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Sazetak

Rezultati aktuelnih istrazivanja u oblasti autorkats prepoznavanja govornika pokazuju da
metode dubokog masSinskogéamja bazirane na neuralnim mrezama ondagaju bolje
performance of drugih klasifikatora baziranih nawsnim Markovljevim modelima i Gausovim
smeSama. Sa druge strane, ove metode zahtevap plm#Savanja vrednosti parametara da bi

se njihove performanse optimizovale za katdizadatke nadgledanog masinskégnja.

Cilj ove teze je da se demonstrira da adekvatrorizlsednosti parametara moze ¢ajao da
unapredi performanse metoda automatskog prepozj@awgmvornika baziranih na dubokim
neuralnim mrezama. lIzlozena studija predlaze je@dastup automatskom prepoznavanju
govornika zasnovan na neuralnim mrezama i algorenstohastki gradijent. Poseban fokus se
stavlja na tri parametra algoritma za stolé&sgradijent: stopa ¢enja, stopa uklanjanja ulaznih
neurona, i stopa uklanjanja skrivenih neurona. Dwgaznja je posvena istrazivékom

pitanju prepoznavanja govornika u uslovima pi@are buke.

U skladu sa tim su izvedena dva eksperimenta.pBilpg eksperimenta je da se demonstrira da
se optimizacijom vrednosti posmatranih parametdgariama za stohastki gradijent mogu
unaprediti performanse prepoznavanja govornika lovima bez buke. Ovaj eksperiment je
organizovan u dve faze. U prvoj fazi je posmatratmga prepoznavanja za réitk vrednosti
stope uklanjanja skrivenih neurona i stogenja, dok je stopa uklanjanja ulaznih neurona bila
konstantna. U drugoj fazi ovog eksperimenta je @ismna stopa prepoznavanja za t@#i
vrednosti stope uklanjanja ulaznih neurona i stogenja, dok je stopa uklanjanja skrivenih

neurona bila konstantna.

Cilj drugog eksperimenta je da se demonstrira da@@nizacijom vrednosti posmatranih

parametara algoritma za stohdsti gradijent mogu unaprediti performanse prepozngva



Ashrf Nasef

govornika u uslovima povane buke. Stoga su razli nivoi buke vesStaki dodati izvornom

govornom signalu.

Dobijeni rezultati pokazuju da se optimizovanjenopgt uklanjanja neurona unagugu
performanse prepoznavanja govornika baziranog otaasttkom gradijentucak i u uslovima
pove&ane buke. Takie je pokazano da izbor adekvatne vrednosti stéeeja predstavlja vazan

zadatak, jer neke vrednosti ovog parametra negatititu na performanse prepoznavanja



Abstract

Recent researches in the field of automatic speaagnition have shown that methods based
on deep learning neural networks provide bettefopmance than other statistical classifiers. On

the other hand, these methods usually require o of a significant number of parameters.

The goal of this thesis is to show that selectipgrapriate value of parameters can significantly
improve speaker recognition performance of methuzased on deep learning neural networks.
The reported study introduces an approach to autorspeaker recognition based on deep
neural networks and the stochastic gradient desagotithm. It particularly focuses on three

parameters of the stochastic gradient descentitilgorthe learning rate, and the hidden and
input layer dropout rates. Additional attention veleoted to the research question of speaker

recognition under noisy conditions.

Thus, two experiments were conducted in the scdpdi® thesis. The first experiment was
intended to demonstrate that the optimization & tbserved parameters of the stochastic
gradient descent algorithm can improve speakergretion performance under no presence of
noise. This experiment was conducted in two phdsethe first phase, the recognition rate is
observed when the hidden layer dropout rate andedmming rate are varied, while the input
layer dropout rate was constant. In the secondepb&shis experiment, the recognition rate is
observed when the input layers dropout rate anthileg rate are varied, while the hidden layer
dropout rate was constant. The second experimeni@nded to show that the optimization of
the observed parameters of the stochastic gradiestent algorithm can improve speaker
recognition performance even under noisy conditiofbus, different noise levels were

artificially applied on the original speech signal.
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The obtained results show that dropout optimizatian significantly enhance the performance
of stochastic gradient descent method in automspieaker recognition even under noisy
conditions. It is also shown that selecting an eppate value of the learning rate is also a very
important task, since for some values of this patam the performance of the method is
negatively affected.
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Chapter 1

Introduction

1.1 Motivation and aim of research

The speech signal contains the information aboeatléimguage (acoustic phonetic symbols),
prosody (intonation signals), gender (vocal traad pitch — frequency of voiced sounds), age,
accent (formants), speaker's identity, emotion hedlth (Gold et al. 2011, Vaseghi 2007,
Rashmi 2014). While the aim of speech recogniteotoirecognize the spoken words in speech,
speaker recognition identifies the speaker by meizogg the spoken phrase, and verifies the
speaker (Srinivas et al 2014). The abilities ofadiwg the speech signals, understanding the
linguistic and speaker information in speech, asxbgnizing the speaker, are needed in many
speech aided applications, such as access coatoéss to confidential information, voice
command control, transaction authentication, ardicaarchive indexing (Desai and Joshi 2014,
Beigi 2011, pp.16-22).

Recent researches have shown that speaker recognigthods based on deep learning neural
network provide better performance than other diass (e.g. based on n-grams, hidden Markov
models and Gaussian mixture models, cf. ChapteH@)vever, these methods usually require

adjustment of a significant number of parameters.

The main goal of this thesis is to show that selgca good combination of parameters can

significantly improve speaker recognition performamf methods based on deep learning neural
19
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networks even in a noisy environment. More pregisthle thesis demonstrates that selecting an
appropriate combination of parameters of the statahagradient descent algorithm (i.e. the
learning rate, and the hidden and input layer dubpates) can improve performance for the
speaker recognition task. Two experiments were wcted for this purpose. The first experiment
shows that the optimization of the observed parareebf the stochastic gradient descent
algorithm can improve speaker recognition perforoeannder no presence of noise. The second
experiment shows that the optimization of the olesgrparameters of the stochastic gradient
descent algorithm can improve speaker recognitenfopmance when different noise levels are

applied on the original speech signal.

1.2 Outline of the thesis

The rest of this introductory chapter briefly catess the tasks of speech recognition and speaker

recognition, and selected applications of thesenelogies.

The Chapter 2 provides an overview of work in tieddf of speech recognition. It discusses in
detail the statistical approach to speech recagnitincluding language modeling, acoustic
modeling, and decoding, and emphasizes some liongatof the statistical approaches,
especially those related to speech variations dwnvironmental noise. In addition, the chapter
overviews of the relevant research on neural ndsvaimed at overcoming the shortcomings of
the statistical approaches, while a more detadetriical discussion on methods based on neural

networks is given in Chapter 4.

The speaker recognition process is fundamentalbedbaon acoustic feature matching. Thus,
Chapter 3 reports on 83 state-of-the-art acoustatufes that are considered in this study,
including pitch, intensity, and four orders of fants family, four orders of formants bandwidth,

standard deviation, mean autocorrelation, meanertoiharmonics ratio and mean harmonics-

20
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to-noise ratio. In addition, this chapter discussesiore detail different phases of the extraction

process for the frequently used Mel-Frequency CapSbefficients.

Chapter 4 first considers the theoretical conceptd methods that are relevant to neural
networks and deep learning, including the notioha sigmoid neuron and a deep feedforward
neural network, the stochastic gradient descentrigign, the backpropagation algorithm for

computing gradient of a cost function, and the dutpmethod for addressing the problem of
overfitting a neural network. Finally, the chaptetroduces the neural network-based approach

applied in the scope of this thesis for the purpmfssutomatic speaker recognition.

Chapter 5 reports on the experiments conducteadardo demonstrate the appropriateness of
the approach in Chapter 4 for realistic conditionse chapter first describes the VidTIMIT
corpus that was used in the experiments, and teparts on the experimental settings and

discusses the experimental results.

Chapter 6 makes concluding remarks.

1.3 Speech recognition

The termautomatic speech recognitiman be seen as computational mapping an acougtial s
to a sequence of words (Jurafsky and Martin 208@gecification requirements for speaker
recognition systems can vary significantly. Jurgfakd Martin (2009) differentiate among four

dimensions of variation:

* The size of vocabularyOn the one side of the spectrum there are systhatsare
designed to recognize a very limited set of woedg,, digits, etc. On the other side of the
spectrum there are systems designed to recognizelswiorm large vocabulary.

Currently, large vocabularies contain 20,000 t®60,words.

21
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* Fluency of speecihis dimension is related to the naturalness eésh. Recognition of
isolated words is a relatively simple problem, luuser interface that integrates an
isolated word recognition system is limited and mety natural. Continuous speech
recognition systems are much more natural and ysed their design is also more
difficult.

* Variation in channel and nois&he quality of microphone and the noise levelueafice
speech recognition to a great extent. Thus, dagignirements for a speech recognition
system intended to be used in a relatively silabbtatory settings and with a head
mounted microphone will differ from design requiremh for a system intended to be

used in noisy settings and with a table microphone.

» Speaker-class characteristicSpeech recognition systems are usually designed fo
target group of users described by a given speagius. Thus, such systems are tuned to
recognize speech in that is considered standafrdrespect to the target group. However,

any nonstandard speech makes recognition hardgsrand to errors.

One of the fundamental assumptions of automatiedpeecognition relates to the noisy channel
model(Jurafsky and Martin 2009Namely, the acoustic waveform is considered @sgbheoisy
version of the source sentence due to passing ghraucommunication channel. The speech
recognition task can be described as a searchghraspace of all possible sentences in order to
select a sentence with the highest estimated pilgipadi§ giving the noisy sentence (cf. Fig.
1.1). The process of searching and selection isc¢taecoding, and will be discussed in more

detail in Chapter 2.

Recognized
sentence

Source Noisy Noisy
+ - 4 B,

—> Decoding >
sentence channel sentence

Figure 1.1: The noisy channel model (urafsky and Martin 2009
22
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1.4 Speaker recognition

The termautomatic speaker recognitios widely and sometimes confusingly used. Bei@il{@®

states that this term broadly refers to:

[...] any procedure which involves knowledge of tiientity of a person based on
his/her voicgBeigi 2011, p. 3).

According to Beigi, speaker recognition braches lsarclassified in two broad groups. The first
group includes self-contained branchgseaker verificatiorfor speaker authenticatignspeaker
identification andspeaker classificatianThe second group includes branches that extemd th
simple branches by some additional functionality, Speaker segmentatipapeaker detectign
andspeaker trackingBeigi 2011, pp. 3- 5). The following subsectionl Wriefly discuss these
branches.

Alternatively, speaker recognition tasks can besifeed as text-dependent or text-independent.
Text-dependent speaker recognition systems takeantount the linguistic content of the user’s
utterance. Therefore, the user is required to uwdtgpredefined sequence of words. Text-
dependent speaker recognition is nowadays apphédfor the verification task, because it is
prone to spoofing attack from impostors, such @tageof pre-recorded utterances, advanced
text-to-speech syntehsis or voice conversion (8haital. 2016, Beigi 2011, pp. 12-14). In
contrast to this, text-independent speaker reciognitioes not take into account linguistic

content of uttered sentences, and is thus appéidablarious speaker recognition tasks.

1.4.1 Speaker verification

In the speaker verification task, a given speakakes an identity claim, and the verification task

can be described as determining whether this dmalds or not. A speaker verification system
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uses the user’s identity claim to retrieveaeget speaker modé&om an underlying database of
user models, and compares it with the speech sighdhe test speaker. The aim of this
comparison is to evaluate the similarity of thet gasd target speaker. Two approaches that are
usually applied for the purpose of this comparisally on auniversal background modahd a
cohort model respectively (Beigi 2011, pp. 6-7). A universackground model is a model
derived from a large population of speakers, anthig approach the test speaker is compared
not only to the target speaker but also to theaepopulation. If the system determines that the
test speaker is closer to the average speakertohtre target speaker, the probability that the
identity claim holds will be evaluated as low. Imetsecond approach, each target speaker is
associated with a cohort of other similar targedaiqers. If the system determines that the test
speaker is closer to the target speaker than tcasseciated cohort, the probability that the

identity claim holds will be evaluated as high @011, pp. 6-7).

In any case, the decision of an automatic verificesystem is always binary, it either accepts of
rejects the identity claim of the test speaker. ibeatity claim is accepted only if the probability

that a given sentence is uttered by the targetkspeaa greater than a threshold (Wildermoth
2001, p. 3):

accept P, (s) >threshold
reject, otherwise

(1.1)

decision:{

where:
* <is the uttered sentence,

« P(9is the probability that senteneés uttered by the'i speaker,

* threshold is an experimentally derived value.

24
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Speech Feature .| Decision acceptance or
signal extraction making rejection
n
. Target
Identity =
. speaker
claim
model

Figure 1.2: Speaker verification diagram.

A diagram describing the speaker verification tasiiven in Fig. 1.2.

1.4.2 Speaker identification

A speaker identification system is designed to gece a given set of speakers. The
identification task can be described as relatirgjvan speech signal of an unknown speaker to
one of the known speakers (Mglgaard and Jgrge®888). In addition, this task is further
divided in closed-set identificatiorand open-setidentification. In closed-set identification, a
given test speaker is compared to all speakera umderlying database, and related to the most
similar of the available speakers. Open-set ideatibn includes a rejection scheme, and may be
described as a combination of closed-set identiinaand verification: first, the test speaker is
mapped to one of the speakers available in a dsgalaad then the selected target speaker is
verified (Beigi 2011, pp. 7-8).

A diagram describing closed-set identification téslkgiven in Fig. 1.3 and 1.4. For closed-set
identification, the resulting speaker belongs ® ¢kt the speakers available in the database. For

open-set identification, the result may also ineladrejection of the test speaker.
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> speaker; M

> speaker, ] | Selection
Speech Feature ofthe most Speaker
PREEL g~ WOUR L gy TSSO Ly, P
signal extraction similar D
s — speaker

> speaker, —

Figure 1.3: Closed-set identification diagramhe resulting speaker ID belongs to one of the

speakers available in the database.

> speaker;

= speaker, Selection Speaker
Speech Feature ofthe most o~ . D
1.] —> ; — —> .. Verification >
signal extraction similar or
N . - speaker rejection

- speaker, —

Figure 1.4: Open-set identification diagranihe result may also include a rejection of thé tes

speaker.

1.4.3 Speaker classification

The aim of the speaker classification task is tmugrspeech signals that are similar according to

some criterion. Speaker classification has varimasifestations, such as gender classification,
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age classification, etc. Similarly to speaker veaifion and identification, the classification task
is also based on a set of acoustic features. Haw#we informative value of a certain feature
may vary accross different classification tasks. &mample, pitch is often used for the gender
classification task, while jitter, shimmer and cjpal envelopes are used to determine the age of
a speaker (Beigi 2011, pp. 8-9).

1.4.4 Compound branches of speaker recognition

The currently most popular compound branches obraatic speaker recognition are speaker

segmentation, speaker detection, and speakerng@Reigi 2011, pp.9-12).

The speaker segmentation task can be describetvidsg an audio stream into portions that
contain speech of separate speakers and otherseuad as music, noise, etc. It is an important
practical step both for speech recognition and lsgregecognition, since recognizable speech in
an input audio stream must first be separated fotimr sounds. In a general case of speaker
segmentation, both the identities of speakers iawho stream and their number are not known
in advance. In a special case when the identifiiseospeakers are known, the segmentation task

is reduced to the identification task.

The main goal of the speaker detection task isetea speakers in an audio stream. This task
includes speaker segmentation, since the observedns may contains more speakers and
additional sounds. In addition, this task alsoudels speaker verification, speaker identification,
or their combination, depending on specificatiogquieements for a speaker detection system. If
all speakers in the audio stream are known, anck thee no additional sounds, the closed-set
identification can be applied for each segmente@ifse, if not all speakers are known or there
are additional sounds, the number of speakersstiaild be detected is used to determine the

approach. If this number is small, verification da@ applied on each segment and for each
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speaker. If the number of speakers is large, tipem-Get identification (i.e. with verification of
the identified speaker, cf. Fifj.4) can be applied.

The goal of the speaker tracking task is to tagedkht speakers in a given audio stream.

Compared with the speaker detection task, speekeking does not require enrolment data, i.e.

when the identities of speakers are not knowrs, @nough if a speaker tracking system identifies

different speakers with different labels that da necessarily relate to the speakers’ identities
(Beigi 2011, pp.9-12).

1.5 Applications

The speaker recognition technology is still not umat but its applications are manifold,
including the following (Beigi 2011, pp.5, 16-22):

Forensic, legal applications, surveillanc&he important characteristics of utilizing
speech for such applications are that it can beaeld relatively easily, on a large scale,
and without the user knowldegde. Speaker recognitay these purposes is usually
applied in the passive manner, i.e. a speaker ngomg system does not influence the

flow or type of the speeech data. However, suedé applications have induced legal
and ethnical concerns recently.

Audio indexing.Audio indexing is the most common application atimatic speaker

recognition. It integrates speaker segmentatiotectiag and tracking. In addition,
indexing can be combined with speech recognitiortie purpose of transcription of a
given audio stream. One of the domains that carizeitiaudio indexing is

teleconferencing.
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» Access controlExploiting speech as biometric for the purposeatess control has a
distinguished advantage over other biometric sensorapplication scenarios when the
user is physically dislocated. In such applicatjiseech can be transmitted through a
computer network or a telephony network, which sially not a challenging task
because these networks are well distributed.

The abovementioned applications certainly do nptagent a complete list, and it may be said
that speaker recognition has a potential to bé&etllin many real-world application, especially

keeping in mind ever growing number of mobile plorend other mobile devices with
integrated microphones.
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Chapter 2

Related work

2.1 Introduction

This chapter provides an overview of related warkthe field of speech recognition. The
currently dominant approach relates to statispeddern matching. Thus, this chapter first reports
on the statistical approach to speech recognittbnSection 2.2), including language modeling
based on n-grams (Subsection 2.2.1), acoustic mgdélased on hidden Markov models
(Subsection 2.2.2), and decoding, i.e. determirting most probable sequence of words
(Subsection 2.2.3). Subsection 2.2.4 emphasize® $iomtations of the statistical approaches,
especially those related to speech variations duenivironmental noise. Neural networks
represent a promising research direction to oveecdhe shortcomings of the statistical
approaches. Section 2.3 briefly discusses the diesmming for speech recognition (a more
detailed discussion is provided in Chapter 4), pravides an overview of the relevant research

on neural networks in the context of speech re¢mgniSection 2.4 concludes this chapter.

2.2 The statistical approach to speech recognition

An important assumption in the context of speeabcgssing is that a speech signal can be
observed as a sequence of short segments, eachidf ean be considered as the output of a

linear time-invariant system (Rabiner and Schaf@78l p. 355). Therefore, each of these
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segments can be appropriately described by a nametue, with respect to its frequency,

energy, etc. Letw=ww,..w, be a sentence, an®=o0,0,...0, a representation of a
corresponding acoustic signal that consists of quesece ofobservations where observation
o ,1<ist, describes the" segment of the acoustic signal. The probabilatiproach to speech
recognition can be formulated as (Jurafsky and iM&@09):

[}
W = argmaxP 0),
V%DL Wio) (2.1)

i.e. sentencew with the largest probabilityp(w|0)is selected as optimal. To estimate the

probabilities in the above equation, the Baye< ralapplied (Jurafsky and Martin 2009):

v PO [W)PW)
W= ar\;gvglax PO) (2.2)

where theprior probability of the sentencew) may be calculated by a language model, and the
observation likelihoodP(©|w) may be evaluated by an acoustic model. In cont@aghese
probabilities, the probability of a sequence oferlsationsP(O) cannot be evaluated. However,
P(O) is a constant value for each sentenceL, so the above equation can be simplified
(Jurafsky and Martin 2009):

0
W = PO |W)PW).
ar\%/anLax (O |W)PW) (2.3)

The process of selecting an optimal sentenceusstiited in Fig. 2.1.

32



Ashrf Nasef

Acoustic
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extraction
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Language
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Figure 2.1: lllustration of a speech recognition processJufafsky and Martin 2009).

The following three subsections discuss the languagd acoustic models, and the decoding
process in model details, while Chapter 3 repomstlee process of generating acoustic

observations (so-callddature extraction

2.2.1 Language modeling

N-grams are statistical language models that can estimaprobability of a sentence or a
probability of a word that follows a given sequemtavords, based on a given language corpus
(Jurafsky and Martin 2009). For the purpose ofitglaand without loss of generality, a special

case of n-grams, so-calletyrams is considered here.

To estimate a probability of a sequence of wakdsw,,w2,...w, , the conditional probability rule
may be applied, i.eP(AB)=P(AP(B|A) . Thus, the probability of a sequence of words loan

represented as (Jurafsky and Martin 2009):

PW) = P(wy, W2,...W,,) = P(Wp ) P(W; | Wy ) P(Wg [ Wy, W2) - P(W,, [ Wy, W2, ... W) - (2.4)
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But the conditional probabilities in the equati@¥( cannot be estimated directly, due to limited
size of underlying linguistic corpora. In order tcompute them, the Markov assumption is
adopted, i.e., that the conditional probabilityaoivord does not depend on the whole preceding
sequence of words, but only on the immediately¢xte word (Jurafsky and Martin 2009):

P(W, | Wy, W2,...W,_;) = P(W,, |W,_;) . (2.5)

Now, the equation (2.4) can be simplified:

PW) = P(w;,W2,...w,) = P(W;)P(W, [wy)P(W; |w2)--- P(W, |w,_;) (2.6)

In contrast to equation (2.4), the conditional @dobties in equation (2.6) can be estimated
directly, using thenaximum likelihood estimatiqdurafsky and Martin 2009):

C(Wn—lwn)

P(W, |W,) = cw.,)
n-1

, (2.7)

where:

* C(w,4w,) Is the number of occurrences of bigrams,w, in a given language corpus,

* C(w,,) — is the number of occurrences warg, in a given language corpus.

In a general case of n-grams, whéh1) preceding words are considered when estimating the
probability of a given word, the equation for maxim likelihood estimation is (Jurafsky and
Martin 2009):

C(Wn—N+1 "'Wn)

P(W,, |Wh_nsg - Wpg) = .
C(Wn—N+1 Wn—l)

(2.8)
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Keeping in mind that the maximum likelihood estimatis based on a given language corpus, it
is possible that the probability of some realisegjuences of words is evaluated to zero or close
to zero, simply because they contain a bigramithabt present in the corpus or appears rarely.
To overcome this problem we can apply Liaglace smoothingo n-gram probabilities. For the

case of bigrams, the Laplace smoothing is repredead (Jurafsky and Martin 2009):

C(Wn—lwn ) +1

C(Wog) +V (29)

P(w, [Wp4) =

whereV is the number of word types in the given corpus.

A language corpus is very important for the purpogdraining an n-gram model. A usual
approach is to divide a corpus in at least twogattraining set and a test set. The n-gram
probabilities are calculated over the training setgl afterwards tested over the test set. When
dividing a language corpus, one must ensure thedetitwo data sets do not contain same
sentences, because it would result in a model ithdtiased, i.e. the probabilities of such
sentences would be estimated as higher than tleeydshe. An alternative division of language
corpora has tree data sets: a training set, a @@veint set, and a test set. A development set is
used to set other parameters of a model or to geoadditional test set. Jurafky and Martin
(2009) state that, in practice, a language corgussually divided into 80% training, 10%

development, and 10% test.

Perplexity is often used for the evaluation of n-gram mode@lse perplexity of a given test

sentencen =w;,w2,...w, is (Jurafky and Martin 2009):

1
PPW) = (P(wy) P(W, | ;) P(W3 [W2) - P(W, | Wy ) N (2.10)
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Lower perplexity signals more adequate test sdigiitities. The basic idea is that the quality of
a language model can be evaluated to the extemhitth it fits to test data. Thus, perplexity can
be used to compare between different language model

2.2.2 Acoustic modeling

Modern speech recognition systems very often appiiden Markov models for acoustic
modeling (Jurafsky and Martin 2009, Bishop 2006biRar and Juang 1993, Rabiner 1989). A
hidden Markov model is determined by:

* Q - set of hidden states, including a start stataafidal state.

* A, — transition probability matrix, where elemeat is the probability of transition

from statd to statq,

* B=b(o) — a sequence of observation likelihoods (i.e. simis probabilities), where

elementb, (o,) is the probability that observatian is emitted from stateg, .

Figure 2.2: Five-state hidden Markov model of a phone. Staeand s4 are the start and final states,
respectively. The emitting states s1, s2 and s8spond to entry-transition, steady-state and exit-

transition parts of a phone, respectively.
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Acoustic models are based on hidden Markov modteighich phones represent hidden states,
and acoustic feature vectors represent observat®mphone is modeled by a hidden Markov
model that contains five states, as illustrate&igure 2.2. Two of these states are non-emitting
states, i.e., the start and the final states, whaerest three states correspond to entry-transiti
steady-state and exit-transition parts of a piohdurafsky and Martin 2009

For the purpose of illustration, a hidden Markovdeloof a word consisting of three phones is
depicted in Fig. 2.3. It can be observed that sudden Markov models have a so-calRakis

network which means that they do not contains transitiorearlier states.

start | 1st phone 2nd phone 3rd phone | end

Figure 2.3: A hidden Markov model of a word consisting of thp®nes

Let vV ={w,w,,...,w,} be a vocabulary consisting &fwords. For each wordy, OV, a hidden
Markov model 4, that represents the given word may be defined.€eBtienation of parameters

of these models is based on a training set, i.ey thptimize the likelihood of acoustic
observations. Recognition of an isolated word fridv@ vocabulary represented by observation
sequenc® can be formulated as (Rabiner 1989, p. 276, gf Zi4):

0
v=argmaxP(O|4,).
1<isp| (2.11)
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For each hidden Markov modg/, the likelihoodpP(O|4,)is calculated, and the word represented

by a hidden Markov model that generates the maxiiketihood is selected. The likelihood of

observationo =o,0, ...0, is estimated as follow@urafsky and Martin 2009

P(0) =) P(0,Q) =) P(O|QP(Q). (2.12)
Q Q
where:
t t
P(0,Q) =P(O|QP(Q) = I_ll P(o; [ai) Erl P(a; 19i-1) - (2.13)
: P(O[1))

v P(Oli,)

observations —> argmax P(O[4,)

lsig|V]

P(O[L )

Figure 2.4: lllustration of isolated word recognition. Hiddéfarkov model A; represents wordv, OV

(cf. Rabiner 1989p. 276.

However, the described calculation is time-consgmand can be optimized by applying the
forward algorithm given in fig. 2.5(Jurafsky and Martin 2009To explain the algorithm, the
forward path probabilitye, (j) is conceptualized to represent the probability thgiven hidden

Markov model will be in statg after the observation sequenge, ...o, is emitted, i.e.,
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a,(j) =P(0,0,...0,, ¢ = j). (2.14)

Initialization:

a,(J) =ag;b; (o), wherel< j<n.

Recursive step:

a,(j) :Zal_l(i)aij b;(0;), Wherels j<n,1<l<t. (2.15)
i=1
Final step:

PO|A)=a,(a;) = Y a.()a; , whereq, is the final state.
i=1

Figure 2.5: The forward algorithm.

This probability can be defined recursively. If ti@del was in state in the previous time step,

and its forward path probability was_, (i), then the probability, (j) is equal to:
a,(j) = a4 ()a;b; (o) . (2.16)

Since the above probability is evaluated underagwimption that the model was in a specific

statei, it does not allow for arbitrary transitions irat& j . Thus, it represents only one portion
of the probabilitya, (j) in a general case. The equation (2.16) can beraleresl, so that the
forward path probabilitye, (j) is calculated by summing partially calculated piuliges over all

possible states, as formulated in equation (2.5 recursive step is illustrated by the forward

trellis given in fig. 2.6. The forward algorithmgsificantly reduces the calculation complexity,

i.e. too(n?).
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Figure 2.6: The forward trellis.

2.2.3 Decoding

The decoding problem relates to discovering thetmosbable path through states of a given
hidden Markov model for a given sequence of obsema For this purpose, the Viterbi

algorithms is often applied (Jurafsky and Marti®20cf. fig. 2.7).

The Viterbi path probability, (j) represents the probability that a given hiddenkdamodel
will be in statej after the observation sequenge, ...o, has been emitted and the model passed

through the most likely sequence of hidden states...q,_,, i.e.,

v (j)=P(9,05 ... 01, 0,0, ...0;, G = ) - (218)
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This probability can be defined recursively, similaas the forward path probabilifgurafsky
and Martin 2009

vi ()= Egri(vl—l(i)aij b; (o), (2.19)

where:

* v,() is the Viterbi path probability for statein the previous time stejp-1,

a; Is the transition probability,

ij
* b;(q) is the state observation likelihood,

as defined at the beginning of the previous sectmaddition, the Viterbi algorithm recursively
defines a sequence bhckpointersg (j) that enable backtracking in order to determine the

optimal sequence of hidden statésrafsky and Martin 2009

I nitialization:
Vl(j) = Qpj bj (01), wherel< j<n,
Bi(j)=0, whereil<j<n.
Recursive step:
v () ::Taxvl—l(i)aij bj (9)), wherel< j<n,l<l<t, 2:(7)
<i<n
B, (i) =argmaxv,_y())a;b; (o) , Wherels j<n,1<l<t.
I<isn
Final step:

P =maxv,_4(t),
I<isn

B, (q;) =argmaxv, 4 (t), Whereq; is the final state.

I<i<n

Figure 2.7: The Viterbi algorithm.
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Isolated word recognition was already illustrated fig. 2.4. However, large vocabulary
continuous speech recognition requires alsss-word decodingso the observed set of hidden
Markov models, each of which represents a word feomocabulary, has to be extended. For the

purpose of clarity, we assume that the observediludary contains only two wordsy, w, .

AWR'A O
B-8-8 AL
040

(@) (b)

¥
4 \
1]
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I
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] ’
] I
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\
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wordw, Y
- LY
“\ N.."""-‘ ———— ".f"
N P(w,w,) s
~, -7 #
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P(Wﬂ“’z)\\h g
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Figure 2.8: Cross-word decoding: (a) illustration of a hiddstarkov model of an isolated word,
containing only intra-word transitions, (b) Viteripellis for an isolated word, (c) illustration afhidden
Markov model for a vocabulary, extended with intexd transitions, (d) extended Viterbi trellis. The

intra-word transitions are denoted by solid arroWwke inter-word transitions are denoted by dashed
arrows.
Fig. 2.8(a) illustrates a hidden Markov model tllascribes an isolated word. This model

includes onlyintra-word transitions denoted by solid arrows. The corresponding Vitadilis
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is given in Fig. 2.8(b). However, a hidden Markowdal that describes both words in the
vocabulary consists of models for each word extdnaéh inter-word transitions e.g. the
bigram probabilities of transitions from one word o t another:
P(w, [w,), P(W, | W), P(w; |W,), P(w, |w,), as shown in 2.8(c). The Viterbi trellis for thetended
model is given in 2.8(d). The inter-word transiscare denoted by dashed arrows. It is important
to emphasize that the probabilities of inter-wagethsitions are derived from the language model.
Such an extension allows for calculation of a \hterellis for a sentence. Still, the Viterbi
algorithm has to be further optimized in order ® dppropriate for large vocabulary speech
recognition. Usually, when considering inter-wordnisitions, paths of low probability are

pruned In other words, not all words are consideredachestegJurafsky and Martin 2009

2.2.4 Limitations of the statistical approaches

Dealing with environmental noise (such as car emgiraffic noise, white noise, crowd noise,
etc.) and speech signal variations caused by noatins of articulation (that can be found in
the speaker’s pitch, etc.) represents an impoisane in automatic speech recognition (Santos et
al. 2015, Kacur 2004). The current speech recagnisystems are designed to work in
controlled environments using clean speech, anfdrsibave reached high levels of performance
(Alam et al. 2015). However, when exposed to nasyironments, the performance of these
systems degrades rapidly. Due to ever increasiegolispeech-based user-centric applications
(such as voice interactions with mobile device IBing voice search, Siri on iPhone, etc.),

noise robustness is becoming an important requmegheet al. 2014, Cui and Alwan 2005).

Noise may be broadly classified as additive noiseegated by external sound sources, and
convolutional noise caused by channel charactesisfiurafsky and Martin 2009). Diverse
techniques are applied to improve speech recognitionoisy conditions. Noise resistance
features and similarity measurements techniquessfan the effects of noise on the speech

signal, rather than on the noise removal, attergpinderive features which are noise resistant.
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Speech enhancement techniques attempt to removecdtrapting noise without altering
parameters of the acoustic model (Kumar and Flooe2@16). Model adaptation technique aim
at changing acoustic model parameters in accordaiite the noisy speech signal, i.e. the
statistical modeling techniques are trained usilegurt speech and then are adapted to noisy
speech.

The majority of speech recognition systems usedriddarkov models combined with Gaussian
mixture model probability density functions to camg the likelihood of an acoustic feature

vector. The output likelihood probability functismdefined as (Jurafsky and Martin 2009):

)! 2 _1(0t ~Hji)) s (2.20)

b (o) = Z Wﬁexp((x Hj
where:

* G, is the total number of Gaussian mixture modelbabdity density functions assigned

to statej,

* c; is the mixture weight assignedifomixture model,
* u; —mean of the Gaussian distribution assignat! tnodel,
e X; —covariance matrix of the Gaussian distributissigned ta™ model.

However, Gaussian mixture models suffer from sedeadvantage reflected in the fact that the
modeling of even small non-linear deviations mayuree a large number of Gaussians, which
makes them inefficient for acoustic modeling ofad@tlinton et al. 2012). Thus, this approach is
easily affected by speech variations in daily cosatons, particularly are sensitive to mismatch
introduced by environmental noise (Seltzer et @.3).
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2.3 Deep learning for speech recognition

Developments in the field of deep neural networkmdnstrated convincing improvements in
speech recognition performance, and suggest thahlneetworks may be applied to overcoming
the disadvantages of the statistical approaches.fidamental architecture across deep neural
network systems is a network that consists of s¢vedden layers of connected neurons whose
activations are a nonlinear function of a lineambaation of the activations of the previous
layer. The most used hidden neuron activation fands the sigmoid function. However, in this
thesis the rectified linear unit is applied (cf.apker 4, Nasef et al. 2017a, Nasef and Marjanovi
Jakovljevé 2017b). Compared to the sigmoid function, it isirfd that a rectified linear unit
significantly accelerates the convergence of steiharadient descent, since the activation is
simply setting the threshold at zero (Maas et @L.3)}. Networks with such a function are often
trained with a dropout regularization technique ifmproved generalization for large models
(Srivastava et al. 2015). The final layer usuathgsl not have an activation function, because it is

taken to represent the class scores which arer eghkvalued numbers or a target.

Gradient descent learning algorithms minimize nemetwork loss functions by iteratively
computing the gradient to adjust the weights, asidgithem to update parameters at every step.
Parameter update requires the learning rate teeb®san appropriate value. The learning rate
determines how fast the algorithm moves towardsofitenal weights. If the learning rate is too
low, then the algorithm will perform too many iteams while converging to optimal values, and
thus be inefficient, and if the learning rate ie togh, the progress will be faster, but with & ris

that the optimal solution will be omitted. Therefpusing a good learning rate is crucial.

Gradient descent learning algorithms estimate thdignt on a large dataset (batch), performing
redundant computations (as recomputed gradientsifioitar examples before each parameter
update). The stochastic gradient descent is usoallgh faster because it estimates the gradient

from just a few examples at a time instead of thaére training set. Mini-batch stochastic
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gradient descent takes the best of the both apipesaand performs an update for every mini-
batch whose size is usually between 50 and 2560¢e metailed elaboration of neural networks
is provided in Chapter 4.

Recently, researchers have started to explore alegiferent strategies for using deep neural
networks for speech recognition, speaker recognitamd spoken language recognition tasks
(Srinivas et al. 2014, Richardson et al. 2015, Mehaet al. 2015). Among the first results, in

2000, was the use of deep belief networks, whiehbased on restricted Boltzmann machines,
and deep autoencoders (Vasilakakis et al. 2013)veier, training deep neural networks with

big number of hidden layers with autoencoders hasva to be a quite difficult task (Le 2015).

From 2006, dimensionality of data with autoencaaetworks was reduced by gradient descent
which is used for fine-tuning the weights (HintondaSalakhutdinov 2006). Furthermore, this
approach has branched into major variants, sudbatth gradient descent, stochastic gradient
descent, and mini-batch gradient descent (Le &0dl1). When dealing with continuous speech

recognition, the recurrent neural networks wergpsed (Robinson et al. 1996).

One of the recent advances in deep neural netwthrtsjmprove its performance, optimization,
and prediction quality, are rectified linear unitmd dropout (to overcome the problem of
overfitting) (Dahl et al. 2013). However, there atél challenges that remain to be addressed.
Sutskever et al. (2013) showed the importance omemtum-accelerated stochastic gradient
descent that uses well-designed random initiabpatiLe et al. (2011) introduced more
sophisticated optimization methods such as Limmesnory Broyden-Fletcher-Goldfarb-Shanno
and conjugate gradient that simplify and speedhgpprocess of pre-training deep algorithms.
Senior, et al. (2013) trained deep neural netwéokdarge vocabulary speech recognition with
mini-batch stochastic gradient descent by usinguéety of learning rate schemes. They show
that adequate choice of learning rate schemes leddster convergence, and lower word error

rates.
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There are few research works that have addressaoblistness of automatic speech recognition
systems under noisy conditions using deep neutalanks. Kumar and Florencio (2016) studied
speech enhancement in office environment conditiadiere multiple stationary or non-
stationary noises can be simultaneously presergpeech. They collected 95 noise samples
observed in office environment that are then miaed added to the clean utterance of the
TIMIT training set at a random signal-to-noise eathosen uniformly from -5dB to 20dB. Their
results show that strategies based on deep neetabrks provide an increment in average

perceptual evaluation of speech quality of 24%.

In order to evaluate the performance of a deepahawstwork-based acoustic model for noise
robust speech recognition, Seltzer et al. (2018ppeaed a series of experiments on the Aurora
4 medium vocabulary task that is based on the Wadlet Journal corpus. The 7137 utterances
recorded from 83 speakers include a combinatiasiezin speech and speech corrupted by one of
the six noises (car, street traffic, train, airpoestaurant and babble) at 10-20dB signal-to-noise
ratio. They obtained the best performance whenyapplthe combination of noise-aware
training and dropout, with improvement of 7.5%.

Mitra et al. (2014) evaluated robust features cgpdend convolutional neural networks for noisy
English continuous speech recognition task of Aargrand demonstrated that they can improve
the recognition performance compared to the merbank energies. They show that the vocal
tract length normalization has a positive impactimproving the performance of the robust

acoustic features.

De-la-Calle-Silos et al. (2014) tested the robustnef different automatic speech recognition
systems based on deep neural networks (e.g., th@sfr neural networks, deep neural networks
with dropout, and deep maxout networks) by digitalbdding four different types of noises
(white, street, music, and speaker) at four difiesgnal-to-noise ratios to the clean speech. The
experiments, performed on the TIMIT corpus, showpriowvement in the recognition accuracy

over traditional techniques for both clean and yo@nditions.
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Noda et al. (2015) demonstrated that a deep degoa&itoencoder can effectively filter out the
effect of noise superimposed on original clean @udputs, and such denoised audio features
attain noise robustness in an isolated word retiogniask.

Misamadi and Hansen (2015) explored deep neuralanktacoustic model adaptation in order
to achieve improved noisy robust automatic speecbgnition systems. They adapted the clean-
trained neural network model to speech data selefitan the Aspire challenge data. The
experiment uses 10 passes of adaptation dataawitimi-batch size of 256, and a fixed learning

rate of 0.001. They obtained relative word err¢e improvement of 16%.

Kim et al. (2016) proposed a noise adaptation fraonk that employs knowledge of background
noise and learns low-dimensional noise features fadctrained deep neural network. In order to
evaluate the proposed method, they trained the Imodeng datasets, RM (Resource
Management), and CHIME-3, and then tested it with Aurora 4 task. They verified the

effectiveness of the proposed noise adaptationoagfrin which a trained deep neural network

dynamically adapts a speech recognition systelts tasage environment.

2.4 Conclusion

This chapter provided an overview of related warkwo broad research directions. The first
research direction, which is currently dominanthe field, is primarily statistical and based on a
combination of hidden Markov models and Gaussiarture models for modeling acoustic
representations of features extracted from theasighnother research direction is related to

promising and rapidly emerging methodological applobased on neural networks.

The further chapters of this thesis will focus be tatter research direction. However, the next

chapter considers acoustic feature extraction, hvigcan aspect of pattern recognition that is
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important for both these research directions. $petiention will be devoted to acoustic features

relevant for speaker recognition.
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Chapter 3

Feature extraction

3.1 Introduction

Feature matching is an important part of the speed@gnition process. In its first part, this
chapter introduces the basic notion of featureaetittn (Section 3.2), and reports on the selected
83 state-of-the-art acoustic features that areiegjph the scope of this research (Section 3.3). In
the second part (Section 3.4), this chapter dissuss more detail different phases of the
extraction process for the frequently used Mel-Besgy Cepstral Coefficients, including
preemphasis, windowing, Discrete Fourier Transfolel filter-bank, log, Inverse Discrete

Fourier Transform, etc. Section 3.5 concludes ttapter.

3.2 Basic notion of feature extraction

The purpose of feature matching is to find the lestch that is used to identify the unknown
speaker (cf. Nasef et al. 2017a). E.qg., in spesagsdfication, the unknown speaker first claims
identity, and then one-to-one matching is done, itee claimed model is used for the

identification. As already mentioned in Chapteifthe match is above a predefined threshold,
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the identity claim is accepted. A general spea&eognition system architecture is shown in Fig.
3.1 (Sturim et al. 2007).

To recognize the speaker, the first step in spesd@gnition system is to convert the speech
waveform, using digital signal processing toolsatset of features for further analysis. During
signal preprocessing, sometimes when removing utadanformation, some useful information
can be lost. After preprocessing of the speechasignthe signal modeling, the next step is
parameterization of speech signal, which is cdiadure extraction. The aim of this process is to
produce a meaningful representation of the speigecials Some main tasks of feature extraction
are the conversion of the speech signal to a difman (signal conditioning), measuring
important characters of the signal (signal measangjnaugmenting these measurements with
derived measurements (signal parameterization), statistical modeling. For parametrically
representing the speech signals there are sevemainon methods, such as Mel-Frequency
Cepstrum Coefficients, Filter Bank Energy analyars] others (Anusuya and Katti 2009).

Training Speaker
mode |  modeling

| Signal /_A
' | preprocessing | Anaiysis | Feature Feature e
i j | (sllence removal, Frames | extraction Vector Speaker
1 pre-emphasis, Models

Speech signal framing, windowing)

) ]
Testing :l Pattern Decision ! Identified
Recognitign|  Matching
mode |
1

device | user

Pattern Classification
£ ]

___________________________________

Figure 3.1: General speaker recognition system architecturegif® et al. 2007).

The result of feature extraction is a sequencecotistic vectors that serve as a set of training
vectors for the observed speaker (Hinton et al220Ihe next step is pattern/feature matching
that identifies a test speaker by matching extché#atures with a set of known speakers. The

pattern classification measures the similarityhaf input feature vectors, and groups the patterns
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that share the same properties. According to theltref the pattern classification, a recognition

system decides whether to accept or reject a spé@kenpbell 1997).

3.3 Selected features

Mglgaard and Jgrgensen (2005, p. 2) state somdeofrdquirements for acoustic features
intended to be used for the purpose of automagedprecognition. According to them, optimal

acoustic features:

» differ between speakers, but are resistant to-spgemker variations,

* can be easily measured,

» do not vary, or vary slowly over time,

» are frequent and naturally-occurring,

» do not change significantly across different envinents,

* are hard to imitate.

In addition, Mglgaard and Jgrgensen emphasizetiieabptimal features are based on spectral
analysis. Indeed, speaker recognition systems lyseaploit spectral features obtained from

short time speech segments (Shriberg et al. 2005).

In this study, we use 83 state-of-the-art featdin@s are extracted using MATLAB or PRAAT
software (Boersma and Weenink 2016), namely piiictgnsity, and four orders of formants

family, four orders of formants bandwidth, standalelviation, mean autocorrelation, mean
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noise-to-harmonics ratio and mean harmonics-toencgdio. These features are explained in

more detail below (cf. Nasef et al. 2017a).

(1) Formant frequenciesK) indicate resonating frequencies of the vocaltifads determined

as:
F =" arctand™® , (3.1)
T re(s)
where:

* Fsis sampling frequency,
* im(s) andre(s) are imaginary and real parts of the sound signal

For the purpose of this study, the maximum valuerngdnt_max), the minimum value
(formant_min), the standard deviation, (formant),side mean (formant_mean), and the median

(formant_median) for formant bandwidths are cal@da

(2) Pitch estimation algorithms can be divided in three apphes: time domain, frequency
domain, and statistical approaches (Joho et al7)200 the scope of time domain approaches,
for the purpose of this work, the Zero CrossingeR@CR) and autocorrelation are used. From

speech signa, pitch can be calculated as:
£o(9) = zp{log‘w(s.a)r'f (”SM}, (3.2)
where:

*  po(9)is the pitch,
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e shows the Discrete Fourier transform function,
* | represents a length of the sigsal
() is the Hamming window, calculated as follows:

@!! =054~ 0.46co{2—mj ,1<nsN-1. (3.3)
L

For every sequence of pitch values, a set of featis calculated, including the maximum, the

mean and the minimum pitch, etc. These featurea@raalized using percentile value.

(3) Zero Crossing Rate (ZCR) is calculated using Chen's formula (Chen 1988):
1 T-1
ZCR_T_—ltZ:;n{sts“l <0}, (3.4)

wheres, ands.; are the values of the sound signals at tiraedt-1, respectively andl{A} is
the indicator function, i.e., if the argument Atrige then the functiofl is equal to 1, otherwise it
is O.

(4) Autocorrelation function r(z) of a signal with time lag aims to maximize the product

between the waveform and its shifted version. ttained as:

N-1

r(r) :%Zs(n)s(n+r). (3.5)

n=0

(5) Harmonics-to-Noise ratio (HNR) features can be used to quantify a perceptualessgon

of a rough voice. For example, if 99% of the enenfyhe signal is periodic and 1% is noise,
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thenHNR=20dB. Usually young speakers can produce apprdgign20 dB ofHNR (Friedland
et al. 2009).

(6) Cepstrum coefficients (CC) are useful because they separate source and Til@ncating
the cepstrum at different frequency values alloarspfreserving different amounts of spectral
detail. Cepstrum is defined as the inverse Disdretgier Transform of the log magnitude of the
Discrete Fourier Transform of a signal.

(7) Me-filterbank is typical short-term spectral analysis technigueere speech data is split
into overlapping time-frames where spectrum of efaame is analyzed with Discrete Fourier

Transform.

(8) Mel-frequency cepstral coefficients (MFCC) are calculated using Davis and Mermelstein
model (Davis and Mermelstein 1980, Maesa et al.p012

N
MFCC, :Zxkco{i(k—l)ﬂ,i =12,.M, (3.6)

k=1
where:
* M s the number of cepstrum coefficients,
* X k=1,2,...N are log energy output of thd filter,
* Nrepresents the number of triangular band passdilte

(9) Filter-bank energy (FBE) is a small set of parameters describing the spseelctrum
envelope in the observed frame. In order to takderdarmation about pitch and to lower down
estimation error, this approach integrates theogegram in frequency bands (Hernando and
Nadeu 1997).
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(10) Per centile normalization of region duration (Holube et al. @1

Figures 3.2 and 3.3 show the speech signal indiomeain and spectrogram of the speech signals
for a female sample and a male sample, respectigth speakers utter the same sentence.
Observing the time domain of the speech signal fiteese figures during the interval of silence,
it can be concluded that the recording was perfdrmex noisy environment. The lower parts of
the figures show the spectrograms of the signaksrevformants are denoted in red, intensity is

denoted in yellow, and pitches are denoted in blue.

0175

0.00347'

-0.1559|
5000 H. 500 Hz

O H. i 75 Hz

0 Visible part 4 760000 seconds 4.760000|

Total duration 4. 760000 seconds

Figure 3.2. Speech signal in time and frequency domains femsafe sample (and the same utterance as
in Fig. 3 3). The lower part shows the spectrogdditme signal where formants (denoted in red),nisity
(denoted in yellow) and pitches (denoted in blue)extracted using the software PRAAT (Boersma and
Weenink 2016).

Comparing the given female and male spectrogramth&same utterance, one can observe that
formant frequencies of the female speaker are highkis was expected because women
generally have shorter vocal tracts than man. Tgieeh voice fundamental frequency means that
there is a longer interval between voice harmoars therefore weaker definition of formants.
Additionally, one can observe that pitch of a man'e is lower than pitch of a woman's voice.

Pitches and intensity are proportional to each rottierefore it is expected that women speak
57



Ashrf Nasef

higher than men. In general, speakers significadiffer among each other in term of prosodic

patterns.

2420000

0.01339

Figure 3.3. Speech signal in time and frequency domains foak mample (and the same utterance as in
Fig. 3.2). The lower part shows the spectrograrthefsignal where formants (denoted in red), intgnsi
(denoted in yellow) and pitches (denoted in blue)extracted using the software PRAAT (Boersma and
Weenink 2016).

3.4 Extraction of Mel-Frequency Cepstral Coefficgen

As already noted, feature extraction may be desdrias a process of mapping an input
waveform into acoustic feature vectors, each ottlvinepresents a short time frame of the signal.
The Mel-Frequency Cepstral Coefficients are impartar this discussion in so far as they are
one of the most popular feature group in the fiefdspeech and speaker recognition. The
extraction process for the Mel-Frequency Cepstraéffitients includes several phases, as

denoted in Fig 3.4, and this section discussedf dflem.
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Speech signal
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Preemphasis
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Windowing
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Discrete Fourier Transform
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one energy feature

v
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Figure 3.4. Block diagram illustrating the extraction of the M&equency Cepstral Coefficients (cf.
Jurafsky and Martin 2009).

3.4.1 Preemphasis

A fundamental characteristics of speech is thaelofrequencies are assigned more energy than

the higher frequencies.

Beigi (2011, pp. 154-1B6j)es that it has been estimated that

approximately 80% of the power in a speech sighetlated to frequencies lower than 1,000 Hz.

In the range from 1,000 Hz to 8,000Hz, the powerreduced at an approximate rate

-12db/ Octavé, while for frequencies greater than 8,000Hz itdmees practically insignificant.

In order to make information from higher formantsrmavailable, the higher frequency energy

is boosted, which is referred to as the preemphafstee signal (Jurafsky and Martin 2009).

Preemphasis is conducted on analog signals, béfergampling, e.g. applying a differentiator:
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H,(2)=1-az™", (3.7)

where the value of parameteis usually set somewhere between 0.95 and 0.99i(BéL1, p.
155).

3.4.2 Sampling and quantization of a speech signal

Periodic sampling at a fixed frequency is usuapipleed for the purpose of sampling a speech
signal. The sampling frequency is determined iroetance with the Sampling theorem: if the

maximum frequency of a function i (which is referred to as the Nyquist Critical Fregay),

then the sampling rate should be greater or equal t, i.e. the function should be sampled at a

period less or equal tez)i—. Such a selection of a sampling rate ensureghiabbserved signal

c

can be reconstructed with a sufficient level ofusacy (Beigi 2011, pp. 79-81):

h(t) = z p, SinWet=n7) (3.8)

Wt —nrmr

n=-o0

where:

)

* w, =27, is the Nyquist Critical Angular Frequency.

The theorem is illustrated in Fig. 3.5, for the géing frequency set taf, 3f, 4f, 8f respectively,
wheref is the signal frequency. It may be observed taatding frequences lower thahdo not
allow for complete reconstruction accuracy. A probfthe Sampling Theorem is provided by
Beigi (2011, pp. 80-83). As illustration of praei@pplications, Jurafky and Martin (2009) note

that frequencies of human speech are primarily vibel®,000Hz, so the sampling rate of
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20,000Hz is necessary for the accuracy. Howevequincies of telephone speech is under
4,000Hz, so the sampling rate for telephone spee@000Hz, while the sampling rate for
microphone speech is usually set to 16,000Hz. Hmepked values are further quantized, e.g.

stored as 8-bit or 16-bit integer values.

>

a) 2f b) 3f

c) 4f d) 8f

Figure 3.5. lllustration of the Sampling theorem. The samphirgjuency is set to a) 2f, b) 3f, c)4f, and
d) 8f, respectively, where f is the signal frequerampling frequencies lower than 2f do not alfow
complete reconstruction accuracy.
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3.4.3 Framing and windowing a speech signal

Speech may be treated as a stationary signal dwat §me periods, and thus is usually
segmented into frames for the purpose of analysiiough these time periods range to 100ms,
a typical frame width is much smaller (e.g. 20-3Prasd in addition frames are overlapped (e.g.
shifted by 10ms), in order not to miss short speggobnomena such as stops, and onsets and
offsets of phones (Beigi 2011, p. 161, Mglgaard dmdjensen 2005, p. 2).

The windowing process can be described as mullifiiin of each frame by a windowing
function (Beigi 2011, p. 162):

/hy=hw(n) (D0<n<N-1), (3.9)
where:
* N is the length of a frame (i.e. number of samptes frame),

 h, is then™ sample of thé¢" frame,

* w(n)is a window function.

Beigi (2011, p.162) makes a practical remark thames positioned at the start or the end of a
speech sequence do not necessarily contain dagaébrsample in a frame. Data in such frames

are padded with zeros.

Table 3.1 gives contains definitions of selectechdeiwv functions. Each of these window
functions has its advantages and disdvantagessassded by Beigi (2011, p.163-167). For an
illustration, Figures 3.6, 3.7 and 3.8 illustrate Hamming window, the Hann window and the
Triangualer window, respectively. The Hamming windis selected as the most popular, the

Hann window as a variation of the Hammings windawd, finally, the Triangular window is
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illustrated because it is used for the extractibriviel-Frequency Cepstral Coefficients. The
advantage of the the Hamming window is that itxspen drops quickly, which in turn enables
isolation. On the other hand, its side-lobes netato the higher frequencies remain flat. When
compared to the Haming window, it can be obsertiatithe Hann window falls off more slowly

at lower frequncies, but quickly at higher frequesc In contrast to them, the Triangular

window drops rapidly and has significantly widedesiobes.
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@ z
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o
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10 20 30 40 50 60 ¢ 0.2 0.4 0.6 0.8
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Figure 3.6. The Hamming window and its spectrum: a) time deomi) frequency domain
(adjusted from Beig2011, p.164)
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Figure 3.7. The Hann window and its spectrum: a) time domiajdrequency domain

(adjusted from Beig2011, p.164)
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Figure 3.8. The Triangular window: a) time domain, b) frequedomain
(adjusted from Beig2011, p.166)

3.4.4 Discrete Fourier Transform

For extracting spectral information from a windowsignal, the Discrete Fourier Transform

(DFT) is appliedlt is often based on the Fast Fourier Transfdgorihm (Beigi 2011, pp. 167-168
o 2km
H, :; | hnw(n)ex;{—iT] (00<k<N-1),

where:

N is the length of a frame,

 h, is then™ sample of thé™ frame,

| H, is the Descrete Fourier Transform,of ,

w(n) is a window function,
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after which magnitudes of the calculated Fast ourransform bins are determined:
(3.10)

|| Hk|=\/Re(lHk)2+|m(lHk)2 .

Table 3.1 Selected window functionsl is the length of a frame (cf. Beigi 2011, pp.1@&3-1

Definition

Window

Hamming window
a 9 do w(n)= 054- 0.46c0{—§m1j

Hann wi
window W) 05(1_00{ 2m D
N-1
Welch window N-1)2
n—
1 2
w(n)=1 N-1
2

Triangular window W(n)=1- Zn& r_\llﬂ

Blackman window family w(n)=a, - a, co 27 ), 4, cod &M
0 APAN-1) ?2TAN-1)

where: a, :1_7‘7,a1 :%,a2 :%

Gauss window 2
J 1
, whereas—2
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3.4.5 Mel filter-bank and log

An important property of human hearing is less gimesto frequencies greater than 1,000Hz.
Mel-Frequency Cepstral Coefficients are intendedntmlel this property. In line with this, the
frequency scale is mapped onto thelscale:

mel(f) :1127In(1+%)j, (3.11)

for frequencies below 1,000Hz, the mapping is lin@ad for frequencies above 1,000Hz it is
logarithmic. In this way, perceptually equidistaounds are separated by equal number of mels
(Jurafsky and Martin 2009).

In a typical implementation, a mel filter bank cains triangular filters that collect energy from
different frequency ranges. Ten filters are setdiy for frequencies lower than 1,000Hz, while
the others are set logarithmically for frequenajesater than 1,000Hz. A mel filter bank is
illustrated in Fig. 3.9. The obtained values apgesented as log-values.

Amplitude

0 1,000

Frequency [Hz]

Figure 3.9. lllustration of a mel filter bank (adjusted fraw@lgaard and Jargensen 2005, p. 6
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3.4.6 Inverse Discrete Fourier Transform

The cepstrum is defined as the inverse Discretei&olransform of the log magnitude of the

Discrete Fourier Transform of a signal (Jurafskg &fartin 2009):

Jex;{i Zkij , (3.12)

c[nlzjg':log(

; h,w(n) exy{—i Zkij

where:
* N is the length of a frame,
 h, is then™ sample of thé¢" frame,

* w(n)is a window function.

Typically, the first twelve cepstral values are dis€hese coefficients carry information on the
vocal tract filter, excluding information on theogll source, and have a practical advantage that

their variance is uncorrelated (Jurafsky and Maz009).

3.4.7 Energy and delta coefficients

The set containing twelve Mel-Frequency Cepstraéfi@ents per frame calculated by the
Inverse Discrete Fourier Transform can be furthegerded. First, it is extended by the energy
coefficient (i.e. energy from the frame) that iscasated as follows (Jurafsky and Martin 2009):

N-1
renergy=» (;h,w(n))?, (3.13)

n=0
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where
* N is the length of a frame,

h,is then™ sample of thé" frame,

* w(n)is a window function.

In addition, the dynamics of Mel-Frequency CepsBatfficients are reflected through the first
and second order differences of these thirteerattufes. The first order difference is also called
a delta or velocity feature, while the second order difference isechla double deltaor

accelerationfeature.

Deltas can be computed in a simple manner, dng.d¢lta value of a cepstral valoat timet
may be obtained as (Jurafsky and Martin 2009):

ct+D—-c(t-1

dt) = 5

(3.14)

or it can be estimated in a more advanced manner.

In total, there are 39 Mel-Frequency Cepstral Goefits, including twelve cepstral coefficients,
twelve delta cepstral coefficients, twelve doubleltal cepstral coefficients, one energy
coefficient, one delta energy coefficient and ooelde delta energy coefficient (Jurafsky and
Martin 2009). Beigi notes that for practical purpss(e.g. for the purpose of optimization),
smaller number of delta and double delta coeffisieran be applied without significant decries

in recognition performance (Beigi 2011, p. 175-176)
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3.5 Conclusion

This chapter discussed different phases of theufeagxtraction process for the purpose of
speaker recognition. Thus, in the context of tregigtical approaches to automatic speaker
recognition, discussed in Section 2.2 of the previahapter, the Mel-Frequency Cepstral
Coefficients represent input for Gaussian Mixtureddls. However, these features can serve as

input in a neural network model, which is discussetthe next chapter.

69






Ashrf Nasef

Chapter 4

Learning with neural networks

4.1 Introduction

The previous chapter described the feature extradior the purpose of automatic speaker
recognition. Here we discuss additional aspectusfapproach to speaker recognition. Namely,
the observed acoustic features serve as input toewal network model for speaker
classification. Therefore, we first consider thedtetical concepts and methods that are relevant
to neural networks and deep learning, and thenrr@mohow we apply neural network learning

for the purpose of automatic speaker recognitiomsgNl et al. 2017a).

The structure of this chapter is as follows. Secd@ introduces the basic notions of a sigmoid
neuron and a deep feedforward neural network. @eeti3 discusses the stochastic gradient
descent algorithm for determining appropriate valokweights and biases in the process of the
training a deep feedforward neural network. A gahalgorithm for stochastic gradient update at
a training iteration is given. Section 4.4 introds¢he backpropagation algorithm for computing
gradient of a cost function. Section 4.5 discussegroblem of overfitting a neural network, and
one of the regularization methods intended to addthis problem, i.e. the dropout method.
Section 4.6 briefly describes convolutional neunatworks and three important underlying

concepts, i.e. sparse interactions, parameternghjaand equivariant representations. Finally,
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Section 4.7 introduces our approach to automatealsgr recognition based on deep neural

networks and the stochastic gradient descent #tgoriSection 4.8 concludes this chapter.

4.2 The notions of sigmoid neuron and deep feedioawmeural network

One of the most fundamental conceptualizationshin field of neural networks relates to a
model of artificial neuron (Nielsen 2015, cf. thiest chapter). The basic model of artificial
neuron is goerceptron In its basic form, a perceptron takes a set nétyi values as its input

{x,%,...,x.} , and generates a binary outpytas illustrated in fig. 4.1.

Figure4.1: lllustration of a perceptron.

Each input valuex,, 1<i<n, is assigned a real-valued weightoO, 1<i<n, that reflects the

importance of variable to the outpubo. The output is defined as follows:

o= 0, wlk+b<0,
1, otherwise

(4.1)
where:

* x Is the vector of inputsy, x,,...,x,,

* w is the vector of weightg,,w,,...,w,

n
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* wixis a dot product of vectors andw, i.e., Zwi X; .

I<i<n
* bOOis areal-valued bias assigned to the perceptron.

The output of a perceptron is always a binary valee either zero or one. This means that even
a small change in input bias or weights can cometdénthe output. For practical purposes of
machine learning, it is often more convenient teeéha more-fine grained output. To achieve
such an output, theigmoid neuronmodel is introduced. The sigmoid neuron modelns a
extension of the perceptron model of artificial reeuthat allows the output to take value from

zero to one. The output of a sigmoid neuron isrdefiby the so-callesigmoid function

1 1
b) = = 4.2
o(wx+Db) 14w+ 14 exp(- Z w; X, —b) ( )

I<isn

Fig. 4.2 illustrates the step function relating to the amtpf a perceptron, and the sigmoid
function relating to the output of a sigmoid neurttrmay be observed that the perceptron model
is just a special case of the sigmoid neuron moktecomparison to the step function, the
sigmoid function is rather smooth, which enableaae-fine grained output. The main idea of
the sigmoid neuron model is that small changeseighits and bias produce a small change in

output.

0 0
@ (®)

Figure 4.2: lllustration of (a) the step function and (b) tlgnsoid function.
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The output of a sigmoid function may be approxirdats follows:

po= 2% pw +pp, (4.3)
ow; ob

I<isn

whereaa—oand :TO represent partial derivates. This also implies tha change in output may

be approximated as a linear function of changdsdaa and weights. This property of a sigmoid

neuron is important for neural network trainingidsris discussed in the following sections.

input | hidden i output
layer | layers P layer

Figure4.3: Direct, acyclic graph illustrating a deep feedfard/neural network.

At the structural level, a neural network consistsa set of neurons whose organization is
illustrated by a directed graph given in fig. ££ach node in this graph represents a neuron. The
output of the first layer of neurons serves adtpet for the second layer of neurons, the second
layer of neurons produces the input for the thargel of neurons, and so on. This transition of
information through the network is denoted by diedcedges. Neural networks that contain no
loops (i.e. no feedback connections) are caflsetiforward neural networksThey may be

represented as a directed, acyclic graph, as sgrshdwn in fig. 4.3. The length of a path
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starting at a node in the input layer and ending abde in the output layer defines the depth of

the model (hence the adjectigeepin deep feedforward networks

The main purpose of deep feedforward neural netsvisrko approximate a given functidn (x)
(Goodfellow et al. 2016, pp. 100, 168-169; Niel2@i5, cf. the first chapter). Without loss of
generality, let us assume that function(x) classifies inputx to one of given categories, e.g.,
f7:0" ~ {12.....,k} . The task of a deep feedforward neural networkoisdefine function
f(x,8) and to learn the value df, so that functionf approximates sufficiently well function

£,

4.3 The stochastic gradient descent algorithm

As stated above, the training of a deep feedforwataral network may be briefly described as
finding weights and biases so that the output apprates, as good as possible, a given function
for all training inputs. To assess how well a neaswork approximate a given function, a cost
function is applied, which may be defined as arraye over the training set, e.g. (Goodfellow et
al. 2016, pp. 275-276):

I(6) =E(xy)poa L (T (X)), (4.4)
where:
* L represents a loss function,

* f(x6) represents the output from a given network whenrtput isx,

» yrepresents function that should be approximated,

75



Ashrf Nasef

*  puasalepresents the empirical data distribution.

In the context of machine learning, the true dasdridution is usually not available, so the
empirical data distribution is used. The trainirfgaaneural network is based on minimizing the
cost functioni(9) , i.e. (Goodfellow et al. 2016, pp. 275-276):

3(0) :%Xm) L(F (0,8, y1), (4.5)
i=1

where mrepresents the number of training samples. Thisitig process is also callepirical
risk minimization To illustrate this, let as assume that we aplpéy quadratic cost function to
assess how well a neural network approximate angfuaction (Nielsen 2015, cf. the first
chapter):

1
C(w,b :%guy(x)—auz, (4.6)

where:
* yrepresents function that should be approximated,
» w represents all weights in neural network,
* b represents all biases in neural network,
* xrepresents all training inputs,

* a represents the vector of neural network outputsesponding to given inputs.
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When the costc(w,b) is close to zero, it means that function defingdthee observed neural

network is approximatelly equal to functign

To determine appropriate values of weights andelsiathegradient descenalgorithm may be
applied (Nielsen 2015, cf. the first chapter). Ho purpose of explanation, we assume that the

cost function has a set of real-valued variables,,v,,...v,,. The main idea of the algorithm may
be briefly described as follows. We may randomlpade a starting poingv,,v,,...,v,) in the
observed vector space. Than we can modify eaclaiari, by a small amoumtv,, which

produce a small change of the value of the costtiom:

AC=6—CAV1+6—CAVZ+~-~+6—CAVm. 4.7)
ov, oV, ov,

m

If we choose Av,,Av,,...,Av,, such thatAC is negative, and apply a sequence of such

modifications, we may eventually reach a global imim of the cost function. A vector
representation of equation (4.7) is:

AC=T[CI[Av, (4.8)
where:

e Av=(Av,,Av,,...,Av,)"is the vector of changes in

. D(::(—,—,m,:TC)T is the gradient vector of the cost function.

To assure that the change of the value of thefaastion is negative, we may choose:

Av=-70C, (4.9)
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wherezis a small positive value, call¢de learning rateNow we have:

Ac =-|oc)?, (4.10)

which implies thataAC <0. Thus, in each iteration of the algorithm, thedgeat vectoroC of the
cost function is computed, and then the vectorh@ngesav is determined, according to the

equation:
v=v-70C, (4.12)

so that the value of the cost function decreaséis each iteration. The selected value of the
learning rate is also important. It should be sraathugh, in order that the algorithm could work
properly, but it must not be too small becauseitl@ significantly slow down the algorithm’s

performance.

To illustrate this, we go back to the above examplth the quadratic cost function. The last

equation can be reformulated to reflect the changesights and biases:

—w, -n9C
We=w g (4.12)
oC
bl| :b| - E (413)

However, it is important to note that to compute ¢gnadient vectoriC of the cost function, it is

mandatory to compute the gradients of each tertheérsum given in equation (4.6), separately
for each training input. This is time consumingentwe have a very large number of inputs. To
improve the efficiency, the gradients of each tarmthe sum given in equation (4.6) are

computed only for a restricted sample or randonaiected inputs, instead for each training
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input. A set of randomly selected training inpwgscalledmini-batch and this modification of

the algorithm is known astochastic gradient descent

Require: Learning rate; .
Require: Initial parametes .
while not(stopping criterion) do

Select a mini-batch containing training inputs:{x®,x®,...,x™M} with corresponding

targets{y®,y@ ... yMy},

Compute gradienty - e 08y L(f(x",8),y").
m i

Updated: 6 — 6-ng.

end while

Figure4.4: A general algorithm for stochastic gradient update
at training iteratiork (Goodfellow et al. 2016, p. 294).

Determining the size of a mini-batch is a trade-Gibodfellow et al. (2016, p. 279) discuss that
applying batches of larger size can result in aevawcurate, but less than linear estimate. In
addition, some hardware architectures, such asicorét architectures, graphical processing
units, and architectures for parallel processingply restrictions on the size of a mini-batch —
they are either very small or of a fixed size. Agel algorithm for stochastic gradient update at

training iterationk is given in fig. 4.4 (Goodfellow et al. 2016, 24.
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4.4 The backpropagation algorithm

The backpropagation algorithm is a fast algorittmdomputing gradient of a cost function. To
introduce this algorithm, we first adopt the follog notation (Nielsen 2015, cf. the second
chapter):

« w) — weight of the edge starting at tk€ neuron in the(l -1)" layer and ending at the

i™ neuron in tha™layer,
b} — bias of thej" neuron in tha™ layer,
 a| — activation of thej"" neuron in tha™ layer,

which is also illustrated in fig. 4.5.

layer 1 layer 2 layer 3

Figure4.5: lllustration of the adopted notation for the bawfagation algorithm (Nielsen 2015, cf. the
second chapter).
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Recalling equation (4.2), the activatiah can now be represented as the following sum over

neurons in thel -1 layer:
al =o()_ wia " +bj).
k

In a vector form, the above equation is:
a =gwa't+b')=0(),
where:
e w' —the weight matrix for the" layer,

e b —the bias vector for the" layer,

e a —the activation vector for thé" layer.

(4.14)

(4.15)

The parameter of functioa in the above equation, i.e! =w'a'* +b', is known as theveighted

input of the I™ layer. For eachi™ neuron in thalayer, theerror of neuronis defined as:

_oc

o
az'j

J

while, in line with the adopted notatiost, represents the error vector for tHelayer.

(4.16)

Here we briefly describe the main idea of the bagpgation algorithm, while more detailed

explanations of this algorithm, including selectepects of its implementation, are provided by
Nielsen (2015, cf. the second chapter), Goodfebowal. (2016, pp. 180-192), and others. Let as
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assume that a small change/, is made in the weight of the edge starting atkfieneuron in

the (1 -1)™ layer and ending at th¢™ neuron in thei™"layer. It affects the output of the latter
neuron and produces a small change indf, However, this change affects all activationshie t
next layers, and eventually, in the output layed #me cost function. If we consider only one
path of activations starting at th&' neuron in the™layer and ending at the output nodg,

e.g., aj.a;'...a tay, It produces the following change in the cost fiorc

| L-1 aa|+l aall . i
0C oay Oay %8 Awy . The total change in the cost function, calculated all

day, day "t das > da) ow)

available paths, may be approximated as:

_ 1+1 |
ac= Y aC day, da;™ 03y 04 AW . @.17)
mnp'_.qaa:n da " dap®  daj dwj '

Thus, a way to computgacT is to analyze how a small change causes a small change .
jk

Four equations that underlay the backpropagatigorithm are(Nielsen 2015, cf. the second

chapter):
ot =0,Clo'(zY), (4.18)
3 =(w™" s 0o (7), (4.19)
aCc _
— =7, (4.20)
opl
aC _ .
P a9}, (4.21)
jk
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where C is the element-wise product, amgdC in equation (4.18) is a vector whose elements

:—CL is the rate of change of the cost function. A gehleackpropagation algorithm is given in
a,

fig. 4.6 (Nielsen 2015, cf. the second chapter).

1. Input: a', the activation of the input layer
2. Feedforward:

forl=2toL
Computez' =w'a'? +b'
Computea' =o(z')
end for
3. Output error:
Computes* =0,C 0o (z")
4. Backpropagatetheerror
for | = L-1 down to 2
Computed' =(w™)" 8" do'(Z)
end for

5. Output (i.e. the gradient of the cost function):

oC
W),

= al 15! and;’T? =5,
j

Figure 4.6: A general backpropagation algorithm (Nielsen 2@f5the second chapter).
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Finally, there are two assumptions about the casictfons that are needed for the

backpropagation algorithm. The first assumptiothet the cost function can be represented as

an averagec:%ZCX. This assumption allows for computing of partiaridates for a single

training input, and then averaging them over aing corpus. The second assumption is that the

cost function can be represented as a functioheobuitput activationa' .

4.5 The problem of overfitting a neural network dinel dropout method

Mathematical models, including neural networks,hwat large number of free parameters can
successfully cover diverse phenomena (Nielsen 2€f15he third chapter). A large number of
free parameters allows for adjusting the observedahto describe diverse data sets. However,
although such a model works successfully for theemgitraining data, it may perform poor for
new test data. This problem is knownoagrfitting

The dropout method is a regularization method iseeinto address this problem. In this method,
we train the ensemble containing all sub-networksved from the observed neural network by
removing non-output nodes, as illustrated in figl, Avhere dashed nodes represent dropout
neurons (Goodfellow 2016 et al., pp.258— 259).tRerpurpose of this discussion, we reduce the
process of removing a node from a network to miidtgtion of its output by zero. Each time we
select a mini-batch, we also select a binary mhakis applied to all input and hidden nodes in
the observed network in order to derive a sub-ndéwé mask is selected randomly and
independently from other masks. Usually, an inpotlenis included in a sub-network with
probability 0.8, and a hidden node is included vpitbbability 0.5. In any case, these probability
values are set in advance, and remain constantighrthe training. After applying a binary
mask, the training is performed as ordinarily, udthg forward propagation, back-propagation,

and the learning update.
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input | hidden . output
layer | layers - layer

Figure 4.7: lllustration of the dropout method. The dashedeasagpresent dropout neurons.

Let 4 be a mask vector, and(g, ) the cost of the model derived when is applied. The

dropout training of a neural network can be desdiilas minimizing the average over the

training set, i.e.,E, J(6,u). For a given neural network, we can derive expbtaky many

models, and it is not possible to train all of thadowever, it is not necessary, because all
models derived from the starting neural networkrshmmarameters. Thus, only a small portion of
all possible sub-networks are trained, each of wiac a single step (Goodfellow et al. 2016,

pp.258-259). It should be noted that although dbfie derived sub-networks may overfit, the
averaging presented in the dropout method reduneeswverfitting of a neural network (Nielsen

2015, cf. the third chapter).

4.6 Convolutional neural networks
Convolutional neural networks represent a classeofal networks suitable for processing time-

series data, such as one-dimensional audio sigmadsgdimensional image data, and other data

with grid-like structure. More formally, a convolomal neural network is a neural network that
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uses the convolution mathematical operation instdageneral matrix multiplication in at least

one of its layers (Goodfellow et al. 2016, pp.3339).

Convolution is an operation of two functions. IitMae illustrated here for two functions, both of

which take one real-valued argument. Lef be a noisy function that provides a single real-

valued output at any time A way to improve a better estimation of the otitpithis function is
to calculate its weighted average, i.e. more weigitit be assigned to recent measurements.

Thus, let w(a) be a weight function, whera is the age of a measurement. In this example,

convolution is represented by the functi@oodfellow et al. 2016, p.331):
) = [ x@w(t - a)da, (4.22)

which is usually written as:
s(t) = (x Ow)(t) . (4.23)

A discretized form of the convolution equation, wahiis more suitable for managing discrete,
computer-generated time-series data is (Goodfedioal. 2016, p.332):

+00

s(t) = Y x@wt-a). (4.24)

a=-w

When convolution is applied to a neural networkdion x represents the input, while function
w represents the kernel. The input and the kerreeluaually represented as multidimensional
arrays of parameters. Thus, for a two-dimensionpli that represents image the above
equation may be reformulated as (Goodfellow e2@16, p.332):

s(, )= HmmK(i-m,j-n), (4.25)
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where K is two-dimensional kernel, which is illustratedfig. 4.8.

y

ap bq [ bp cq
i Il |l & dr es er fs
dile || f P4 dp eq || ep 1q
g|lh|1 r | s gr hs || hr s
input kernel output

Figure 4.8: lllustration of two-dimensional discrete convotuti(Goodfellow et al. 2016, p.334).

Three important concepts that underlay the coniaiubperation aresparse interactions
parameter sharing and equivariant representationsand they will be briefly discussed
(Goodfellow et al. 2016, pp.335—-339).

O O O
O

O
o O O

(a) (b) ()

O

OO000O
OO0O0O0O

Figure 4.9: lllustration of sparse interactions in convoluabmeural networks. (a) Each input neuron
directly affects onlyk output neuron. (b) Each output neuron is direaffgcted by onlk input neuron.
(c) Indirect interaction between neurons is poss{doodfellow et al. 2016, pp.336—337). The affegti
and affected nodes are gray. Only relevant inteEnastare represented.
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Sparse interactiondn traditional neural networks, each input noderiacts with each output
neuron, which is represented through a time-consgmmatrix manipulation. In contrast to this,
convolution neural networks improve the efficierafythe learning process by using a kernel that
is significantly smaller than the input. This medhat a convolutional network is not fully
connected, but that each output has only a limitachber of connections. Practically, the
number of connections is significantly reduced whempared with the original number of
connections in a fully-connected neural networkjolwhimproves the learning performance. It
should be also noted that a restricted number ahections still does not prevent nodes at

different levels to interact indirectly. This isustrated in fig. 4.9.

Parameter sharingThe parameter sharing in convolutional neuralvodts means that each
member of the kernel is applied to each input pmsitin other words, the same set of
parameters is learned for all positions, whichHertreduces the memory-consumption of the

learning algorithm.

Equivariant representationsAn important property of the convolution functias that it is
equivariantto translation of the input. E.g. in the contextppbcessing time series data, if an
event is shifted later in time in the input, itpmesentation will be also shifted in the output. Or
in the context of image processing, if an obje¢tasslated in the input, its representation wall b
also translated by the same amount in the outpureMyenerally, the equivariance of the

convolution function means that the input and thgot change in the same way.

4.7 The introduced approach to speaker recognitidtnneural networks
In this section, we introduce our approach (Naseil.e2017a) to automatic speaker recognition

based on deep neural networks and the stochasttiegt descent algorithm (Bottou 2010,
Robinds and Monro 1951).
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Consider thafx”,y® | represents a training set, whet eR"" is a vector of extracted features
for thei™ sample, while vectory® represents its associated class. The objective @btain

decision functioh(x) in order to approximatg
This function can be represented as a linear fanaf the extracted features:

h(x;0,b) = 8%, + @,%, +...+ O Xp¢ +b (4.26)
This equation can also be presented in a vector & h(x;6,b) =6 x+b.

In order to limit the decision functidm(x) so that its output value is always in the rar@é][ it

is mapped by another function knownrastified linear units functioni.e.:
g(2) = log(l+¢€”) . (4.27)
Therefore, the decision function from (4.26) carpbesented in a form:

h(x;6,b) = g(6" x+b) (4.28)
where g(07 x+b) =log1+e **?) represents the rectified linear units function.

The objective is to obtain parameterandb in order to minimize functiorth(x;0,b)-y)?. This is

achieved by updating the parameteaiadb in the following way:
b=b-aAb, (4.30)

where:
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10, =297 x+b) - yJi- 90T x+b)Jg(@" x+b)x, , (4.31)

ab=2g(0"x +b)-y fi-g(0"x +b)|g(e"x+b) (4.32)
represent the partial derivativesgf andb, respectively, and represents the learning rate.

In the literature, there is no strict rule how tokpthe value for this parameter. If the learning
rate is too large, it can speed up learning, batalao change the parameters too aggressively.
On the other hand, if it is too small, it can chauige parameters too conservatively. Robinds and
Monro (1951) recommended that in order to selegoad value for the learning rate, the

progress of the training should be monitored.

The algorithm for stochastic gradient descentvemiin fig. 4.10 (Nasef et al. 2017a).

Require: ¢,b: input random variables
Require: {x©,y®}: training set
Ensure: N : number of labeled samples

Ensure: @ : input learning rate

fori=1toN
Computey(6™ x® +b) = logd+e®™x" )y
Computens; and abaccording to equations (4.31) and (4.32)

Updateg and b according to equations (4.26) and (4.28)

end for

Figure 4.10: The algorithm for stochastic gradient descent éflasal. 2017a).
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Overfitting of deep neural networks may cause gobaiplem. This can be solved using input and
hidden layer dropout (Srivastava et al. 2014). Phsic idea is to drop out random units of
neural network during the training. This is ache@y retaining the hidden unit with determined
probability p. This probability is callegrobability of retaining This parameter controls the

density of dropout. The higher the valpgthe less dropout is applied. Selection of vakia i

difficult task and depends on dataset that is used.

For the sake of simplicity, we use a neural netwaitkout dropout, and set its weights to the
trained weights multiplied bg. This model is verified by the fact that the outgpweights of a
neuron that was retained with probabiltyare multiplied byp. Fig. 4.11 illustrates the adopted
dropout neural network model, where vectd? contains independent Bernoulli random
variables for thej™ hidden unit, i.e.r®~Bernoullip) and C is the element-wise product
(Srivastava et al. 2014).

O 4 gt

h(x.6.h)

Figure4.11: Dropout Neural Network model. The weights are ipliétd byp (L is the number of hidden
units) Srivastava et al. 201#lasef et al. 2017a).

As discussed above, the difference between théastic gradient descent algorithms with and

without dropout is that for each training input time latter case we create a subnetwork by
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applying drop out of random units. In this case, decision function defined by (4.28) may be
presented as:

h(x:0,b) = g(r ) 09T x+b) = log(L+ e @ x+0)y (4.33)

The algorithm for stochastic gradient descent witbpout is given in fig. 4.12 (Nasef et al.
2017a).

Require: ¢,b: input random variables
Require: {x,y®}: training set
Ensure: N : number of labeled samples
Ensure: @ : input learning rate
Ensure: p: probability of retaining
fori=1toN
Computer ) ~ Bernoulli(p)
Computeg(r ) 0o x® +b) = log@+e" ")
Computens; and abaccording to equations (4.31) and (4.32)

Updates and b according to equations (4.26) and (4.28)

end for

Figure4.12: The algorithm for stochastic gradient descent withpout (Nasef et al. 2017a).
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4.8 Conclusion

This chapter and the previous chapter introducedhboretical foundations of our approach to
automatic speaker recognition. In order to dematestthe appropriateness of the introduced
approach under realistic conditions, we conducteridiassification experiments using a spoken

corpus. The next chapter reports on the experirhsattings of the conducted experiments and
discusses the obtained results.
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Chapter 5

Experiments and results

5.1 Introduction

This chapter reports on two experiments conductatie scope of this thesis. Both experiments
relate to the model of stochastic gradient despesposed in the previous chapter. In the first
experiment, the speaker recognition performanadserved when optimizing the parameters of
the stochastic gradient descent algorithm: thenlegrrate, and the hidden and input layer
dropout rates. The second experiment basically sie€uon the improvement of speaker
identification in noisy environment using deep r@uretworks with stochastic gradient descent.
We analyze how different combinations of its partarge such as the learning rate and the
dropout rate, influence automatic speaker recagmitierformances when different noise levels

are applied on the original speech signal.

The chapter is organized as follows. Section 5sZiilees the VidTIMIT corpus that was used in
both experiments. Sections 5.3 and 5.4 report ereperimental settings and results. Section

5.5 concludes the chapter.
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5.2 The corpus

VIidTIMIT is a multimodal corpus produced for therpases of speech recognition and person
authentication (Sanderson 2002). It contains vidad audio recordings of 43 subjects (19
female, 24 male) uttering short sentences in ayraffice environment, with mean duration 4.25

seconds per sentence. In further text, only detaillsvant to audio recordings are discussed.
Each subject uttered ten sentences, two of whiale wemmon for all subjects, and the other
sentences were different for each subject. Allssrgs were selected from the NTIMIT corpus
(Jankowski et al. 1990). The production of the MMTT corpus was conducted in three phases.

The first session may be considered as the trasehgand the other two sessions as the test set.

It is important to note that there is no senteneerlapping between these sets. This is an
important requirement, because if a training sesgamas also included in a test set, it would

cause the following bias reflected in higher praligbassigned to the overlapped sentence and
inaccuracy in perplexity. This bias is also refdrte as training on the test set (Jurafsky and
Martin 2009). In addition, the mean delay betwee first and the second phases was seven
days, and six days between the second and the ghades. These delays were introduced to
make a possibility for change in a subject’s vdjeay. due to the change of mood, etc.). The
audio recordings were produced as mono 16 bit,FB2\WAYV files (Sanderson 2002, Sanderson

and Paliwal 2002).

5.3 Experiment 1

In this experiment (cf. Nasef et al. 2017a), a deepral network with stochastic gradient
descent is trained for a classification problemaatata set in the domain of speaker recognition.
For the sake of simplicity, the neural network ugely one hidden layer with=100 units. The

experiment was conducted in two phases.
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In the first phase, the recognition rate is obsgrwhen the hidden layer dropout rate and
learning rate are varied. The dropout is appliedllaiayers. The hidden layer dropout rate was
varied from 0.0 to 0.9, with the step of 0.1, whhe input layer dropout rate was set to 0.2. The
learning rate was varied from = 0.0 (auto detection) tar =0.9, with the step of 0.1. The results

are given in Table 5.1.

Table5.1: Recognition rate [%] when the hidden layer dropate and learning rate are varied.

learning rate

dropout
t 0=00| ¢=0.1 | ¢=0.2 | 0=0.3 | 0=0.4 | 0=0.5 | 0¢=0.6 | 0=0.7 | ¢=0.8 | a=0.9
rate

0.0 67.90| 65.81 68.60 68.60 68.60 6767 70 67.67 68.83.58

0.1 71.16| 63.72] 67.44 7046 72.09 71.86 6930 71.390273.71.86

71.62 71.89 7046 71.62 67D.40.46

O)

0.2 71.86| 6.51| 66.97 69.7

0.3 70.93| 5.81| 65.81 68.6Dp 70.23 7046 7186 70  69.53.327

04 71.16| 3.72| 64.65 67.6f 69.30 70.p3 70[69 70.93 972.01.62

67.90 68|83 69.30 7[1.52.23

™o
(o))
o
(@]
=

0.5 70.46| 3.25| 8.13] 63.7

0.6 64.18| 2.79| 4.88] 7.67 12.09 64.65 66J27 68.60 67.20.20

0.7 62.79| 3.02| 5.11] 7.20 6.27 953 1046 2441 58.13.4164

0.8 63.25| 3.48| 465 463 465 6.04 860 883 1139 611l

0.9 55.34| 2.79| 3.02) 279 418 395 348 511 720 6.74
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Table5.2: Recognition rate [%] when the input layers dropati¢ and learning rate are varied.

learning rate

dropout
t =00 | ¢=0.1 | ¢=0.2 | 0=0.3 | =04 | 0=0.5 | 0=0.6 | 0=0.7 | ¢=0.8 | a=0.9
rate

0.0 66.74| 4.41| 66.74 69.3D 69.06 70.69 7069 7O  69.76.86/

0.1 71.16| 5.34| 5.81] 66.74 69.16 71.89 7093 69.06 70 .867[1

0.2 68.13| 3.48| 7.20| 65.58 66.14 66.fy4 69/06 69.76 68.83.83

0.3 63.95| 4.41| 5.11] 7.67 64.18 6581 68/83 68.37 67.69.76

04 62.32| 3.48| 3.72] 7.20 7.44 62.32 64,65 6511 66.98.740

0.5 5790 3.48| 2.79] 4.6 10.69 10.69 2255 62.32 62.692.79

0.6 53.95| 255| 162 488 837 7.20 1162 10,93 14.18.1338

0.7 23.02| 2.32| 255 465 511 581 9.6 8.83 1455 23.0

0.8 1418 255| 2.09] 395 3.02 325 558 465 6/04 790

0.9 348 | 209 232 279 279 279 235 29 3]712 372

In the second phase, the recognition rate is obdewhen the input layers dropout rate and
learning rate are varied. The dropout is again iegpht all layers. In this phase of the
experiment, the probability of the input layer doaprate was varied from 0.0 (ijg=1) to 0.9,
with the step of 0.1. The retaining probability &ohidden node wgs=0.5. The learning rate was
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varied in the same way as in the first phase ofettigeriment, froma =0.0 (auto detection) to

a =0.9, with the step of 0.1. The results are given in €dhP.

According to the obtained results provided in Tablé, it may be observed that the best
performance is achieved for the dropout rates@2,,0.3 and 0.4 for all the considered learning
rates except forr=01. On the other hand, according to the obtainediteepuovided in Table
5.2, it may be observed that when the dropout jdiegh only to the input layer, it does not have
significant influence on the recognition rate. Hoee it can be concluded that for the input
layer dropout rate greater than 0.5, the recognitie significantly decreases. If we focus on the
influence of the learning rate on the performanfcéne® method, it is evident that for some values
of learning rate, the performance of the methogasr. This decrement in performance is
especially evident when dropout is applied. Thisdasause dropout introduces bigger amount of
noise comparing with standard stochastic gradieatent. Therefore, stochastic gradient descent
with applied dropout requires bigger learning ratesn standard stochastic gradient descent.
Depending on the combination of all three paramnsetée performance can change significantly,
from 2.09% to 73.02%.

5.4 Experiment 2

The second experiment (cf. Nasef and Marjafxdakovljeve 2017b) observes the improvement
of speaker identification in noisy environment.drder to find the optimal stochastic gradient
descent parameters in the noisy environment, thigevidaussian noise was artificially added,
and the signal-to-noise ratio (SNR) was set to 8dBdB and 16dB, respectively (using

MATLAB). Thus, four independent databases includimg original database cleaned from noise
were created. From these databases, we extractesta83of-the-art features using signal
processing techniques, as described in Chapteo3the classification, we trained the deep
neural network with stochastic gradient descenfemented with the dropout regularization and

rectified linear units. The training is conductedhw100 training examples in each mini-batch.
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Different parameters, such as the input layer dubpate, the learning rate and the hidden layers
dropout rate, were analyzed for different valuesighal-to-noise ratio. The proposed speaker

recognition system architecture is shown in fid.. 5.

Different curves, depicted in fig. 5.2, represdm tecognition rate performance for different
learning rates, changing values from 0.1 to 0.9h(whe step of 0.1) for the fixed value of the
dropout rate. The “optimal parameters” curve presehe recognition rate with the best
performance values, i.e. when the learning rate theddropout rate are optimized for each
signal-to-noise ratio (cf. Table 5.3). It is showrat the optimized performance, tuning both
values for the dropout and learning rates, outper$oother performances when values are not

optimized for each signal-to-noise value approxetyain range from 5% to 7.5%.

Training
speech dat_a' Deep Neural
Network
Segment level
e classification
i A
eature .
RS | Acoustic
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Noise imputed —
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. I
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Testing | results
|
i Pattern Classification |

Figure5.1: Automatic speaker recognition system architecture.
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Figure5.2: Speaker recognition rate performance for diffesigual-to noise ration levels and different

learning rates.

Table 5.3: Optimal values of the learning and dropout rategiffferent signal-to-noise ratio levels.

SNR[dB] 8 12 16 Cleaned signal
Learning rate 0.1 0.0 0.7 0.8
Dropout rate 0.1 0.0 0.2 0.1

5.5 Conclusion

The experimental results reported in this chagtemsthat the dropout regularization may boost
the performance of the stochastic gradient desoethod in the task of automatic speaker

recognition, even in a noisy environment. In theshinique, sampling a thinned network by
101



Ashrf Nasef

dropping out units prevents co-adaptations of nesir@nd overfitting of hidden units. This is

discussed in the following chapter.
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Chapter 6

Conclusion

Methods based on deep learning neural network lhaen already demonstrated to provide
better speaker recognition performance than otlessifiers, but also to require considerable
parameter tuning. This thesis aimed at showing sk&cting appropriate value of parameters
can significantly improve the performance of neurelwork methods on the task of automatic
speaker recognition.

The contribution of this thesis is both theoretieald experimental. The thesis proposed an
approach to automatic speaker recognition basedeep neural networks and the stochastic
gradient descent algorithm. In addition, two expemnts were designed and conducted in order
to demonstrate that the optimization of the paramsebf the stochastic gradient descent
algorithm can improve automatic speaker recogniperformance under no presence of noise
and under noisy conditions, respectively. Threeam&ters of the stochastic gradient descent
algorithm were considered in these experimentsteing rate, and the hidden and input layer
dropout rates. They were systematically changedrioter to pick a model with the best

performance on the speech recognition dataset.

It has been shown how dropout optimization can iBa@mtly enhance the performance of
stochastic gradient descent method in automaticakgpe recognition even in a noisy
environment. This can be explained by the facts tha dropout technique represents an

approximation to training of exponentially many rewnetworks that is inexpensive in terms of
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cost and memory, and that it results in robustufest Sub-networks contained in a neural
network are not independent because they sharenptees. This implies that it is not necessary
to train all possible sub-networks, and often ih@t even feasible in acceptable time. Thus, the
dropout regularization technique targets only alspwtion of all possible sub-networks, and
due to the parameter sharing, the other sub-neswvar& indirectly trained as well. In other
words, dropout allows for an inexpensive trainiighneural networks (Goodfellow et al. 2016,
pp. 258-259). Even more important, the trainingaoparticular neuron does not rely on its
connection with a particular set of other neurdns general case, a given neuron will be related
to different sets of neurons across different setworks. Therefore, the dropout regularization
technique prevents complex co-adaptations of neummd results in more robust features
(Krizhevsky et al. 2012, p. 6; Hinton et al 201Rlelsen 2015, cf. third chapter).

It has been also shown that picking a learning catealso be very important task. As discussed
in Chapter 4, the learning rate should be smalughpin order that the algorithm could work

properly, but not too small because it could sigaiitly slow down the algorithm’s

performance. However, the reported experimentailisefave also showed that for some values
of the learning rate, the performance of the metisodery poor, and that the decrement in
performance is bigger when dropout is applied. ®iffect can be explained by the fact that
dropout introduces bigger amount of noise compariiiy the standard stochastic gradient
descent algorithm. Therefore, stochastic gradiesgcent with applied dropout requires an

appropriately adjusted learning rate.

Finally, a general conclusion may be drawn thatrép®rted experimental results demonstrated
the appropriateness of the proposed approach timatic speech recognition under realistic

conditions.

It is reasonable to expect that other parametersh(gas the number of layers, the number of
hidden units in layers, etc.) also affect automsgieech recognition performance. An analysis of

their influence on the stochastic gradient desedgdrithm performance is a rather challenging
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task since it includes a specific trade-off. Naméflya neural network model overfits, it may

require a reduction of the number of hidden layerthe number of units in hidden layers. On
the other hand, if the stochastic gradient deseethod provides bad performance for a training
set, it may require an increase of the number a@ddn layers or the number of units in hidden
layers. These research questions will be addressedrt of future work.

105






Ashrf Nasef

Index

A bigram 33-35, 43

acceleration 68 C

acoustic feature vector 37, 44, 58 cepstrum 52, 56, 67

acoustic model 32, 33, 37, 44, 47, 48 cohort model 24

activation vector 81 convolution 86-88

autocorrelation 20, 53-55 cost function 21, 71, 75-78, 80, 82-84
B cross-word decoding 42

backpointer 41 D

backpropagation 21, 71, 80-84 delta 67,68

Bakis network 37 development set 35

bias 73-78, 80, 96 Discrete Fourier Transform 51, 55, 56, 64,

67
bias vector 81

107



Ashrf Nasef

dropout 5, 6, 20, 21, 45-47, 71, 84, 85, 91, H

92, 95, 97-101, 103, 104
harmonics-to-noise ratio 54, 55

hidden Markov model 19, 31, 36-38, 40, 42-
element-wise product 83, 91 44, 48

empirical risk minimization 76 I

error of neuron 81 indicator function 55

error vector 81 inter-word transition 42, 43
equivariant representation 71, 87, 88 intra-word transition 42

F L

Fast Fourier Transform 64, 65 language model 20, 31-33, 36, 43

feature extraction 33, 48, 51, 52, 58, 69, 71 Laplace smoothing 35

filter-bank energy 56 learning rate 5, 6, 20, 45, 46, 48, 78, 79, 90,

92, 95, 97-101, 103, 104
formant 19, 20, 53, 54, 57-59

likelihood 32, 33-38, 41, 44,
forward algorithm 38, 39

M
G

Markov assumption 34
Gaussian mixture model 19, 44, 48, 69

maximum likelihood estimation 34, 35
gradient vector 77, 78

108



Ashrf Nasef

mel 66

mel-filterbank 47, 56

mel-frequency cepstral coefficients 21, 51,
56, 58, 59, 63, 66-69

mini-batch 45, 46, 48, 79, 84, 99

N

n-gram 19, 31, 33-35

noisy channel model 22

Nyquist Critical Angular Frequency 60

Nyquist Critical Frequency 60

O

observation 32, 33, 36-38, 40, 41

observation likelihood 32, 36, 41

overfitting 21, 46, 71, 84, 85, 91, 102

P

parameter sharing 71, 87, 88, 104

percentile 55, 57

perceptual evaluation of speech quality 47

perplexity 35, 36, 96

PRAAT 53, 57, 58

preemphasis 51, 59,

prior probability 32

R

rate of change 83

rectified linear unit 45, 46, 89, 99

S

Sampling theorem 60, 61

sigmoid function 45, 73, 74

sigmoid neuron 21, 71-74

signal-to-noise ratio 47, 99-101

sparse interactions 71, 87, 88

speaker authentication 23

speaker classification 23, 26, 71

109



Ashrf Nasef

speaker detection 23, 27, 28 \

speaker identification 23, 25, 27, 95, 99 velocity 68

speaker segmentation 23, 27, 28 Viterbi algorithm 40, 41, 43
speaker tracking 23, 27, 28 W

speaker verification 23, 25, 27, 51 weight matrix 81

stochastic gradient descent 5, 6, 20, 21, 45,  weighted input 81

46, 71, 72,75, 79, 88, 90-92, 95, 96, 99,
101. 103-105 white Gaussian noise 99

T
target speaker model 24 zero crossing rate 54, 55
test set 35, 36, 96

test speaker 24-26, 52,

training set 35, 37, 45, 47, 75, 85, 89, 90, 92,
96, 105

transition probability matrix 36
trellis 39, 40, 42, 43
U

universal background model 24
110



Ashrf Nasef

References

Alam, J., Gupta, V., Kenny, P., Dumouchel, P., $pheeecognition in reverberant and noisy
environments employing multiple feature extractansl i-vector speaker adaptation, EURASIP
Journal on Advances in Signal Processing, Vol.p0/1p13 (2015).

Anusuya, M.A., Katti, S.K. Speech Recognition bydfime: A Review, International Journal of
Computer Science and Information Security, 6 (B),181-205 (2009).

Beigi, H., Fundamentals of Speaker Recognitionstfired., Springer US, Springer
Science+Business Media, LLC (2011).

Bishop, C. M., Pattern recognition and machine Ny, Springer-Verlag New York Inc.
(2006).

Boersma, P., Weenink, D. Praat software, Universiy Amsterdam, Retrieved from

http://www.fon.hum.uva.nl/praat/ (Accessed April, 2D16).

Bottou, L. Large-scale machine learning with statitagradient descent. In International

Conference on Computational Statistics, 177-18@@20
Campbell, J.P. Speaker Recognition: a tutoriaRroc. of the IEEE, 85 (9), 1437-1462, (1997).

Chen, C. H. Signal processing handbook, Dekker, Mevk (1988).

111



Ashrf Nasef

Cui X., Alwan, A., Noise robust speech recognitioging feature compensation based on
polynomial regression of utterance SNR, in IEEEnSextions on Speech and Audio Processing,
vol. 13, no. 6, pp. 1161-1172 (2005).

Dahl, G.E., Sainath, T.N., Hinton, G.E. Improvingdp Neural Networks for LVCSR using
Rectified Linear Units and Dropout, In IEEE Intetipaal Conference on Acoustics, Speech, and

Signal Processing, Vancouver, (2013).

Davis, S. Mermelstein, P. Comparison of Paramd®epresentations for Monosyllabic Word
Recognition in Continuously Spoken Sentences. EBlHransactions on Acoustics, Speech, and
Signal Processing, 28 (4), pp. 357-366 (1980).

De-la-Calle-Silos, F., Gallardo-Antolin, A., Pelagloreno, C., Deep Maxout Networks Applied
to Noise-Robust Speech Recognition, ProceedingheiSecond International Conference on
Advances in Speech and Language Technologies @ralb Languages - IberSPEECH 2014,
Vol. 8854, Springer-Verlag New York, NY, USA, p@02118 (2014).

Desai, D. and Joshi, M. Speaker Recognition usif@C® and Hybrid Model of VQ and GMM,
Proc. of the Second International Symposium onligent Informatics (1SI'13), Mysore, India,
(2014).

Friedland, G., Vinyals, O., Huang, Yan., and Muyll€ Prosodic and other long-term features
for speaker diarization, IEEE Transactions on Au@peech, and Language Processing, 17 (5),
pp. 985-993 (2009).

Gold, B., Morgan, N., Ellis, D. Speech and Audigr&il Processing: Processing and Perception
of Speech and Music. Second Edition. Wiley, Engl€@611).

Goodfellow, 1., Bengio, Y., Courville, A. Deep Leang, MIT Press,
http://www.deeplearningbook.org (2016).
112



Ashrf Nasef

Hernando, J., Nadeu, C. CDHMM speaker recognitppmieans of frequency filtering of filter-
bank energies, Proc. Eurospeech, 5, pp. 2363-238%].

Hinton G., Deng, L., Yu, D., Dahl, G.E., Mohamed;rA Jaitly, N, Senior, A., Vanhoucke, V.,
Nguyen, P., Sainath, T.N., Kingsbury, B., Deep MéWetworks for Acoustic Modeling in

Speech Recognition: The Shared Views of Four Reke@roups, IEEE Signal Processing
Magazine, Volume: 29, Issue: 6, pp. 82-97 (2012).

Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed,, Aaitly, N., Senior, A., Vanhoucke, V.,
Nguyen, P., Sainath, T., and Kingsbury, B. Deep d&léletworks for Acoustic Modeling in
Speech Recognition”, IEEE Signal Processing MagaZifi (6), pp. 82-97 (2012).

Hinton, G.E., Salakhutdinov, R.R. Reducing the digienality of data with neural networks.
Science313, 504-507, (2006).

Hinton, G., Srivastava, N., Krizhevsky, A., Suts&evl., Salakhutdinov, R., Improving neural
networks by preventing co-adaptation of feature eders, ArXiv,
https://arxiv.org/pdf/1207.0580.pdf (2012b)

Holube, I., Fredelake, S., Vlaming, M. and Kollmei®. Development and analysis of an
international speech test signal (ISTS). IntermatiadJournal of Audiology, 49 (12), pp. 891-903
(2010).

Jankowski, C., Kalyanswamy, A., Basson, S. andzSgit NTIMIT: A Phonetically Balanced,
Continuous Speech Telephone Bandwidth Speech Dsdaldaroc. of International Conf.
Acoustics, Speech and Signal Processing, Albuqeer9-112, (1990).

Joho, D., Bennewitz, M., Behnke, S. Pitch estimmatising models of voiced speech on three
levels, In Proc. of IEEE International ConferenceAcoustics, Speech, and Signal Processing,
Honolulu, Hawaii, pp. 1077-1080, (2007).

113



Ashrf Nasef

Jurafsky, D., Martin, J.H. Speech and Language d3sing: An Introduction to Natural
Language Processing, Speech Recognition, and Catigndl Linguistics. 2nd edition.
Prentice-Hall (2009).

Kacur, J., Rozinaj, G., Herrera-Garcia, S., Spe®igmal Detection In A Noisy Environment
Using Neural Networks And Cepstral Matrices, Jouafi&lectrical Engineering, Vol 55, 05-06,
pp 131-137 (2004).

Kim, S., Raj, B., Lane, |., Environmental Noise Eeddings For Robust Speech Recognition,
Computing Research Repository (CoRR) - arXiv:162333 (2016).

Krizhevsky, A., Sutskever, I., Hinton, G., ImageNBassification with Deep Convolutional

Neural Networks. In: Advances in Neural Informati®rocessing Systems 25 (2012).

Kumar, A., Florencio, D., Speech Enhancement intide-Noise Conditions using Deep Neural
Networks, Cornel University, Available at: httpariiv.org/abs/1605.02427v1 (2016).

Le, Q.V. A Tutorial on Deep Learning, Lecture NotBetrieved from
https://cs.stanford.edu/~quocle/tutorial2.pdf, (ssed April 25, 2015).

Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Proolan B. Ng, A.Y. On Optimization Methods
for Deep Learningln Proc. of the 28th International Conference ondiime Learning
Bellevue, WA, USA, (2011).

Li, J., Deng, L., Gong Y., Haeb-Umbach, R., An Quexw of Noise-Robust Automatic Speech
Recognition, in IEEE/ACM Transactions on Audio, 8gle, and Language Processing, vol. 22,
no. 4, pp. 745-777 (2014).

Maas, A.L., Hannun, A.Y., Ng, A.Y., Rectifier Non#rities Improve Neural Network Acoustic
Models, In 30th International Conference on Machirarning (ICML 2013) - Workshop on

114



Ashrf Nasef

Deep Learning for Audio, Speech and Language PsowgsAtlanta, USA, June 16-21, 2013.
Vol. 30, Iss. 6 (2013).

Maesa, A., Garzia, F., Scarpiniti, M., Cusani, Bxflindependent Automatic Speaker
Recognition System Using Mel-Frequency Cepstrumff@ient and Gaussian Mixture Models,
InternationalJournal of Information Security, 3,(@p. 335-340 (2012).

McLaren, M., Lei, Y., Ferrer, L. Advances in DeeguMal Network Approaches to Speaker
Recognition]n Proc. 40th IEEE International Conference on Astits, Speech and Signal
Processing (ICASSPBrisbane, Australia, (2015).

Misamadi, S., Hansen, J.H.L, A Study on Deep NeNgtivork Acoustic Model Adaptation for
Robust Far-field Speech Recognition, In Proc. oFBRSPEECH (2015).

Mitra, V., Wang, W., Franco, H., Lei, Y., BartelS,, Graciarena, M., Evaluating robust features
on Deep Neural Networks for speech recognitionarsynand channel mismatched conditions.
INTERSPEECH 2014, Singapore, 14-18th Septembe#.3t|d. 895-899 (2014).

Mglgaard L.L., Jargensen W.K., Speaker Recogniti®@pecial Course, IMM-DTU, December
14, (2005),
http://mwww2.imm.dtu.dk/pubdb/views/edoc_downloaghf#14/pdf/imm4414.pdf

Nasef, A., Marjanovi-Jakovljevt, M., Njegus, A. Stochastic gradient descent amal the
evaluation of a speaker recognition. In: Analoggnated Circuits and Signal Processing, 90(2),
pp. 389-397 (2017a).

Nasef, A., Marjanovi-Jakovljeve M., Optimization of the speaker recognition in )i
environments using a stochastic gradient descenBrbceedings of the fourth International
Conference Sinteza 2017, Singidunum UniversitygBele (2017b).

115



Ashrf Nasef

Nielsen, M.A. Neural Networks and Deep Learningtebmination Press (2015).

Noda, K., Yamaguchi, Y., Nakadai, K., Okuno, H.Ggata, T., Audio-visual speech recognition
using deep learning, Appl Intell 42, Springer, pp2-737 (2015).

Rabiner, L.R., A tutorial on hidden Markov modeladaselected applications in speech
recognition, Proceedings of the IEEE, Volume: B8uk: 2, pp. 257-286 (1989).

Rabiner, L. and Juang, B.-H., Fundamentals of $peecognition, Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1993.

Rabiner, L.R., Schafer R.W., Digital Processingpéech Signals, Prentice-Hall (1978).

Rashmi C.R. Review of Algorithms and ApplicationsSpeech Recognition System,
International Journal of Computer science and mdion Technologies, 5 (4), 5258-5262,
(2014).

Richardson, F., Reynolds, D., Dehak, N. Deep Neawetvork Approaches to Speaker and
Language RecognitiotEEE Signal Processing Lettei2? (10), 1671-1675, (2015).

Robinds, H. and Monro, S. A stochastic approxinmatmmethod, Annals of Mathematical
Statistics, 22 (3), 400-407, (1951).

Robinson, T., Hochberg, M., Renals, S. The useectimrent neural network in continuous
speech recognition, IMutomatic Speech and Speaker Recognitieee, C.H., Soong, F.K,
Paliwal, K.K., Eds, Kluwer Academic Publishers, Bwg MA, 233-258 (1996).

Sanderson, C. The VidTIMIT Database. IDIAP Commatian 02-06, Dalle Molle Institute for
Perceptual Artificial Intelligence, Martigny, Swidand (2002).

116



Ashrf Nasef

Sanderson, C., Paliwal, K.K., Polynomial Features Robust Face Authentication, Proc.

International Conf. Image Processing, Rochestew Nerk (2002).

Santos, R. M., Matos, L. N., Macedo, H. T., Mon&ly J., Speech Recognition in Noisy
Environments with Convolutional Neural Networks,180Brazilian Conference on Intelligent
Systems (BRACIS), Natal, pp. 175-179 (2015).

Seltzer, M.L., Yu, D., Wang, Y., An Investigatiorf Deep Neural Networks For Noise Robust
Speech Recognition, ICASSP 2013, IEEE, pp. 739872013).

Senior, A., Heigold, G., Ranzato, M.A., Yang, K. Ampirical study of learning rates in deep
neural networks for speech recognititmlEEE International Conference on Acoustics, $hee
and Singal Processing724-6728, (2013).

Shiota, S, Villavicencio, F, Yamagishi, J, Ono,B¢hizen, |, Matsui, T, Voice Liveness
Detection for Speaker Verification based on a Tamde Odyssey 2016: The Speaker and
Language Recognition Workshop. International Spé&smtmmunication Association, pp. 259-
263 (2016).

Shriberg, E., Ferrer, L., Kajarekar, S., VenkataanA., Stolcke, A. Modeling Prosodic Feature
Sequences for Speaker Recognition, Speech Comntioni¢8pecial Issue on Quantitative
Prosody Modelling For Natural speech Descriptiod @eneration, 46 (3-4), pp. 455-472
(2005).

Srinivas, V., Santhi rani, Ch. and Madhu, T. NelNatwork based Classification for Speaker
Identification.International Journal of Signal Processing, Imageéessing and Pattern
Recognitiony/ (1), 109-120, (2014).

117



Ashrf Nasef

Srivastava, N., Hinton, G., Krizhevsky, A., Sutséevl., Salakhutdinov, R. Dropout: A simple
way to prevent neural networks from overfittingudwal of Machine Learning Research, 15 (1),
1929-1958, (2014).

Srivastava, R.K., Masci, J., Gomez, F., Schmidhubge Understanding Locally Competitive
Networks, Proceedings of 3rd International Confeeemn Learning Representations (ICLR
2015), May 7-9, 2015, San Diego, CA (2015).

Sturim, D.E., Campbell, W.M. and Reynolds, D.A. $ification Methods for Speaker
Recognition. In Speaker Classification I: Fundaraknt-eatures, and Methods. Muller, C. (Ed.),
Springer Berlin Heidelberg, 4343, 278-297, (2007).

Sutskever, 1., Martens, J., Dahl, G., Hinton, G. @® importance of initialization and
momentum in deep learning. IRroc. of the 30th International Conference on Maehi
Learning 1139-1147, (2013).

Vaseghi, S.V. Multimedia Signal Processing: Theang Applications in Speech, Music and
Communications. Wiley, England, (2007).

Vasilakakis, V., Cumani, S., and Laface, P. Speakeopgnition by means of Deep Belief
Networks, In Proc. of the Biometric Technologies in Forenscience Nijmegen, The
Netherlands, (2013).

Wildermoth, R.B., Text-Independent Speaker Recagnit/sing Source Based Feature, Doctoral
Thesis, Griffith University, Brisbane, AustraliaO@1).

118



