 3.48 5.11 7.20 6.74 
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Table 5.2: Recognition rate [%] when the input layers dropout rate and learning rate are varied. 

 learning rate 

dropout 

rate 
α=0.0 α=0.1 α=0.2 α=0.3 α=0.4 α=0.5 α=0.6 α=0.7 α=0.8 α=0.9 

0.0 66.74 4.41 66.74 69.30 69.06 70.69 70.69 70 69.76 71.86 

0.1 71.16 5.34 5.81 66.74 69.76 71.39 70.93 69.06 70 71.86 

0.2 68.13 3.48 7.20 65.58 66.74 66.74 69.06 69.76 68.83 68.83 

0.3 63.95 4.41 5.11 7.67 64.18 65.81 68.83 68.37 67.90 69.76 

0.4 62.32 3.48 3.72 7.20 7.44 62.32 64.65 65.11 66.97 66.74 

0.5 57.90 3.48 2.79 4.65 10.69 10.69 22.55 62.32 62.79 62.79 

0.6 53.95 2.55 1.62 4.88 8.37 7.20 11.62 10.93 14.18 38.13 

0.7 23.02 2.32 2.55 4.65 5.11 5.81 9.76 8.83 12.55 13.02 

0.8 14.18 2.55 2.09 3.95 3.02 3.25 5.58 4.65 6.04 7.90 

0.9 3.48 2.09 2.32 2.79 2.79 2.79 2.55 2.79 3.72 3.72 

In the second phase, the recognition rate is observed when the input layers dropout rate and 

learning rate are varied. The dropout is again applied at all layers. In this phase of the 

experiment, the probability of the input layer dropout rate was varied from 0.0 (i.e. p=1) to 0.9, 

with the step of 0.1. The retaining probability for a hidden node was p=0.5. The learning rate was 
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varied in the same way as in the first phase of the experiment, from 0.0=α (auto detection) to 

9.0=α , with the step of 0.1. The results are given in Table 5.2. 

According to the obtained results provided in Table 5.1, it may be observed that the best 

performance is achieved for the dropout rates 0.1, 0.2, 0.3 and 0.4 for all the considered learning 

rates except for 1.0=α . On the other hand, according to the obtained results provided in Table 

5.2, it may be observed that when the dropout is applied only to the input layer, it does not have 

significant influence on the recognition rate. However, it can be concluded that for the input 

layer dropout rate greater than 0.5, the recognition rate significantly decreases. If we focus on the 

influence of the learning rate on the performance of the method, it is evident that for some values 

of learning rate, the performance of the method is poor. This decrement in performance is 

especially evident when dropout is applied. This is because dropout introduces bigger amount of 

noise comparing with standard stochastic gradient descent. Therefore, stochastic gradient descent 

with applied dropout requires bigger learning rates than standard stochastic gradient descent. 

Depending on the combination of all three parameters, the performance can change significantly, 

from 2.09% to 73.02%. 

5.4 Experiment 2 

The second experiment (cf. Nasef and Marjanović-Jakovljević 2017b) observes the improvement 

of speaker identification in noisy environment. In order to find the optimal stochastic gradient 

descent parameters in the noisy environment, the white Gaussian noise was artificially added, 

and the signal-to-noise ratio (SNR) was set to 8dB, 12dB and 16dB, respectively (using 

MATLAB). Thus, four independent databases including the original database cleaned from noise 

were created. From these databases, we extracted 83 state-of-the-art features using signal 

processing techniques, as described in Chapter 3. For the classification, we trained the deep 

neural network with stochastic gradient descent implemented with the dropout regularization and 

rectified linear units. The training is conducted with 100 training examples in each mini-batch. 
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Different parameters, such as the input layer dropout rate, the learning rate and the hidden layers 

dropout rate, were analyzed for different values of signal-to-noise ratio. The proposed speaker 

recognition system architecture is shown in fig. 5.1. 

Different curves, depicted in fig. 5.2, represent the recognition rate performance for different 

learning rates, changing values from 0.1 to 0.9 (with the step of 0.1) for the fixed value of the 

dropout rate. The “optimal parameters” curve presents the recognition rate with the best 

performance values, i.e. when the learning rate and the dropout rate are optimized for each 

signal-to-noise ratio (cf. Table 5.3). It is shown that the optimized performance, tuning both 

values for the dropout and learning rates, outperforms other performances when values are not 

optimized for each signal-to-noise value approximately in range from 5% to 7.5%. 

 

Figure 5.1: Automatic speaker recognition system architecture. 
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Figure 5.2: Speaker recognition rate performance for different signal-to noise ration levels and different 

learning rates. 

Table 5.3: Optimal values of the learning and dropout rates for different signal-to-noise ratio levels. 

SNR[dB] 8 12 16 Cleaned signal 

Learning rate 0.1 0.0 0.7 0.8 

Dropout rate 0.1 0.0 0.2 0.1 

5.5 Conclusion 

The experimental results reported in this chapter show that the dropout regularization may boost 

the performance of the stochastic gradient descent method in the task of automatic speaker 

recognition, even in a noisy environment. In this technique, sampling a thinned network by 
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dropping out units prevents co-adaptations of neurons and overfitting of hidden units. This is 

discussed in the following chapter. 
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Chapter 6 

Conclusion 

Methods based on deep learning neural network have been already demonstrated to provide 

better speaker recognition performance than other classifiers, but also to require considerable 

parameter tuning. This thesis aimed at showing that selecting appropriate value of parameters 

can significantly improve the performance of neural network methods on the task of automatic 

speaker recognition.  

The contribution of this thesis is both theoretical and experimental. The thesis proposed an 

approach to automatic speaker recognition based on deep neural networks and the stochastic 

gradient descent algorithm. In addition, two experiments were designed and conducted in order 

to demonstrate that the optimization of the parameters of the stochastic gradient descent 

algorithm can improve automatic speaker recognition performance under no presence of noise 

and under noisy conditions, respectively. Three parameters of the stochastic gradient descent 

algorithm were considered in these experiments: the learning rate, and the hidden and input layer 

dropout rates. They were systematically changed in order to pick a model with the best 

performance on the speech recognition dataset.  

It has been shown how dropout optimization can significantly enhance the performance of 

stochastic gradient descent method in automatic speaker recognition even in a noisy 

environment. This can be explained by the facts that the dropout technique represents an 

approximation to training of exponentially many neural networks that is inexpensive in terms of 
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cost and memory, and that it results in robust features. Sub-networks contained in a neural 

network are not independent because they share parameters. This implies that it is not necessary 

to train all possible sub-networks, and often it is not even feasible in acceptable time. Thus, the 

dropout regularization technique targets only a small portion of all possible sub-networks, and 

due to the parameter sharing, the other sub-networks are indirectly trained as well. In other 

words, dropout allows for an inexpensive training of neural networks (Goodfellow et al. 2016, 

pp. 258-259). Even more important, the training of a particular neuron does not rely on its 

connection with a particular set of other neurons. In a general case, a given neuron will be related 

to different sets of neurons across different sub-networks. Therefore, the dropout regularization 

technique prevents complex co-adaptations of neurons and results in more robust features  

(Krizhevsky et al. 2012, p. 6; Hinton et al 2012b; Nielsen 2015, cf. third chapter). 

It has been also shown that picking a learning rate can also be very important task. As discussed 

in Chapter 4, the learning rate should be small enough, in order that the algorithm could work 

properly, but not too small because it could significantly slow down the algorithm’s 

performance. However, the reported experimental results have also showed that for some values 

of the learning rate, the performance of the method is very poor, and that the decrement in 

performance is bigger when dropout is applied. This effect can be explained by the fact that 

dropout introduces bigger amount of noise comparing with the standard stochastic gradient 

descent algorithm. Therefore, stochastic gradient descent with applied dropout requires an 

appropriately adjusted learning rate. 

Finally, a general conclusion may be drawn that the reported experimental results demonstrated 

the appropriateness of the proposed approach to automatic speech recognition under realistic 

conditions. 

It is reasonable to expect that other parameters (such as the number of layers, the number of 

hidden units in layers, etc.) also affect automatic speech recognition performance. An analysis of 

their influence on the stochastic gradient descent algorithm performance is a rather challenging 
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task since it includes a specific trade-off. Namely, if a neural network model overfits, it may 

require a reduction of the number of hidden layers or the number of units in hidden layers. On 

the other hand, if the stochastic gradient descent method provides bad performance for a training 

set, it may require an increase of the number of hidden layers or the number of units in hidden 

layers. These research questions will be addressed as part of future work. 
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