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Preface

The dissertation is organized in five chapters. Our original contributions can be
found in Chapters 3, 4, and 5.

In Chapter 1, we collect some notions and notation to be used in the thesis.
Also, we state some known definitions and theorems from topology and analysis.
Here, we give description of some distribution spaces such as the space of tempered
distributions, distributions of M-exponential type and Lyzorkin distributions. In
Chapter 2, we define the quasiasymptotic behavior and S-asymptotic behavior of
distributions and try to provide a more deeper background about this notions.

In Chapter 3, we introduce the short-time Fourier transform (STFT) and we
study it in the context of the space K′1(Rn) of distributions of exponential type,
the dual of the space of exponentially rapidly decreasing smooth functions K1(Rn).
We obtain various characterizations of K′1(Rn) and related spaces via the short-
time Fourier transform.
First, Section 3.2 deals with Abelian and Tauberian theorems for quasiasymptotics
in terms of the STFT. Then, in Section 3.3 we shall present continuity theorems
for the STFT and its adjoint on the test function space K1(Rn) and the topolo-
gical tensor product K1(Rn)⊗̂U(Cn), where U(Cn) is the space of entire rapidly
decreasing functions in any horizontal band of Cn. We then use such continuity
results to develop a framework for the STFT on K′1(Rn). We also introduce the
space B′ω(Rn) of ω-bounded distributions and its subspace Ḃ′ω(Rn) with respect
to an exponentially moderate weight ω; when ω = 1, these spaces coincide with
the well-known Schwartz spaces [89, p. 200] of bounded distributions B′(Rn) and
Ḃ′(Rn), which are of great importance in the study of convolution and growth
properties of distributions. Notice that the distribution space B′(Rn) also plays
an important role in Tauberian theory; see, for instance, Beurling’s theorem [12,
p. 230] and the distributional Wiener Tauberian theorem from [67]. The spaces
B′ω(Rn) and Ḃ′ω(Rn) will be characterized in Section 3.4 in terms of the short-time
Fourier transform and also in terms properties of the set of translates of their ele-
ments. Section 3.5 is devoted to the characterization of K′1(Rn) and related spaces
via modulation spaces. The conclusive Section 3.6 deals with Tauberian theor-
ems. Our Tauberian hypotheses are actually in terms of membership to suitable
modulation spaces, this allows us to reinterpret the S-asymptotics in the weak∗

topology of modulation spaces.

Chapter 4 is dedicated to the ridgelet and the Radon transform. We provide
a thorough analysis of the ridgelet transform and its transpose, called here the
ridgelet synthesis operator, on various test function spaces. The crucial continuity
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results for test function spaces are given in Section 4.3. In Section 4.4 we show
that the ridgelet transform and the ridgelet synthesis operator can be extended as
continuous mappings Rψ : S ′0(Rn)→ S ′(Yn+1) and Rt

ψ : S ′(Yn+1)→ S ′0(Rn). We
then use our results to develop a distributional framework for the ridgelet trans-
form that is, we treat the ridgelet transform on S ′0(Rn) via a duality approach.
The ridgelet transform is intimately connected with the Radon and wavelet trans-
forms. Helgason [33] proved range theorems for the Radon and dual Radon trans-
form on the Lizorkin test function spaces S0. In Section 4.5 we apply our con-
tinuity theorems for the ridgelet transform to discuss the continuity of the Radon
transform on these spaces and their duals. The Radon transform on Lizorkin
spaces naturally extends the one considered by Hertle [34] on various distribu-
tion spaces. We use in Section 4.6 ideas from the theory of tensor products of
topological vector spaces to study the relation between the distributional ridgelet,
Radon, and wavelet transforms. We proof the desingularization formula, which
essentially shows that the ridgelet transform of a Lizorkin distribution is smooth
in the position and scale variables. In Section 4.7, we present a ridgelet transform
characterization of the bounded subsets of S ′0(Rn); we also show in this section
that the Radon transform on S ′0(Rn) is a topological isomorphism into its range.
It is interesting to notice that the Radon transform may fail to have the latter
property even on spaces of test functions; for instance, Hertle has shown [34] that
the Radon transform on D(Rn) is not an isomorphism of topological vector spaces
into its range. We conclude Chapter 4 with some asymptotic results relating the
quasiasymptotic behavior of distributions with the quasiasymptotics of its Radon
and ridgelet transform.

The last chapter is devoted to the multiresolution analysis (MRA) of M-exponential
distributions. We study in Section 5.2 the convergence of multiresolution expan-
sions in various test function and distribution spaces. Section 5.3 treats the point-
wise convergence of multiresolution expansions to the distributional point values
of a distribution. Finally, Section 5.4 gives the asymptotic behavior of the se-
quence {qjf(x0)}j∈N as j → ∞ when f has quasiasymptotic behavior at x0; we
also provide there a characterization of the quasiasymptotic behavior in terms of
multiresolution expansions and give an MRA sufficient condition for the existence
of α-density points of positive measures.

Novi Sad, 2014 Sanja Kostadinova



Chapter 0

Introduction

The term generalized asymptotics refers to asymptotic analysis on spaces of gen-
eralized functions. Perhaps, the most developed approaches to generalized asymp-
totics are those of Vladimirov, Drozhzhinov and Zavialov [113], and of Estrada
and Kanwal [17]. The work of Pilipović and his coworkers have great contribution
in this field too, [69, 65, 67, 62, 105, 106, 110, 86, 87, 88]. A survey of definitions
and results related to generalized asymptotics up to 1989 can be found in [65]. A
more resent and complete account on the subject can be found in the book [73].
In general case, distributions do not have value at a point. One way to define the
value at a point(if possible) is in sense of  Lojasiewicz [50]. Natural generalization
of this notion is the quasiasymptotic behavior of distributions. The introduction
of the quasiasymptotic behavior of distributions was one of major steps toward the
understanding of asymptotic properties of distributions. The concept is due to Za-
vialov [113]. The motivation for its introduction came from theoretical questions
in quantum field theory. Roughly speaking, the idea is to study the asymptotic
behavior at large or small scale of the dilates of a distribution.
The study of structural theorems in quasiasymptotic analysis has always had a
privileged place in the theory [50, 66, 65, 113]. In general, the word structural
theorem refers in distribution theory to the description of convergence properties
of distributions in terms of ordinary convergence or uniform convergence of con-
tinuous functions. Vladimirov and collaborators gave the first general structural
theorems in [113], and many authors dedicated efforts to extend the structural
characterization and remove the support type restrictions [65]. In the work of
Vindas [107, 104, 105, 106, 111, 18] there is a complete structural characterization
for quasiasymptotics of Schwartz distributions (in one dimension).
The name Abelian (or direct) theorem usually refers to those results which obtain
asymptotic information after performing an integral transformation to a (general-
ized) function. On the other hand, a Tauberian (or inverse) theorem is the converse
to an Abelian result, subject to an additional assumption, the so called Tauberian
hypothesis. In general, Tauberian theorems are much deeper and more difficult to
show than Abelian ones. Tauberian theory is interesting by itself, but the study
of Tauberian type results had been historically stimulated by their potential ap-
plications in diverse fields of mathematics. More historical details about Abelian
and Tauberian theorems can be found in [47]. Tauberian theorems are an essential
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2 Chapter 0. Introduction

tool of the theory of probability and statistics, number theory, the theory of gen-
eralized functions and many others. In the work of [82, 83, 84, 70, 71, 69, 65, 113]
they are applied in the study of the asymptotics of integral transforms such as the
Laplace, Stieltjes and wavelet transform on distributions. In this dissertation we
use Abelian and Tauberian ideas for asymptotic analysis of the short-time Fourier
transform, Radon, and ridgelet transforms, and multiresolution approximations.
Remarkably, many of our Tauberian theorems turn out to be full characterizations
of the asymptotic properties of a distribution.

Time-frequency has its origin in the early development in quantum mechanics
by H. Weyl, E. Wigner and J. von Neuman around 1930. D. Gabor in 1946 set the
foundation of information theory and signal analysis. At the end of 20th century
time-frequency analysis had been establish as a independent mathematical field
by the work of Guido Janssen. Because the growth of time-frequency analysis is
connected with the rise of wavelet theory, both theories grew in parallel. Their
mutual interaction is beautifully summarized in Ingrid Daubechies’s textbook[10].
The Fourier transform is probably the most widely applied signal processing tool
in science and engineering. It reveals the frequency composition of a time series
by transforming it from the time domain into the frequency domain. However, it
does not reveal how the signals frequency contents vary with time. Because the
temporal structure of the signal is not revealed, the merit of the Fourier transform
is limited; specifically, it is not suited for analyzing nonstationary signals. On
the other hand, as signals encountered in manufacturing are generally nonstation-
ary in nature (e.g., subtle, time-localized changes caused by structural defects are
typically seen in vibration signals measured from rotary machines), a new sig-
nal processing technique that is able to handle the nonstationarity of a signal is
needed. A straightforward solution to overcoming the limitations of the Fourier
transform is to introduce an analysis window of certain length that glides through
the signal along the time axis to perform a time-localized Fourier transform. Such
a concept led to the short-time Fourier transform (STFT), introduced by Dennis
Gabor. The most cited textbook where one can find a full treatment on STFT is
[26].
The short-time Fourier transform (STFT) is a very effective device in the study of
function spaces. The investigation of major test function spaces and their duals
through time-frequency representations has attracted much attention. For ex-
ample, the Schwartz class S(Rn) and the space of tempered distributions S ′(Rn)
were studied in [29] (cf. [26]). Characterizations of Gelfand-Shilov spaces and
ultradistribution spaces by means of the short-time Fourier transform and mod-
ulation spaces are also known [30, 59, 102]. We study in this dissertation the
short-time Fourier transform in the context of the space K′1(Rn) of distributions
of exponential type, the dual of the space of exponentially rapidly decreasing
smooth functions K1(Rn). We will obtain various characterizations of K′1(Rn) and
related spaces via the short-time Fourier transform. The space K′1(Rn) was in-
troduced by Silva [90] and Hasumi [31] in connection with the so-called space of
Silva tempered ultradistributions U ′(Cn). Let us mention that K′1(Rn) and U ′(Rn)
were also studied by Morimoto through the theory of ultra-hyperfunctions [58] (cf.
[60]). We refer to [19, 38, 91, 121] for some applications of the Silva spaces. Also,
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we present Abelian and Tauberian theorems for the short-time Fourier transform
of tempered distributions and we prove new Tauberian theorems where the expo-
nential asymptotics of functions and distributions can be obtained from those of
the short-time Fourier transform.

Another subject of research in this dissertation is the ridgelet and the Radon
transforms. The ridge function terminology was introduced in the 1970s by Logan
and Shepp. In recent years, ridge functions (and ridgelets) have appeared often
in the literature of approximation theory, statistics, and signal analysis. In [4, 5]
Candès introduced and studied the continuous ridgelet transform. He developed
a harmonic analysis groundwork for this transform and showed that it is possible
to obtain constructive and stable approximations of functions by ridgelets. One of
the motivations for the introduction of the “X-let” transforms, such as the ridgelet
or curvelet transforms, comes from the search of optimal representations of signals
in high-dimensions. Wavelets are very good in detecting point singularities in the
sense that wavelet coefficients near the discontinuity are significantly higher than
those at the smooth region, but they have several difficulties in localizing edges of
higher dimension [6]. We can construct two-dimensional wavelets by simply taking
the tensor product and compute wavelet coefficients. However, these edges, while
separating smooth regions, are themselves smooth curves. As a result, a direct
applications of 2D wavelets will not be able to localize coefficients near the edges
as a 1D wavelet transform does. The ridgelet transform is more sensitive to higher
dimensional discontinuities, as it essentially projects a hyperplane singularity into
a point singularity (this is done with the Radon transform) and then takes a one-
dimensional wavelet transform.
The ridgelet transform of distributions must be more carefully handled than the
wavelet transform. While the wavelet transform of a distribution can be defined
by direct evaluation of the distribution at the wavelets, this procedure fails for the
ridgelet transform because the ridgelets do not belong to the Schwartz class S(Rn).
The larger distribution space where the direct approach works is D′L1(Rn). Actu-
ally, in earlier works by other authors [79], the continuous ridgelet transform was
not properly extended to distributional spaces. In this dissertation (cf. Chapter
3) we provide a thorough analysis of the ridgelet transform and its transpose,
called here the ridgelet synthesis operator, on various test function spaces. Our
main results are continuity theorems on such function spaces (cf. Section 4.3). We
then use our results to develop a distributional framework for the ridgelet trans-
form. It should be noticed that Roopkumar has proposed a different definition for
the ridgelet transform of distributions [78, 79]; however, his work contains several
major errors (see Remark 4.3.1 in Chapter 4). This motivated us in this doctoral
work to develop a correct theoretical framework for treating the ridgelet transform
of distributions.
The ridgelet transform is intimately connected with the Radon and wavelet trans-
forms. The Radon transform was first introduce by Johann Radon (l887-1956)
in a paper from 1917. Today, the Radon transform is widely known by working
scientists in medicine, engineering, physical science, optics and holographic inter-
ferometry, geophysics, radio astronomy and mathematics. Helgason [33] proved



4 Chapter 0. Introduction

range theorems for the Radon and dual Radon transform on the Lizorkin test
function spaces S0. We apply our continuity theorems for the ridgelet transform
to discuss the continuity of the Radon transform on these spaces and their duals.
The Radon transform on Lizorkin spaces naturally extends the one considered by
Hertle [34] on various distribution spaces. We use in Section 4.6 ideas from the
theory of tensor products of topological vector spaces to study the relation between
the distributional ridgelet, Radon, and wavelet transforms. Moreover, we give a
desingularization formula, which essentially shows that the ridgelet transform of
a Lizorkin distribution is smooth in the position and scale variables. Finally, we
present a ridgelet transform characterization of the bounded subsets of S ′0(Rn)
and we prove some Abelian and Tauberian theorems for the ridgelet transform.
We point out that the wavelet transform has shown usefulness to study pointwise
scaling properties of distributions [37, 55, 71, 87, 95, 110]. One can then ex-
pect that the ridgelet transform of distributions might provide a tool for studying
higher dimensional scaling notions, such as those introduced by  Lojasiewicz in [49].

From a historical point of view, the first reference to wavelets goes back to
the early twentieth century by Alfred Haar. His research on orthogonal systems
of functions led to the development of a set of rectangular basis functions. Later,
an entire wavelet family, the Haar wavelet, was named on the basis of this set of
functions, and it is also the simplest wavelet family developed till this date.
Several mathematicians, such as John Littlewood, Richard Paley, Elias M. Stein,
and Norman H. Ricker have great contribution to what is today known as wavelet
analysis. A major advancement in the field was attributed to Jean Morlet who
developed and implemented the technique of scaling and shifting of the analysis
window functions in analyzing acoustic echoes while working for an oil company
in the mid 1970s. When Morlet first used the STFT to analyze these echoes, he
found that keeping the width of the window function fixed did not work. As a
solution to the problem, he experimented with keeping the frequency of the win-
dow function constant while changing the width of the window by stretching or
squeezing the window function. The resulting waveforms of varying widths were
called by Morlet the “wavelet”, and this marked the beginning of the era of wave-
let research.
The notion of multiresolution analysis (MRA) was introduced by Mallat and Meyer
as a natural approach to the construction of orthogonal wavelets [53, 56]. Ap-
proximation properties of multiresolution expansions in function and distribution
spaces have been extensively investigated, see e.g. [56]. The problem of pointwise
convergence of multiresolution expansions is very important from a computational
point of view and has also been studied by many authors. In [39] (see also [40]),
Kelly, Kon, and Raphael showed that the multiresolution expansion of a function
f ∈ Lp(Rn) (1 ≤ p ≤ ∞) converges almost everywhere; in fact, at every Lebesgue
point of f . Related pointwise convergence questions have been investigated by
Tao [100] and Zayed [120].

Walter was the first to study the pointwise convergence of multiresolution ex-
pansions for tempered distributions. Under mild conditions, he proved [114] (cf.
[117]) in dimension 1 that the multiresolution expansion of a tempered distribu-
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tion is convergent at every point where f ∈ S ′(R) possesses a distributional point
value. As noted, the notion of distributional point value for generalized functions
was introduced by  Lojasiewicz [50, 49]. Not only is this concept applicable to
distributions that might not even be locally integrable, but also includes the Le-
besgue points of locally integrable functions as particular instances. Interestingly,
the distributional point values of tempered distributions can be characterized by
the pointwise Fourier inversion formula in a very precise fashion [104, 109], but
in contrast to multiresolution expansions, one should employ summability meth-
ods in the case of Fourier transforms and Fourier series. The problem of pointwise
summability of distribution expansions with respect to various orthogonal systems
had been considered by Walter in [115].
The result of Walter on pointwise convergence of multiresolution expansions was
generalized by Sohn and Pahk [97] to distributions of superexponential growth,
that is, elements of K′M(R). The important case M(x) = |x|p, p > 1, of K′M(Rn)
was introduced by Sznajder and Zieleźny in connection with solvability questions
for convolution equations [99]. We extend in this dissertation the results from
[114, 97] to the multidimensional case. Actually, our results improve those from
[114, 97], even in the one-dimensional case, because our hypotheses on the order
of distributional point values are much weaker. We provide in Chapter 5 of this
work pointwise convergence results for multiresolution expansions of tempered
distributions and tempered measures as well as distributions and measures of su-
perexponential growth.

In [70], Pilipović, Takači, and Teofanov studied the quasiasymptotic properties
of a tempered distribution f in terms of its multiresolution expansion {qjf} with
respect to an r-regular MRA. A similar study was carried out by Sohn [95] for
distributions of exponential type. In these works it was claimed that qjf has the
same quasiasymptotic properties as f . Unfortunately, such results turn out to be
false. Here, we revisit the problem and provide an appropriate characterization
of the quasiasymptotic behavior in terms of multiresolution expansions. As an
application, we give an MRA criterion for the determination of (symmetric) α-
density points of measures. Finally, for other studies about the rich interplay
between wavelet analysis and quasiasymptotics, we refer to [70, 72, 86, 87, 95, 110].
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Notions

Ω open subset of Rn

Cm(Ω), m ∈ N0 space of complex valued functions over Ω with continu-
ous derivatives up to order m

C∞(Ω) space of infinite differentiate functions over Ω (smooth
functions over Ω)

Cm
0 (Ω), m ∈ N0 subspace of Cm(Ω) whose elements have compact sup-

port in Ω

C∞0 (Ω) subspace of C∞(Ω) whose elements have compact sup-
port of Ω

Cm
0 (K), m ∈ N0 subspace of Cm(Ω) whose elements have compact sup-

port contained in some compact set K ⊂ Ω

C∞0 (K) subspace of C∞(Ω) whose elements have compact sup-
port contained in some compact set K ⊂ Ω

L1(Rn) space of absolute integrable functions over Rn

L1
loc(Rn) space of locally integrable functions over Rn

L2(Rn) space of square integrable functions over Rn

D(Ω) the locally convex space C∞0 (Ω) (space of test functions)

D′(Ω) space of continuous linear functionals over D(Ω) (space
of distributions)

E(Ω) = C∞(Ω)

E ′(Ω) space of continuous linear functionals over E(Ω) (space
of distributions with compact support in Ω)

7



8 Chapter 0. Introduction

S(R) space of rapidly decreasing smooth functions over R

S ′(R) the space of tempered distributions (distributions with slow
growth)

S0(Rn) subspace of S(Rn) consisting of all those functions having all
their moments vanishing (space of highly localized functions
in time and frequency space)

S ′0(Rn) Lizorkin distributions (dual of S0(Rn))

S(H) space of highly localized functions over the upper half plane
H = {(b, a) : b ∈ R, a > 0}

Sr,l(Rn) completion of D(Rn) with norm

ρr, l(ϕ) := sup
|α|≤r, x∈Rn

(1 + |x|)l|ϕ(α)(x)|, r, l ∈ N

Sr(Rn) projective limit of Sr,l(Rn) when l→∞

KM(Rn) space of all those smooth functions ϕ ∈ C∞(Rn) for which

νr,l(ϕ) := sup
|α|≤r,x∈Rn

eM(lx)|ϕ(α)(x)| <∞, r, l ∈ N

KM,r,l(Rn) = {ϕ ∈ Cr(Rn) : lim
|x|→∞

eM(lx)ϕ(α)(x) = 0, |α| ≤ r}

KM,r(Rn) projective limit of KM,r,l(Rn) when l→∞

K1(Rn) the space of functions ϕ ∈ C∞(Rn) such that

νk(ϕ) = sup
x∈R,α≤k

ek|x||ϕ(α)(x)| <∞, k ∈ N0

K′1(Rn) the dual of K1(Rn) (space of exponential distributions)

DL1(Rn) the space of functions ϕ ∈ C∞(Rn) that together with their
derivatives belong in L1(Rn)

D′L1(R) Schwartz space of integrable distributions
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DLp(Rn) the space of smooth functions with all their derivatives be-
longing to Lp(Rn), 1 ≤ p ≤ ∞

D′Lp(Rn) the dual space of DLq(Rn), 1 < p ≤ ∞, 1 ≤ q <∞, 1
p

+ 1
q

= 1

O′C(Rn) = {f ∈ D′ : (1 + ‖x‖2)mf ∈ D′L∞ ,∀m ∈ N} (the space of
distributions with fast descent)

f ⊗ g tensor product of distributions f and g

E ⊗ F tensor product of topological vector spaces E and F

Yn+1 = {(u, b, a)|u ∈ Sn−1, b ∈ R, a ∈ R+}, where Sn−1 is the unit
sphere of Rn

D(Sn−1) space of smooth functions on the sphere

S(Yn+1) = D(Sn−1)⊗̂S(H) where X⊗̂Y is the completion of X⊗Y in,
say, the π-topology or the ε−topology

S ′(Yn+1) the dual of S(Yn+1)

U(Cn) space of entire functions which decrease faster than any poly-
nomial in bands

U ′(Cn) Silva tempered ultradistributions (dual of U(Cn))

K1(Rn)⊗̂U(Cn) space of all smooth functions Φ such that

ρk(Φ) := sup
(x,z)∈Rn×Πk, |α|≤k

ek|x|(1 + |z|2)k/2
∣∣∣∣ ∂α∂xαΦ(x, z)

∣∣∣∣ <∞
(K1(Rn)⊗̂U(Cn))′ = K′1(Rn)⊗̂U ′(Cn)

Lp,qm (R2n) all measurable functions F such that

‖F‖Lp,qm :=

(∫
Rn

(∫
Rn
|F (x, ξ)|pm(x, ξ)pdx

)q/p
dξ

)1/q

<∞,

where p, q ∈ [1,∞]

Mp,q
m (Rn) consists of all f such that Vgf ∈ Lp,qm (R2n) (Modulation space)
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DL1
ω
(Rn) = {ϕ ∈ C∞(Rn) : ϕ(α) ∈ L1

ω(Rn),∀α ∈ Nn
0}, provided with

the family of norms

‖ϕ‖1,ω,k := sup
|α|≤k

∫
Rn
|ϕ(α)(t)|ω(t)dt, k ∈ N0

B′ω(Rn) the space of ω-bounded distributions (the strong dual of
DL1

ω
(Rn))

∼q (or ∼) notation for quasiasymptotics

∼S notation for S-asymptotics

f̂ Fourier transformation of f

Rψf ridgelet transform of f

Rf Radon transform of f

Vgf Short time Fourier transform of f with respect to a window g



Chapter 1

Preliminaries

Here, we will give the basic notions that will be used in the thesis. We will define
the spaces of test functions and distributions that are needed. Our goal is to give a
short introduction to the theory of distributions (generalized functions, the other
name under which they can be found), i.e. to those aspects who are significant
in the theory of their asymptotic analysis. There are several approaches to this
theory. We will follow the functional approach known as Schwarz-Sobolev.

1.1 Basic facts and notation

The n-dimensional Cartesian product of natural, integer, positive integer, real
numbers, positive real numbers, and complex numbers are denoted by Nn, Zn,
Zn+, Rn, Rn

+, and Cn respectively. Also, Nn
0 = Nn ∪ {0}. With H = {(a, b)|a ∈

R, b ∈ R+} we denote the upper half plane and we introduce the set Yn+1 =
Sn−1 × H = {(u, b, a)|u ∈ Sn−1, b ∈ R, a ∈ R+}, where Sn−1 stands for the unit
sphere of Rn. For multi-indexes α, β ∈ Nn, we set

|α| = α1 + . . .+ αn; α! = α1! · . . . · αn!; β ≤ α⇔ βj ≤ αj, ∀j = 1, . . . , n.

For β ≤ α, (
α

β

)
=

n∏
j=1

(
αj
βj

)
.

For x = (x1, x2, . . . , xn), y = (y1, y2, . . . , yn) ∈ Rn and α ∈ Nn, we use the symbols

x · y = x1y1 + x2y2 + . . .+ xnyn; xα = xα1
1 · . . . · xαnn ;

Dα = Dα1
1 . . . Dαn

n where D
αj
j = i−1 ∂αj

∂xj
αj

; ∂α =
∂|α|

∂xα1
1 . . . ∂xαnn

.

For x, y ∈ Rn and α, β ∈ Nn, the following equalities and inequalities hold

(x+ y)α =
∑
γ≤α

(
α

γ

)
xα−γyγ.
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Let Ω ⊂ Rn is open set and let p ∈ [1,∞). The vector space Lp(Ω) consists of
all functions f for which

∫
Ω
|f(x)|pdx <∞. With respect to the norm

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|pdx
)1/p

,

Lp(Ω) is a Banach space. Specially, L2(Ω) is a Hilbert space equipped with the
inner product (f, g)L2(Ω) =

∫
Ω
f(x)g(x)dx. With Lploc(Ω) we denote the space of

locally integrable functions, that is f ∈ Lploc(Ω) if f ∈ Lp(I) for every bounded
and open interval I ⊂ Ω. f ∈ L∞(Ω) if there exists C > 0 such that |f(x)| < C
for all x ∈ Ω. With respect to the norm

‖f‖L∞(Ω) = ess sup
x∈Ω
|f(x)| := inf

C∈R+
{|f(x)| < C},

L∞(Ω) is a Banach space.
For measure and integration theory see, e.g., [80].
We will recall now some concepts and results from functional analysis. For a

detailed treatment and proofs see, e.g., [103].

A topological space is a nonempty set X in which the collection τ of subsets
is defined such that τ contains: X and the empty set ∅, the intersection of any
two elements from τ , and the union of any subcollection from τ . The elements
from τ are called open sets, and τ is said to define a topology on X (often the
pair (X, τ) is called topological space). A set A is called closed if its complement
is open set.

A set U ⊂ X is called neighborhood of x ∈ X if and only if there exists open
set O ∈ τ such that x ∈ O ⊂ U . Family of sets B(x) is called neighborhood basis
or local basis for x ∈ X if and only if the following conditions hold true:

1. Elements from B(x) are neighborhoods of x ∈ X;

2. For every neighborhood U of x there exists B ∈ B(x) such that B ⊂ U .

The topological space (X, τ) is called Hausdorf if distinct points of X have disjoint
neighborhoods. A topological vector space is a linear space on which a topology
is defined in such a way as to preserve the continuity of the operations of the
underlying linear space.

A set A is called absorbing if for every x ∈ X there exists λ > 0 such that
x ∈ λA. A set A ⊂ X is called balanced if λA ⊂ A for every |λ| ≤ 1. A set A ⊂ X
is called bounded if for every neighborhood U of zero, there exists λ > 0 such that
A ⊂ λU .

A locally convex topological vector space is a topological vector space in which
the origin has a local base of convex sets.

Let {‖ ‖j}j∈I be a family of seminorms on X, where I is an arbitrary index
set. A locally convex space X is then defined to be a vector space along with a
family of seminorms {‖ ‖j}j∈I on X. The space carries a natural topology, the
initial topology of the seminorms. In other words, it is the topology for which all
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mappings x→ ‖x− x0‖j, x0 ∈ X, j ∈ I are continuous. A base of neighborhoods
of x0 for this topology is obtained in the following way: UB,ε(x0) = {x ∈ V :
‖x− x0‖j < ε, j ∈ B}, for every finite subset B of I and every ε > 0.

Definition 1.1.1. A subset T of a topological vector space X is called barrel if
T is absorbing, convex, balanced, and closed. A topological vector space X is said
to be barreled if every barrel in X is a neighborhood of zero in X.

Definition 1.1.2. Locally convex vector space X is called bornologycal space if
every balanced convex subset A ⊂ X, who absorbs all bounded sets in X, is a
neighborhood of zero.

Definition 1.1.3. Montel space is locally convex space who is Hausdorff and
barreled, and in which every closed and bounded set is compact.

Definition 1.1.4. A topological vector space is called Fréchet space if it is locally
convex, metrizable and complete.

Definition 1.1.5. The support of a function (distribution) f , denoted by supp f ,
is defined to be the closure of the set {x ∈ Ω : f(x) 6= 0}.

It is worth mentioning that every Fréchet, Banach and Hilbert spaces are
also barreled. The importance of barreled spaces stems mainly from the Banach-
Steinhause Theorem.

We denote as X ′ the dual of X, that is, the space of continuous linear function-
als on the topological vector space X. Unless otherwise specified, we shall always
provide X ′ with the strong dual topology [103], that is, the topology of uniform
convergence over bounded sets of X.

Theorem 1.1.1 (Banach-Steinhause Theorem). Let X be barreled topological vec-
tor space, and F be locally convex space. The following properties of a subset of
X ′ are equivalent

(i) H is bounded for the topology of pointwise convergence;

(ii) H is bounded for the topology of bounded convergence;

(iii) H is equicontinuous.

Let X and Y are topological spaces over, and let f : X → Y . f is said to be
isomorphism from X to Y if f is continuous bijection whose inverse is continuous.
The linear map f : X → Y is said to be bounded if f(A) is a bounded subset of
Y for every bounded subset A of X. The linear map f : X → Y is said to be
compact if there is a neighborhood U of zero in X such that f(U) is relatively
compact in Y (f(U) is relatively compact in Y if the closure of f(U) is compact).
We shall write X ↪→ Y if X ⊂ Y , the inclusion mapping X → Y is continuous,
and X is dense in Y .

A locally convex space X is called reflexive if it coincides with the dual of its
dual space, both as linear space and as topological space. It is well known that
every Montel space is reflexive.
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For the topological vector spaces X, Y and Z, the mapping f : (x, y) 7→ f(x, y)
from X×Y to Z is called bilinear if for every x0 ∈ X (resp. y0 ∈ Y ) the mappings
fx0 : y 7→ f(x0, y) (resp. fy0 : x 7→ f(x, y0)) from X (resp. Y ) into Z are linear.
The bilinear map f is said to be separately continuous if, for every x0, y0, these
two linear mappings are continuous.

A projective (injective) sequence of locally convex spaces with continuous linear
mappings:

X1 ← X2 ← . . .← Xj ← . . .

(X1 → X2 → . . .→ Xj → . . .)

is said to be compact if all mappings are compact. The limit proj limj→∞Xj =
∩jXj (ind limj→∞Xj = ∪jXj) of a compact projective (injective) sequence is said
to be Fréchet-Schwartz that is FS space (DFS space). FS and DFS spaces are
separable and Montel. Closed subspaces, quotient spaces and projective limits
of sequences in FS (DFS) spaces are FS (DFS). The strong dual spaces of FS
spaces are DFS spaces, and conversely. More explicitly we have the isomorphism
(proj limj→∞Xj)

′ = ind limj→∞X
′
j and (ind limj→∞Xj)

′ = proj limj→∞X
′
j when

the sequence satisfies certain conditions.
We shall make use of the Landau order symbols.

Definition 1.1.6. Let g and h be two complex-valued functions defined in a
pointed neighborhood of x0. We write

g(x) = O(h(x)), x→ x0,

if there exists a positive constant M such that

|g(x)| ≤M |h(x)|,

for all x sufficiently close to x0.

Definition 1.1.7. Let g and h be two complex-valued functions defined in a
pointed neighborhood of x0. We write

g(x) = o(h(x)), x→ x0,

if for every ε > 0 there exists neighborhood Vx0 of x0 such that

|g(x)| ≤ ε|h(x)|, x ∈ Vx0 ,

that is,

lim
x→x0

g(x)

h(x)
= 0.

Analog definitions holds for ”big” O and ”small” o when x → ∞. When x0

is finite, we describe local, and when x → ∞ we describe global behavior of the
function g with respect to the function h. Some properties of the ”small” o are:

1. If for g(x) = o(1) when x → x0 (x → ∞), then g(x) = o(C) for arbitrary
constant C 6= 0 when x→ x0 (x→∞).
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2. If for g(x) = o(f(x)) and f(x) = o(h(x)) when x → x0 (x → ∞), then
g(x) = o(h(x)) when x→ x0 (x→∞).

We say that g is asymptotic to h as x → x0 if g(x) = h(x) + o(h(x)). In this
case, we write

g(x) ∼ h(x), x→ x0.

When h is a non-zero near x0, it means that

lim
x→x0

g(x)

h(x)
= 1.

1.2 Function spaces and distributions

1.2.1 Spaces of distributions D′ and E ′

Let Ω be an open subset of Rn with the usual topology. Then, Ω is subspace of
Rn with topology induced from Rn.
With Cm(Ω),m ∈ N0 or m =∞ we denote the space of complex valued functions
defined on Ω with continuous derivatives up to order m. For m = 0 we have
the space C0(Ω) of continuous functions on Ω and for m = ∞ we have the space
C∞ = ∩m≥0C

m(Ω) of functions with continuous derivatives of all orders (smooth
functions). We have the following inclusions

C∞(Ω) ⊂ ... ⊂ Cm(Ω) ⊂ Cm−1(Ω) ⊂ ... ⊂ C0(Ω).

In Cm
0 (Ω),m ∈ N0 or m = ∞ belong all those functions from Cm(Ω) with

compact support in Ω. Let K be compact subset of Ω. With Cm
0 (K),m ∈ N0

or m = ∞ we denote the subspace of Cm
0 (Ω) whose elements have support in K.

The topology of C∞0 (K) is defined by the seminorms

pm(φ) = sup
x∈K
{|∂αφ(x)| : |α| ≤ m},m ∈ N0,

with the sets Bm(r) = {φ ∈ C∞0 (K) : pm(φ) < r} as a local base. But, C∞0 (K) is
closed subspace of C∞0 (Ω), and we denote the topology of

C∞0 (Ω) =
⋃
K⊂Ω

C∞0 (K)

to be the finest locally convex topology for which the identity map C∞0 (K) →
C∞0 (Ω) is continuous for everyK ⊂ Ω. This means that a convex, balanced set U ⊂
C∞0 (Ω) is a neighborhood of 0 in C∞0 (Ω) if and only if U∩C∞0 (K) is a neighborhood
of 0 in C∞0 (K) for every K ⊂ Ω. The collection of all such neighborhoods U
constitues a local base for the topology we have defined in C∞0 (Ω), which is known
as the inductive limit of the topology of C∞0 (K). It is clear that if Ω1 is an
open subset of Ω then C∞0 (Ω1) is a subspace of C∞0 (Ω), because every function in
C∞0 (Ω1) may be extended as a C∞0 function into Ω by defining it to be 0 on Ω/Ω1.
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Definition 1.2.1. The locally convex space C∞0 (Ω), endowed with the inductive
limit topology, is called the space of test functions and is also denoted by D(Ω).

For every φ ∈ D(Ω) we define the norms

|φ|m = sup
x∈Ω
{|∂αφ(x)| : |α| ≤ m},m ∈ N0.

We shall use D(K) to denote the locally convex space C∞0 (K) where K is com-
pact subspace of Ω. For every φ ∈ D(K) we define the norms as pK,m(φ) =∑
|α|≤m supx∈K |φ(α)(x)|. Let us note that D(Ω) is a Montel space, and hence it is

reflexive.

Theorem 1.2.1. (i) Let E is given locally convex space. The linear mapping
T : D(Ω) → E is continuous if and only if the map T : D(K) → E is
continuous for every compact set K ⊂ Ω.

(ii) Set A ⊂ D(Ω) is bounded if and only if there exists compact set K ⊂ Ω such
that A ⊂ D(K) and A is bounded in D(K).

(iii) The sequence {ψk}k∈N from D(Ω) converge in D(Ω) if and only if there exists
compact set K ⊂ Ω such that the sequence {ψk}k∈N converges in D(K).

Definition 1.2.2. A distribution on Ω is a continuous linear functional on D(Ω).

The linear space of all distributions on Ω is denoted by D′(Ω), the topological
dual of D(Ω), and its element are denoted as f, g, . . .. Every distribution f maps
D(Ω) to the field of complex numbers Cn. Symbolically, this is written as:

f : ϕ→ 〈f, ϕ〉, ϕ ∈ D(Ω).

Example 1.2.1. The Delta distribution δ(x− x0) ∈ D′(Ω), x0 ∈ Ω is defined in
the following manner:

〈δ(x− x0), ϕ(x)〉 = ϕ(x0), ϕ ∈ D(Ω).

Example 1.2.2. The Heaviside distribution H:

〈H(x), ϕ(x)〉 =

∫ ∞
0

ϕ(x)dx.

The following theorem is often taken as a definition for distributions.

Theorem 1.2.2. A linear functional f on D(Ω) is a distribution if and only if,
for every compact set K ⊂ Ω, there exists a nonnegative integer m ∈ N0 and a
constant C > 0 such that

|〈f, ϕ〉| ≤ CpK,m(ϕ). (1.1)

Definition 1.2.3. Let f ∈ D′(Ω). Suppose that there is m ∈ N0 for which (1.1)
holds for every compact set K ⊂ Ω. Then the smallest number m with this
property is called the order of the distribution f and then the distribution f is
said to be of finite order. If no finite number m satisfies the inequality (1.1) for
all K, then f is said to be of infinite order.
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In the space D′(Ω) we will introduce the weak topology τs, the topology of
compact convergence τk and the strong topology τb. The weak topology is defined
with the following family of seminorms

‖f‖ϕ = |〈f, ϕ〉|, ϕ ∈ D(Ω);

the topology of compact convergence is defined with the family of seminorms:

‖f‖K = sup{|〈f, ϕ〉| : ϕ ∈ K};

where K is compact subspace of D(Ω), and the strong topology is defined with
the family of seminorms:

‖f‖B = sup{|〈f, ϕ〉| : ϕ ∈ B};

where B is bounded subspace of D(Ω).
Observe that the space D(Ω) is barreled. The Banach-Steinhaus theorem then

leads to the following simply descriptions of convergent sequences and bounded
sets in D′(Ω).

Theorem 1.2.3. The convergence of sequences in D′(Ω) with respect to the weak
and strong topology coincide.

From the last theorem it follows that is easier to investigate convergence in the
weak topology.

Theorem 1.2.4. Let B′ ⊂ D′(Ω). The following are equivalent:

(i) B′ is bounded set with respect to the weak topology;

(ii) B′ is bounded set with respect to the strong topology;

(iii) B′ is uniformly continuous subset from D′(Ω).

Let f ∈ L1
loc(Ω) that is

∫
K
|f(x)|dx < ∞ for evert compact set K ⊂ Ω. It is

easy to show that with

ϕ→ 〈f, ϕ〉 =

∫
Rn
f(x)ϕ(x)dx, ϕ ∈ D(Ω)

is defined a distribution from D′(Ω).

Definition 1.2.4. Let f ∈ L1
loc(Ω). We shall identify f with a distribution,

denoted also as f , in the following way:

〈f, ϕ〉 :=

∫
Rn
f(x)ϕ(x)dx =

∫
K

f(x)ϕ(x)dx,

where K is the support of ϕ ∈ D(Ω). Distributions arising in this way are called
regular distribution.
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Definition 1.2.5. Let µ be a regular Borel measure on Ω. We identify µ with a
distribution, denoted also as µ, as follows:

〈µ, ϕ〉 =

∫
Ω

ϕ(x)dµ(x), ϕ ∈ D(Ω).

Distributions arising in this way are called Radon measures.

There exist distributions that are not regular and they are called singular
distributions. An example of singular distribution is δ.

For every f ∈ D′(Ω), ϕ ∈ D(Ω) it holds:

(i) 〈f(ax+ b), ϕ(x)〉 :=
〈
f(x), 1

|a|ϕ
(
x−b
a

)〉
, a, b ∈ R, a 6= 0,

(ii) 〈g(x)f(x), ϕ(x)〉 := 〈f(x), g(x)ϕ(x)〉, g ∈ C∞(Ω)

(iii) 〈f (α)(x), ϕ(x)〉 := (−1)|α|〈f(x), ϕ(α)(x)〉, α ∈ Nn
0 .

We will now give brief introduction to homogenous distributions.

Definition 1.2.6. A distributions f ∈ D′(Rn) is called homogeneous of degree α
if

f(λx) = λαf(x), λ > 0.

Example 1.2.3. Dirac delta distribution δ(x) is homogeneous of degree −n, i.e.
δ(λx) = λ−nδ(x), λ > 0.

Example 1.2.4. The function

xα+ =

{
xα, x > 0
0, x ≤ 0

= H(x)xα, α ∈ C.

is locally integrable over R if Reα > −1, and in this case, it defines the regular
distribution

〈xα+, ϕ(x)〉 =

∫ ∞
0

xαϕ(x)dx,

where ϕ ∈ D(R). (H is the Heaviside function that it H(x) = 1 if x > 0 and 0 if
x ≤ 0.) Using regularization procedures for analytic continuation (see [17, Chapter
2.4.]), for every α ∈ C, α 6= −1,−2, . . ., we can define a regular distribution

〈xα+, ϕ(x)〉 =

∫ 1

0

xα
(
ϕ(x)− ϕ(0)− . . .− xn−1

(n− 1)!
ϕ(0)

)
dx

+

∫ ∞
1

xαϕ(x)dx+
n∑
k=1

ϕ(k−1)(0)

(k − 1)!(α + k)
.

It is easy to show that xα+, α 6= −1,−2, . . . is homogeneous with degree α. Ana-
logous results hold for the distribution xα−, α 6= −1,−2, . . . defined as

xα− =

{
(−x)α, x < 0

0, x ≥ 0
.
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We remark that all homogeneous distributions on the real line are explicitly
known [17, Thrm. 2.6.1]; indeed, they are of the form

g(x) = C−x
α
− + C+x

α
+ if α /∈ N,

g(x) = γδ(k−1)(x) + βx−k if α = −k ∈ N
where C−, C+, γ, β ∈ C and the distribution x−k stands for the standard regular-
ization of the corresponding function i.e. x−1 = (log |x|)′,−kx−k−1 = (x−k)′

In dimension n, every homogeneous distributions g of degree α 6= −n,−n −
1,−n− 2, . . . has the form

〈g(x), ϕ(x)〉 = F. p.

∫ ∞
0

rα+n−1〈G(ω), ϕ(rω)〉dr,

where G is a distribution on the unit sphere of Rn and F.p. stands for the Hadam-
ard finite part of the integral. See the book [17] for the definition of the finite part
and more over homogeneous distributions in several variables. We refer to [17,
Sect. 2.6] for properties of homogeneous distributions. Observe also that when f
is a positive measure, then α ≥ −n and g = υ, where υ is also a positive Radon
measure that must necessarily satisfy υ(aB) = aα+nυ(B) for all Borel set B.

If there exists a constant C such that for every ϕ ∈ D(Ω)

lim
ε→0
〈f(x0 + εx), ϕ(x)〉 = 〈C,ϕ〉

then we say that f has value C at the point x = x0, and we denote f(x)|x=x0 = C;
that is f has value at the point x = x0 if and only if

lim
ε→0

〈
f(x), ϕ

(
x− x0

ε

)〉
= C

∫
Rn
ϕ(x)dx.

In general case, distributions does not have value at a point. For example, δ(x)
does not have value at x0 = 0 which follows from

1

ε

〈
δ(x), ϕ

(x
ε

)〉
=

1

ε
ϕ(0).

Moreover, the regular distribution defined with the Heaviside function does not
have value at x0 = 0.

But, if f̃(x) is a regular distribution defined with the continuous function f(x)
for which f(x0) = C, then, from Lebesque Dominated convergence theorem we

have f̃(x)|x=x0 = C.
Important class of distributions is the space E ′(Ω) formed by those distributions

of D′(Ω) whose support is compact. The notion E ′(Ω) suggests that this space is
the dual of certain space E(Ω). Indeed, let E(Ω) be the space of all smooth
functions defined in Ω with the topology generated by the family of seminorms

‖φ‖K,α = sup
x∈K
|φ(α)(x)|,

for α ∈ Nn and K a compact subset of Ω. Then, the space D(Ω) is dense subspace
of E(Ω) and the inclusion is continuous. It follows that the dual space E ′(Ω) can
be identified with a subspace of D′(Ω), and this subspace is precisely the space of
distributions with compact support.
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1.2.2 Tempered distributions

Definition 1.2.7. A function ϕ ∈ C∞(Ω) is said to be rapidly decreasing if

sup
x∈Rn
|xα∂βϕ(x)| <∞,

for all pairs of multi-indices α and β.

We shall use S to denote the set of all rapidly decreasing function, which is
clearly a linear space under the usual operations of addition and multiplications
by scalars. A function in S(Rn) approaches to 0 as |x| → ∞ faster than any power
of 1/|x|. An example of such a function is e−|x|

2
.

For any ϕ ∈ S(Rn), we define the seminorms

‖ϕ‖α,β = sup
x∈Rn
|xα∂βϕ(x)| (1.2)

with α, β ∈ Nn
0 . The countable family {‖ϕ‖α,β} defines a Hausdorff, locally convex

topology on S(Rn) which is metrizable and complete. With this topology, S(Rn)
is a Fréchet space, and a sequence {ϕk} converges to 0 in S(Rn) if and only if
xα∂βϕk(x)→ 0 uniformly on Rn as k →∞.

Theorem 1.2.5. Let ϕ ∈ C∞(Rn). The following are equivalent:

(i) ϕ ∈ S(Rn);

(ii) for every k ∈ N0, β ∈ Nn
0 it holds

‖ϕ‖k,β = sup
x∈Rn
{(1 + |x|2)k/2|∂βϕ(x)|} <∞; (1.3)

(iii) P (x)(Q(∂)ϕ(x)) ∈ S(Rn);

(iv) Q(∂)(P (x)ϕ(x)) ∈ S(Rn),

In this theorem P (x) and Q(x), x ∈ Rn are polynomials with constant coefficients
and Q(∂) is differential operator obtained when in Q(x) one replace x with d

dx
.

It is easy to show that the topology of S(Rn) obtained with the family of
seminorms (1.2) is equivalent with the one defined with (1.3), and that both this
family of seminorms are equivalent with the family

‖ϕ‖N = sup
x∈Rn,|α|≤N

{(1 + |x|2)N/2|∂αϕ(x)|}, N ∈ N0.

Definition 1.2.8. The space of all continuous and linear functionals over S(Rn)
is denoted as S ′(Rn). The elements of S ′(Rn) are called tempered distributions or
distributions of slow growth.

The following inclusions hold true

D(Rn) ↪→ S(Rn) ↪→ E(Rn) ↪→ E ′(Rn) ↪→ S ′(Rn) ↪→ D′(Rn).

Moreover,

S(Rn) ↪→ Lp(Rn), 1 ≤ p <∞.
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Remark 1.2.1. Any locally integrable function f such that |x|−m|f(x)| is bounded
as |x| → ∞, for some positive integer m, defines a distribution in S ′(Rn).

Theorem 1.2.6. A distribution f ∈ D′(Rn) belongs to f ∈ S ′(Rn) if and only if
if and only if there exists constants C > 0 and p ∈ N0 such that

|〈f, ϕ〉| ≤ C‖ϕ‖N , ϕ ∈ S(Rn). (1.4)

Theorem 1.2.7. A distribution f ∈ D′(Rn) belongs to f ∈ S ′(Rn) if and only if
if and only if there exists constants β ∈ Nn

0 ,m ∈ N0 and continuous and bounded
function F on Rn such that

f(x) = [(1 + |x|2)m/2F (x)](β).

We shall also employ two important subspaces of S ′(Rn). They are the Schwartz
spaces of integrable distributions D′L1(Rn) and the spaces of convolutors O′C(Rn).

The space of integrable distributions D′L1(Rn) is, by definition, the strong dual

of the space Ḃ of smooth functions ϕ : Rn → C for which ∂αϕ→ 0 as |x| → ∞, for
each multi index α. The space Ḃ is a closed subspace of the space B consisting of
those smooth functions ϕ with the property that ∂αϕ is bounded for every multi-
index α, endowed with the topology of the uniform convergence on Rn of each
derivative. The space C∞0 is dense in Ḃ but not in B. Thus, the space D′L1(Rn) is
a subspace of D′(Rn). Moreover, according to [89, p.201], the elements of D′L1(Rn)
are precisely those distributions that can be written as finite sums of derivatives of
L1-functions. Also, the space D′L1(Rn) is closed under multiplication by functions
in B.

It is possible to consider D′L1(Rn) as the strong dual of the space B, provided
that we endow B with a topology that gives rise to the following notion of se-
quence convergence: A sequence {ϕj} converges to ϕ if, for every multi index
α, supj ‖∂αϕj‖∞ < ∞ and the sequence {∂αϕj} converges to ∂αϕ uniformly on
compact sets. If we denote as Bc the resulting topological space, it can be proved
that C∞0 , and so Ḃ, is dense in Bc. Since every distribution f ∈ D′L1(Rn) is well
defined on C∞0 and it is continuous on C∞0 with respect to the topology of Bc, it
turns out that D′L1(Rn) is also the dual of Bc.

They satisfy the dense and continuous inclusions:

E ′(Rn) ↪→ O′C(Rn) ↪→ D′L1(Rn) ↪→ S ′(Rn).

We refer to Schwartz’ book [89, p.200 and p.244] for the precise definition of these
distribution spaces.

1.2.3 The Fourier transform of distributions

Now, we will study the Fourier transform. Let φ ∈ S(Rn). Then, its Fourier
transform is given by

F(ϕ(x))(ω) = ϕ̂(x) =

∫
Rn
ϕ(x)e2πix·ωdx. (1.5)

It is easy to see that ϕ̂ belongs to S(Rn) and that the Fourier transform is an
isomorphism of S(Rn) to itself, [112].
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Theorem 1.2.8. Let ϕ, ψ ∈ S(Rn). Then

(i) ˆ̂ϕ(x) = ϕ(−x), x ∈ Rn;

(ii) Parseval relation ∫
Rn
ϕ̂(x)ψ(x)dx =

∫
Rn
ϕ(x)ψ̂(x)dx;

(iii)
∫
Rn |ϕ(x)|2dx =

∫
Rn |ϕ̂(x)|2dx.

Definition 1.2.9. Let f ∈ S ′(Rn). Then, the Fourier transform of a tempered
distribution f is given by

〈f̂(ω), ϕ(ω)〉 := 〈f(x), ϕ̂(x)〉, ϕ ∈ S(Rn). (1.6)

In a similar way we can define the inverse Fourier transform in S ′(Rn)

Theorem 1.2.9. F and F−1 are isomorphism of S ′(Rn) into itself.

Theorem 1.2.10. Let f ∈ S ′(Rn). Then

(i) F(f (α)(x))(ω) = (2πiω)αf̂(ω), α ∈ Nn;

(ii) F((−2πix)αf(x))(ω) = f̂ (α)(ω), α ∈ Nn;

(iii) F(f(x− k))(ω) = e−2πiω·kf̂(ω), k ∈ Rn;

(iv) F(f(ax))(ω) = 1
|a|n f̂

(
ω
a

)
, a ∈ R \ {0}.

Example 1.2.5. (i) δ̂(ω) = 1 because

〈δ̂(ω), ϕ(ω)〉 = 〈δ(x), ϕ̂(x)〉 = ϕ̂(0) =

∫
Rn
ϕ(ω)dω = 〈1, ϕ(ω)〉, ϕ ∈ S(Rn).

(ii) From Theorem (1.2.10) it follows that 1̂(ω) = δ(ω).

(ii) From Theorem (1.2.10) it follows that F(δ(α)(x))(ω) = (2πiω)α, α ∈ Nn.

Example 1.2.6. If f is a homogeneous distribution of order λ, then f̂ is a homo-
geneous distribution of order −λ− 1. Indeed,

aλF(f(x))(ω) = F(aλf(x))(ω) = F(f(ax))(ω) =
1

a
F(f(x))

(ω
a

)
, a > 0.

i.e. a−λ−1f̂
(
ω
a

)
= f̂(ω).
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1.2.4 Tensor products of distributions

Most of this subsection is taken from [103]. Let Y be a open subset of Rn and let
E be some topological vector space (or a space of distributions). We shall denote
by Ck(Y,E) the vector space of Ck mappings of Y into E (0 ≤ k ≤ ∞), and with
Ck
c (Y,E) the subspace of Ck(Y,E) consisting of functions with compact support.

Definition 1.2.10. The Ck topology on Ck(Y,E) is the topology of uniform
convergence of the functions together with the derivatives of order < k + 1 on
every compact subsets of Y .

Consider the sequence Ω1 ⊂ Ω2 ⊂ . . . ⊂ Ωj ⊂ . . . of relatively compact open
subsets of Y such that

⋃
j Ωj = Y ; consider an arbitrary integer l < k + 1, and a

basis of neighborhoods of zero in E, {Uα}. As j, l and α vary in all possible ways,
the subsets of Ck(Y,E),

Uj,l,α = {f :
∂q

∂yq
f(y) ∈ Uα for all y ∈ Ωj and all q ∈ Nn, |q| ≤ l},

form a basis of neighborhoods of zero for the Ck topology. Noting that Uj,l,α is
convex whenever U is a convex set, we see also that Ck(Y,E) is a locally convex
space whenever this is true for E. When E is locally convex, it is easy to ob-
tain a basis of continuous seminorms on Ck(Y,E). It suffices to select a basis of
continuous seminorms on E, {pk} and to form the seminorms

Pj,l,k(f) = sup
y∈Ωj

∑
|q|≤l

pk(
∂q

∂yq
f(y))

 . (1.7)

For all j, l and k,, the Pj,l,k form a basis of continuous seminorms for the topology
Ck.

Given an arbitrary compact subset K of Y , we denote by Ck
c (K,E) the sub-

space of Ck(Y,E) consisting of those functions with support contained in K. We
provide Ck

c (K,E) with the topology induced by Ck(Y,E).

Proposition 1.2.1. [103, Prop. 40.1] Let Y be a open subset of Rn and let E be
locally Hausdorff topological vector space, and k an integer, possibly infinite. A lin-
ear map g of Ck

c (Y,E) into a locally convex topological vector space F is continuous
if and only if the restriction of f to every subspace Ck

c (K,E) is continuous.

Corollary 1.2.1. A linear functional on Ck
c (Y,E) is continuous if and only if its

restriction to every subspace Ck
c (K,E) is continuous.

Example 1.2.7 (Tensor product of functions). Let X, Y be two sets, and f and
g a complex-valued functions defined in X and Y , respectively. We shall denote
by f ⊗ g the function defined in X × Y

(x, y) 7→ f(x)g(y).

Now, let E (resp. F ) be an arbitrary linear space of complex-valued functions
defined in X (resp. Y ). We shall denote by E⊗F the linear subspace of the space
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of all complex-valued functions defined in X × Y spanned by the elements of the
form f ⊗ g where f varies over E and g over F . (E ⊗ F is a tensor product of E
and F .)

Theorem 1.2.11. [103, Thrm. 39.2.] Let X (resp Y ) be an open subset of Rm

(resp. Rn). Then C∞c (X)⊗ C∞c (Y ) is sequentially dense in C∞c (X × Y ).

Example 1.2.8 (Projective tensor product). Let E and F be two Hausdorff loc-
ally convex topological vector spaces and let P and Q be the filtering systems of
seminorms defining the topology of E and F respectively. The general elements
χ in E ⊗ F are of the form

χ =
m∑
i=1

ei ⊗ fi with ei ∈ E and fi ∈ F, i = 1, . . . ,m,m ∈ N.

Note that this representation is not unique. Now, given two seminorms p ∈ P and
q ∈ Q the projective limit tensor product p⊗π q of p and q is defined by

p⊗π q(χ) = inf

{
m∑
i=1

p(ei)q(fi) : χ =
m∑
i=1

ei ⊗ fi

}
.

The system P ⊗π Q = {p⊗π q : p ∈ P , q ∈ Q} of seminorms of E ⊗ F is filtering
and thus defines a locally convex topology on E ⊗ F , called the projective tensor
product topology. The vector space E⊗F equipped with this topology is denoted
by E ⊗π F , and is called the projective tensor product of the spaces E and F .

Similarly, we define the injective tensor product of p and q

p⊗ε q(ξ) = sup
{ m∑

i=1

〈ei, u〉〈ei, u〉 : ξ =
m∑
i=1

ei ⊗ fi

u ∈ E ′, v ∈ F ′, sup
p(x)≤1

|〈u, x〉| ≤ 1, sup
q(y)≤1

|〈v, y〉| ≤ 1
}
.

Then, E⊗F provided with this topology is denoted as E⊗εF , and it is called
the injective tensor product of the spaces E and F .

The completions of the algebraic tensor product in these two norms are called
the projective and injective tensor products, and are denoted by E⊗̂πF and E⊗̂εF .
It is easy to see that p⊗π q(χ) ≥ p⊗ε q(χ) for all χ in E ⊗ F .

Theorem 1.2.12. Assume that X ⊆ Rm, Y ⊆ Rn are nonempty open sets. The
completion of the projective tensor product D(X) ⊗π D(Y ) of the test function
spaces is equal to the test function space D(X × Y ) over the product X × Y of the
sets X and Y :

D(X)⊗̂πD(Y ) = D(X)⊗̂εD(Y ) = D(X × Y )
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A nuclear space E is a locally convex Hausdorff space in which E⊗πF = E⊗πF
for any arbitrary locally convex space F (see [103] for equivalent definitions of
nuclear spaces). For nuclear spaces we shall use the common notation

E⊗̂F = E⊗̂πF = E⊗̂πF

for the topological tensor product.
The inductive limit of a sequence of nuclear spaces, the strong dual of a nuclear

Fréchet space and the product of a family of nuclear spaces is also a nuclear space.
Let us note that there are no infinite-dimensional Banach spaces that are nuclear.
On the other hand the spaces S,S ′, D′, E ′ are examples of nuclear spaces.

Example 1.2.9. Let d = dimE be finite, e1, . . . , ed a basis of E, and e′1, . . . , e
′
d the

dual basis in E ′ (this means that the functions 〈e′i, ej〉 = 0 if i 6= j and 〈e′i, ej〉 = 1
if i = j). Consider a function f ∈ Ck(Y,E). For each y ∈ Y , we may write

f(y) =
n∑
j=1

fj(y)ej;

we have
fj(y) = 〈e′j, f(y)〉 ∈ Ck(Y ).

Conversely, let g be such a function and e a vector in E. Let us denote by g ⊗ e
the function, valued in E (y 7→ g(y)e). This means that the function of the form
g⊗ e span Ck(Y,E) when g varies over Ck(Y ) and e over E; thus it is true if and
only if E is finite dimensional. Then, the bilinear map (g, e) 7→ g⊗e of Ck(Y )×E
into Ck(Y,E) turns the latter into a tensor product of Ck(Y ) and E.

Now, let E be a vector space over the field of complex numbers, f a complex-
valued function defined in Y ⊂ Rn, and e a vector belonging to E. We denote by
f ⊗ e the function defined in Y and valued in E.

Proposition 1.2.2. [103, Prop. 40.2.] Let E be a Hausdorff topological vector
space. The bilinear mapping (f, e) 7→ f ⊗ e of Ck(Y ) × E into the subspace of
Ck(Y,E), consisting of the functions whose image is contained in a finite dimen-
sional subspace of E, turns this subspace into a tensor product of Ck(Y ) and E
(denoted by Ck(Y )⊗ E.)

We shall use the notation Ck
c (Y ) ⊗ E to denote the subspace of Ck(Y ) ⊗ E

consisting of the functions with compact support.

Theorem 1.2.13. [103, Thrm. 40.1.] Let X and Y be open subsets of Rm and
Rn respectively. The mapping

φ 7→ (y 7→ (x 7→ φ(x, y))) (1.8)

is an isomorphism from C∞(X × Y ) onto C∞(Y,C∞(X)).

Corollary 1.2.2. The restriction of (1.8) to C∞c (X × Y ) is an isomorphism of
this space into C∞c (Y,C∞c (X)).
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Theorem 1.2.14. [103, Thrm. 40.3.] Let f be a distribution in X. Then,
φ 7→ (y 7→ 〈fx, φ(x, y)〉) is a continuous linear map of C∞c (X × Y ) into C∞c (Y ).
If the support of f is compact, then it is a continuous linear map of C∞(X × Y )
into C∞(Y ).

Here, 〈fx, φ(x, y)〉 means that f is acting on the test function x 7→ φ(x, y),
with y playing the role of parameter.

Now, let g be a function in Y . By the previous theorem,

C∞c (X × Y ) 3 φ 7→ 〈gy, 〈fx, φ(x, y)〉〉

defines a distribution in X × Y . Similarly,

C∞c (X × Y ) 3 φ 7→ 〈fx, 〈gy, φ(x, y)〉〉

is a distribution in X × Y . The next result states that these two distributions
are equal. It can be viewed as a kind of rule of interchanging integration with
respect to x and y. In analogy with the integration theory, it is often referred to
as Fubini’s theorem for distributions.

Theorem 1.2.15. [103, Thrm. 40.4.] Let f be a distribution in X and g in Y .
For every φ ∈ C∞c (X × Y ), we have

〈fx, 〈gy, φ(x, y)〉〉 = 〈gy, 〈fx, φ(x, y)〉〉.

Definition 1.2.11. Let f be a distribution in X and g a distribution in Y . The
distribution in X × Y

C∞c (X × Y ) 3 φ 7→ 〈gy, 〈fx, φ(x, y)〉〉 = 〈fx, 〈gy, φ(x, y)〉〉

is called the tensor product of f and g (or of g and f) and denoted by

f ⊗ g or g ⊗ f.

Some basic properties of the tensor product are stated with the following Pro-
position.

Proposition 1.2.3. (i) (f, g) 7→ f ⊗ g is a bilinear map of D′(X)×D′(Y ) into
D′(X × Y );

(ii) supp (f ⊗ g) = (supp f)× (supp g);

(iii) (f, g) 7→ f ⊗ g is a bilinear map of E ′(X)× E ′(Y ) into E ′(X × Y );

(iv) Dα
x (fx ⊗ gy) = (Dα

xfx)⊗ gy;

Definition 1.2.12. We shall denote by D′(X) ⊗ D′(Y ) the linear subspace of
D′(X × Y ) spanned by the distributions of the form f ⊗ g, f ∈ D′(X), g ∈ D′(Y ).

D′(X)⊗D′(Y ) is obviously a tensor product of D′(X) and D′(Y ).
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Proposition 1.2.4. [103, Prop. 40.4.] D′(X) ⊗ D′(Y ) (resp. E ′(X) ⊗ E ′(Y )) is
a dense subspace of D′(X × Y ) (resp. E ′(X × Y )).

The tensor product of distributions (f, g) 7→ f ⊗ g is a continuous bilinear
mapping of S ′(Rm)×S ′(Rn) into S ′(Rm+n). (The same holds if we replace S ′ with
E ′).

Proposition 1.2.5. [103, Prop. 50.7] Let E and F be two Fréchet spaces. If F
is nuclear, then

E ′⊗̂F ′ ∼= (E⊗̂E)′.

By [103, Thrm. 51.6] we have the following isomorphisms

(i) S(Rm)⊗̂S(Rn) ∼= S(Rm+n);

(ii) S ′(Rm)⊗̂S ′(Rn) ∼= L(S(Rm);S ′(Rn)) ∼= S ′(Rm+n);

(iii) C∞(X)⊗̂D′(Y ) ∼= C∞(X;D′(Y )) (D′(X)⊗̂C∞(Y ) ∼= C∞(Y ;D′(X))).

Moreover, if E is locally convex, Hausdorff and complete, then

(i) C∞(X;E) ∼= C∞(X)⊗̂E;

(ii) S(Rn;E) ∼= S(Rn)⊗̂E;

(iii) S ′(Rn;E) ∼= S ′(Rn)⊗̂E ∼= L(S(Rn);E);

(iv) (The space ofE-valued distributions inX)D′(X;E) = L(C∞c ;E) ∼= D′(X)⊗̂E.

where L(F,E) is the space of all continuous linear mapping from F to E provided
with the strong topology [103].

1.2.5 Lizorkin distributions

In Chapter 4, of crucial importance will be the space of Lizorkin test functions
S0(Rn) of highly time-frequency localized functions over Rn [37].

The space S0(Rn) consists all those elements of S(Rn) having all moments
equal to 0, namely, φ ∈ S0(Rn) if∫

Rn
xmφ(x)dx = 0,

for all m ∈ Nn
0 . It is a closed subspace of S(Rn). Let us point out that other

authors use a different notion for this space. For instance, Helgason [33] denotes
S0(Rn) by S∗(Rn). Its dual space S ′0(Rn), known as the space of Lizorkin dis-
tributions, is canonically isomorphic to the quotient of S ′(Rn) by the space of
polynomials; the quotient projection S ′(Rn) → S ′0(Rn) is explicitly given by the
restriction of tempered distributions to S0(Rn). This quotient projection is inject-
ive on D′L1(Rn); therefore, we can regard D′L1(Rn), E ′(Rn), and O′C(Rn) as (dense)
subspaces of S ′0(Rn).
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We denote by D(Sn−1) the space of smooth functions on the sphere. Given a
locally convex space A of smooth test functions on R, we write A(Sn−1 × R) for
the space of functions %(u, p) having the properties of A in the variable p ∈ R and
being smooth in u ∈ Sn−1.

We introduce S(Yn+1) as the space of functions Φ ∈ C∞(Yn+1) satisfying the
decay conditions

ρl,m,ks,r (Φ) = sup
(u,b,a)∈Yn+1

(
as +

1

as

)
(1+b2)

r/2

∣∣∣∣ ∂l∂al ∂m∂bm4k
uΦ (u, b, a)

∣∣∣∣ <∞ (1.9)

for all l,m, k, s, r ∈ N0, where 4u is the Laplace-Beltrami operator on the unit
sphere Sn−1. The topology of this space is defined by means of the seminorms (1.9).
Its dual S ′(Yn+1) will be fundamental in our definition of the ridgelet transform of
Lizorkin distributions, as it contains the range of this transform (cf. Section 4.4).
We follow the ensuing convention. We fix a−ndudbda as the standard measure on
Yn+1. Here du stands for the surface measure on the sphere Sn−1. Accordingly,
our convention for identifying a locally integrable function F on Yn+1 with a
distribution on Yn+1 is as follows. If it is of slow growth on Yn+1, namely, it
satisfies the bound

|F (u, b, a)| ≤ C(1 + |b|)s
(
as +

1

as

)
, (u, b, a) ∈ Yn+1,

for some s, C > 0, we shall always identify F with an element of S ′(Yn+1) via

〈F,Φ〉 :=

∫ ∞
0

∫ ∞
−∞

∫
Sn−1

F (u, b, a) Φ (u, b, a)
dudbda

an
, Φ ∈ S

(
Yn+1

)
. (1.10)

A related space is S(H), the space of highly localized test functions on the
upper half-plane [37]. Its elements are smooth functions Ψ on H that satisfy

sup
(b,a)∈H

(
as +

1

as

)
(1 + b2)r/2

∣∣∣∣ ∂m∂bm ∂l

∂al
Ψ (b, a)

∣∣∣∣ <∞,

for all l,m, s, r ∈ N0; its topology being defined in the canonical way [37]. The
dual space is denotes with S ′(H) and any locally integrable function F of slow
growth on H, that is

|F (b, a)| ≤ C

(
a+

1

a

)m
(1 + b2)

l
2 , (b, a) ∈ H,

for some C > 0 and integers m, l ∈ N can be identified with an element of S ′(H)

Observe that the nuclearity of the Schwartz spaces [103] immediately yields
the equalities S(Yn+1) = D(Sn−1)⊗̂S(H), S(Sn−1 × R) = D(Sn−1)⊗̂S(R), and
S0(Sn−1 × R) = D(Sn−1)⊗̂S0(R), where X⊗̂Y is the topological tensor product
space obtained as the completion ofX⊗Y in, say, the π-topology or the ε−topology
[103].
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1.2.6 Distributions of exponential type

The Hasumi-Silva [90, 31] test function space K1(Rn) consists of those ϕ ∈ C∞(Rn)
for which all norms

νk(ϕ) := sup
x∈Rn, |α|≤k

ek|x||ϕ(α)(x)|, k ∈ N0,

are finite. The elements of K1(Rn) are called exponentially rapidly decreasing
smooth functions. It is easy to see thatK1(Rn) is an FS-space and therefore Montel
and reflexive. The space K1(Rn) is also nuclear [31]. The following topological
inclusions are clear

D(Rn) ↪→ K1(Rn) ↪→ S(Rn) ↪→ S ′(Rn) ↪→ K′1(Rn) ↪→ D′(Rn).

Note that if ϕ ∈ K1(Rn), then the Fourier transform (1.5) extends to an
entire function. In fact, the Fourier transform is a topological isomorphism from
K1(Rn) onto U(Cn), the space of entire functions which decrease faster than any
polynomial in bands. More precisely, a entire function φ ∈ U(Cn) if and only if

ν̇k(φ) := sup
x∈Πk

(1 + |x|2)k/2|φ(x)| <∞, ∀k ∈ N0,

where Πk is the tube Πk = Rn + i[−k, k]n.
The dual space K′1(Rn) consists of all distributions f of exponential type, i.e.,

those of the form f =
∑
|α|≤l(e

s| · |fα)(α), where fα ∈ L∞(Rn) [31]. The Fourier

transform extends to a topological isomorphism F : K′1(Rn)→ U ′(Cn), the latter
space is known as the space of Silva tempered ultradistributions [31] (also called
the space of tempered ultra-hyperfunctions [58]). The space U ′(Cn) contains the
space of analytic functionals. See also the textbook [38] for more information
about these spaces.

In Chapter 3, we will study the short-time Fourier transform in the context
of the space K′1(Rn), and we will obtain various characterizations of K′1(Rn) and
related spaces via the short-time Fourier transform. The space K′1(Rn) was in-
troduced by Silva [90] and Hasumi [31] in connection with the so-called space of
Silva tempered ultradistributions U ′(Cn). Let us mention that K′1(Rn) and U ′(Rn)
were also studied by Morimoto through the theory of ultra-hyperfunctions [58] (cf.
[60]). We refer to [19, 38, 91, 121] for some applications of the Silva spaces.

We introduce a generalization of the Schwartz space of bounded distributions
B′(Rn) [89, p. 200]. Let ω : Rn → (0,∞) be an exponentially moderate weight,
namely, ω is measurable and satisfies the estimate

ω(x+ y) ≤ Aω(y)ea|x|, x, y ∈ Rn, (1.11)

for some constants A > 0 and a ≥ 0. For instance, any positive measurable
function ω which is submultiplicative, i.e., ω(x + y) ≤ ω(x)ω(y), and integrable
near the origin must necessarily satisfy (1.11), as follows from the standard results
about subadditive functions [1, 36]. Extending the Schwartz space DL1(Rn), we
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define the Fréchet space DL1
ω
(Rn) = {ϕ ∈ C∞(Rn) : ϕ(α) ∈ L1

ω(Rn),∀α ∈ Nn
0},

provided with the family of norms

‖ϕ‖1,ω,k := sup
|α|≤k

∫
Rn
|ϕ(α)(x)|ω(x)dx, k ∈ N0.

Then, B′ω(Rn) stands for the strong dual of DL1
ω
(Rn), i.e., B′ω(Rn) = (DL1

ω
(Rn))′.

Since we have the dense embedding K1(Rn) ↪→ DL1
ω
(Rn), we have B′ω(Rn) ⊂

K′1(Rn). We call B′ω(Rn) the space of ω-bounded distributions. We also define
Ḃ′ω(Rn) as the closure of D(Rn) in B′ω(Rn).

Next, we shall consider K1(Rn)⊗̂U(Cn), the topological tensor product space
obtained as the completion of K1(Rn) ⊗ U(Cn) in, say, the π- or the ε- topology
[103]. Explicitly, the nuclearity of K1(Rn) implies that

K1(Rn)⊗̂U(Cn) = K1(Rn)⊗̂πU(Cn) = K1(Rn)⊗̂εU(Cn).

Thus, the topology of K1(Rn)⊗̂U(Cn) is given by the family of the norms

ρk(Φ) := sup
(x,z)∈Rn×Πk, |α|≤k

ek|x|(1 + |z|2)k/2
∣∣∣∣ ∂α∂xαΦ(x, z)

∣∣∣∣ , k ∈ N0,

and we also obtain (K1(Rn)⊗̂U(Cn))′ = K′1(Rn)⊗̂U ′(Cn).

1.2.7 Distributions of M-exponential type

Let us introduce the distribution space K′M(Rn). We begin with the test func-
tion space KM(Rn). We shall assume that M : [0,∞) → [0,∞) is a continuous
increasing function satisfying the following two conditions:

1. M(t) +M(s) ≤M(t+ s),

2. M(t+ s) ≤M(2t) +M(2s).

We extend M to Rn and for simplicity we write M(x) := M(|x|), x ∈ Rn. It
follows from (1) that M(0) = 0 and the existence of A > 0 such that M(x) ≥ A|x|.
Examples of M are M(x) = |x|p with any p ≥ 1. More generally, any function of
the form

M(t) =

∫ t

0

η(s)ds, t ≥ 0,

satisfies (1) and (2), provided that η is a continuous non-decreasing function with
η(0) = 0 and limt→∞ η(t) =∞.

Using the function M , we define the following family of norms:

νr,l(ϕ) := sup
|α|≤r, x∈Rn

eM(lx)|ϕ(α)(x)|, r, l ∈ N. (1.12)

The test function spaceKM(Rn) consists of all those smooth functions ϕ ∈ C∞(Rn)
for which all the norms (1.12) are finite. We call its strong dual K′M(Rn), the space
of distributions of “M -exponential” growth at infinity. A standard argument shows
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that a distributions f ∈ D′(Rn) belongs to K′M(Rn) if and only if it has the form
f = ∂αx

(
eM(kx)F (x)

)
, where k ∈ N, α ∈ Nn, and F ∈ L∞(Rn) ∩ C(Rn).

Denote as KM,r,l(Rn) the Banach space obtained as the completion of D(Rn)
in the norm (1.12). It is clear that

KM,r,l(Rn) = {ϕ ∈ Cr(Rn) : lim
|x|→∞

eM(lx)ϕ(α)(x) = 0, |α| ≤ r}.

Set KM,r(Rn) = proj liml→∞KM,r,l(Rn). Note that

KM(Rn) ↪→ · · · ↪→ KM,r+1(Rn) ↪→ KM,r(Rn) ↪→ · · · ↪→ KM,0(Rn),

where each embedding in this projective sequence is compact, due to the Arzelà-
Ascoli theorem and the property (1). Consequently, the embeddings K′M,r(Rn)→
K′M,r+1(Rn) are also compact,

KM(Rn) = proj lim
r→∞
KM,r(Rn),

and
K′M(Rn) =

⋃
r∈N

K′M,r(Rn) = ind lim
r→∞
K′M,r(Rn). (1.13)

Therefore KM(Rn) is an FS-space and K′M(Rn) a DFS-space. In particular, they
are Montel and hence reflexive.

For the Schwartz spaces S(Rn) and S ′(Rn), we can also employ useful project-
ive and inductive presentations with similar compact inclusion relations. Define
Sr,l(Rn) as the completion of D(Rn) with the norm

ρr, l(ϕ) := sup
|α|≤r, x∈Rn

(1 + |x|)l|ϕ(α)(x)|, r, l ∈ N,

and set Sr(Rn) = proj liml→∞ Sr,l(Rn). Thus, S(Rn) = proj limr→∞ Sr(Rn) and

S ′(Rn) =
⋃
r∈N

S ′r(Rn) = ind lim
r→∞
S ′r(Rn). (1.14)

The following simple but useful lemma describes convergence of filters with
bounded bases in the Fréchet space KM,r(Rn) (resp. Sr(Rn)), we leave the proof
to the reader. Recall that the canonical topology on Cr(Rn) is that of uniform
convergence of functions and all their derivatives up to order r on compact subsets.

Lemma 1.2.1. Let F be a filter with bounded basis over KM,r(Rn) (resp. Sr(Rn)).
Then F → ϕ in KM,r(Rn) (resp. in Sr(Rn)) if and only if F → ϕ in Cr(Rn).





Chapter 2

Quasiasymptotics and
S-asymptotics

In the last five decades many definition of the asymptotic behavior of distributions
have been given by different authors. The main goal of this chapter if to give a
short survey to those results that are of most relevance for their application in
this dissertation, mainly to Abelian and Tauberian type theorems. The analysis
of this notion is given using regularly varying functions [93].
The quasiasymptotic behavior of distributions was introduced by Zavialov as a
result of his investigations in Quantum Field Theory, and further developed by
him, Vladimirov and Drozhzhinov, [113]. Great contribution to this theory is
made by Pilipović and his coworkers, [69, 65, 67, 62, 105, 106, 110, 86, 87, 88].
In the last few decades a theory of S-asymptotics (shift-asymptotics) has been
presented and developed. It has an origin in the book of L. Schwartz [89], and
more about the good properties of this notion can be found in [65, 73].

2.1 Slowly varying functions

We will measure the behavior of a distribution by comparison with Karamata regu-
larly varying functions [93], defined in the early thirties as a natural generalization
of power functions. We start with regularly varying functions at infinity.

Definition 2.1.1. A function ρ : (A,∞) → R, A ∈ R is called regularly varying
at infinity if it is a positive, measurable and there exists a real number α such
that for every x > 0

lim
k→∞

ρ(kx)

ρ(k)
= xα. (2.1)

The number α is called index of ρ. Specially, if α = 0, then ρ is called slowly
varying function and for such a function it will be used the letter ”L”. In fact,
the following assertion is obvious.

Proposition 2.1.1. A positive and measurable function ρ : (A,∞) → R is regu-
larly varying at infinity if and only if it can be written as

ρ(x) = xαL(x), x > A, (2.2)

33
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for some real number α and some slowly varying function L at infinity.

Hence, it is enough to explore the properties of slowly varying functions in
order to study those of regularly varying functions.

Example 2.1.1. The functions

xα, xα lnx, xα ln lnx, xα
(

1 +
1

2
sin ln lnx

)
, xα

(
2 + sin

√
lnx
)
, α ∈ R,

are slowly varying with index α.

One can prove that the convergence in (2.1) is uniform on every fixed interval
[a′, b′], A < a′ < b′ <∞, and that ρ is necessarily bounded (hence integrable) on it.
Some properties of slowly varying functions are stated with the next proposition.

Let L be slowly varying function at infinity. Then, for each ε > 0

(i) there exist constants C1, C2 > 0 and X > A such that

C1x
−ε ≤ L(x) ≤ C2x

ε, for x ≥ X; (2.3)

(ii) we have limx→∞ x
εL(x) = +∞, limx→∞ x

−εL(x) = 0;

The first two statements together with relation (2.2) explain the relation of the
regularly varying functions to power functions, while the third shows that such
functions with positive index are asymptotically equal at infinity to monotone
ones. It is also known that if L2(x)→∞, x→∞, and L1, L2 are slowly varying,
then their composition L1(L2) is slowly varying, as well. Hence, for x > −∞

lim
h→∞

L(x+ h)

L(h)
= lim

u→∞

L(log ut)

L(log u)
= 1.

Definition 2.1.2. A function ρ : (0, A) → R, A > 0 is regularly varying at zero
(from the right) if the function ρ1(x) = ρ(1/x) is regularly varying at infinity.

The following representation holds: L is slowly varying function at zero on
the interval (0, A], A > 0 if and only if there exists measurable functions u and ω
defined on the interval (0, B], B ≤ A, such that u is bounded and limx→0 u(x) =
M <∞, and ω is continuous on [0, B] and limx→0 ω(x) = 0, and for which

L(x) = exp

(
u(x) +

∫ B

x

ω(t)

t
dt

)
, x ∈ (0, B].

A similar representation formula holds for slowly varying functions at infinity.
Some useful properties of a slowly varying function L are:

(i) For every α > 0

L(ε) = o

(
1

εα

)
when ε→ 0+, (2.4)

L(λ) = o (λα) when λ→∞, (2.5)

(ii) For every α > 0

1

C
min{x−α, xα} < L(εx)

L(ε)
< C max{x−α, xα}, x, ε ∈ (0,∞),

for some C > 0.
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2.2 Quasiasymptotic behavior of distributions

2.2.1 Quasiasymptotic behavior at zero

In general, we cannot talk about pointwise behavior of distributions, therefore,
if we want to study asymptotic properties of distributions, we should usually
introduce new parameters in order to give sense to asymptotic relations.

The quasiasymptotic behavior will be a fundamental concept in the subsequent
chapters in this thesis. It is a very convenient notion to describe the local behavior
of a distribution around a point, or its asymptotic behavior at infinity. One gains
generality by considering quasiasymptotics rather than ordinary asymptotics of
functions because they are directly applicable to the nature of a distribution;
moreover, one might say that every distribution shows, in one way or another,
quasiasymptotic properties. Despite its generality, the concept is extremely useful
in practice; in fact, it has an evident advantage over the asymptotics of ordinary
function: its flexibility under analytical manipulations such as differentiation or
integral transforms. We now define the concept of quasiasymptotic behavior.

Definition 2.2.1. Let L be a slowly varying function at the origin and let x0 ∈ Rn.
We say that the distribution f ∈ D′(Rn) has quasiasymptotic behavior (quasi-
asymptotics) of degree α ∈ R at the point x0 ∈ Rn with respect to L if the
following limit

lim
ε→0+

〈
f(x0 + εx)

εαL(ε)
, ϕ(x)

〉
. (2.6)

exists and is finite for every ϕ ∈ D(Rn).

From the Banach-Steinhaus theorem follows that if f ∈ D′(Rn) has quasi-
asymptotic behavior in sense of Definition 2.2.1, then there exists distribution
g ∈ D′(Rn) such that

lim
ε→0+

〈
f(x0 + εx)

εαL(ε)
, ϕ(x)

〉
= 〈g(x), ϕ(x)〉. (2.7)

for every ϕ ∈ D(Rn). We will use the following convenient notation for the
quasiasymptotic behavior,

f(x0 + εx) ∼q εαL(ε)g(x) as ε→ 0+ in D′(Rn) ,

or,
f(x0 + εx) = εαL(ε)g(x) + o(εαL(ε)) as ε→ 0+ in D′(Rn) ,

which should always be interpreted in the weak topology of D′(Rn), i.e., in the
sense of (2.7). A trivial observation is that, by shifting to x0, in most cases it is
enough to consider x0 = 0.

One can prove that g cannot have an arbitrary form; indeed, it must be ho-
mogeneous with degree of homogeneity α, i.e., g(ax) = aαg(x), for all a ∈ R+

[65, 113].

Proposition 2.2.1. ([73, Prop. 2.8]) Let f ∈ D′(R) and let f ∼q g at 0 related
to εvL(ε) in D′(R). Then:
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(i) f (m) ∼q g(m) at 0 related to εv−mL(ε) in D′(R),m ∈ N;

(ii) xmf(x) ∼q xmg(x) at 0 related to εv+mL(ε) in D′(R),m ∈ N.

The next proposition asserts that the quasi-asymptotics at 0 is a local property.

Proposition 2.2.2. ([73, Prop. 2.9]) Let f ∈ D′(R) and f ∼q g at 0 related to
εvL(ε) in D′(R), and let f1 ∈ D′(R) be such that f = f1 in some neighborhood of
zero. Then f1 ∼q g at 0 related to εvL(ε), as well.

The same assertions from Propositions (2.2.1) and (2.2.2) hold for quasi-
asymptotics at 0 in S ′(R).

The following proposition gives the relation between the asymptotic behavior
at zero of a locally integrable function and the quasi-asymptotics at zero of the
distribution defined by it.

Proposition 2.2.3. ([73, Prop. 2.10]) Let f ∈ S ′(R) be a locally integrable
function in (−a, a), a > 0, and let c(ε) = εαL(ε), α > −1 where L be slowly
varying function at 0+. If

lim
x→0±

f(x)/c(|x|) = C±,

then f has the quasi-asymptotics at zero in S ′(R) related to c and

lim
ε→0+

f(εx)/c(ε) = C+x
α
+ + C−x

α
− in S ′(R).

Proposition 2.2.4. ([73, Prop. 2.12]) Let f ∈ S ′(R) and f = F (m) in some
neighborhood of 0, where m ∈ N0 and F is a locally integrable function such that
for some v > −1 and some slowly varying function L,

lim
x→0±

F (x)

|x|vL(|x|)
= C±.

Then f ∼q g at zero related to εvL(ε) in S ′(R) where g = (C+x
v
+ + C−x

v
−)(m).

A deeper result of Pilipović and Vindas asserts that the converse to Proposition
2.2.4 also holds true, see [73, Sect. 2.10] or [106].

It is obvious that if a tempered distribution has quasiasymptotics at 0 in S ′,
then it will have it in D′. It was shown in [64] that if L is bounded near the
origin and α < 0, α /∈ {−1,−2,−3, . . .}, then the converse is true. The following
theorem shows that the converse is true without any restrictions on L and α.

Theorem 2.2.1. ([73, Thrm. 2.35])Let f ∈ S ′(Rn). If f has quasi-asymptotic
behavior at 0 in D′(Rn), then f has the same quasi-asymptotic behavior at 0 in
the space S ′(Rn).

We will considerably extend Theorem 2.2.1 in Section 5.4.

Let us note that in [105, 106, 111, 73] authors give complete structural theorems
for quasiasymptotics at the origin and at infinity. Their results are based on the
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concept of asymptotically and associate asymptotically homogeneous functions.
This concept is used for obtaining easier proofs for various structural theorems
when the degree of the quasiasymptotics in not negative, but also when the degree
of the quasiasymptotic is a negative integer.

If α = 0 and L ≡ 1, the definition of quasiasymptotics at x0 in D′(Rn) is a
slight generalization of the  Lojasiewicz definition of the distributional ”value at
x0”. Actually, as explained in Section 1.1, f has the distributional point value γ
in the sense of  Lojasiewicz, [49] and we write

f(x0) = γ

if and only if
lim
ε→0

f(x0 + εx) = γ, (2.8)

distributionaly, that is, if and only if

lim
ε→0
〈f(x0+εx), φ(x)〉 = lim

ε→0

〈
f(x),

1

ε
φ

(
x− x0

ε

)〉
= γ

∫ ∞
−∞

φ(x)dx, φ ∈ D(Rn).

In particular, this is a local concept. So, in the notation of quasiasymptotics, the
limit (2.8) may be written as

f(x0 + εx) = γ + o(1) as ε→ 0 in D′(Rn).

 Lojasiewicz gave himself a structural characterization of distributional point val-
ues. It was shown by him [50] that the existence of the point value f(x0) = γ,
distributionaly, is equivalent to the existence of m ∈ N, and a primitive of order
m of f , that is F (m) = f , which is continuous in a neighborhood of x0 and satisfies

lim
x→x0

m!F (x)

(x− x0)m
= γ.

2.2.2 Quasiasymptotic behavior at infinity

The quasiasymptotics of distributions at infinity with respect to a slowly varying
function L at infinity is defined in a similar manner,

Definition 2.2.2. Let L be a slowly varying function at infinity. We say that
the distribution f ∈ D′(Rn) has quasiasymptotic behavior (quasiasymptotics) of
degree α ∈ R at infinity with respect to L if there exists a distribution g ∈ D′(Rn)
such that

lim
ε→∞

〈
f(λx)

λαL(λ)
, ϕ(x)

〉
= 〈g(x), ϕ(x)〉, (2.9)

for every ϕ ∈ D(Rn), and the notation

f(λx) ∼q λαL(λ)g(x) as λ→∞ in D′(Rn)

or,
f(λx) = λαL(λ)g(x) + o(λαL(λ)) as λ→∞ in D′(Rn)

will be used in this case. Let us note that the quasiasymptotic behavior at infinity
is a global property. Several properties of the quasi-asymptotics at ±∞ are given
with the following theorems.
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Theorem 2.2.2. ([73, Thrm. 2.11]) Let f ∈ D′(R) and let f ∼q g at ±∞ related
to λvL(λ) in D′(R). Then:

(i) f (m) ∼q g(m) at ±∞ related to λv−mL(λ), λ > A,m ∈ N;

(ii) xmf(x) ∼q xmg(x) at ±∞ related to λv+mL(λ), m ∈ N;

Theorem 2.2.3. ([73, Thrm. 2.12]) Let f ∈ E(R) and f ∼q g at ±∞ related to
λvL(λ), g 6= 0. Then L(λ) = 1, λ > A, v ∈ −N, and g(x) = Cδ(−v−1)(x), for some
constant C.

Theorem 2.2.4. ([73, Th. 2.13]) Let F be a locally integrable function on R such
that for some v ∈ R, v > −1,

lim
x→±∞

F (x)

|x|vL(|x|)
= C±,

where L is some slowly varying function at ∞. Then F ∼q g at ±∞ related to
λvL(λ) where g = (C+x

v
+ + C−x

v
−)(m).

Theorem 2.2.5. ([73, Thrm. 2.14]) Let f ∈ D′(R) and f ∼q g at ±∞ related to
λvL(λ), where g 6= 0 and v ∈ R\(−N). There are m ∈ N0 and a locally integrable
function F such that

f = F (m) and lim
x→±∞

F (x)

|x|v+mL(|x|)
= C±,

where C+, C− 6= (0, 0).

In the following theorem, we compare the quasiasymptotics at zero and infinity
via the Fourier transform.

Theorem 2.2.6. ([73, Thrm. 2.16]) Let f ∈ D′(R) and v ∈ R\(−N). If

f ∼q g at ±∞ related to λvL(λ), (2.10)

with g 6= 0, then

lim
λ→∞

f̂(x/λ)

(1/λ)−v−1L1(1/λ)
= ĝ(x) in S ′(R) (2.11)

where L1( · ) = L(1/·) is slowly varying at the origin.
Conversely, if f ∈ S ′(R) and (2.11) holds with v ∈ R, then (2.10) holds, as

well.

Remark 2.2.1. We may also consider quasiasymptotics in other distribution spaces.
The relation f(x0 + εx) ∼ εαL(ε)u(x) as ε → 0+ in A′(R) means that (2.7) is
satisfied just for each ϕ ∈ A(R); and analogously for quasiasymptotics at infinity
in A′(R).

Example 2.2.1. Let f(x) = H(x− a)F (x), x ∈ R for a > 0, where F i a locally
integrable function such that F (x) ∼ xαL(x) as x→∞ for α > −1. Then f has
the quasiasymptotics related to λαL(λ), λ→∞.
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2.3 S-asymptotic behavior of distributions

2.3.1 Definition of S-asymptotics and basic properties

Here we will discussed the so-called S-asymptotic behavior of distributions (also
known as shift-asymptotics or Schwartz-asymptotics). We briefly explain this
notion; we refer to [73] for a complete treatment of the subject. The idea of the
S-asymptotics is to study the asymptotic properties of the translates T−hf with
respect to a locally bounded and measurable comparison function c : R→ (0,∞).

Definition 2.3.1. Let f ∈ D′(Rn). It is said that f has S-asymptotic behavior
with respect to c if there is g ∈ D′(Rn) such that

lim
|h|→∞

〈
f(x+ h)

c(h)
, ϕ(x)

〉
= 〈g(x), ϕ(x)〉 ϕ ∈ D(Rn). (2.12)

We will use the more suggestive notation

f(t+ h) ∼S c(h)g(t) in D′(Rn) as |h| → ∞ (2.13)

for denoting (2.12), which of course means that (f ∗ ϕ̌)(h) ∼ c(h)
∫
Rn ϕ(t)g(t)dt

as |h| → ∞, for each ϕ ∈ D(Rn).
This definition is valid also for some subspaces of D′(Rn). One only have to

suppose that in relation (2.12) ϕ belongs to the corresponding test function space.
The following proposition gives the characteristic properties of the S- asymptotics.

Proposition 2.3.1. Let f ∈ D′(R). If for every r > 0 exists hr such that the sets
{x ∈ R|x ∈ supp f ∩ (h− r, h+ r)}, |h| ≥ hr are empty, then for every c(h):

lim
|h|→∞

〈
f(x+ h)

c(h)
, ϕ(x)

〉
= 0, ϕ ∈ D(R). (2.14)

Proposition 2.3.1 shows that the S-asymptotics preserved the natural property
of the asymptotics of numerical functions.

Example 2.3.1. From Proposition (2.3.1) it follows that δ which is distribution
with support {0} has S-asymptotics with limit 0, with respect to every c(h), i.e.

δ(x+ h) ∼S c(h) · 0, |h| → ∞.

The quasiasymptotics at infinity does not have the same property. For example,
δ has quasiasymptotics of degree −1, i.e.

δ(λx) ∼q λ−1δ(x), λ→∞.

Theorem 2.3.1. Let f1 and f2 be two distributions equal on a open set Ω ∈ R,
where Ω has the following property: for every r > 0, there exists hr such that
(−r, r) ⊂ {Ω−h, |h| ≥ hr}. If f1(x+h) ∼S c(h)g(x), |h| → ∞, then f2(x+h) ∼S
c(h)g(x), |h| → ∞.
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This last theorem shows that S-asymptotics is a local property, which is not
true for quasiasymptotics at infinity. For example, the supports of δ and δ′ are the
same and equal to {0}, but δ has quasiasimptotics of degree −1 and δ′ of degree
−2.

The distribution g is not arbitrary; in fact, one can show [73] that the relation
(2.12) forces it to have the form g(t) = Ceβ·t, for some C ∈ R and β ∈ R. If
C 6= 0, one can also prove [73] that c must satisfy the asymptotic relation

lim
|h|→∞

c(t+ h)

c(h)
= eβ·t, uniformly for t in compact subsets of R. (2.15)

From now on, we shall always assume that c satisfies (2.15). A typical example
of such a c is any function of the form c(t) = eβ·tL(e|t|), where L is a Karamata
slowly varying function [2]. The assumption (2.15) implies [73] that (2.12) actually
holds in the space D′(R).

Let us note that an explicit form of the function c is not known in n-dimensional
case, n ≥ 2. This problem is related to the extension of the definition of a regularly
varying function to the multi-dimensional case, [65].

Example 2.3.2. [65, 73]

1. ea(x+h) ∼s eaheax, h ∈ Rn.

2. For a slowly varying function L(t), t ≥ α > 0, we have

L(t+ h) ∼s L(h) · 1, h ∈ R+.

3. Let f ∈ L1(R). Then, the distribution defined by f has S-asymptotic beha-
vior related to c = 1 and limit g = 0.

4. If f ∈ S ′, then there exists a real number k such that f has S-asymptotic
behavior related to c(h)‖h‖k, where c(h) tends to infinity as ‖h‖ → ∞, h ∈
Rn and with limit g = 0.

5. If f ∈ K′1, then there exists k ∈ N0 such that f has S-asymptotic behavior
related to c(h)ek‖h‖, where c(h) tends to infinity as ‖h‖ → ∞, h ∈ Rn and
with limit g = 0.

2.3.2 S-asymptotics and asymptotics of a function

In this section we will compare the asymptotic behavior of a locally integrable
function f and the S-asymptotic behavior of the generalized function generated
by it. Let us note that a function f has asymptotics at infinity if there exists a
positive function c such that

lim
x→∞

f(x)

c(x)
= A 6= 0, (in short f(x) ∼ Ac(x), x→∞).

The following example point out that a continuous and L1-integrable function
can have S-asymptotics as a distribution without having an ordinary asymptotics.



2.2. S-asymptotic behavior of distributions 41

Example 2.3.3. Let G ∈ L1(R) ∩ C(R) have the property G(n) = n, n ∈ N
and it is equal to zero outside suitable small intervals In 3 n, n ∈ N. Denote by
f(t) = et

∫ t
0
G(x)dx, t ∈ R. It is easy to see that

f(t+ h) ∼S eh · et
∫ ∞

0

g(x)dx, h ∈ R+.

Then, f ′(t) has S-asymptotics related to eh and with the same limit. But, in view
of the properties of G, f ′(t) + etg(t) has not the same asymptotics. Moreover, G
can be chosen so that f ′ has no asymptotics at all.

The following example shows that a function f can have asymptotic behavior
without having S-asymptotics with limit g different from zero.

Example 2.3.4. Let f(x) = ex
2
, x ∈ R and let us assume that f has S-asymptotics

related to a c(h) > 0, h ∈ R+ with limit g different from zero. As mentioned pre-
viously, g has the form g(x) = Ceax, C > 0. Then, for every ϕ ∈ D(R) such that
ϕ > 0 we have

lim
h→∞

1

c(h)

∫
exp [(x+ h+ h0)2]ϕ(x)dx = eah0〈Ceax, ϕ(x)〉.

Therefore,

eah0〈g, ϕ〉 = eh
2
0 lim
h→∞

1

c(h)

∫
e(x+h)2e2h0(x+h)ϕ(x)dx

≥ eh
2
0〈g, ϕ〉, for every h0 > 0.

But this inequality is absurd. Consequently, ex
2

cannot have such an S-
asymptotic behavior.

One can prove a more general assertion.

Proposition 2.3.2. ([73, Prop.1.3]) Let f ∈ L1
loc(R) ⊂ D′(R) have one of the

four properties for α > 0, β > 0, x ≥ x0, h > 0,M > 0 and N > 0:

(i) f(x+ h) ≥Me(βhα)f(x) ≥ 0,

(i′) −f(x+ h) ≥ −Me(βhα)f(x) ≥ 0,

(ii) 0 ≤ f(x+ h) ≤ Ne(−βhα)f(x) ≥ 0,

(iii) 0 ≤ −f(x+ h) ≤ −Ne(−βhα)f(x) ≥ 0,

Then, f cannot have S-asymptotics with limit g 6= 0, but the function f can have
asymptotics.

It is easy to show that for some classes of real functions f on R the asymptotic
behavior at infinity implies the S-asymptotics.
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Proposition 2.3.3. ([73, Prop.1.4]) a) Let c be a positive function and let T ∈
L1
loc(R). Suppose that there exist locally integrable functions u(x) and v(x), x ∈ R,

such that for every compact set K ⊂ Rn

|T (x+ h)/c(h)| ≤ v(x), x ∈ K, |h| > rK ,

lim
|h|→∞

T (x+ h)/c(h) = u(x), x ∈ K.

Then, T (x+ h) ∼S c(h)u(x), |h| → ∞ in D′(R).
b) Let T ∈ L1

loc(R) have the ordinary asymptotic behavior

T (x) ∼ eαxL(ex), x→∞, α ∈ R,
where L is slowly varying function. Then

T (x+ h) ∼S eαhL(eh)eαx, h ∈ R+, in D′(R).

The following proposition gives a sufficient condition under which the S-asymptotics
of f ∈ L1

loc(R), in D′(R), implies the ordinary asymptotic behavior of f .

Proposition 2.3.4. ([73, Prop.1.6]) Let f ∈ L1
loc(R), c(h) = hβL(h), where β >

−1 and L be a slowly varying function. If for some m ∈ N, xmf(x), x > 0, is
monotonous and f(x+h) ∼S c(h)·1, h ∈ R+ in D′(R), then limh→∞ f(h)/c(h) = 1.
If we suppose that L is monotonous, then we can omit the hypothesis β > −1.

The space of tempered distributions is a natural one for the quasiasymptotics
while for the S-asymptotics the space K′1 has this role. The following example
illustrate the problem of comparison of these two types of asymptotic behavior in
S(R).

Example 2.3.5. The regular distribution f(x) = H(x)eiax, x ∈ R, a 6= 0 has
quasiasymptotics i

a
δ in S ′(R) related to c(k) = k−1:

k〈H(kx)eikax, ϕ(x)〉 = k

∫ ∞
0

eikaxϕ(x)dx =
1

ia

∫ ∞
0

ϕ
(x
k

)
d(eiax)

=
−1

ia
ϕ(0)− 1

k

∫ ∞
0

ϕ′
(x
k

)
eiaxdx→ i

a
ϕ(0), k →∞.

But the distribution f has no S-asymptotics related to hα with g 6= 0 for any
α ∈ R. We start with

〈H(t+ h)eia(t+h), ϕ(x)〉 = eiah
∫ ∞

0

eiaxϕ(x)dx

∼ eiah
∫ ∞

0

eiaxϕ(x)dx, n ∈ R+.

This distribution has the S-asymptotic but related to the oscillatory function
c(h) = eiah.

More on this relations between the S-asymptotics and quasiasymptotics of
distribution can be found in [73, 63, 66, 68].
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2.3.3 Characterization of some generalized function spaces

Theorem 2.3.2. ([73, Thrm.1.7]) A necessary and sufficient condition for a dis-
tribution f to belong to E ′ is that f(x + h) ∼S c(h) · 0, h ∈ Rn for every positive
function c.

Proposition 2.3.5. ([73, Prop.1.7])

a) If for every rapidly decreasing function c, f has the S-asymptotic behavior
related to c−1(h) and with limit uc (uc = 0 included), then f ∈ S ′(R).

b) If for every rapidly exponentially decreasing function c (for every k > 0,
c(h)ek‖h‖ → 0, ‖h‖ → ∞) a distribution f has the S-asymptotic behavior
related to c−1 with limit uc (uc = 0 included), then f ∈ K′1(R).

Proposition 2.3.6. Let f ∈ K′1(R). If for every rapidly exponentially decreasing
function r on Rn the set {r(h)f(x+h)|h ∈ Rn} is bounded in D′ then, f ∈ K′1(R).

2.4 Quasi-asymptotic boundedness

Definition 2.4.1. Let L be a slowly varying function at infinity (respectively at
the origin). We say that f ∈ D′(Rn) is quasi-asymptotically bounded at infinity
(at the origin) in D′(Rn) with respect to λαL(λ), α ∈ R if,

〈f(λx), φ(x)〉 = O(λαL(λ)), as λ→∞, ∀φ ∈ D(Rn), (2.16)

(resp. λ → 0+). If (2.16) holds, it is also said that f is quasi-asymptotically
bounded of degree α at infinity (at the origin) with respect to the slowly varying
function L. We express (2.16) by

f(λx) = O(λαL(λ)), as λ→∞ in D′(Rn), (2.17)

(resp. λ→ 0+).

Note that in analogy to the quasi-asymptotic behavior of distributions we may
talk about (2.17) in other spaces of distributions.

Theorem 2.4.1. [73, Thrm. 2.44] Let f ∈ S ′(R). If f is quasi-asymptotically
bounded at 0, with respect to a slowly varying function L, in D′(R), then f is
quasi-asymptotically bounded at 0 of the same degree with respect to L in the space
S ′(R).





Chapter 3

The short time Fourier transform
of distribution spaces

The short-time Fourier transform (STFT) is a very effective device in the study of
function spaces. The investigation of major test function spaces and their duals
through time-frequency representations has attracted much attention. For ex-
ample, the Schwartz class S(Rn) and the space of tempered distributions S ′(Rn)
were studied in [29] (cf. [26]). Characterizations of Gelfand-Shilov spaces and
ultradistribution spaces by means of the short-time Fourier transform and modu-
lation spaces are also known [30, 59, 102].

The purpose of this Section is three folded. On the one hand we analyze
the quasiasymptotic behavior of tempered distributions via the STFT. Next, we
study the short-time Fourier transform in the context of the space K′1(Rn) of
distributions of exponential type, the dual of the space of exponentially rapidly
decreasing smooth functions K1(Rn). The third aim is to present a new kind of
Tauberian theorems. In such theorems the exponential asymptotics of functions
and distributions can be obtained from those of the short-time Fourier transform.

3.1 The short time Fourier transform

Gabor (1946) adapted the Fourier transform to analyze only a small section of
the signal at a time - a technique called windowing the signal. Gabor’s ad-
aptation, called the short-time Fourier transform (STFT), maps a signal into a
two-dimensional function of time and frequency. The STFT represents a sort of
compromise between the time- and frequency-based views of a signal. It provides
some information about both when and at what frequencies a signal event occurs.
However, you can only obtain this information with limited precision, and that
precision is determined by the size of the window.

The translation and modulation operators are defined by Txf( · ) = f( · − x)
and Mξf( · ) = e2πiξ · f( · ), x, ξ ∈ Rn. The operators MξTx and TxMξ are called
time-frequency shifts and for x, ξ ∈ Rn, f ∈ L2(Rn) we have

MξTxf = e2πix·ξTxMξf and (MξTxf)ˆ = TξM−xf̂ . (3.1)

45
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Definition 3.1.1. The short-time Fourier transform (STFT) of a function f ∈
L2(Rn) with respect to a window function g ∈ L2(Rn) is defined as

Vgf(x, ξ) : = 〈f,MξTxg〉 =

∫
Rn
f(t)g(t− x)e−2πiξ·t dt, x, ξ ∈ Rn (3.2)

Remark 3.1.1. If g is compactly supported with its support centered at the origin,
then Vgf(x, ·) is the Fourier transform of a segment of f centered in a neighborhood
of x. As x varies, the window slides along the x-axis to different positions. For
this reason, the STFT if often called the ”sliding window Fourier transform”.

Remark 3.1.2. In signal analysis, at least in dimension n = 1, R2 is called the
time-frequnecy plane and in physics the phase space.

The following lemma lists several useful equivalent forms of the STFT.

Lemma 3.1.1. [26, Lemma 3.1.1] If f, g ∈ L2(Rn), then Vgf is uniformly con-
tinuous on Rn and

Vgf(x, ξ) = (f · Txg)(̂ξ)

= 〈f,MξTxg〉
= 〈f̂ , TξM−xĝ〉
= e−2πix·ξVĝf̂(ξ, x).

The STFT may be considered as the sesquilinear form (f, g) 7→ Vgf . Let
f ⊗ g be the tensor product f ⊗ g(x, t) = f(x)g(t), and let Ta be the asymmetric
coordinate transform TaF (t1, t2) = F (t2, t2− t1), and let F2 be the partial Fourier
transform F2F (t1, t2) =

∫
Rn F (t1, t2)e−2πit2·ξdt2 of a function F on R2n. Then

Lemma 3.1.2. [26, Lemma 3.1.2] If f ∈ L2(Rn), then

Vgf = F2Ta(f ⊗ g).

Theorem 3.1.1. [26, Th. 3.2.1] (Orthogonality relation for STFT) Let f1, f2, g1, g2 ∈
L2(Rn), then Vgjfj ∈ L2(R2n) for j = 1, 2, and

(Vg1f1, Vg2f2) = (f1, f2)(g1, g2).

Corollary 3.1.1. [26, Co. 3.2.2] If f, g ∈ L2(Rn), then

‖Vgf‖2 = ‖f‖2‖g‖2,

In particular, if ‖g‖2 = 1 then

‖f‖2 = ‖Vgf‖2 (3.3)

for all f ∈ L2(Rn). Thus, in this case the STFT is an isometry from L2(Rn) into
L2(R2n).
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It follows from (3.3) that f can be completely determined by Vgf . Furthermore,
the implication (f,MξTxg) = 0,∀x, ξ ∈ Rn ⇒ f = 0 is equivalent to saying that
for each fixed g ∈ L2(Rn) the set {MξTxg : x, ξ ∈ Rn} spans a dense subspace of
L2(Rn).

The adjoint of Vψ is given by the mapping

V ∗ψF (t) =

∫∫
R2n

F (x, ξ)ψ(t− x)e2πiξ·tdxdξ,

interpreted as an L2(Rn)-valued weak integral. If ψ 6= 0 and γ ∈ L2(Rn) is a
synthesis window for ψ, namely, (γ, ψ)L2 6= 0, then for any f ∈ L2(Rn), the
following inversion formula holds

f =
1

(γ, ψ)L2

∫∫
R2n

Vψf(x, ξ)MξTxγdξdx. (3.4)

Whenever the dual pairing in (3.3) is well-defined, the definition of Vψf can
be generalized for f in larger classes than L2(Rn), for instance: f ∈ D′(Rn) and
ψ ∈ D(Rn). In fact, it is enough to have ψ ∈ A(Rn) and f ∈ A′(Rn), where
A(Rn) is a time-frequency shift invariant topological vector space. Note also that
the inversion formula (3.4) holds pointwisely when f is sufficiently regular, for
instance, for function in the Schwartz class S(Rn). It is obvious that for g ∈ S(Rn)
the set

{MξTxg : x, ξ ∈ K} (3.5)

is compact in S(Rn), where K is a compact subset of Rn.

Lemma 3.1.3. [26, Lemma. 11.3.3] Let g0, g, γ ∈ S(Rn) such that 〈γ, g〉 6= 0 and
let f ∈ S ′(Rn). Then

|Vg0f(x, ω)| ≤ 1

|〈γ, g〉|
(|Vgf | ∗ |Vg0γ|) (x, ω),

for all (x, ω) ∈ R2n.

Note that [26, Thrm. 11.2.3] for each used window g ∈ S(Rn)\{0} and f ∈
S ′(Rn) there exist constants C > 0 and N ≥ 0 such that

|Vgf(x, ξ)| ≤ C(1 + |x|+ |ξ|)N for all x, ξ ∈ Rn. (3.6)

It is also known that [26, Thrm. 11.2.5] if f, g ∈ S(Rn) then for all N ≥ 0,
there exists constant CN > 0 such that

|Vgf(x, ξ)| ≤ CN(1 + |x|+ |ξ|)−N for all x, ξ ∈ Rn. (3.7)

In the proof of our results we use the relations (3.8) and (3.9) regarding the
use of an adapted STFT window. In particular, we apply dilation to adapt the
window (or any function) and we use the notation

fε(x) = f(εx), ε > 0.
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It turns out that dilating the window is equivalent to the inverse dilation of the
function of interest or,

Vgfε(x, ξ) =
1

ε
Vg1/εf(εx, ξ/ε). (3.8)

Indeed, using the substitution t = y/ε we have

Vgfε(x, ξ) = 〈fε,MξTxg〉 =

∫
Rn
fε(t)g(t− x)e−2πiξ·tdt

=
1

ε

∫
Rn
f(y)g

(
y − εx
ε

)
e−2πi ξ

ε
·ydy

=
1

ε
〈f,Mξ/εTεxg1/ε〉 =

1

ε
Vg1/εf(εx, ξ/ε).

We will also prove the following relation

εVgfε

(x0

ε
+ x, ε2ξ

)
= Vg1/εf(x0 + εx, εξ), x0 ∈ Rn. (3.9)

Indeed, using the substitution y = t/ε we obtain

Vg1/εf(x0 + εx, εξ) = 〈f,MεξTx0+εxg1/ε〉

=

∫
Rn
f(t)g

(
t− x0 − εx

ε

)
e−2πiξ·εtdt

= ε

∫
Rn
f(εy)g

(
y − x0

ε
− x
)
e−2πiξ·ε2ydy

= ε〈fε,Mε2ξTx0
ε

+xg〉 = εVgfε

(x0

ε
+ x, ε2ξ

)
.

Following [26], we now give a brief introduction to modulation space. In general
a weight function is a simply a non-negative, locally integrable function on R2n

and they are used for describing the decay or growth of functions.

Definition 3.1.2. A weight function v on R2n is called submultiplicative if

v(z1 + z2) ≤ v(z1)v(z2) for all z1, z2 ∈ R2n.

A weight function m on R2n is v-moderate if

m(z1 + z2) ≤ Cv(z1)m(z2) for all z1, z2 ∈ R2n.

Two weights m1 and m2 are equivalent if

C−1m1(z) ≤ m2(z) ≤ Cm1(z) for all z ∈ R2n.

For simplicity we will assume without loss of generality that v is continuous
and symmetric in each coordinate, formally that

v(x, ω) = v(−x, ω) = v(x,−ω) = v(−x,−ω) for all x, ω ∈ Rn.
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Example 3.1.1. The standard class of weights on R2n are weights of polynomial
type

vs(z) = (1 + |z|)s = (1 + (x2 + ω2)1/2)s,

where z = (x, ω) ∈ R2n and s ≥ 0. vs(z) is equivalent to the weights

(1 + |x|+ |ω|)s and (1 + |z|2)s/2.

Let m be a weight on R2n, that is, m : R2n → (0,∞) is measurable and locally
bounded. Then, if p, q ∈ [1,∞], the weighted Banach space Lp,qm (R2n) consists of
all measurable functions F such that

‖F‖Lp,qm :=

(∫
Rn

(∫
Rn
|F (x, ξ)|pm(x, ξ)pdx

)q/p
dξ

)1/q

<∞.

If p =∞ or q =∞, then the corresponding p-norm is replaced by the essential
supremum. Thus

‖F‖L∞,qm
:=

(∫
Rn

(esssup x∈Rn|F (x, ξ)|m(x, ξ)dx)q dξ

)1/q

<∞,

and

‖F‖Lp,∞m :=

(
esssup x∈Rn

(∫
Rn
|F (x, ξ)|pm(x, ξ)pdx

)p
dξ

)1/p

<∞.

Lp,qm arises by taking a weighted Lp norm with respect to x and an Lq norm
with respect to ω. Since ω 7→ F ( · , ω)m( · , ω) takes values in Lp, the mixed norm
space Lp,qm may be viewed as a vector-valued Lq space. If p = q, then Lp,qm = Lpm is
the usual weighted Lp space.

Definition 3.1.3. Fix a non-zero window g ∈ S(Rn), a polynomial moderate
weight function m on R2n, and 1 ≤ p, q ≤ ∞. Then, the modulation space
Mp,q

m (Rn) consists of all tempered distributions f ∈ S ′(Rn) such that Vgf ∈
Lp,qm (R2n).

The norm on Mp,q
m is ‖f‖Mp,q

m
= ‖Vgf‖Lp,qm . If p = q, we write Mp

m and if
m(z) ≡ 1 on R2n, then we write Mp,q.

Proposition 3.1.1. [26, Pr.11.3.2] The definition of Mp,q
m is independent of the

window g ∈ S(Rn). Different windows yield equivalent norms.

Proposition 3.1.2. [26, Pr.11.3.1] Writing vs(z) = (1 + |z|)s, z ∈ R2n, we have

S(Rn) =
⋂
s≥0

M∞
vs and S ′(Rn) =

⋃
s≥0

M∞
1/vs .

Proposition 3.1.3. [26, Pr.11.3.4] If |m(z)| ≤ C(1 + |z|)N and 1 ≤ p, q ≤ ∞,
then S(Rn) is a dense subspace of Mp,q

m .
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3.2 Abelian and Tauberian results on spaces of

tempered distributions

Our main goal in this paper is to provide Abelian and Tauberian type results
relating asymptotics of STFT and the quasiasymptotic behavior of tempered dis-
tributions.

Theorem 3.2.1. Let L be slowly varying function at the origin, α ∈ R and
f ∈ S ′(R). Suppose that

f(εx)∼εαL(ε)u(x) as ε→ 0+ in S ′(R).

Then for its STFT with respect to window g ∈ S(R)\{0} we have

Vg1/εf(εx, ξ/ε)∼εα+1L(ε)Vgu(x, ξ) as ε→ 0+.

uniformly for x, ξ in compact subsets of R.

Proof. By relation (3.8) we have

Vg1/εf(εx, ξ/ε)

εα+1L(ε)
=

εVgfε(x, ξ)

εα+1L(ε)
=
〈 fε(t)

εαL(ε)
,MξTxg(t)

〉
=

〈 f(εt)

εαL(ε)
, MξTxg(t)

〉
.

Using the compactness of the set given by (3.5) and the Banach-Steinhaus theorem
we obtain

lim
ε→0+

Vg1/εf(εx, ξ/ε)

εα+1L(ε)
= lim

ε→0+

〈 f(εt)

εαL(ε)
,MξTxg(t)

〉
= 〈u(t),MξTxg(t)〉 = Vgu(x, ξ).

Remark 3.2.1. Let f, g1, g2 ∈ S(R)\{0} and

g1(εx)∼εαL(ε)g2(x) as ε→ 0+ in S ′(R). (3.10)

According to Theorem 3.1 it follows

Vf1/εg1(εx, ξ/ε)∼εα+1L(ε)Vfg2(x, ξ) as ε→ 0+.

By relation Vgf(x, ξ) = e−2πixξVfg(x, ξ), x, ξ ∈ R we obtain

e−2πixξVg1f1/ε

(
εx,

ξ

ε

)
∼εα+1L(ε)e−2πixξVg2f(x, ξ) as ε→ 0+,

i.e.
Vg1f1/ε(εx, ξ/ε)∼εα+1L(ε)Vg2f(x, ξ) as ε→ 0+.
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This is an expected result, given that the choice of STFT window is causing
no significant change in the quality of the STFT; that is, two windows with the
same quasiasymptotic property result with STFTs with related quasiasymptotics.

Theorem 3.2.2. Let L be a slowly varying function at the origin, α ∈ R and
f ∈ S ′(R), g ∈ S(R)\{0}. The following two conditions:

(i) the limits

lim
ε→0+

1

εα+1L(ε)
Vg1/εf(εx, ξ/ε) = Mx,ξ <∞, (3.11)

uniformly for x, ξ in compact subsets of R.

(ii) there exist C > 0 and N ≥ 0 such that

|Vg1/εf(εx, ξ/ε)|
εα+1L(ε)

< C(1 + |x|+ |ξ|)N , (3.12)

for all x, ξ ∈ R and 0 < ε ≤ 1, are necessary and sufficient conditions for existence
of a homogeneous distribution u such that

f(εx) ∼ εαL(ε)u(x) as ε→ 0+ in S ′(R). (3.13)

Proof. (3.11) and (3.12) imply that the function given by J(x, ξ) = Mx,ξ, x, ξ ∈ R
is measurable and satisfies the estimate

|J(x, ξ)| = |Mx,ξ| ≤ C(1 + |x|+ |ξ|)N ,

for all x, ξ ∈ R and some constant C > 0. Moreover, by relation (3.8) and the
inversion formula we obtain

lim
ε→0+

〈 f(εt)

εαL(ε)
, ϕ(t)

〉
=

1

〈γ, g〉
lim
ε→0+

∫ ∫
R2

Vg1/εf(εx, ξ/ε)

εα+1L(ε)
Vγϕ(x, ξ)dξdx,

where γ is synthesis window for g such that 〈g, γ〉 6= 0. Because of (3.11) and
(3.12) we can use Lebesque dominated convergence theorem

lim
ε→0+

〈 f(εt)

εαL(ε)
, ϕ(t)

〉
=

1

〈γ, g〉

∫ ∫
R2

J(x, ξ)Vγϕ(x, ξ)dξdx.

Observe that the last integral converges absolutely because |J(x, ξ)| = O((1+|x|+
|ξ|)N) for some N > 0 and |Vγϕ(x, ξ)| = O((1+|x|+|ξ|)−n) for all n ≥ 0, whenever

ϕ, γ ∈ S(R) [[26], Theorem 11.2.5]. It follows that the limit limε→0+〈 f(εt)
εαL(ε)

, ϕ(t)〉
exists for each ϕ ∈ S(R). So, we conclude that f has quasiasymptotic behavior at
the origin in S ′(R).

We now prove the converse. If (3.13) holds then (3.11) follows from the Abelian
type result given in Theorem 3.1. Also, from (3.8), (3.13) and (3.6) it follows that
there exist constants C1, C2 > 0 and N ≥ 0 such that

|Vg1/εf(εx, ξ/ε)|
εα+1L(ε)

=
|Vgfε(x, ξ)|
εαL(ε)

=
|〈f(εt),MξTxg(t)〉|

εαL(ε)
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< C1|〈u,MξTxg〉| = C1|Vgu(x, ξ)|
≤ C2(1 + |x|+ |ξ|)N .

Remark 3.2.2. Clearly, the STFT Vgu(x, ξ) in Theorem 3.6.1 is given by the limits
(3.11).

A similar assertion as previous theorem holds for quasiasymptotics at infinity.

Theorem 3.2.3. Let L be a slowly varying function at infinity, α ∈ R and f ∈
S ′(R), g ∈ S(R)\{0} The following two conditions:

(i) the limits

lim
λ→∞

1

λα+1L(λ)
Vg1/λf(λx, ξ/λ) <∞,

uniformly for x, ξ in compact subsets of R.

(ii) there exist C > 0 and N ≥ 0 such that

|Vg1/λf(λx, ξ/λ)|
λα+1L(λ)

< C(1 + |x|+ |ξ|)N ,

for all x, ξ ∈ R and λ ≥ 1, are necessary and sufficient conditions for existence of
a homogeneous distribution u such that

f(λx) ∼ λαL(λ)u(x) as λ→∞ in S ′(R).

Remark 3.2.3. The same consideration of Remark 3.2.2 apply to the case of infinity
by analogy.

Theorem 3.2.4. Let L be a slowly varying function at the origin, α ∈ R, x0 ∈ R
and f ∈ S ′(R). Suppose that

f(x0 + εx) ∼ εαL(ε)u(x) as ε→ 0+ in S ′(R).

Then for its STFT with respect to window g ∈ S(R)\{0} we have

Vg1/εf(x0 + εx, εξ) ∼ εα+1L(ε)Vgu(x, 0) as ε→ 0+.

uniformly for x, ξ in compact subsets of R.

Proof. Using the substitution t− x0 = εy we obtain

lim
ε→0+

Vg1/εf(x0 + εx, εξ)

εα+1L(ε)
= lim

ε→0+

1

εα+1L(ε)
〈f,MεξTx0+εxg1/ε〉

= lim
ε→0+

1

εα+1L(ε)

〈
f(t), g

(
t− x0 − εx

ε

)
e2πiεξt

〉
= lim

ε→0+

1

εαL(ε)

〈
f(x0 + εy), g(y − x)e2πiεξ(x0+εy)

〉
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= lim
ε→0+

1

εαL(ε)

〈
f(x0 + εy),M0Txg(y)e2πiεξ(x0+εy)

〉
.

In view of (3.2.4), the Banach-Steinhaus theorem and the compactness of the
set given by (3.5) we have

lim
ε→0+

Vg1/εf(x0 + εx, εξ)

εα+1L(ε)
= 〈u(y),M0Txg(y)〉 = Vgu(x, 0).

We now investigate the inverse (Tauberian) theorem related to Theorem 3.2.4.

Theorem 3.2.5. Let L be a slowly varying function at the origin, α ∈ R, x0 ∈ R,
and f ∈ S ′(R), g ∈ S(R)\{0}. Suppose that the limits

lim
ε→0+

1

εα−1L(ε)
Vg1/εf(x0 + εx, εξ) = Mx,ξ <∞, (3.14)

uniformly for x, ξ in compact subsets of R, and that there exist C > 0 and N ≥ 0
such that

|Vg1/εf(x0 + εx, εξ)|
εα−1L(ε)

< C(1 + |x|)N , (3.15)

for all x, ξ ∈ R and 0 < ε ≤ 1. Then, there exists a homogeneous distribution u
such that

f(x0 + εx) ∼ εαL(ε)u(x) as ε→ 0+ in S ′(R). (3.16)

Proof. (3.14) and (3.15) imply that the function Mx,ξ = J(x, ξ) satisfies the es-
timate

|J(x, ξ)| = |Mx,ξ| ≤ C(1 + |x|)N ,
for every x, ξ ∈ R and for some constants C > 0 and N ≥ 0. Let ϕ ∈ S(R) and
γ ∈ S(R)\{0} be a synthesis window for g such that 〈g, γ〉 6= 0. By inversion

formula (3.4) and the substitution ξ = ε2ξ1, t = t1 −
x0

ε
we obtain

lim
ε→0+
〈f(x0 + εt)

εαL(ε)
, ϕ(t)〉

=
1

〈γ, g〉
lim
ε→0+

∫ ∫
R2

〈f(x0 + εt),MξTxg(t)〉
εαL(ε)

〈MξTxγ, ϕ〉dξdx

=
1

〈γ, g〉
lim
ε→0+

∫ ∫
R2

〈f(εt1),Mε2ξ1Txg(t1 − x0
ε

)〉
εα−2L(ε)

〈Mε2ξ1Txγ, ϕ〉dξ1dx

=
1

〈γ, g〉
lim
ε→0+

∫ ∫
R2

〈f(εt1),Mε2ξ1Tx+
x0
ε
g(t1)〉

εα−2L(ε)
〈Mε2ξ1Txγ, ϕ〉dξ1dx

=
1

〈γ, g〉
lim
ε→0+

∫ ∫
R2

Vgfε(x+ x0
ε
, ε2ξ1)

εα−2L(ε)
Vγϕ(x, ε2ξ1)dξ1dx.

By relation (3.9) we have

lim
ε→0+
〈f(x0 + εt)

εαL(ε)
, ϕ(t)〉
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=
1

〈γ, g〉
lim
ε→0+

∫ ∫
R2

Vg1/εf(x0 + εx, εξ1)

εα−1L(ε)
Vγϕ(x, ε2ξ1)dξ1dx.

Because of (3.14), (3.15) and (3.6) we can use Lebesque dominated convergence
theorem

lim
ε→0+
〈f(x0 + εt)

εαL(ε)
, ϕ(t)〉 =

1

〈γ, g〉

∫ ∫
R2

J(x, ξ)Vγϕ(x, 0)dξdx.

Observe that the last integral converges absolutely because |J(x, ξ)| = O((1 +
|x|)N) for some N > 0 and |Vγϕ(x, 0)| = O((1 + |x|)−n) for all n ≥ 0, whenever

ϕ ∈ S(R). It follows that the limit limε→0+

〈f(x0 + εt)

εα+1L(ε)
, ϕ(t)

〉
exists for each

ϕ ∈ S(R). So, we conclude that f has quasiasymptotic behavior in S ′(R).

3.3 Short-time Fourier transform of distributions

of exponential type

In this section we study the mapping properties of the STFT on the space of
distributions of exponential type. Note that the STFT extends to the sesquilinear
mapping (f, ψ) 7→ Vψf and its adjoint induces the bilinear mapping (F, ψ) 7→ V ∗ψF .

We start with the test function space K1(Rn). If f, ψ ∈ K1(Rn), then we im-
mediately get that (3.3) extends to a holomorphic function in the second variable,
namely, Vψf(x, z) is entire in z ∈ Cn. We write in the sequel z = ξ + iη with
ξ, η ∈ Rn. Observe also that an application of the Cauchy theorem shows that
if Φ ∈ K1(Rn)⊗̂U(Cn) and ψ ∈ K1(Rn), then for arbitrary η ∈ Rn we may write
V ∗ψΦ as

V ∗ψΦ(t) =

∫∫
R2n

Φ(x, ξ + iη)ψ(t− x)e2πi(ξ+iη)·tdxdξ. (3.17)

Our first proposition deals with the range and continuity properties of V and
V ∗ on test function spaces.

Proposition 3.3.1. The following mappings are continuous:

(i) V : K1(Rn)×K1(Rn)→ K1(Rn)⊗̂U(Cn).

(ii) V ∗ : (K1(Rn)⊗̂U(Cn))×K1(Rn)→ K1(Rn).

Proof. For part (i), let ϕ, ψ ∈ K1(Rn). Let k be an even integer. If (x, z) ∈ Rn×Πk

and |α| ≤ k, then

ek|x|(1 + |z|2)k/2
∣∣∣∣ ∂α∂xαVψϕ(x, z)

∣∣∣∣
= ek|x|(1 + |z|2)k/2

∣∣∣∣∫
Rn

(−1)αϕ(t)ψ(α)(t− x)e−2πiz·tdt

∣∣∣∣
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≤ (1 + nk2)k/2ek|x|
∣∣∣∣∫

Rn
(1−∆t)

k/2(ϕ(t)ψ(α)(t− x)e2πη·t)dt

∣∣∣∣
≤ C̃k

∑
|β1|+|β2|≤k

ek|x|
∫
Rn

∣∣∣ϕ(β1)(t)ψ(α+β2)(t− x)
∣∣∣ e2πk|t|dt,

which shows that ρk(Vψϕ) ≤ Ckν8k(ϕ)νk(ψ). For (ii), if Φ ∈ K1(Rn)⊗̂U(Cn),
ψ ∈ K1(Rn), and |α| ≤ k, from the Leibniz formula we obtain

ek|t|
∣∣∣∣ ∂α∂tαV ∗ψΦ(t)

∣∣∣∣ = ek|t|
∣∣∣∣ ∂α∂tα

∫∫
R2n

Φ(x, z)ψ(t− x)e−2πiξ·t
∣∣∣∣

≤ (2π)|α|
∑
β≤α

(
α

β

)
ek|t|

∫∫
R2n

|ξ|k|Φ(x, ξ)||ψ(β)(t− x)|dxdξ

≤ (4π)|α|νk(ψ)

∫∫
R2n

|ξ|kek|x||Φ(x, ξ)|dxdξ

≤ Ak,nνk(ψ)ρk+n+1(Φ);

hence ρk(V
∗
ψΦ) ≤ Ak,nνk(ψ)ρk+n+1(Φ).

Observe that if the window ψ ∈ K1(Rn) \ {0} and γ ∈ K1(Rn) is a synthesis
window, the reconstruction formula (3.4) reads as:

1

(γ, ψ)L2

V ∗γ Vψ = idK1(Rn). (3.18)

We now study the STFT on K′1(Rn). Notice that the modulation operators
Mz operate continuously on K1(Rn) even when z ∈ Cn. Thus, if f ∈ K′1(Rn) and
ψ ∈ K1(Rn) then Vψf , defined by the dual pairing in (3.3), also extends in the
second variable as an entire function Vψf(x, z) in z ∈ Cn. Furthermore, it is clear
that Vψf(x, z) is C∞ in x ∈ Rn. We begin with a lemma.

Lemma 3.3.1. Let ψ ∈ K1(Rn).

(a) Let B′ ⊂ K′1(Rn) be a bounded set. There is k = kB′ ∈ N0 such that

sup
f∈B′, (x,z)∈Rn×Πλ

e−k|x|−2πx·=m z|(1 + |z|)−k|Vψf(x, z)| <∞, ∀λ ≥ 0. (3.19)

(b) For every f ∈ K′1(Rn) and Φ ∈ K1(Rn)⊗̂U(Cn),

〈Vψf,Φ〉 =
〈
f, V ∗ψΦ

〉
. (3.20)

Proof. Part (a). By the Banach-Steinhaus theorem, B′ is equicontinuous, so that
there are C > 0 and k ∈ N0 such that |〈f, ϕ〉| ≤ Cνk(ϕ), ∀f ∈ B′,∀ϕ ∈ K1(Rn).
Hence, for all f ∈ B′ (z = ξ + iη),

|Vψf(x, z)| ≤ C sup
t∈Rn,|α|≤k

ek|t|
∣∣∣∣ ∂α∂tα (e−2πiz·tψ(t− x)

)∣∣∣∣
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≤ (2π)kC(1 + |z|2)k/2 sup
t∈Rn,|α|≤k

ek|t|+2πη·t
∑
β≤α

(
α

β

) ∣∣ψ(β)(t− x)
∣∣

≤ (4π)kC(1 + |z|2)k/2ek|x|+2πη·xνk+1+b2π|η|c(ψ),

where b2π|η|c stands for the integral part of 2π|η|.
Part (b). We first remark that the left hand side of (4.21) is well defined

because of part (a). To show (4.21), notice that the integral in (3.17), with η = 0,
can be approximated by a sequence of convergent Riemann sums in the topology
of K1(Rn); this justifies the exchange of integral and dual pairing in〈

f(t),

∫∫
R2n

Φ(x, ξ)e−2πiξ·tψ(t− x)dxdξ

〉
t

=

∫∫
R2n

Φ(x, ξ)〈f,MξTxψ〉dxdξ,

which is the same as (4.21).

In particular, if B′ is a singleton, part (a) of Lemma 3.3.1 gives the growth
order of the function Vψf on every set Rn × Πλ.

Let us define the adjoint STFT on ∈ K′1(Rn)⊗̂U ′(Cn).

Definition 3.3.1. Let ψ ∈ K1(Rn). The adjoint STFT V ∗ψ of F ∈ K′1(Rn)⊗̂U ′(Cn)
is the distribution V ∗ψF ∈ K′1(Rn) whose action on test functions is given by

〈V ∗ψF, ϕ〉 :=
〈
F, Vψϕ

〉
, ϕ ∈ K1(Rn). (3.21)

The next theorem summarizes our results.

Theorem 3.3.1. The two STFT mappings

(i) V : K′1(Rn)×K1(Rn)→ K′1(Rn)⊗̂U ′(Cn)

(ii) V ∗ : (K′1(Rn)⊗̂U ′(Cn))×K1(Rn)→ K′1(Rn)

are hypocontinuous. Let ψ ∈ K1(Rn) \ {0} and let γ ∈ K1(Rn) be a synthesis
window for it. The following inversion and desingularization formulas hold:

1

(γ, ψ)L2

V ∗γ Vψ = idK′1(Rn), (3.22)

and, for all f ∈ K′1(Rn), ϕ ∈ K1(Rn), and η ∈ Rn,

〈f, ϕ〉 =
1

(γ, ψ)L2

∫∫
R2n

Vψf(x, ξ + iη)Vγϕ(x,−ξ − iη)dxdξ. (3.23)

Proof. That V and V ∗ are hypocontinuous on these spaces follows from Propos-
ition 3.3.1 and the formula (4.21) from Lemma 3.3.1; we leave the details to the
reader. By the Cauchy theorem, it is enough to show (3.23) for η = 0. Using
(4.4.1), (4.21), and (3.18), we have 〈V ∗γ Vψf, ϕ〉 = 〈Vψf, Vγϕ〉 = 〈f, V ∗ψVγϕ〉 =
(γ, ψ)L2〈f, ϕ〉, namely, (3.22) and (3.23).

The next corollary gives the converse to part (a) of Lemma 3.3.1 under a weaker
inequality than (3.19), namely, a characterization of bounded sets in K′1(Rn) in
terms of the STFT.
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Corollary 3.3.1. Let B′ ⊂ K′1(Rn) and ψ ∈ K1(Rn) \ {0}. If there are η ∈ Rn

and k ∈ N0 such that

sup
f∈B′,(x,ξ)∈R2n

e−k|x|(1 + |ξ|)−k|Vψf(x, ξ + iη)| <∞, (3.24)

then the set B′ is bounded in K′1(Rn). Conversely, if B′ is bounded in K′1(Rn)
there is k ∈ N0 such that (3.19) holds.

Proof. In view of the Banach-Steinhaus theorem, we only need to show that B′ is
weakly bounded. Let γ be a synthesis window for ψ and let ϕ ∈ K1(Rn). Then,
by the desingularization formula (3.23), we have

sup
f∈B′
|〈f, ϕ〉| ≤ Cη

(γ, ψ)L2

∫∫
R2n

ek|x|(1 + |ξ|)k |Vγϕ(x,−ξ − iη)| dxdξ <∞,

because Vγϕ ∈ K1(Rn)⊗̂U(Cn). The converse was already shown in Lemma 3.3.1.

3.4 Characterizations of B′ω(Rn) and Ḃ′ω(Rn)

We now turn our attention to the characterization of the space of ω-bounded
distributions B′ω(Rn) and its subspace Ḃ′ω(Rn). Recall that ω stands for an ex-
ponentially moderate weight, i.e., a positive and measurable function satisfying
(1.11).

Theorem 3.4.1. Let f ∈ K′1(Rn) and ψ ∈ K1(Rn) \ {0}.

(i) The following statements are equivalent:

(a) f ∈ B′ω(Rn).

(b) The set {T−hf/ω(h) : h ∈ Rn} is bounded in K′1(Rn).

(c) There is s ∈ R such that

sup
(x,ξ)∈R2n

(1 + |ξ|)−s |Vψf(x, ξ)|
ω(x)

<∞. (3.25)

(ii) The next three conditions are equivalent:

(a)′ f ∈ Ḃ′ω(Rn).

(b)′ lim|h|→∞ T−hf/ω(h) = 0 in K′1(Rn).

(c)′ There is s′ ∈ R such that

lim
|(x,ξ)|→∞

(1 + |ξ|)−s′ |Vψf(x, ξ)|
ω(x)

= 0. (3.26)
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Remark 3.4.1. Theorem 3.4.1 remains valid if we replace K′1(Rn) and K1(Rn) by
D′(Rn) and D(Rn) everywhere in the statement. Schwartz has shown in [89,
p. 204] the equivalence between (a) and (b) for ω = 1 by using a much more
complicated method involving a parametrix technique.

Proof. Part (i). (a) ⇒ (b). Let f ∈ B′ω(Rn), since DL1
ω
(Rn) is barreled, we

only need to show that the f ∗ ϕ is bounded by ω for fixed ϕ ∈ K1(Rn). Let
B := {φ ∈ D(Rn) :

∫
Rn |φ(x)|ω(x)dx ≤ 1}. By the assumption (1.11),

‖ϕ̌ ∗ φ‖1,ω,k ≤ Amax
|α|≤k

∫
Rn
|ϕ(α)(x)|ea|x|dx, ∀k ∈ N0, ∀φ ∈ B,

namely, the set ϕ̌ ∗ B is bounded in K1(Rn). Consequently, supφ∈B |〈f ∗ ϕ, φ〉| =
supφ∈B |〈f, ϕ̌ ∗φ〉| <∞. Since D(Rn) is dense in L1

ω(Rn), this implies that f ∗ϕ ∈
(L1

ω(Rn))′, i.e., suph∈Rn |(f ∗ ϕ)(h)|/ω(h) <∞, as claimed.
(b) ⇒ (c). Notice that (VψT−hf)(x, z) = e2πiz·hVψf(x + h, z). Fix λ ≥ 0.

By Corollary 3.3.1 (cf. (3.19)), there are k ∈ N0 and Cλ > 0 such that, for all
x, h ∈ Rn and z ∈ Πλ,

|e2πiz·hVψf(x+ h, z)| ≤ Cλω(h)(1 + |z|)ke(k+2πλ)|x|.

Taking x = 0 and =m z = 0, one gets (3.25).
(c)⇒ (a). Fix a synthesis window γ ∈ K1(Rn). In view of (1.11), one has that

if j is any non-negative even integer and λ ≥ 0, then, for all ϕ ∈ DL1
ω
(Rn),

sup
z∈Πλ

(1 + |z|2)j/2
∫
Rn
e−2πx·=m zω(x)|Vγϕ(x, z)|dx

≤ C̃j
∑

|β1|+|β2|≤j

∫∫
R2n

ω(x)|ϕ(β1)(t)γ(β2)(t− x)|e2πλ|t−x|dtdx

≤ AC̃j‖ϕ‖1,ω,j max
|β|≤j

∫
Rn
|γ(β)(x)|e(2πλ+a)|x|dx ≤ Cj,λ‖ϕ‖1,ω,j.

We may assume that s is an even integer. By (3.25) and the previous estimate,
we obtain, for every ϕ ∈ K1(Rn),

|〈f, ϕ〉| ≤ C

(ψ, γ)L2

∫∫
R2n

(1 + |ξ|)sω(x) |Vγϕ(x,−ξ)| dxdξ

≤ Cs‖ϕ‖1,ω,s+n+1,

which yields f ∈ B′ω(Rn).
Part (ii). Any of the conditions implies that f ∈ B′(Rn). (a)′ ⇒ (b)′. Fix ϕ ∈

K1(Rn). Given fixed ε > 0, we must show that lim sup|h|→∞ |〈T−hf, ϕ〉|/ω(h) ≤ ε.
Notice that {Thϕ/ω(h) : h ∈ Rn} is a bounded set in DL1

ω
(Rn). Since f is in the

closure of D(Rn) in B′ω(Rn), there is φ ∈ D(Rn) such that |〈T−h(f−φ), ϕ| ≤ εω(h)
for every h ∈ Rn. Consequently,

lim sup
|h|→∞

|〈T−hf, ϕ〉|
ω(h)

≤ ε+ lim
|h|→∞

1

ω(h)

∣∣∣∣∫
Rn
ϕ(t− h)φ(t)dt

∣∣∣∣ ≤ ε.
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(b)′ ⇒ (c)′. If ξ remains on a compact of K ⊂ Rn, then {Mξψ : ξ ∈ K} is
compact in K1(Rn), thus, by the Banach-Steinhaus theorem,

0 = lim
|x|→∞

|〈T−xf,Mξψ〉|
ω(x)

= lim
|x|→∞

|Vψf(x, ξ)|
ω(x)

, uniformly in ξ ∈ K.

There is s such that (3.25) holds. Taking into account that the above limit holds
for arbitrary K, we obtain that (3.26) is satisfied for any s′ > s.

(c)′ ⇒ (a)′. We may assume that s′ is a non-negative even integer. Consider the
weight ωs′(x, ξ) = ω(x)(1 + |ξ|)s′ . The limit relation (3.26) implies that Vψf is in
the closure of K1(Rn)⊗S(Rn) with respect to the norm ‖‖L∞,∞

1/ωs′
. Since we have the

dense embedding U(Cn) ↪→ S(Rn), there is a sequence {Φj}∞j=1 ⊂ K1(Rn)⊗̂U(Cn)
such that limj→∞Φj = Vψf in L∞,∞1/ωs′

(R2n). Let γ ∈ K1(Rn) be a synthesis window

and set φj = V ∗γ Φj ∈ K1(Rn) (cf. Proposition 3.3.1). By the relations (3.23) and
(4.4.1), we have for any ϕ ∈ K1(Rn),

|〈f − φj, ϕ〉| ≤
C‖ϕ‖1,ω,s+n+1

(γ, ψ)L2

‖Vψf − Φj‖L∞,∞
1/ωs′

,

where C does not depend on j. Thus, φj → f in B′ω(Rn), which in turn implies
that f ∈ Ḃ′ω(Rn) because D(Rn) ↪→ K1(Rn).

We immediately get the ensuing result, a corollary of Theorem 3.4.1.

Corollary 3.4.1. K′1(Rn) =
⋃
ω B′ω(Rn) =

⋃
ω Ḃ′ω(Rn). In particular, f ∈ D′(Rn)

belongs to K′1(Rn) if and only if there is s ∈ R such that {e−s|h|T−hf : h ∈ Rn} is
bounded in D′(Rn).

3.5 Characterizations through modulation spaces

We present here the characterization of the spaces K1(Rn), K′1(Rn), B′ω(Rn),
Ḃ′ω(Rn), U(Cn), and U ′(Cn) in terms of modulation spaces.

Let us recall the definition of the modulation spaces. There are several equi-
valent ways to introduce them [26]. Here we follow the approach from [8, 9] based
on Gelfand-Shilov spaces. We are interested in modulation spaces with respect to
weights that are exponentially moderate. We denote by M the class of all weight
functions m on R2n that satisfy inequalities (for some constants A > 0 and a ≥ 0):

m(x1 + x2, ξ1 + ξ2)

m(x1, ξ1)
≤ Aea(|x2|+|ξ2|), (x1, ξ1), (x2, ξ2) ∈ R2n.

Observe that any so-called v-moderate weight [26] belongs to M. We also consider
the Gelfand-Shilov space Σ1

1(Rn) of Beurling type (sometimes also denoted as
S(1)(Rn) or G(Rn)) and its dual (Σ1

1)′(Rn). The space Σ1
1(Rn) consists [7] of all

entire functions ϕ such that

sup
x∈Rn
|ϕ(x)|eλ|x| <∞ and sup

ξ∈Rn
|ϕ̂(ξ)|eλ|ξ|dξ <∞, ∀λ > 0.
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We refer to [62] for topological properties of Σ1
1(Rn). The dual space (Σ1

1)′(Rn) is
also known as the space of Silva ultradistributions of exponential type [38, 91] or
the space of Fourier ultra-hyperfunctions [60]. If m ∈M, ψ ∈ Σ1

1(Rn) \ {0}, and
p, q ∈ [1,∞], the modulation space Mp,q

m (Rn) is defined as the Banach space

Mp,q
m (Rn) = {f ∈ (Σ1

1)′(Rn) : ‖f‖Mp,q
m

:= ‖Vψf‖Lp,qm <∞}. (3.27)

This definition does not depend on the choice of the window ψ, as different windows
lead to equivalent norms. If p = q, then we write Mp

m(Rn) instead of Mp,q
m (Rn).

The space M1
m(Rn) (for m = 1) was original introduced by Feichtinger in [28]. We

shall also define Ṁ∞
m (Rn) as the closed subspace of M∞

m (Rn) given by Ṁ∞
m (Rn) =

{f ∈ (Σ1
1)′(Rn) : lim|(x,ξ)|→∞m(x, ξ)|Vψf(x, ξ)| = 0}.

We now connect the space of exponential distributions with the modulation
spaces. For it, we consider the weight subclass M1 ⊂M consisting of all weights
m such that (for some s, a ≥ 0 and A > 0)

m(x1 + x2, ξ1 + ξ2)

m(x1, ξ1)
≤ Aea|x2|(1 + |ξ2|)s, (x1, ξ1), (x2, ξ2) ∈ R2n. (3.28)

Let m ∈M1. By Proposition 3.3.1, K1(Rn) ⊂Mp,q
m (Rn). Since Σ1

1(Rn) ↪→ K1(Rn),
we obtain that K1(Rn) is dense (weakly∗ dense if p = ∞ or q = ∞) in Mp,q

m (Rn)
and therefore Mp,q

m (Rn) ⊂ K′1(Rn). It follows from the results of [26] that we may
use ψ ∈ K1(Rn) \ {0} in (3.27). Also, if f ∈ Mp,q

m (Rn) and ψ ∈ K1(Rn) then Vψf
is an entire function in the second variable (cf. Section 3.3); the next proposition
describes the norm behavior of Vψf(x, z) in the complex variable z ∈ Cn.

Proposition 3.5.1. Let m ∈ M1, p, q ∈ [1,∞], and ψ ∈ K1(Rn) \ {0}. If
f ∈Mp,q

m (Rn), then (∀λ ≥ 0)

sup
|η|≤λ

(∫
Rn

(∫
Rn
|e−2πx·ηVψf(x, ξ + iη)m(x, ξ)|pdx

)q/p
dξ

)1/q

< Cλ‖f‖Mp,q
m
.

(3.29)
(With obvious changes if p =∞ or q =∞.)

Proof. Assume that m satisfies (3.28) and set v(x, ξ) = (1 + |ξ|)sea|x|. Notice first
that e−2πx·ηVψf(x, ξ + iη) = Vψηf(x, ξ), where ψη(t) = e2πη·tψ(t). As in the proof
of [26, Prop. 11.3.2, p. 234],

||Vψηf ||Lp,qm =
1

‖ψ‖2
L2

||(VψηV ∗ψ )Vψf ||Lp,qm ≤ C||Vψηψ||L1
v
||Vψf ||Lp,qm .

Since {ψη : |η| ≤ λ} is bounded in K1(Rn), we obtain that {Vψηψ : |η| ≤ λ} is
bounded in K1(Rn)⊗̂U(Cn); hence sup|η|≤λ ||Vψηψ||L1

v
<∞.

Using the fundamental identity of time-frequency analysis, i.e. [26, p. 40]

Vψf(x, ξ) = e−2πix·ξVψ̂f̂(ξ,−x), we can transfer results from K′1(Rn) into U ′(Rn)
by employing the weight class M2 = {m ∈ M : m̃(x, ξ) = m(ξ, x) ∈ M1}.
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For s, a ≥ 0, we employ the following special classes of weights (ω satisfies the
conditions imposed in Subsection ??):

vs,a(x, ξ) := ea|x|(1 + |ξ|)s and ωs(x, ξ) := ω(x)(1 + |ξ|)s.

Clearly vs,a, ωs ∈ M1. Obviously, for every m ∈ M1 there are s, a ≥ 0 such that
Mp,q

vs,a(R
n) ⊆Mp,q

m (Rn) ⊆Mp,q
1/vs,a

(Rn).

Proposition 3.5.2. Let p, q ∈ [1,∞]. Then,

K′1(Rn) =
⋃

m∈M1

Mp,q
m (Rn), U ′(Cn) =

⋃
m∈M2

Mp,q
m (Rn), (3.30)

K1(Rn) =
⋂

m∈M1

Mp,q
m (Rn), U(Cn) =

⋂
m∈M2

Mp,q
m (Rn), (3.31)

B′ω(Rn) =
⋃
s>0

M∞
1/ωs(R

n), and Ḃ′ω(Rn) =
⋃
s>0

Ṁ∞
1/ωs(R

n). (3.32)

Proof. The results for U(Cn) and U ′(Cn) follow from those for K1(Rn) and K′1(Rn).
The equalities in (3.32) are a reformulation of the equivalences (a) ⇔ (c) and
(a)′ ⇔ (c)′ from Theorem 3.4.1. By (3.28) and [26, Cor. 12.1.10, p. 254],
given m ∈ M1, there are s, a > 0 such that the embeddings M∞

vs+n+1,a+ε
(Rn) ⊆

Mp,q
m (Rn) ⊆M∞

1/vs,a
(Rn) hold. Thus, part (a) from Lemma 3.3.1 gives the equality

K′1(Rn) =
⋃
s,a>0M

∞
1/vs,a

(Rn) =
⋃
m∈M1

Mp,q
m (Rn). In view of Proposition 3.3.1, it

only remains to show that⋂
m∈M1

Mp,q
m (Rn) =

⋂
s,a>0

M∞
vs,a(R

n) ⊆ K1(Rn).

We show the latter inclusion by proving that if f ∈ M∞
vs,a(R

n) (with s, a > 0),

then f̂ is holomorphic in the tube Rn + i{η ∈ Rn : |η| < a/(2π)} and satisfies

sup
|=m z|≤λ

(1 + |z|2)s/2|f̂(z)| <∞, ∀λ < a

2π
. (3.33)

In fact, choose a positive window ψ ∈ D(Rn) such that
∑

j∈Zn ψ(t− j) = 1 for all

t ∈ Rn. Since f =
∑

j∈Zn fTjψ, we obtain f̂ =
∑

j∈Zn Vψf(j, · ), with convergence
in U ′(Cn). In view of Proposition 3.5.1, each Vψf(j, z) is entire in z and satisfies
the bounds

sup
|=m z|≤λ

|(1 + |z|2)s/2|Vψ(j, z)| < Cλe
−(a−2πλ)|j|.

The Weierstrass theorem implies that f̂(z) =
∑

j∈Zn Vψf(j, z) is holomorphic
in the stated tube domain and we also obtain (3.33). Summing up, if f ∈⋂
s,a>0M

∞
vs,a(R

n), then f̂ ∈ U(Cn), i.e., f ∈ K1(Rn).

The following corollary collects what was shown in the proof of Proposition
3.5.2.
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Corollary 3.5.1. Let s, a > 0. If f ∈ M∞
vs,a(R

n), then f̂ is holomorphic in the
tube Rn + i{η ∈ Rn : |η| < a/(2π)} and satisfies the bounds (3.33).

We make a remark concerning Proposition 3.5.2.

Remark 3.5.1. Employing [102, Thrms. 3.2 and 3.4], Proposition 3.5.2 can be
extended for p, q ∈ (0,∞].

3.6 Tauberian theorems for S-asymptotics of dis-

tributions

In this section we characterize the S-asymptotic behavior of distributions in terms
of the STFT. As explained in Section 2.3, the idea of the S-asymptotics is to study
the asymptotic properties of the translates T−hf with respect to a locally bounded
and measurable comparison function c : Rn → (0,∞). It is said that f ∈ K′1(Rn)
has S-asymptotic behavior with respect to c if there is g ∈ D′(Rn) such that

f(t+ h) ∼ c(h)g(t) in K′1(Rn) as |h| → ∞, (3.34)

which of course means that (f ∗ ϕ̌)(h) ∼ c(h)
∫
Rn ϕ(t)g(t)dt as |h| → ∞, for each

ϕ ∈ D(Rn) (or, equivalently, ϕ ∈ K1(Rn)).

In order to move further, we give an asymptotic representation formula and
Potter type estimates [2] for c:

Lemma 3.6.1. The locally bounded measurable function c satisfies (2.15) if and
only if there is b ∈ C∞(Rn) such that lim|x|→∞ b

(α)(x) = 0 for every multi-index
|α| > 0 and

c(x) ∼ exp (β · x+ b(x)) as |x| → ∞. (3.35)

In particular, for each ε > 0 there are constants aε, Aε > 0 such that

aε exp(β · t− ε|t|) ≤ c(t+ h)

c(h)
≤ Aε exp(β · t+ ε|t|), t, h ∈ Rn. (3.36)

Proof. By considering e−β·tc(t), one may assume that β = 0. Let ϕ ∈ D(Rn) be
such that

∫
Rn ϕ(t)dt = 1. Set b(t) =

∫
Rn log c(t + x)ϕ(t)dt. Clearly, b ∈ C∞(Rn)

and the relation (2.15) implies that b(x) = log c(x) + o(1) and b(α)(x) = o(1) as
|x| → ∞, for each multi-index |α| > 0. This gives (3.35).

Conversely, since c is locally bounded, we may assume that actually c(x) =
eβ·x+b(x), but |b(t + h) − b(h)| ≤ |t|maxξ∈[h,t+h] |∇b(ξ)|, which gives (2.15). Using
the fact that |∇b| is bounded, the same argument yields (3.36).

Observe that Lemma 3.6.1 also tells us that the space B′c(Rn) is well-defined
for c. We can now characterize (3.34) in terms of the STFT. The direct part of
the following theorem is an Abelian result, while the converse may be regarded as
a Tauberian theorem.
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Theorem 3.6.1. Let f ∈ K′1(Rn) and ψ ∈ K1(Rn)\{0}. If f ∈ K′1(Rn) has the
S-asymptotic behavior (3.34) then, for every λ ≥ 0,

lim
|h|→∞

e2πiz·hVψf(x+ h, z)

c(h)
= Vψg(x, z), (3.37)

uniformly for z ∈ Πλ and x in compact subsets of Rn.
Conversely, suppose that the limits

lim
|x|→∞

e2πiξ·xVψf(x, ξ)

c(x)
= J(ξ) ∈ C (3.38)

exist for almost every ξ ∈ Rn. If there is s ∈ R such that

sup
(x,ξ)∈R2n

(1 + |ξ|)−s |Vψf(x, ξ)|
c(x)

<∞, (3.39)

then f has the S-asymptotic behavior (3.34) with g(t) = Ceβ·t, where the constant

is completely determined by the equation J(ξ) = Cψ̂(−ξ − iβ/(2π)).

Remark 3.6.1. Assume (3.39). Consider a weight of the formmε(x, ξ) = eβ·x+ε|x|(1+
|ξ|)s with ε > 0. It will be shown below that the asymptotics (3.34) holds in the
weak∗ topology of M∞

1/mε
(Rn), i.e., (f ∗ ϕ̌)(h) ∼ c(h)〈g, ϕ〉 as |h| → ∞ for every ϕ

in the modulation space M1
mε(R

n). Furthermore, one may use in (3.38) and (3.39)
a window ψ ∈M1

mε(R
n)\{0}.

Proof. Fix λ ≥ 0 and a compact K ⊂ Rn. Note that the set

{MzTxψ : (x, z) ∈ K × Πλ}

is compact in K1(Rn). By the Banach-Steinhaus theorem,

lim
|h|→∞

e2πizhVψf(x+ h, z)

c(h)
= lim
|h|→∞

〈 T−hf
c(h)

,MzTxψ
〉

=
〈
g,MzTxψ

〉
,

uniformly with respect to (x, z) ∈ K × Πλ, as asserted in (3.37).
Conversely, assume (3.38) and (3.39). Let H = {ξ ∈ Rn : (3.38) holds}. In

view of Theorem 3.4.1, we have that f ∈ B′c(Rn) or, equivalently, {T−hf/c(h) :
h ∈ Rn} is bounded in K′1(Rn). By the Banach-Steinhaus theorem and the Montel
property of K′1(Rn), T−hf/c(h) converges strongly to a distribution g in K′1(Rn)
if and only if lim|h|→∞〈T−hf, ϕ〉/c(h) exists for ϕ in a dense subspace of K1(Rn).

Let D be the linear span of {MξTxψ : (x, ξ) ∈ Rn×H}. By the desingularization
formula (3.23) and the Hahn-Banach theorem, we have that D is dense in K1(Rn).
Thus, it suffices to verify that lim|h|→∞〈T−hf,MξTxψ〉/c(h) exists for each (x, ξ) ∈
Rn ×H. But in this case (2.15) and (3.38) yield

lim
|h|→∞

〈T−hf,MξTxψ〉
c(h)

= lim
|h|→∞

e2πiξ·hVψf(x+ h, ξ)

c(h)

= e(β−2πiξ)·x lim
|h|→∞

e2πiξ·(x+h)Vψf(x+ h, ξ)

c(h+ x)
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= e(β−2πiξ)·xJ(ξ),

as required. We already know that g(t) = Ceβ·t. Comparison between (3.37) and
(3.38) leads to J(ξ) = Vψg(0, ξ) = C

∫
Rn ψ(t)eβ·t−2πiξ·tdt. To show the assertion

from Remark 3.6.1, note first that, by using (3.36), one readily verifies that

sup
h∈Rn

||T−hf ||M∞
1/mε

c(h)
<∞.

Since we have the dense embedding K1(Rn) ↪→ M1
mε(R

n), we also have that D is
dense in M1

mε(R
n) and the assertion follows at once. The fact that one may use a

window ψ ∈M1
mε(R

n)\{0} in (3.38) and (3.39) follows in a similar fashion because
in this case the desingularization formula (3.23) still holds.

Let us make two addenda to Theorem 3.6.1. The ensuing corollary improves
Remark 3.6.1, provided that c satisfies the extended submultiplicative condition
(for some A > 0):

c(t+ h) ≤ Ac(t)c(h). (3.40)

Corollary 3.6.1. Assume that c satisfies (3.40) and set cs(x, ξ) = c(x)(1 + |ξ|)s,
s ∈ R. If f ∈M∞

1/cs
(Rn) and there is ψ ∈M1

cs(R
n)\{0} such that the limits (3.38)

exist for almost every ξ ∈ Rn, then, for some g, the S-asymptotic behavior (3.34)
holds weakly∗ in M∞

1/cs
(Rn), that is, (f ∗ ϕ̌)(h) ∼ c(h)〈g, ϕ〉 as |h| → ∞ for every

ϕ ∈M1
cs(R

n).

Proof. We retain the notation from the proof of Theorem 3.6.1. The assumption
f ∈ M∞

1/cs
(Rn) of course tells us that (3.39) holds. Employing the hypothesis

(3.40), one readily sees that suph∈Rn ‖T−hf‖M∞1/cs/c(h) < ∞. A similar argument

to the one used in the proof of Theorem 3.6.1 yields that the set D associated to
ψ is dense in M1

cs(R
n), which as above yields the result.

In dimension n = 1, the next theorem actually obtains the ordinary asymptotic
behavior of f in case it is a regular distribution on (0,∞) satisfying an additional
Tauberian condition. We fix mε as in Remark 3.6.1 and cs as in Corollary 3.6.1.

Theorem 3.6.2. Let f ∈M∞
1/cs

(R). Suppose that

lim
x→∞

e2πiξ·xVψf(x, ξ)

c(x)
= J(ξ) ∈ C, (3.41)

for almost every ξ ∈ R, where ψ ∈ M1
mε(R) \ {0} (resp. ψ ∈ M1

cs(R) \ {0} if c
satisfies (3.40)). If there is α ≥ 0 such that eαtf(t) is a positive non-decreasing
function on the interval (0,∞), then

lim
t→∞

f(t)

c(t)
= C, (3.42)

where C is the constant from Theorem 3.6.1.
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Proof. Using (3.41), the same method from Theorem 3.6.1 applies to show that
f(t + h) ∼ Cg(t) in K′1(R) as h → ∞, where g(t) = Ceβt. We may assume that
α ≥ −β. Set f̃(t) = eαtf(t), b(t) = eαtc(t), and r = α + β ≥ 0. It is enough to
show that f̃(t) ∼ Cb(t) as t→∞, whence (3.42) would follow. By (3.34), we have
that

f̃(t+ h) ∼ b(h)Cert as h→∞ in K′1(R),

i.e.,

〈f̃(t+ h), ϕ(t)〉 ∼ Cb(h)

∫ ∞
−∞

ertϕ(t)dt, ∀ϕ ∈ K1(Rn). (3.43)

Let ε > 0 be arbitrary. Choose a non-negative test function ϕ ∈ D(R) such that
suppϕ ⊆ (0, ε) and

∫ ε
0
ϕ(t)dt = 1. Using the fact that f̃ is non-decreasing on

(0,∞) and (3.43), we obtain

lim sup
h→∞

f̃(h)

b(h)
= lim sup

h→∞

f̃(h)

b(h)

∫ ε

0

ϕ(t)dt ≤ lim
h→∞

1

b(h)

∫ ε

0

f̃(t+ h)ϕ(t)dt

= lim
h→∞

〈f̃(t+ h), ϕ(t)〉
b(h)

= C

∫ ε

0

ertϕ(t)dt ≤ Cerε,

taking ε→ 0+, we have shown that lim suph→∞ f̃(h)/b(h) ≤ C. Similarly, choos-

ing in (3.43) a non-negative ϕ such that suppϕ ⊆ (−ε, 0) and
∫ 0

−ε ϕ(t)dt = 1, one

obtains lim infh→∞ f̃(h)/b(h) ≥ C. This shows that f̃(t) ∼ Cb(t) as t → ∞, as
claimed.

We conclude this Section with the following Theorem.

Theorem 3.6.3. Let f be a positive non-decreasing function on [0,∞) and let ψ be
a positive function such that ψ′′ ∈ L1

loc(R) and
∫∞
−∞(ψ(t)+|ψ′(t)|+|ψ′′(t)|)eβt+ε|t|dt <

∞, where β ≥ 0 and ε > 0. Suppose that the limits

lim
x→∞

e2πiξx

eβxL(ex)

∫ ∞
0

f(t)ψ(t− x)e−2πiξt dt = J(ξ) (3.44)

exist for every ξ ∈ R, then

lim
x→∞

f(x)

eβxL(ex)
=

J(0)∫∞
−∞ ψ(t)eβtdt

. (3.45)

Furthermore, if L satisfies L(xy) ≤ AL(x)L(y) for all x, y > 0 and some constant
A, the requirements over ψ can be relaxed to

∫∞
−∞(ψ(t)+|ψ′(t)|+|ψ′′(t)|)L(e|t|)eβtdt <

∞.

Proof. Set c(t) = eβtL(e|t|) and, as before (with s = 0), c0(x, ξ) = c(x) and
mε(x, ξ) = eβx+ε|x|. Note that (3.45) is the same as (3.42). Let us first verify that
ψ ∈M1

mε(R). In fact, if we take another window γ ∈ K1(R), we have∫∫
R2

|Vγψ(x, ξ)|eβx+ε|x|dxdξ =

∫∫
R2

(1 + |ξ|3)|Vγψ(x, ξ)|eβx+ε|x|dx
dξ

1 + |ξ|3
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≤ C̃

(∫∫
R2

ψ(t− x)|γ(t)|eβx+ε|x|dtdx+
3∑
j=0

∫∫
R2

|ψ(j)(t− x)γ(3−j)(t)|eβx+ε|x|dtdx

)
,

which is finite (a similar argument shows that ψ ∈M1
c0

(R) if
∫∞
−∞(ψ(t) + |ψ′(t)|+

|ψ′′(t)|)L(e|t|)eβtdt < ∞). In view of Theorem 3.6.2, it is enough to establish
f ∈ M∞

1/c0
(R). Let us first show the crude bound f(t) = O(c(t)). Set A1 =∫∞

0
ψ(t)dt <∞. Since f is non-decreasing, we have

f(x) ≤ 1

A1

∫ ∞
0

f(t+ x)ψ(t)dt ≤ 1

A1

∫ ∞
0

f(t)ψ(t− x)dt ≤ A2c(x),

because of (5.15) with ξ = 0. Thus

|Vψf(x, ξ)| ≤ A2

∫ ∞
0

c(t)ψ(t−x)dt ≤ c(x)Ãε

∫ ∞
−∞

eβt+ε|t|ψ(t)dt < A3c(x), ∀(x, ξ) ∈ R2

(likewise in the other case using L(xy) ≤ AL(x)L(y)), which completes the proof.



Chapter 4

The ridgelet and Radon
transforms of distributions

In this Chapter we want to provide a thorough analysis of the ridgelet transform
and its transpose, called here the ridgelet synthesis operator, on various test func-
tion spaces. Our main results are continuity theorems on such function spaces. We
then use our results to develop a distributional framework for the ridgelet trans-
form. In Section 4.5 we apply our continuity theorems for the ridgelet transform
to discuss the continuity of the Radon transform on these spaces and their duals.
The Radon transform on Lizorkin spaces naturally extends the one considered by
Hertle [34] on various distribution spaces. Finally, Section 4.8 deals with Abelian
and Tauberian theorems for the ridgelet transform. We should mention that here,
we use the constants in the Fourier transform as

φ̂(w) =

∫
Rn
φ(x)e−ix·wdx.

Moreover, in this Chapter, we use bold letters to denote elements from Rn.

4.1 Preliminaries on the ridgelet and Radon trans-

forms

4.1.1 The ridgelet transform of functions and some distri-
butions

In [4, 5] Candès introduced and studied the continuous ridgelet transform. He
developed a harmonic analysis groundwork for this transform and showed that
it is possible to obtain constructive and stable approximations of functions by
ridgelets. Ridge functions often appear in the literature of approximation theory,
statistics, and signal analysis. One of the motivations for the introduction of the
“X-let” transforms, such as the ridgelet or curvelet transforms, comes from the
search of optimal representations of signals in high-dimensions.

Let ψ ∈ S(R). For (u, b, a) ∈ Yn+1, where u is the orientation parameter, b
is the location parameter, and a is the scale parameter, we define the function

67
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ψu,b,a : Rn → C, called ridgelet, as

ψu,b,a (x) =
1

a
ψ

(
x · u− b

a

)
, x ∈ Rn.

This function is constant along hyperplanes x · u = const., called “ridges”. In
the orthogonal direction it is a wavelet, hence the name ridgelet. The function
ψ is often referred in the literature [4, 5] as a neuronal activation function. The
ridgelet transform Rψf of an integrable function f ∈ L1(Rn) is defined by

Rψf (u, b, a) =

∫
Rn
f(x)ψu,b,a(x)dx =

〈
f(x), ψu,b,a(x)

〉
x
. (4.1)

where (u, b, a) ∈ Yn+1.
The ridgelet transform can also be canonically defined for distributions f ∈

D′L1(Rn) via (4.1), because the test function ψu,b,a ∈ DL∞(Rn) and thus the integral
formula can be still interpreted in the sense of Schwartz integrable distributions
[89, p. 203]. In particular, (4.1) makes sense for f ∈ E ′(Rn) or f ∈ O′C(Rn). On the
other hand, if one wishes to extend the definition of the ridgelet transform to more
general spaces than D′L1(Rn), one must proceed with care. Even in the L2 case,
(4.1) is not directly extendable to f ∈ L2(Rn) because the defining integral might
fail to converge. A similar difficulty is faced when trying to extend the ridgelet
transform to distributions: the function ψu,b,a /∈ S(Rn) and therefore (4.1) is not
well defined for f ∈ S ′(Rn). We shall overcome this difficulty in Section 4.4 via
a duality approach and define the ridgelet transform of Lizorkin distributions for
ψ ∈ S0(R).

4.1.2 The continuous wavelet transform

Wavelets have generate significant interest from both theoretical and applied re-
searchers over the last few decade. The concepts for understanding wavelet were
provided by [10, 54] and many others. Usually, the wavelet analysis presents
two main important features: the wavelet transform as a time-frequency analysis
tool, and the wavelet analysis as part of approximation and function space theory.
Wavelet transform is now used in a wide variety of applications in the areas of
signal processing, image processing, computer science, acoustics, communications,
geophysics, medicine, etc.

Given functions f and ψ, the wavelet transform Wψf(b, a) of f is defined by

Wψf(b, a) =

∫
R
f(x)

1

a
ψ
(x− b

a

)
dx, (b, a) ∈ H. (4.2)

The expression (4.2) is defined, e.g., if f, ψ ∈ L2(R), f ∈ L1(R) and ψ ∈ L∞(R),
or in other circumstances. We will actually work with the wavelet transform of
distributions. So if f ∈ S ′(R) and ψ ∈ S(R) (or f ∈ S ′0(R) and ψ ∈ S0(R)), one
replaces (4.2) by

Wψf(b, a) =

〈
f(x),

1

a
ψ
(x− b

a

)〉
x

, (b, a) ∈ H. (4.3)
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We have that [37, Thrm. 19.0.1], Wψ : S0(R) 7→ S(H) is a continuous linear map.
Given Φ ∈ S(H), we define wavelet synthesis operator with respect to the wavelet
ψ as

MψΦ(t) =

∫ ∞
0

∫
R

Φ(b, a)
1

a
ψ
(t− b

a

)
dbda, t ∈ R. (4.4)

One can show that Mψ : S(H) 7→ S0(R) is continuous.
We shall say that the wavelet ψ ∈ S0(R) admits a reconstruction wavelet if

there exists η ∈ S0(R) such that

cψ,η(ω) =

∫ ∞
0

ψ̂(rω)η̂(rω)
dr

r
, ω ∈ S,

is independent of the direction ω; in such case we set cψ,η := cψ,η(ω). The wavelet
η is called a reconstruction wavelet for ψ. It is easy to find explicit examples of
wavelet admitting recosntruction wavelets; in fact, any non-trivial rotation invari-
ant element of S0(R) is itself own reconstruction wavelet.

If ψ admits the reconstruction wavelet η, one has the reconstruction formula
for the wavelet transform on S0(R)

IdS0(R) =
1

cψ,η
MηWψ.

We refer to Holschneider’s book [37] for a distribution wavelet transform theory
based on the spaces S0(R), S(H), S ′0(R), and S ′(H). For the wavelet transform
of vector-valued distributions, we refer to [71, Sect. 5 and 8]. Let we mention
that the quasiasymptotic behavior is a very suitable concept for wavelet analysis
[82, 83, 84, 110, 70]. In fact, the wavelet transform can be thought as a sort of
mathematical microscope analyzing a distribution on various length scales around
any point of the real axis.

4.1.3 The Radon transform

The Radon transform is named after J. Radon in 1917 who showed how to describe
a function in terms of its (integral) projections. The mapping from the function
onto the projections is the Radon transform. The inverse Radon transform corres-
ponds to the reconstruction of the function from the projections. Within the realm
of image analysis, the Radon transform is mostly known for its role in computed
tomography. It is used to model the process of acquiring projections of the original
object using X-rays. Given the projection data, the inverse Radon transform, in
whatever form (e.g. back-projection), can be applied to reconstruct the original
object.

Let f be a function that is integrable on hyperplanes of Rn. For u ∈ Sn−1

and p ∈ R, the equation x · u = p specifies a hyperplane of Rn. Let Pn denote
the space of all hyperplanes in Rn. Each hyperplane h ∈ Pn can be written as
h = {x ∈ Rn : x · u = p}. Then, the Radon transform of f is defined as

Rf(u, p) = Rfu(p) :=

∫
x·u=p

f(x)dx =

∫
Rn
f(x)δ(p− x · u)dx,
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where δ is the Dirac delta. Fubini’s theorem ensures that if f ∈ L1(Rn), then
Rf ∈ L1(Sn−1 × R).

Remark 4.1.1. Note that the pairs (u, p) and (−u,−p) give the same hyperplane,
so the mapping (u, p)→ h is double covering of Sn−1 × R onto Pn.

The Fourier transform and the Radon transform are connected by the so-called
Fourier slice theorem [33];

F(f(x))(ωu) = f̂(ωu) = R̂f(u, ω) = F(Rf(u, t))(ω), ω ∈ R, u ∈ Rn.

According to it, the Radon transform can be computed as

Rf(u, p) =
1

2π

∫ ∞
−∞

f̂(ωu)eipωdω, u ∈ Sn−1, p ∈ R, (4.5)

for sufficiently regular f (e.g., for f ∈ L1(Rn) such that f̂ ∈ L1(Rn)).
The dual Radon transform (or back-projection)R∗% of the function % ∈ L∞(Sn−1×

R) is defined as

R∗%(x) =

∫
Sn−1

%(u,x · u)du.

The transforms R and R∗ are then formal transposes, i.e.,

〈Rf, %〉 = 〈f,R∗%〉 . (4.6)

For instance, for f ∈ L1(Rn) and % ∈ L∞(Sn−1 × R),∫
Rn
f(x)R∗%(x)dx =

∫ ∞
−∞

∫
Sn−1

Rf(u, p)%(u, p)dudp.

More details on the Radon transform can be found in Helgason’s book [33]. See
also [24, 34, 35, 51, 76]. In particularly, Hertle [34] has exploited the duality
relation (4.6) to extend the definition of the Radon transform as a continuous
map between various distribution spaces. In fact, the dual Radon transform R∗ :
A(Sn−1×R)→ A(Rn) is continuous for A = DL1 , E ,OC and the Radon transform
can then be defined on their duals by transposition as in (4.6). Namely, [34, Thrm.
1.4] states that the Radon transform defines a continuous operator form A′(Rn)
into A′(Sn−1 × R), where A′ = E ′,O′c,D′L1 . In Section 4.5 we will enlarge the
domain of the Radon transform to the Lizorkin distribution space S ′0(Rn).

4.1.4 Relation between the Radon, ridgelet and wavelet
transforms

The ridgelet transform is intimately connected with the Radon transform. Chan-
ging variables in (4.1) to x = pu+y, where p ∈ R and y runs over the hyperplane
perpendicular to u, one readily obtains

Rψf (u, b, a) =Wψ(Rfu)(b, a), (4.7)
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where Wψ is a one-dimensional wavelet transform. The relation (4.7) holds if
f ∈ L1(Rn). (In fact, we will extend its range of validity in Sections 4.4 and 4.6.)
Thus, ridgelet analysis can be seen as a form of wavelet analysis in the Radon
domain, i.e., the ridgelet transform is precisely the application of a one-dimensional
wavelet transform to the slices of the Radon transform where u remains fixed and
p varies. Furthermore, by the Fourier slice theorem (4.5), the properties of the
Fourier transform and the relation (4.7), we get the useful formula

Rψf (u, b, a) = a−1

∫
R
Rf(u, p)ψ̄

(
p− b
a

)
dp

=
1

2π

∫ ∞
−∞

R̂fu(ω)ψ̂(aω)eibωdω

=
1

2π

∫ ∞
−∞

f̂ (uω) ψ̂(aω)eibωdω. (4.8)

4.2 Extended reconstruction formulas and Par-

seval relations

In [5] (see also [4, Chap. 2]), Candès has established reproducing formulas and
Parseval’s identities for the ridgelet transform under the assumption that ψ ∈
S(R) is an admissible neuronal activation function, meaning that it satisfies the
constrain ∫ ∞

−∞

|ψ̂(ω)|2

|ω|n
dω <∞. (4.9)

We shall establish in this section more general reconstruction and Parseval’s formu-
las employing neuronal activation functions which are not necessarily admissible.
The crucial notion involved in our analysis is given in the next definition. As
usual, a function is called non-trivial if it is not the zero function.

Definition 4.2.1. Let ψ ∈ S(R) be a non-trivial test function. A test function
η ∈ S(R) is said to be a reconstruction neuronal activation function for ψ if the
constant

Kψ,η := (2π)n−1

∫ ∞
−∞

ψ̂(ω)η̂(ω)
dω

|ω|n
(4.10)

is non-zero and finite.

It is then easy to show that any ψ admits a reconstruction neuronal activation
function η, as long as ψ is non-trivial, and, in such a case, one may take η ∈
S0(R), if needed. Our first result states that it is always possible to do ridgelet
reconstruction for non-trivial neuronal activation functions.
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Proposition 4.2.1 (Reconstruction formula). Let ψ ∈ S(R) be non-trivial and let
η ∈ S(R) be a reconstruction neuronal activation function for it. If f ∈ L1(Rn) is

such that f̂ ∈ L1(Rn), then the following reconstruction formula holds pointwisely,

f (x) =
1

Kψ,η

∫
Sn−1

∫ ∞
0

∫ ∞
−∞
Rψf (u, b, a) ηu,b,a(x)

dbdadu

an
. (4.11)

Remark 4.2.1. Proposition 4.2.1 shows that ridgelet reconstruction is possible for
non-oscillatory neuronal activation functions; indeed, for test functions that might
not satisfy the admissibility condition (4.9) (e.g., the Gaussian ψ(x) = e−x

2
).

Nevertheless, if ψ is not oscillatory, then the reconstruction function η should
compensate this fact by having its first n+ 1 moments equal to 0.

Proof. Indeed, (4.8) yields

∫
Sn−1

∫ ∞
0

∫ ∞
−∞
Rψf (u, b, a) ηu,b,a(x)

dbdadu

an

=
1

2π

∫ ∞
−∞

∫
Sn−1

∫ ∞
0

eiωu·xψ̂(ωa)η̂(ωa)f̂(ωu)
dadudω

an

=
Kψ,η

(2π)n

∫ ∞
0

∫
Sn−1

eiωu·xωn−1f̂(ωu)dudω.

A similar calculation leads to the ensuing result.

Proposition 4.2.2 (Extended Parseval’s relation). Let ψ ∈ S(R) be non-trivial
and let η ∈ S(R) be a reconstruction neuronal activation function for it. Then,∫

Rn
f(x)g(x)dx =

1

Kψ,η

∫
Sn−1

∫ ∞
0

∫ ∞
−∞
Rψf(u, b, a)Rηg(u, b, a)

dbdadu

an
, (4.12)

for any f, g ∈ L1(Rn) ∩ L2(Rn).

According to our choice of the standard measure on Yn+1 (cf. Subsection ??),
we denote by L2(Yn+1) := L2(Yn+1, a−ndudbda) so that the inner product on this
space is

(F,G)L2(Yn+1) :=

∫ ∞
0

∫ ∞
−∞

∫
Sn−1

F (u, b, a)G (u, b, a)
dudbda

an
.

As already observed by Candès [5], the transform
√
K−1
ψ,ψRψ is L2-norm pre-

serving whenever ψ is an admissible function. In such a case ||Rψ||L2(Yn+1) =
Kψ,ψ||f ||L2(Rn) on a dense subspace of L2(Rn), as follows from (4.12). Con-
sequently, Rψ extends to a constant multiple of an isometric embedding L2(Rn)→
L2(Yn+1).

The reconstruction formula (4.11) suggests to define an operator that maps
functions on Yn+1 to functions on Rn as superposition of ridgelets. Given ψ ∈
S(Rn), we introduce the ridgelet synthesis operator as
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Rt
ψΦ(x) :=

∫
Sn−1

∫ ∞
0

∫ ∞
−∞

Φ(u, b, a)ψu,b,a(x)
dbdadu

an
, x ∈ Rn. (4.13)

The integral (4.13) is absolutely convergent, for instance, if Φ ∈ S(Yn+1). In
Section 4.3 we will show that if ψ ∈ S0(R), thenRt

ψ maps continuously S(Yn+1)→
S0(Rn). It will then be shown in Section 4.4 that Rt

ψ can be even extended to
act on the distribution space S ′(Yn+1). Observe that the relation (4.11) takes the
form (Rt

η ◦ Rψ)f = Kψ,ηf .
We remark that Rt

ψ
and Rψ are actually formal transposes. The proof of

the next proposition is left to the reader, it is a simple consequence of Fubini’s
theorem.

Proposition 4.2.3. Let ψ ∈ S(R). If f ∈ L1(Rn) and Φ ∈ S(Yn+1), then∫
Rn
f(x)Rt

ψΦ(x)dx =

∫
Sn−1

∫ ∞
0

∫ ∞
−∞
Rψf(u, b, a)Φ(u, b, a)

dbdadu

an
. (4.14)

Following our convention for regular distributions on Yn+1 (cf. (1.10)), we may
write (4.14) as 〈f,Rt

ψ̄
Φ〉 = 〈Rψf,Φ〉 . This dual relation will be the model for our

definition of the distributional ridgelet transform.

4.3 Continuity of the ridgelet transform on test

function spaces

The aim of the section is to prove that the ridgelet mappings

Rψ : S0(Rn)→ S(Yn+1) and Rt
ψ : S(Yn+1)→ S0(Rn)

are continuous when ψ ∈ S0(R). For non-trivial ψ, the ridgelet transform Rψ is
injective and Rt

ψ is surjective, due to the reconstruction formula (cf. Proposition
4.2.1). Recall that we endow S(Yn+1) with the system of seminorms (1.9).

Notice that we can extend the definition of the ridgelet transform as a sesqui-
linear mapping R : (f, ψ) 7→ Rψf, whereas the ridgelet synthesis operator extends
to the bilinear form Rt : (Φ, ψ) 7→ Rt

ψΦ.

Theorem 4.3.1. The ridgelet mapping R : S0(Rn) × S0(R) → S(Yn+1) is con-
tinuous.

Proof. For the seminorms on S0(Rn), we make the choice

ρν(φ) = sup
x∈Rn,|m|≤ν

(1 + |x|)ν
∣∣φ(m)(x)

∣∣ , ν ∈ N0. (4.15)

We will show that, given s, r,m, l, k ∈ N0, there exist ν, τ ∈ N and C > 0 such
that

ρl,m,ks,r (Rψφ) ≤ Cρν(φ)ρτ (ψ), φ ∈ S0(Rn), ψ ∈ S0(R). (4.16)
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We may assume that r is even and s ≥ 1. We divide the proof into six steps.
1. Using the definition of the ridgelet transform and the Leibniz formula, we

have∣∣∣∣ ∂l∂al ∂m∂bmRψφ (u, b, a)

∣∣∣∣
=

∣∣∣∣ ∂l∂al
∫
Rn
φ (x)

1

am+1
ψ(m)

(
x · u− b

a

)
dx

∣∣∣∣
=

l∑
j=0

(
l
j

) ∣∣∣∣∣
∫
Rn
φ (x)

(
1

am+1

)(l−j)

ψ(m+i)

(
x · u− b

a

)(
x · u− b

a

)(j)

dx

∣∣∣∣∣
=

l∑
j=0

Cm,l,j
am+l−j

∑
i,q≤j
d≤2j

a−d−1Bi,q,d
m,l,j

∣∣∣∣∫
Rn
φ (x)ψ(m+i)

(
x · u− b

a

)
(x · u− b)qdx

∣∣∣∣
≤ C

(
am+2l +

1

am+2l

)
(1 + b2)l/2

∑
|α|,i≤l

∣∣∣∣1a
∫
Rn

xαφ (x)ψ(m+i)

(
x · u− b

a

)
dx

∣∣∣∣ .
Setting φα(x) = xαφ(x), this yields

ρl,m,ks,r (Rψφ) ≤ C
∑
j≤m+l

|α|≤l

ρ0,0,k
s+m+2l,r+l(Rψ(j)(φα)).

So we can assume that m = l = 0 because multiplication by xα and differentiation
are continuous operators on S0.

2. We now show that we may assume that k = 0. Notice that

4k
uRψφ (u, b, a) = 4k

u

∫
Rn
φ (x) a−1ψ

(
x · u− b

a

)
dx

=
∑

|α|,j,d≤2k

a−dPα,j,d(u)
1

a

∫
Rn

xαφ (x)ψ(j)

(
x · u− b

a

)
dx,

where the Pα,j,d(u) are certain polynomials. The Pα,j,d are bounded, thus∣∣4k
uRψφ (u, b, a)

∣∣ ≤ C

(
a2k +

1

a2k

) ∑
|α|,j≤2k

∣∣∣∣1a
∫
Rn

xαφ (x)ψ(j)

(
x · u− b

a

)
dx

∣∣∣∣ .
This gives (with φα as before)

ρ0,0,k
s,r (Rψφ) ≤ C

∑
|α|,j≤2k

ρ0,0,0
2k+s,r(Rψ(j)(φα)).

Reasoning as above, we can assume that k = 0.
3. Observe that, by (4.8),

(
1 + b2

)r/2Rψφ (u, b, a) =
1

2π

∫ ∞
−∞

φ̂(ωu)ψ̂(aω)

(
1− ∂2

∂ω2

)r/2
eibωdω
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=
1

2π

∫ ∞
−∞

eibω
(

1− ∂2

∂ω2

)r/2
(φ̂(ωu)ψ̂(aω))dω

=
∑
|α|,j≤r

ajQα,j(u)

∫ ∞
−∞

eibωφ̂(α)(ωu)ψ̂(j)(aω)dω,

for some polynomials Qα,j. Taking (4.8) into account, and writing ψj(x) = xjψ(x)
and again φα(x) = xαφ(x), we conclude that

ρ0,0,0
s,r (Rψφ) ≤ C

∑
|α|,j≤r

ρ0,0,0
s+r,0(Rψj(φα)).

Consequently, we can assume r = 0.

4. We consider the part involving multiplication by as in ρ0,0,0
s,0 . Using the

Taylor expansion of φ̂, we obtain

as |Rψφ (u, b, a)| = as

2π

∣∣∣∣∫ ∞
−∞

φ̂(ωu)ψ̂(aω)eibωdω

∣∣∣∣
≤

∑
|α|=s−1

as

2π

∣∣∣∣∫ ∞
−∞

(ωu)α

α!
φ̂(α)(ω0u)ψ̂(aω)eibωdω

∣∣∣∣
≤

 ∑
|α|=s−1

1

2πα!

∫
Rn
|xαφ(x)|dx

∫ ∞
−∞

∣∣∣ωs−1ψ̂(ω)
∣∣∣ dω

≤ Cρs+n(φ)ρs+1(ψ).

5. For the multiplication by a−s, we develop ψ̂ into its Taylor expansion of
order s. Then,

a−s |Rψφ (u, b, a)| = 1

2πas

∣∣∣∣∫ ∞
−∞

φ̂(ωu)ψ̂(aω)eibωdω

∣∣∣∣
≤ 1

2πs!

∫ ∞
−∞
|ωsφ̂(ωu)ψ̂(s)(aω0)|dω.

It is easy to see that last integral is less than Cρs+n+1(φ)ρs+2(ψ). Combining this
fact with the bound from step 4, we obtain

ρ0,0,0
s,0 (Rψφ) ≤ Cρs+n+1(φ)ρs+2(ψ).

6. Summing up all the estimates, we find that (4.16) holds with ν = s+ 2r +
4l+4k+m+n+1 and τ = s+2r+4l+4k+2m+2. This completes the proof.

We now study the ridgelet synthesis operator.

Theorem 4.3.2. The bilinear mapping Rt : S(Yn+1) × S0(R) → S0(Rn) is con-
tinuous.
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Proof. Let us first verify that the ridgelet synthesis operator has the claimed range,
that is, we show that if ψ ∈ S0(R) and Φ ∈ S(Yn+1), then φ(x) := Rt

ψΦ ∈ S0(Rn).
In other words, we have to prove that

lim
w→0

φ̂(w)

|w|k
= 0, ∀k ∈ N0. (4.17)

Observe that

φ(x) =
1

2π

∫
Sn−1

∫ ∞
−∞

ωn−1eiωu·x

(∫ ∞
0

Φ̂(u, ω, a)
ψ̂(ωa)

(ωa)n−1

da

a

)
dωdu;

hence, by Fourier inversion in polar coordinates,

φ̂(ωu) = (2π)n−1

∫ ∞
0

(
Φ̂(u, ω, a)

ψ̂(ωa)

(ωa)n−1
+ Φ̂(u,−ω, a)

ψ̂(−ωa)

(−ωa)n−1

)
da

a
, (4.18)

ω ∈ R+, u ∈ Sn−1. (Here Φ̂ stands for the Fourier transform of Φ(u, b, a) with
respect to the variable b.) Since Φ belongs to S(Yn+1), we have that for any k ∈ N
we can find a constant Ck > 0 such that |Φ̂(u, ω, a)| ≤ Cka

−k−1, uniformly for
ω ∈ R and u ∈ Sn−1. Thus,∣∣∣φ̂(ωu)

∣∣∣ ≤ Ck

∫ ∞
−∞

|ψ̂(ωa)|
|ωa|n−1

da

|a|k+2
= Ckω

k+1

∫ ∞
−∞

∣∣∣∣∣ ψ̂(a)

an+k+1

∣∣∣∣∣ da, ω ∈ R, u ∈ Sn−1,

whence (4.17) follows.
We now prove the continuity of the bilinear ridgelet synthesis mapping. Since

the Fourier transforms ψ 7→ ψ̂ and Φ 7→ Φ̂ are continuous automorphisms on the
S spaces, the families (cf. (4.15) and (1.9)) ρ̂ν(ψ) = ρν(ψ̂), ψ ∈ S0(R), ν ∈ N0,

and ρ̂l,m,ks,r (Φ) = ρl,m,ks,r (Φ̂), Φ ∈ S(Yn+1), l,m, k, s, r ∈ N0, are bases of seminorms
for the topologies of S0(R) and S(Yn+1), respectively. We shall need a different
family of seminorms on S0(Rn). Observe first that the Fourier transform provides
a Fréchet space isomorphism from S0(Rn) onto S∗(Rn), the closed subspace of
S(Rn) consisting of all those test functions that vanish at the origin together
with all their partial derivatives. On the other hand, polar coordinates ϕ(ωu)
provide a continuous mapping S∗(Rn)→ S∗(Sn−1×R); the range of this mapping
is closed (it consists of even test functions, i.e., %(−u,−ω) = %(u, ω) [13, 33]),
and therefore the open mapping theorem implies that it is an isomorphism into
its image. Summarizing, the seminorms ρ̇N,q,k, given by

ρ̇N,q,k(φ) := sup
(u,ω)∈Sn−1×R

∣∣∣∣ωN ∂q

∂ωq
∆k

uφ̂(ωu)

∣∣∣∣ , N, q, k ∈ N0,

are a base of continuous seminorms for the topology of S0(Rn). We show that
given N, q, k ∈ N0 there are C > 0 and ν ∈ N such that

ρ̇N,q,k
(
Rt
ψΦ
)
≤ Cρ̂n−1+q(ψ)

∑
m,s≤ν

ρ̂0,m,k
s,N (Φ).
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Now, setting again φ(x) := Rt
ψΦ ∈ S0(Rn), using the expression (4.18), the Leibniz

formula, and the Taylor expansion for ψ, we get∣∣∣∣ωN ∂q

∂ωq
∆k

uφ̂(ωu)

∣∣∣∣ ≤ C

q∑
j=0

j∑
d=0

∫ ∞
−∞

∣∣∣∣∣a−j−1ωN
∂q−j

∂ωq−j
∆k

uΦ̂(u, ω, a)
ψ̂(j−d)(ωa)

(ωa)n−1+d

∣∣∣∣∣ da
= C

q∑
j=0

j∑
d=0

∫ ∞
−∞

∣∣∣∣a−j−1ωN
∂q−j

∂ωq−j
∆k

uΦ̂(u, ω, a)ψ̂(j+n−1)(ω0a)

∣∣∣∣ da
≤ Cρ̂n−1+q(ψ)

q∑
j=0

(j + 1)ρ̂0,q−j,k
j+3,N (Φ)

∫ ∞
−∞

a2da

a4 + 1
,

as claimed.

For future use, it is convenient to introduce wavelet analysis on S(Sn−1 × R).
Given ψ ∈ S(R), we let Wψ act on the real variable p of functions g(u, p) (or
distributions), that is,

Wψg(u, b, a) :=

∫ ∞
−∞

1

a
ψ

(
p− b
a

)
g(u, p)dp =

〈
g(u, p),

1

a
ψ
(p− b

a

)〉
p

, (4.19)

(u, b, a) ∈ Yn+1. Similarly, we define the wavelet synthesis operator on S(Yn+1)
as

MψΦ(u, p) =

∫ ∞
0

∫ ∞
−∞

1

a
ψ

(
p− b
a

)
Φ(u, b, a)

dbda

a
. (4.20)

A straightforward variant of the method employed in the proofs of Theorem 4.3.1
and Theorem 4.3.2 applies to show the following continuity result. Alternat-
ively, since S(Sn−1 × R) = D(Sn−1)⊗̂S(R), S0(Sn−1 × R) = D(Sn−1)⊗̂S0(R) and
S(Yn+1) = D(Sn−1)⊗̂S(H), the result may also be deduced from a tensor product
argument and the continuity of the corresponding mappings on S(R), S0(R), and
S(H) (cf. [37] or [74]).

Corollary 4.3.1. The mappings

(i) W : S0(Sn−1 × R)× S0(R)→ S(Yn+1)

(ii) M : S(Yn+1)× S(R)→ S(Sn−1 × R)

(iii) M : S(Yn+1)× S0(R)→ S0(Sn−1 × R)

are continuous.

We end this section with a remark concerning reference [78].

Remark 4.3.1. In dimension n = 2, Roopkumar has considered [78] the analogs of
our Theorem 4.3.1 and Theorem 4.3.2 for the space S#(Yn+1), where S#(Yn+1)
consists of all those smooth functions Φ on Yn+1 satisfying

γl,m,ks,r (Φ) := sup
(u,b,a)∈Yn+1

∣∣∣∣asbr ∂l∂al ∂m∂bm4k
uΦ (u, b, a)

∣∣∣∣ <∞, l,m, k, s, r ∈ N0.
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Observe that his system of seminorms {γl,m,ks,r } does not take decay into account
for small values of the scaling variable a (the term a−s does not occur in his con-
siderations). He claims [78, Thrm. 3.1 and 3.3] to have shown that Rψ : S(R2)→
S#(Y3) and Rt

ψ : S#(Y3) → S(R2) are continuous when ψ ∈ S(R) satisfies the
admissibility condition (4.9). His proof of the continuity of Rt

ψ : S#(Y3)→ S(R2)
appears to be incorrect because it seems to make use of the erroneous relation
x1 cos θ + x2 sin θ = (x1 + ix2)eiθ [78, p. 436]. Furthermore, his result on the
continuity of Rψ : S(R2) → S#(Y3) turns out to be false because the ridgelet
transform Rψ does not even map S(Rn) into Roopkumar’s space S#(Yn+1). We
show the latter fact with the following example. Choose the admissible function
ψ̂(ω) = 2π−n/2+1ω2ne−ω

2/4, ω ∈ R, and φ(w) = e−|w|
2
, w ∈ Rn. Then, by (4.8),

Rψφ(u, 0, a) =

∫ ∞
−∞

e−ω
2/4(aω)2ne−(aω)2/4dω =

1

a

∫ ∞
−∞

e−ω
2/(4a2)ω2ne−ω

2/4dω

∼ 1

a

∫ ∞
−∞

ω2ne−ω
2/4dω =

c

a
, a→∞,

where c 6= 0. This shows that γ0,0,0
2,0 (Rψφ) =∞. Therefore, Rψφ /∈ S#(Yn+1).

4.4 The ridgelet transform on S ′0(Rn)

We are ready to define the ridgelet transform of Lizorkin distributions.

Definition 4.4.1. Let ψ ∈ S0(R). We define the ridgelet transform of f ∈ S ′0(Rn)
with respect to ψ as the element Rψf ∈ S ′(Yn+1) whose action on test functions
is given by

〈Rψf,Φ〉 := 〈f,Rt
ψ
Φ〉, Φ ∈ S(Yn+1). (4.21)

The consistence of Definition 4.4.1 is guaranteed by Theorem 4.3.2. Likewise,
Theorem 4.3.1 allows us to define the ridgelet synthesis operator Rt

ψ for ψ ∈ S0(R)
as a linear mapping from S ′(Yn+1) to S ′0(Rn) (and not to S ′(Rn)).

Definition 4.4.2. Let ψ ∈ S0(R). The ridgelet synthesis operatorRt
ψ : S ′(Yn+1)→

S ′0(Rn) is defined as

〈Rt
ψF, φ〉 := 〈F,Rψφ〉, F ∈ S ′(Yn+1), φ ∈ S(Rn). (4.22)

Taking transposes in Theorems 4.3.1 and 4.3.2, we immediately obtain the
ensuing continuity result.

Proposition 4.4.1. Let ψ ∈ S0(R). The ridgelet transform Rψ : S ′0(Rn) →
S ′(Yn+1) and the ridgelet synthesis operator Rt

ψ : S ′(Yn+1) → S ′0(Rn) are con-
tinuous linear maps.

We can generalize the reconstruction formula (4.11) to distributions.

Theorem 4.4.1 (Inversion formula). Let ψ ∈ S0(R) be non-trivial. If η ∈ S0(R)
is a reconstruction neuronal activation function for ψ, then

idS′0(Rn) =
1

Kψ,η

(Rt
η ◦ Rψ). (4.23)
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Proof. Applying Definition 4.4.1, Definition 4.4.2, and Proposition 4.2.1, we obtain
at once 〈Rt

η(Rψf), φ〉 = 〈f,Rt
ψ
(Rη φ)〉 = Kη,ψ〈f, φ〉 = Kψ,η〈f, φ〉.

In Subsection 4.1.1 we have given a different definition of the ridgelet transform
of distributions f ∈ D′L1(Rn) via the formula (4.1). We now show that Definition
4.4.1 is consistent with (4.1) (under our convention (1.10) for identifying functions
with distributions on Yn+1). In particular, our definition of the ridgelet transform
for distributions is consistent with that for test functions.

Theorem 4.4.2. Let f ∈ D′L1(Rn). The ridgelet transform of f is given by the
function (4.1), that is,

〈Rψf,Φ〉 =

∫ ∞
0

∫ ∞
−∞

∫
Sn−1

Rψf(u, b, a)Φ(u, b, a)
dudbda

an
, Φ ∈ S(Yn+1). (4.24)

Proof. By Schwartz’ structural theorem [89], we can write f =
∑N

j=1 f
(mj)
j , where

each fj ∈ L1(Rn). Observe first that 〈f (mj)
j , ψu,b,a〉 = (−a−1u)

mj 〈fj, (ψ(mj))u,b,a〉.
On the other hand, since

(−1)|mj |
∂|m|j

∂xmj
Rt
ψ
Φ = Rt

ψ
(mj)

((
−a−1u

)mj Φ
)
,

the ridgelet transformRψf , defined via (4.21), satisfiesRψ(f
(mj)
j ) = (−a−1u)

mj R
ψ(mj)fj.

Therefore, we may assume that f ∈ L1(Rn). But in the latter case, the result is a
consequence of Proposition 4.2.3.

Remark 4.4.1. Let us point out that (4.24) holds in particular for compactly sup-
ported distributions f ∈ E ′(Rn) or, more generally, for convolutors f ∈ O′C(Rn).
Furthermore, when f ∈ O′C(Rn), one can easily check that Rψf ∈ C∞(Yn+1).

4.5 On the Radon transform on S ′0(Rn)

In this section we explain how one can define the Radon transform of Lizorkin
distributions. Its connection with the ridgelet and wavelet transforms will be
discussed in Section 4.6.

We begin with test functions. Hertle [35] has made nice discussions about
the range of the Radon transform on D(Rn) and E(Rn) and manage to prove that
R : E ′(Rn)→ E ′(Sn−1×R) is a topological isomorphism. Helgason [33] and Gelfand
et al. [24] gave the range theorem for the Radon transform on S(Rn). Indeed,
its range R(S(Rn)) consists of the closed subspace of all those % ∈ S(Sn−1 × R)
such that % is even on Sn−1 × R, i.e., %(−u,−p) = %(u, p), and

∫∞
−∞ p

k%(u, p) is a
k-th degree homogeneous polynomial in u for all k ∈ N0. The situation is not so
satisfactory for the dual Radon transform R∗, because it does not map S(Sn−1×R)
to S(Rn). Consequently, the duality relation (4.6) fails to produce a definition for
the Radon transform on S ′(Rn). The Radon transform on S ′(Rn) can be defined
[24, 51, 76], but it does not take values in S ′(Sn−1 × R). The range R(S ′(Rn)) is
particularly complicated to describe in even dimensions n.
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As Helgason points out [33], a more satisfactory situation is obtained if we
restrict our attention to the smaller test function spaces S0(Rn) and S0(Sn−1×R).
In such a case,

R : S0(Rn)→ S0(Sn−1 × R) (4.25)

and

R∗ : S0(Sn−1 × R)→ S0(Rn). (4.26)

We apply our results from Section 4.3 to deduce the following continuity result for
R and R∗.

Corollary 4.5.1. The mappings (4.25) and (4.26) are continuous.

Proof. Let ψ ∈ S0(R) have a reconstruction wavelet [37] η ∈ S0(R), that is, one
that satisfies

cψ,η =

∫ ∞
0

ψ̂(ω)η̂(ω)
dω

ω
=

∫ 0

−∞
ψ̂(ω)η̂(ω)

dω

|ω|
6= 0. (4.27)

From the one-dimensional reconstruction formula [37], we obtain cψ,ηidS0(Sn−1×R) =
MηWψ. By (4.7), R = c−1

ψ,η(MηRψ), and so the continuity of R follows from The-
orem 4.3.1 and Corollary 4.3.1. Next, define the (continuous) multiplier operators

Js : S(Yn+1)→ S(Yn+1), (JsΦ)(u, b, a) = asΦ(u, b, a), s ∈ R. (4.28)

We have that cψ,ηR
∗ = R∗MηJ1−nJn−1Wψ = Rt

ηJn−1Wψ is continuous in view of
Theorem 4.3.2 and Corollary 4.3.1.

The mapping (4.26) allows one to extend the definition of the Radon transform
to S ′0(Rn).

Definition 4.5.1. The Radon transform

R : S ′0(Rn)→ S ′0(Sn−1 × R) (4.29)

is defined via (4.6).

Since (4.29) is the transpose of (4.26), we obtain,

Corollary 4.5.2. The Radon transform is continuous on S ′0(Rn).

Notice that the dual Radon transform (4.26) is surjective [33]. Therefore, the
Radon transform is injective on S ′0(Rn). The restriction of (4.29) to the subspaces
D′L1(Rn), E ′(Rn), O′C(Rn), clearly coincides with the Radon transform treated by
Hertle in [34].
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4.6 Ridgelet desingularization in S ′0(Rn)

The ridgelet transform of f ∈ S ′0(Rn) is in turn highly regular in “the variables”
b and a. This last section is devoted to prove this fact. We also give a ridge-
let desingularization formula and establish the connection between the ridgelet,
wavelet, and Radon transforms.

As mentioned in Subsection 1.2.5, we have S(Yn+1) = D(Sn−1)⊗̂S(H). The
nuclearity of the Schwartz spaces leads to the isomorphisms S ′(Yn+1) ∼= S ′(H,D′(Sn−1))
∼= D′(Sn−1,S ′(H)), the very last two spaces being spaces of vector-valued distri-
butions [92, 103]. We shall identify these three spaces and write

S ′(Yn+1) = S ′(H,D′(Sn−1)) = D′(Sn−1,S ′(H)). (4.30)

The equality (4.30) being realized via the standard identification

〈F, ϕ⊗Ψ〉 = 〈〈F,Ψ〉 , ϕ〉 = 〈〈F, ϕ〉 ,Ψ〉 , Ψ ∈ S(H), ϕ ∈ D(Sn−1), (4.31)

Thus, given F ∈ S ′(Yn+1), the statement F is smooth in (b, a) has the clear
interpretation F ∈ C∞(H,D′(Sn−1)) = D′(Sn−1, C∞(H)). Moreover, we shall say
that F ∈ S ′(Yn+1) is a function of slow growth in the variables (b, a) ∈ H if
〈F (u, b, a), ϕ(u)〉u is such for every ϕ ∈ D(Sn−1), namely, it is a function that
satisfies the bound

| 〈F (u, b, a), ϕ(u)〉u | ≤ C

(
as +

1

as

)
(1 + |b|)s, (b, a) ∈ H,

for some positive constants C = Cϕ and s = sϕ.
Notice also that S ′0(Sn−1 × R) = S ′0(R,D′(Sn−1)) (again under the standard

identification). This allows us to define the wavelet transform (ψ ∈ S0(R)),

Wψ : S ′0(Sn−1 × R) = S ′0(R,D′(Sn−1))→ S ′(H,D′(Sn−1)) = S ′(Yn+1),

by direct application of the formula (4.3) as a smooth vector-valued functionWψg :
H → D′(Sn−1), for g ∈ S ′0(Sn−1 × R). One can also check that this wavelet
transform satisfies〈

g,MψΦ
〉

=

∫ ∞
0

∫ ∞
−∞
〈Wψg(u, b, a),Φ(u, b, a)〉u

dbda

a
, (4.32)

for g ∈ S ′0(Sn−1 × R) and Φ ∈ S(Yn+1), where Mψ is as in (4.20). Implicit in
(4.32) is the fact that we are using the measure a−1dbda as the standard measure
on H for the identification of functions of slow growth with distributions on H.
This choice is the natural one for wavelet analysis, in the sense that one can check
that the following duality relation holds:

〈Wψg,Φ〉 =
〈
g,MψΦ

〉
,

for all for g ∈ S ′0(Sn−1×R) and Φ ∈ S(Yn+1). (See [71, Sect. 5 and 8] for additional
comments on the vector-valued wavelet transform.)

The relation between the Radon transform, the wavelet transform, and the
ridgelet transform is stated in the following theorem, which also tells us that the
ridgelet transform is regular in the location and scale parameters.
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Theorem 4.6.1. Let f ∈ S ′0(Rn) and ψ ∈ S0(R). Then,

〈Rψf,Φ〉 =

∫ ∞
0

∫ ∞
−∞
〈Wψ(Rf)(u, b, a),Φ(u, b, a)〉u

dbda

an
, Φ ∈ S(Yn+1). (4.33)

Furthermore, Rψf ∈ C∞(H,D′(Sn−1)) and it is of slow growth on H.

Proof. That Rψ is smooth and of slow growth in the variables b, a follows from
(4.33) and the corresponding property for the wavelet transform. Let us show
(4.33). The multiplier operator Js was introduced in (4.28). By (??),∫ ∞

0

∫ ∞
−∞
〈Wψ(Rf)(u, b, a),Φ(u, b, a)〉u

dbda

an
=
〈
Rf,MψJ1−nΦ

〉
=
〈
f,R∗MψJ1−nΦ

〉
= 〈f,Rt

ψ
Φ〉 = 〈Rψf,Φ〉 .

It should be emphasized that the relation (4.33) is consistent with the ridgelet
transform of test functions, as follows from Theorem 4.4.2 and (4.7).

We end this article with a desingularization formula, a corollary of Theorem
4.6.1. The next result generalizes the extended Parseval’s relation obtained in
Proposition 4.2.2.

Corollary 4.6.1 (Ridgelet desingularization). Let f ∈ S ′0(Rn) and let ψ ∈ S0(R)
be non-trivial. If η ∈ S0(R) is a reconstruction neuronal activation function for
ψ, then

〈f, φ〉 =
1

Kψ,η

∫ ∞
0

∫
R
〈Wψ(Rf)(u, b, a),Rη φ(u, b, a)〉u

dbda

an
, φ ∈ S0(Rn).

(4.34)

Proof. By Theorem 4.4.1, Kψ,η 〈f, φ〉 =
〈
f,Rt

ψ
Rη φ

〉
= 〈Rψf,Rη φ〉 . The desin-

gularization formula (4.34) follows then from (4.33).

According to (4.32), the relation (4.33) for distributions might be rewritten as

Rψ = J1−n ◦Wψ ◦R. (4.35)

Observe that (4.35) is not in contradiction with (4.7). Indeed, if f ∈ L1(Rn) (or
more generally f ∈ D′L1(Rn)), then (4.7) expresses an equality between functions,
(4.33) is then in agreement with (4.24), whereas (4.35) simply responds to our
convention (4.32) of using the measure a−1dbda for identifying wavelet transforms
with vector-valued distributions on H. We also have to warn the reader that
under this convention, the smooth function Fϕ(b, a) = 〈Rψf(u, b, a), ϕ(u)〉u from
the standard identification (4.31), where ϕ ∈ D(Sn−1), is the one that satisfies

〈Rψf(u, b, a), ϕ(u)Ψ(b, a)〉u =

∫ ∞
0

∫ ∞
−∞

Fϕ(b, a)Ψ(b, a)
dbda

a
, Ψ ∈ S(H); (4.36)

so that if f ∈ D′L1(Rn), we have, as pointwise equality between functions,

〈Rψf(u, b, a), ϕ(u)〉u = a−(n−1)

∫
Sn−1

Rψf(u, b, a)ϕ(u)du. (4.37)
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4.7 Ridgelet characterization of bounded sub-

sets of S ′0(Rn)

This section is dedicated to prove a characterization of bounded subsets of S ′0(Rn)
via the ridgelet transform. We begin the ensuing useful proposition. Note that
[33] R(S0(Rn)) is a closed subspace of S0(Sn−1 × R). The open mapping theorem
implies that R : S0(Rn) → R(S0(Rn)) is an isomorphism of topological vector
spaces. We prove a similar result for the distributional Radon transform.

Proposition 4.7.1. The Radon transform R : S ′0(Rn) → R(S ′0(Rn)) is an iso-
morphism of topological vector spaces.

Proof. Since R∗ : S0(Sn−1 × R) → S0(Rn) is a continuous surjection between
Fréchet spaces, its transpose R : S ′0(Rn) → S ′0(Sn−1 × R) must be continuous,
injective, and must have weakly closed range [103, Chap. 37]. The subspace
R(S ′0(Rn)) is thus strongly closed because S ′0(Sn−1×R) is reflexive. Pták’s theory
[48, 77] applies to show that R : S ′0(Rn) → R(S ′0(Rn)) is open if we verify that
S ′0(Rn) is fully complete (B-complete in the sense of Pták) and that R(S ′0(Rn)) is
barrelled. It is well known [77, p. 123] that the strong dual of a reflexive Fréchet
space is fully complete, so S ′0(Rn), as a DFS space, is fully complete. Now, a
closed subspace of a DFS space must itself be a DFS-space. Since S ′0(Sn−1 ×R)
is a DFS space, we obtain that R(S ′0(Rn)) is a DFS space and hence barrelled.

We then have,

Theorem 4.7.1. Let ψ ∈ S0(R) \ {0} and let B ⊂ S ′0(Rn). The following three
statements are equivalent:

(i) B is bounded in S ′0(Rn).

(ii) There are positive constants l = lB and m = mB such that for every ϕ ∈
D(Sn−1) one can find C = Cϕ,B > 0 with

|〈Rψf(u, b, a), ϕ(u)〉u| ≤ C

(
a+

1

a

)l
(1+|b|)m, for all (b, a) ∈ H and f ∈ B.

(4.38)

(iii) Rψ(B) is bounded in S ′(Yn+1).

Proof. By Proposition 4.7.1, B is bounded if and only if B1 := R(B) is bounded
in S ′0(Sn−1 × R) = S ′0(R,D′(Sn−1)). On the other hand, in view of (4.35), the
estimate (4.38) is equivalent to one of the form

|〈Wψh(u, b, a), ϕ(u)〉u| ≤ C

(
a+

1

a

)s
(1 + |b|)m, for all h ∈ B1. (4.39)

(i) ⇒ (ii). Assume that B1 is bounded. As a DFS space, D′(Sn−1) is the
regular inductive limit of an inductive sequence of Banach spaces, [71, Prop. 3.2]
then implies the existence of s = sB and m = mB such that (a + 1/a)−s(1 +
|b|)−mWψ(B1) is bounded in D′(Sn−1), which implies (4.39).
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(ii) ⇒ (iii). If the estimates (4.38) hold, we clearly have that for fixed ϕ ∈
D(S) and Ψ ∈ S(H) the quantity 〈Rψf(u, b, a), ϕ(u)Ψ(b, a)〉 (see (5.28)) remains
uniformly bounded for f ∈ B. A double application of the Banach-Steinhaus the-
orem shows thatRψ(B) is a bounded subset of Lb(S(H),D′(Sn−1)) =: S ′(H,D′(Sn−1))
(= S ′(Yn+1)).

(iii) ⇒ (i). Let η ∈ S0(R). Since Rt
η is continuous, it maps Rψ(B) into a

bounded subset of S ′0(Rn). That B is bounded follows at once from the inversion
formula (4.23).

4.8 Abelian and Tauberian theorems

In this last section we characterize the quasiasymptotic behavior of elements of
S ′0(Rn) in terms of Abelian and Tauberian theorems for the ridgelet transform.

4.8.1 An Abelian result

We provide here an Abelian proposition for the ridgelet transform. The following
simple but useful lemma connects the quasiasymptotic properties of a distribution
with those of its Radon transform.

Lemma 4.8.1. f ∈ S ′0(R).

(i) f has the quasiasymptotic behavior (2.7)(resp. (2.9)) if and only if its Radon
transform has the quasiasymptotic behavior

Rf (u, λp)∼λα+n−1L(λ) Rg (u, p) as λ→ 0+ (resp. λ→∞) in S ′0(R,D′(Sn−1)).

(ii) f satisfies (2.17) if and only if its Radon transform satisfies

Rf (u, λp) = O(λα+n−1L(λ)) as λ→ 0+ (resp. λ→∞) in S ′0(R,D′(Sn−1)).

Proof. Set fλ(x) = f(λx). If % ∈ S0(Sn−1 × R), we have,

〈Rfλ(u, p), %(u, p)〉 =
1

λn
〈f(x), R∗%(x/λ)〉

=
1

λn−1

〈
f(x),

1

λ

∫
Sn−1

%
(
u,

x · u
λ

)
du

〉
=

1

λn−1
〈Rf(u, λp), %(u, p)〉,

namely, Rfλ(u, p) = λ−(n−1)Rf(u, λp). The result is then a consequence of Pro-
position 4.7.1.
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Proposition 4.8.1. Suppose that f ∈ S ′0(R) has the quasiasymptotic behavior
(2.7)(resp. (2.9)). Then, given any ϕ ∈ D(Sn−1) and (b, a) ∈ H, we have

lim
λ→0+

〈Rψf (u, λb, λa) , ϕ(u)〉u
λαL(λ)

= 〈Rψg (u, b, a) , ϕ(u)〉u
(

resp. lim
λ→∞

)
(4.40)

Proof. This proposition follows by combining Lemma 4.8.1 and the relation (4.35)
with the DFS-space-valued version of [71, Prop. 3.1] for the wavelet transform
(see comments in [71, Sect. 8])

Remark 4.8.1. The limit (4.40) holds uniformly for (b, a) in compact subsets of H.

Remark 4.8.2. If f ∈ D′L1(Rn), then (4.40) reads∫
Sn−1

Rψf(u, λb, λa)ϕ(u)du ∼ λα+n−1L(λ)

∫
Sn−1

Rψg(u, b, a)ϕ(u)du,

as follows from (4.37).

4.8.2 Tauberian theorem

Our next goal is to provide a Tauberian converse for Proposition 4.8.1. The
next theorem characterizes the quasiasymtotic behavior in terms of the ridgelet
transform.

Theorem 4.8.1. Let ψ ∈ S0(R) \ {0} and f ∈ S ′0(Rn). The following two condi-
tions:

lim
λ→0+

1

λαL(λ)
〈Rψf (u, λb, λa) , ϕ(u)〉 = Mb,a(ϕ)

(
resp. lim

λ→∞

)
(4.41)

exists (and is finite) for every ϕ ∈ D(Sn−1) and (b, a) ∈ H ∩ S , and there exist
m, l > 0 such that for every ϕ ∈ D(Sn−1)

|〈Rψf (u, λb, λa) , ϕ(u)〉u| ≤ Cϕλ
αL(λ)

(
a+

1

a

)l
(1 + |b|)m (4.42)

for all (b, a) ∈ H ∩ S and 0 < λ < 1 (resp. λ > 1) are necessary and sufficient
for the existence of a distribution g such that f has the quasiasymptotic behavior
(2.7)(resp. (2.9)).

Proof. Assume first that f has the quasiasymptotic behavior (2.7)(resp. (2.9)).
Proposition 4.8.1 implies that (4.41) holds with Mb,a(ϕ) = 〈Rψg (u, b, a) , ϕ(u)〉u.
Set fλ(x) = f(λx). Using (4.33), one readily verifies the relation

Rψfλ(u, b, a) = Rψf(u, λb, λa). (4.43)

On the other hand, f satisfies (2.17). That (4.42) must necessarily hold follows
from Theorem 4.7.1.
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Conversely, assume (4.41) and (4.42). Applying the same argument as in the
proof of [71, Lem. 6.1], one may assume that they hold for all (b, a) ∈ H (in the
case of (4.42), one may need to replace l and m by bigger exponents). We will
show that there is G ∈ S ′(Yn+1) such that

lim
λ→0+

〈
Rψf (u, λb, λa)

λαL(λ)
,Φ(u, b, a)

〉
= 〈G (u, b, a) ,Φ(u, b, a)〉

(
resp. lim

λ→∞

)
(4.44)

for each Φ ∈ S(Yn+1). Once (4.44) had been established, the inversion formula
(4.23) would imply that (2.7)(resp. (2.9)) holds with g = (1/Kψ,η)Rt

ηG. Using
Theorem 4.7.1 and (4.43) again, the estimates (4.42) are equivalent to the quasi-
asymptotic boundedness (2.17), but also to the boundedness in S ′(Yn+1) of the
set {

Rψf (u, λb, λa)

λαL(λ)
: 0 < λ < 1

}
(resp. λ > 1) . (4.45)

By the Banach-Steinhaus theorem, the set (4.45) is equicontinuous. It is thus
enough to show that the limit in the left-hand side of (4.44) exists for Φ in the dense
subspaceD(Sn−1)⊗S(H) of S(Yn+1). So, we check this for Φ(u, b, a) = ϕ(u)Ψ(b, a)
with ϕ ∈ D(Sn−1) and Ψ ∈ S(H). The function Mb,a(ϕ) occurring in (4.41) is
measurable in (b, a) ∈ H and, in view of (4.42), is of slow growth, i.e., it satisfies

|Mb,a(ϕ)| ≤ Cϕ

(
a+

1

a

)l
(1 + |b|)m, for all (b, a) ∈ H.

So, employing (5.28) and the Lebesgue dominated convergence theorem, we obtain

lim
λ→0+

〈
Rψf (u, λb, λa)

λαL(λ)
, ϕ(u)Ψ(b, a)

〉
= lim

λ→0+

∫ ∞
0

∫ ∞
−∞

〈
Rψf (u, λb, λa)

λαL(λ)
, ϕ(u)

〉
Ψ(b, a)

dbda

a

=

∫ ∞
0

∫ ∞
−∞

Mb,a(ϕ)Ψ(b, a)
dbda

a

(resp. limλ→∞). This completes the proof.

The following fact was already shown within the proof of Theorem 4.8.1.

Corollary 4.8.1. Let ψ ∈ S0(R) \ {0} and f ∈ S ′0(Rn). Then, f satisfies (2.17)
if and only if there are m, l > 0 such that for every ϕ ∈ D(Sn−1) the estimate
(4.42) holds for all 0 < λ < 1 (resp. λ > 1) and (b, a) ∈ H ∩ S (or, equivalently,
(b, a) ∈ H).



Chapter 5

Multiresolution expansions and
quasiasymptotic behavior of
distributions

The notion of multiresolution analysis (MRA) was introduced by Mallat and Meyer
as a natural approach to the construction of orthogonal wavelets [53, 56]. Ap-
proximation properties of multiresolution expansions in function and distribution
spaces have been extensively investigated, see e.g. [56]. The problem of pointwise
convergence of multiresolution expansions is very important from a computational
point of view and has also been studied by many authors. Our purpose here is
to study the pointwise behavior of Schwartz distributions, in several variables, via
multiresolution expansions. In particular, we shall extend and improve results
from [70, 95, 97, 114]. The second aim is to study the quasiasymptotic behavior
of a distribution at a point through multiresolution expansions.

In this Chapter, we use bold letters to denote elements from Rn.

5.1 Multiresolution analysis in L2(Rn)

Research workers in the various specialities were hoping to find practical al-
gorithms for decomposing arbitrary function into sums of special functions which
combine the advantages of the trigonometric and the Haar systems. These systems
stand at two extremes, in the following sense: the functions of the trigonometric
systems (see [117, Chapter 1.2.1]) are exactly localized by frequency, that is in the
Fourier variable, but have no precise localization in space. On the other hand, the
functions of the Haar system (see [117, Chapter 1.2.2]) are perfectly localized in
space but are badly localized in the Fourier variable. The idea of a multiresolution
analysis enables us to combine analysis in the space variable with analysis in the
Fourier variable while satisfying the Heisenberg’s uncertainty principle:∫

Rn
|xf(x)|2dx ·

∫
Rn
|ωf̂(ω)|dω ≥ n2

4(2π)n−1
,

for any f ∈ L2(Rn) with ‖f‖2 = 1.

87
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Definition 5.1.1. Let {Vj}j∈Z be a sequence of closed linear subspaces of L2(Rn).
The collection of spaces {Vj}j∈Z is called a multiresolution analysis (MRA) if they
satisfy the following four conditions:

(i) (scaling) f ∈ Vj ⇔ f(2 · ) ∈ Vj+1,

(ii) f ∈ V0 ⇔ f( · −m) ∈ V0, m ∈ Zn,

(iii) (separation)
⋂
j Vj = {0},

(density)
⋃
j Vj = L2(Rn),

(iv) (orthonormal basis) there is φ ∈ L2(Rn) such that {φ( · −m)}m∈Zn is an
orthonormal basis of V0.

The function φ from (iv) is called a scaling function of the given MRA. Moreover,
from the properties (i) and (iv) we have that {2j/2φ(2j · −m)}m∈Zn is an orthonor-
mal basis of Vj.

There may be several choices of φ corresponding to a system of approximation
spaces. Different choices for φ yield different MRA. Although we require the
translates of φ(x) to be orthonormal, we don’t have to. All that is needed is a
φ for which the set {φ(x − k) : k ∈ Zn} is basis. We can then use φ to obtain

a new scaling function φ̃ for which {φ̃(x − k) : k ∈ Zn} is orthonormal (this
othonormalization procedure can be done in several ways [10, 56]).

Example 5.1.1. Multiresolution analysis of Littlewood-Paley type. Here we start
with a function θ(ξ), of the real variable ξ belonging to D(R), which is even, equals
to 1 on [−2π/3, 2π/3] and is 0 outside [−4π/3, 4π/3]. We suppose in addition that
θ(ξ) ∈ [0, 1], for all ξ ∈ R, and that θ2(ξ)+θ2(2π−ξ) = 1 when 0 ≤ ξ ≤ 2π. Let φ
denote the function in S(R) whose Fourier transform is θ(ξ). Then, we can verify
that the sequence φ(x − k), k ∈ Z is the orthonormal basis of a closed subspace
of L2(R) which we call V0. In fact, applying the Fourier transform, FV0 is the
vector space of products m(ξ)θ(ξ), where m(ξ) is 2π-periodic, and m(ξ) restricted
to [0, 2π] belongs to L2[0, 2π]. V1 is then defined with (i) and FV1 is the set of
function m1(ξ)θ(ξ/2), where m1(ξ) is 4π-periodic. The other properties of the
MRA can be verified without difficulties.

Theorem 5.1.1. [3, Thrm. 5.6] Let {Vj}j∈Z is a MRA with scaling function φ.
Then, the following scaling relation holds:

φ(x) =
∑
k∈Zn

pkφ(2x− k), where pk = 2

∫
Rn
φ(x)φ(2x− k)dx. (5.1)

Moreover, we also have

φ(2j−1x− l) =
∑
k∈Zn

pk−2lφ(2jx− k). (5.2)
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Recall that Vj is a subset of Vj+1. In order to carry out the decomposition
algorithm in the general case, we need to decompose Vj+1 into an orthogonal
direct sum of Vj and its orthogonal complement, which we denote by Wj. This
means that

Vj = Vj+1 ⊕Wj+1

and
Wj ⊥ Wl if j 6= l.

In addition, we need to construct a function ψ whose translates generate the space
Wj. Once φ is specified, the scaling relation can be used to construct ψ. This is
shown with the following theorem.

Theorem 5.1.2. [3, Thrm. 5.10] Let {Vj}j∈Z is a MRA with scaling function φ
that satisfies (5.1). Let Wj be the span of {ψ(2jx− k) : k ∈ Zn}, where

ψ(x) =
∑
k∈Zn

(−1)|k|p1−kφ(2x− k). (5.3)

Then, Wj ⊂ Vj+1 is the orthogonal complement of Vj in Vj+1. Furthermore,
{ψjk(x) := 2j/2ψ(2jx− k) : k ∈ Zn} is an orthonormal basis for the Wj.

It is required ψ(x) to be orthogonal to φ(x− k). Hence, the two conditions

1.
∑

k∈Zn ψ̂(w + πk)ψ̂(w + 2πk) = 0,

2.
∑

k∈Zn |ψ̂(w + 2πk)|2 = 1,

must be satisfied.
By virtue of (iii) we have

L2(Rn) =
⊕
j∈Z

Wj,

a decomposition of L2(Rn) into mutually orthogonal spaces. Because of this and
again (iii) we have that {ψjk(x) = 2j/2ψ(2jx−k) : k ∈ Zn, j ∈ Z} is an orthonor-
mal basis for L2.

It can be shown that for φ̂ and ψ̂, the Fourier transforms of a scaling function
φ and its corresponding wavelet ψ, respectively, the following relation holds

ψ̂(w) =

((
φ̂
(w

2

))2

−
(
φ̂ (w)

)2
)1/2

e−i
w
2 , w ∈ Rn.

Example 5.1.2. Most simple and oldest example of scaling function for which
{2j/2φ(2j · −m)}m∈Z is an orthonormal basis of Vj is the Haar scaling function

φ(x) =

{
1, 0 ≤ x < 1
0, elsewhere

.

The choices of the coefficients pk in (5.2) are p0 = p1 = 1 and the other pk are
zero. The appropriate ψ from Theorem (5.1.2) is the Haar wavelet

ψ(x) = φ(2x)− φ(2x− 1) =


1, 0 ≤ x < 1/2
−1, 1/2 ≤ x < 1
0, elsewhere

.



90 Chapter 5. Multiresolution expansions and quasiasymptotic behavior

Example 5.1.3. The B -spline of order n is the function φ(x) obtained by con-
volving the Haar scaling function with itself n-times. Its Fourier transform is

φ̂(ω) = (2π)−1/2e−iKξ/2
(

sin ξ/2
ξ/2

)N+1

, where K = 0 if N is odd, and K = 1 if N is

even. The mother wavelet obtained with (5.3) is called Battle-Lemarié wavelet.
If we take N = 2 we get the piecewise quadratic B-spline

φ(x) =


1
2
(x+ 1)2, −1 ≤ x < 0

3
4
−
(
x− 1

2

)2
, 0 ≤ x < 1

1
2
(x− 2)2, 1 ≤ x < 2

0, elsewhere

.

Now, φ satisfies φ(x) = 1
4
φ(2x + 1) + 3

4
φ(2x) + 3

4
φ(2x − 1) + 1

4
φ(2x − 2), and we

have that

ψ̂(ω) = (2π)−1/2e−iξ/2
(

sin ξ/2

ξ/2

)3

.

In [10, Cor. 5.4.2] it is proven that all the Battle-Lemarié wavelets and the
corresponding scaling function can be chosen from Cr(R) and have exponential
decay (the decay rate decrease as r increase).

Remark 5.1.1. Note that it is possible to find a function ψ ∈ L2 such that the
family {ψjk( · ) = 2j/2ψ(2j · −k) : k ∈ Zn, j ∈ Z} is an orthonormal basis of L2

but the corresponding scaling function φ does not exists.

Each of the spaces Vj in the MRA is a reproducing kernel Hilbert space. Such
a space consists of a Hilbert space H of functions f on an interval T in which
all evaluation functions ξt(f) := f(t), f ∈ H, t ∈ T are continuous on H. Then,
by the Riesz representation theorem, for each t ∈ T there is unique kt ∈ H such
that for each f ∈ H, f(t) = 〈f, kt〉. The function defined by k(t,u) = 〈kt, ku〉 for
t,u ∈ T is the reproducing kernel. Note that L2(Rn) is not a reproducing kernel
Hilbert space but has subspaces that are. The reproducing kernel of V0 is given
by

q0(x,y) =
∑
m∈Zn

φ(x−m)φ(y −m). (5.4)

where φ is the scaling function. It holds

|q0(x,y)| ≤ 1

(1 + |x− y|)n
, n ∈ N. (5.5)

The reproducing kernel of Vj is given by

qj(x,y) = 2jq0(2jx, 2jy). (5.6)

5.2 Multiresolution analysis in distribution spaces

We now explain how one can study multiresolution expansions of tempered distri-
butions and distributions of M -exponential growth. We show below that, under
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certain regularity assumptions on an MRA, multiresolution expansions converge
in K′M,r(Rn) or S ′r(Rn). Observe that (1.13) (resp. (1.14)) allows us to analyze also
elements of K′M(Rn) (resp. S ′(Rn)) by reduction to one of the spaces K′M,r(Rn)
(resp. S ′r(Rn)). We mention the references [75, 72, 96, 101], where related results
have been discussed. The difference here is that we give emphasis to uniform con-
vergence over bounded subsets of test functions and other parameters, which will
be crucial for our arguments in the subsequent sections.

In order to be able to analyze various classes of distributions with the MRA,
we shall impose some regularity assumptions on the scaling function φ. One says
that the MRA is r-regular [56, 117], r ∈ N, if the scaling function from (iv) can
be chosen in such a way that:

(v) φ ∈ Sr(Rn).

The r-regular MRA are well-suited for the analysis of tempered distributions [?,
101, 117]. For distributions of M -growth, we need to impose stronger regularity
conditions on the scaling function. We say that the MRA is (M, r)-regular [97, 96]
if the scaling function from (iv) can be chosen such that φ fulfills the requirement:

(v)′ φ ∈ KM,r(Rn).

Example 5.2.1. Multiresolution analysis by splines of order r. This example will
be given in dimension 1, by nested spaces of splines of order r: the nodes of the
functions f ∈ Vj being precisely the points k2−j, k ∈ Z. We start with an integer
r ∈ N and denote by V0 the subspace of L2(R) consisting of the functions in Cr−1

whose restriction to each interval [k, k + 1), k ∈ Z, coincide with polynomial of
degree less than or equal to r. Vj is the defined by (i) and the other properties
(ii)− (iv) can be verified immediately.

Throughout the rest of this Chapter, whenever we speak about an r-regular
MRA (resp. (M, r)-regular MRA) we fix the scaling function φ satisfying (v) (resp.
(v)′). We remark that it is possible to find MRA with scaling functions φ ∈ S(Rn)
[56], therefore satisfying (v) for all r. In contrast, it is worth mentioning that
the condition (v)′ cannot be replaced by φ ∈ KM(Rn); in fact [10, Corol. 5.5.3],
there cannot be an exponentially decreasing scaling function φ ∈ C∞(Rn) with all
bounded derivatives. On the other hand, Daubechies [10] has shown that given
an arbitrary r, there exists always an (M, r)-regular MRA of L2(Rn) where the
scaling function can even be taken to be compactly supported. By tensorizing, this
leads to the existence of (M, r)-regular MRA of L2(Rn) with compactly supported
scaling functions.

Theorem 5.2.1. [117, Thrm. 3.2] Let φ ∈ Sr be a scaling function with MRA
{Vj}j∈Z. Then, if φ̂(0) ≥ 0

(i) φ̂(2kπ) = δ0k, k ∈ Zn,

(ii)
∑

n φ(x− n) = 1, x ∈ Rn.

The reproducing kernel of the Hilbert space V0 is given by
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q0(x,y) =
∑
m∈Zn

φ(x−m)φ(y −m). (5.7)

If the MRA is (M, r)-regular (resp. r-regular), the series (5.7) and its partial
derivatives with respect to x and y of order less or equal to r are convergent
because of the regularity of φ. Furthermore, for fixed x, q0(x, · ) ∈ KM,r(Rn)
(resp. q0(x, · ) ∈ Sr(Rn)). Using the assumptions (1) and (2) on M , one verifies
[96, 97] that for every l ∈ N and |α|, |β| ≤ r, there exists Cl > 0 such that∣∣∣∂αx∂βyq0(x,y)

∣∣∣ ≤ Cle
−M(l(x−y)) (5.8)

(resp.
∣∣∣∂αx∂βyq0(x,y)

∣∣∣ ≤ Cl(1 + |x− y|)−l),

and that q0(x + k,y + k) = q0(x,y) for k ∈ Zn. One can also show [56] that∫
Rn
q0(x,y)P (y)dy = P (x), for each polynomial P of degree ≤ r. (5.9)

Note that the reproducing kernel of the projection operator onto Vj is

qj(x,y) = 2njq0(2jx, 2jy), x,y ∈ Rn,

so that the projection of f ∈ L2(Rn) onto Vj is explicitly given by

(qjf)(x) := 〈f(y), qj(x,y)〉 =

∫
Rn
f(y)qj(x,y)dy, x ∈ Rn. (5.10)

The sequence {qjf}j∈Z given in (5.10) is called the multiresolution expansion of
f ∈ L2(Rn). Since for an (M, r)-regular (resp. r-regular) MRA qj(x, ·) ∈ KM,r(Rn)
(resp. qj(x, · ) ∈ Sr(Rn)), the formula (5.10) also makes sense for f ∈ K′M,r(Rn)
(resp. f ∈ S ′r(Rn)) and it is not hard to verify that (qjf)(x) turns out to be a
continuous function in x. It is convenient for our future purposes to extend the
definition of the operators (5.10) by allowing j to be a continuous variable and
also by allowing a translation term.

Walter [117] states that the sequence {qj((x,y))} is a delta sequence in S ′r(Rn),
i.e. qj(x,y)→ δ((x− y)) as j →∞. In [117], Chapter 5.1. is devoted to MRA of
tempered distribution.

Definition 5.2.1. Let {Vj}j∈Z be an (M, r)-regular (resp. r-regular) MRA. Given
z ∈ Rn and λ ∈ R, the operator qλ,z is defined on elements f ∈ K′M,r(Rn) (resp.
f ∈ S ′r(Rn)) as

(qλ,zf)(x) := 〈f(y), qλ,z(x,y)〉y, x ∈ Rn,

by means of the kernel qλ,z(x,y) = 2nλq0(2λx + z, 2λy + z), x,y ∈ Rn. The net
{qλ,zf}λ∈R is called the generalized multiresolution expansion of f .

Clearly, when restricted to L2(Rn), qλ,z is the orthogonal projection onto the
Hilbert space Vλ,z = {f(2λ · +z) : f ∈ V0} ⊂ L2(Rn). When z = 0, we simply
write qλ := qλ,0. The consideration of the parameter z will play an important role
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in Section 5.4. Note also that 〈qλ,zf, ϕ〉 = 〈f, qλ,zϕ〉, for any f ∈ K′M,r(Rn) and
ϕ ∈ KM,r(Rn) (resp. f ∈ S ′r(Rn) and ϕ ∈ Sr(Rn)).

We now study the convergence of the generalized multiresolution expansions
of distributions. We need a preparatory result. In dimension n = 1, Pilipović
and Teofanov [72] have shown that if f ∈ Cr(R) and all of its derivatives up to
order r are of at most polynomial growth, then its multiresolution expansion qjf
with respect to an r-regular MRA converges to f uniformly over compact intervals.
Sohn has considered in [96] the analog result for functions of growth O(eM(kx)), but
his arguments contain various inaccuracies (compare, e.g., his formulas (17) and
(21) with our (5.13) below). We extend those results here to the multidimensional
case and for the generalized multiresolution projections qλ,z with uniformity in the
parameter z.

Let ψ ∈ D(Rn) such that
∫
Rn ψ(x)dx = 1. In the case of an r-regular MRA,

it is shown in [56, p. 39] that given any multi-index |α| ≤ r, there are functions
Rα,β ∈ L∞(Rn × Rn) such that

|Rα,β(x,y)| ≤ C̃l(1 + |x− y|)−l, ∀l ∈ N, (5.11)∫
Rn
Rα,β(x,y)dy = 0, ∀x ∈ Rn, (5.12)

and for any f ∈ Cr(Rn), with partial derivatives of at most polynomial growth,

∂α(q0f) = ψ ∗ (∂αf) +
∑
|β|=|α|

Rα,β(∂αf).

Denoting as Rα,β
λ,z the integral operator with kernel Rα,β

λ,z (x,y) = 2nλRα,β(2λx +

z, 2λy + z), we obtain the formulas

∂αxqλ,zf(x) = 2nλ
∫
Rn
ψ(2λ(x− y))∂αyf(y)dy +

∑
|β|=|α|

∫
Rn
Rα,β
λ,z (x,y)∂αyf(y)dy.

(5.13)
Likewise for an (M, r)-regular MRA, one can modify the arguments from [56] in
such a way that one chooses the Rα,β with decay

|Rα,β(x,y)| ≤ C̃le
−M(l(x−y)), ∀l ∈ N. (5.14)

Proposition 5.2.1. Assume that the MRA is (M, r)-regular (resp. r-regular).

(a) If f ∈ Cr(Rn) and there is k ∈ N such that f (α)(x) = O(eM(kx)) (resp.
f (α)(x) = O((1 + |x|)k)) for each |α| ≤ r, then limλ→∞ qλ,zf = f in Cr(Rn).

(b) Suppose that the subset B ⊂ Cr(Rn) is such that for each |α| ≤ r one has
f (α)(x) = O(eM(kx)) (resp. f (α)(x) = O((1 + |x|)k)) uniformly with respect
to f ∈ B, then limλ→∞ qλ,zf = f in Cr−1(Rn) uniformly for f ∈ B.

All the limits hold uniformly with respect to the parameter z ∈ Rn.
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Proof. We only show the statement for an (M, r)-regular MRA, the case of an
r-regular MRA is analogous. We first give the proof of part (a). In view of the
decomposition (5.13) and the condition (5.12), it suffices to show that for each
|α| = |β| ≤ r one has

lim
λ→∞

2nλ
∫
Rn
Rα,β(2λx + z, 2λy + z)[f (α)(y)− f (α)(x)]dy = 0. (5.15)

Note that if x remains in a compact subset of Rn, there is a non-increasing function
Eα such that |f (α)(y) − f (α)(x)| ≤ Eα(|x − y|), where Eα(t) → 0 as t → 0+ and
Eα(t) = O(eM(2kt)). Since

lim
λ→∞

2nλ
∫
Rn
|Rα,β(2λx + z, 2λy + z)|Eα(|x− y|)dy

≤ lim
λ→∞

C2k+1

∫
Rn
e−M((2k+1)(x−y))Eα(2−λ|x− y|)dy = 0,

we obtain (5.15). For part (b), it is enough to observe that, as the the mean value
theorem shows, the functions Eα from above can be taken to be the same for all
f ∈ B and |α| ≤ r − 1.

We then have,

Theorem 5.2.2. Suppose that the MRA is (M, r)-regular (resp. r-regular). Let
ϕ ∈ KM,r(Rn) and f ∈ K′M,r(Rn) (resp. ϕ ∈ Sr(Rn) and f ∈ S ′r(Rn)). Then,

lim
λ→∞

qλ,zϕ = ϕ in KM,r(Rn) (resp. in Sr(Rn)) (5.16)

and
lim
λ→∞

qλ,zf = f weakly∗ in K′M,r(Rn) (resp. in S ′r(Rn)). (5.17)

Furthermore, if f ∈ K′M,r−1(Rn) (resp. f ∈ S ′r−1(Rn)), then the limit (5.17)
holds strongly in K′M,r(Rn) (resp. in S ′r(Rn)). All the limits hold uniformly in the
parameter z ∈ Rn.

Proof. By Lemma 1.2.1 and part (a) from Proposition 5.2.1, the limit (5.16) would
follow once we establish the following claim:

Claim 5.2.1. Let B ⊂ KM,r(Rn) be a bounded set. Then the set

{qλ,zϕ : ϕ ∈ B, λ ≥ 1, z ∈ Rn}

is bounded in KM,r(Rn) (resp. in Sr(Rn)).

Let us show Claim 5.2.1 for KM,r(Rn). Using (5.13), (5.14), and the assump-
tions (1) and (2) on M , we have

vr,l(qλ,zϕ) = sup
|α|≤r, x∈Rn

eM(lx)2nλ
∣∣∣ ∫

Rn
φ(y)q

(α)
0 (2αx + z, 2αy + z)dy

∣∣∣
≤ Alvr,2l(ϕ) sup

|α|≤r, x∈Rn
2nλ
∣∣∣ ∫

Rn
q

(α)
0 (2αx + z, 2αy + z)eM(lx)−M(2ly)dy

∣∣∣
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≤ Alvr,2l(ϕ) sup
x∈Rn

2nλ
∫
Rn
e−M(2λ+1(l+1)(x−y))eM(lx)−M(2ly)dy

≤ Alvr,2l(ϕ) sup
x∈Rn

2nλ
∫
Rn
e−M(2λ+1(l+1)(x−y))eM(2l(x−y))dy

≤ Al
2n
vr,2l(ϕ)

∫
Rn
e−M((l+1)y)eM(ly)dy ≤ Al

2n
vr,2l(ϕ)

∫
Rn
e−M(y)dy.

For Sr(Rn) we make use of (5.11),

ρr,l(qλ,zϕ) ≤ Ãlρr,l(ϕ) sup
x∈Rn

2nλ
∫
Rn

(1 + 2λ|x− y|)−l−n−1(1 + |x− y|)ldy

≤ Al
2n
ρr,l(ϕ)

∫
Rn

dy

(1 + |y|)n+1
.

The limit (5.17) is an immediate consequence of (5.16) and the relation 〈qλ,zf, ϕ〉 =
〈f, qλ,zϕ〉. Assume now that f ∈ K′M,r−1(Rn) (resp. f ∈ S ′r−1(Rn)) and let B
be a bounded set in KM,r(Rn) (resp. in Sr(Rn)). From Claim 5.2.1, part (b)
from Proposition 5.2.1, and again Lemma 1.2.1, we get that limλ→∞ qλ,zϕ = ϕ in
KM,r−1(Rn) (resp. in Sr−1(Rn)) uniformly for ϕ ∈ B and z ∈ Rn. Hence,

lim
λ→∞

sup
ϕ∈B
|〈qλ,zf − f, ϕ〉| = lim

λ→∞
sup
ϕ∈B
|〈f, qλ,zϕ− ϕ〉| = 0.

For the spaces S(Rn) and S ′(Rn), we have:

Corollary 5.2.1. Suppose that the MRA admits a scaling function φ ∈ S(Rn).
Then, limλ→∞ qλ,zϕ = ϕ in S(Rn) and limλ→∞ qλ,zf = f in S ′(Rn) uniformly in
z ∈ Rn, for every ϕ ∈ S(Rn) and f ∈ S ′(Rn).

Remark 5.2.1. The proof of Theorem 5.2.2 also applies to show that limλ→∞ qλ,zϕ =
ϕ in the Banach space KM,r,l(Rn) (resp. in Sr,l(Rn)) for each ϕ ∈ KM,r,2(l+1)(Rn)
(resp. Sr,l+1(Rn)).

5.3 Pointwise convergence of multiresolution ex-

pansions

Walter was the first to study the pointwise convergence of multiresolution ex-
pansions for tempered distributions. Under mild conditions, he proved [114] (cf.
[117]) in dimension 1 that the multiresolution expansion of a tempered distribu-
tion is convergent at every point where f ∈ S ′(R) possesses a distributional point
value. The notion of distributional point value for generalized functions was intro-
duced by  Lojasiewicz [50, 49]. Not only is this concept applicable to distributions
that might not even be locally integrable, but also includes the Lebesgue points
of locally integrable functions as particular instances. Interestingly, the distribu-
tional point values of tempered distributions can be characterized by the pointwise
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Fourier inversion formula in a very precise fashion [104, 109], but in contrast to
multiresolution expansions, one should employ summability methods in the case
of Fourier transforms and Fourier series. The problem of pointwise summability
of distribution expansions with respect to various orthogonal systems has been
considered by Walter in [115].

We shall use the notion of distributional point value of generalized functions
introduced by  Lojasiewicz [50, 49]. Let f ∈ D′(Rn) and let x0 ∈ Rn. Recall (cf.
Section 2.2.1), we say that f has the distributional point value γ at the point x0,
and we write

f(x0) = γ distributionally, (5.18)

if
lim
ε→0

f(x0 + εx) = γ in the space D′(Rn), (5.19)

that is, if

lim
ε→0
〈f(x0 + εx), ϕ(x)〉 = γ

∫
Rn
ϕ(x)dx, (5.20)

for all test functions ϕ ∈ D(Rn). Naturally, the evaluation in (5.20) is with respect
to the variable x. Due to the Banach-Steinhaus theorem, it is evident that there
exists r ∈ N such that (5.20) holds uniformly for ϕ in bounded subsets of Dr(Rn).
In such a case, we shall say1 that the distributional point value is of order ≤ r.
Here, B(x0, A) stands for the Euclidean ball with center x0 and radius A > 0 and
|µ| stands for the total variation measure associated to a measure µ. One can
show [49, Sect. 8.3] that (5.18) holds and the distributional point value is of order
≤ r if and only if there is a neighborhood of x0 where f can be written as

f = γ +
∑
|α|≤r

µ(α)
α , (5.21)

where each µα is a (complex) Radon measure such that

|µα|(B(x0, ε)) = o(εn+|α|) as ε→ 0+. (5.22)

Note that (5.22) implies that each µα is a continuous measure at x0 in the sense
that µα({x0}) = 0. The decomposition (5.21) and the conditions (5.22) yield [49,
Sect. 4] the existence of a multi-index β ∈ Nn, with |β| ≤ r+n, and a β primitive
of f , say, F with F (β) = f , that is a continuous function in a neighborhood of the
point x = x0 and that satisfies

F (x) =
γ(x− x0)β

β!
+ o(|x− x0||β|) as x→ x0. (5.23)

On the other hand, the existence of a β primitive F of f satisfying (5.23) clearly
suffices to conclude (5.18) of order ≤ |β|. Before going any further, we would
like to discuss the connection between distributional point values and pointwise
notions for measures.

1This definition of the order of a distributional point value is due to  Lojasiewicz [49, Sect.
8]. It is more general than those used in [20, 97, 109, 114], which are rather based on (5.23).
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Let us define the notion of Lebesgue density points. We denote by m the
Lebesgue measure on Rn and B(x0, ε) stands for the Euclidean ball with center
x0 ∈ Rn and radius ε > 0. A sequence {Bν}∞ν=0 of Borel subsets of Rn is said to
shrink regularly to a point x0 ∈ Rn if there is a sequence of radii {εν}∞ν=0 such
that limν→∞ εν = 0, Bν ⊆ B(x0, εν) for all ν, and there is a constant a > 0 such
that m(Bν) ≥ aεnν for all ν. We write Bν → x0 regularly.

Definition 5.3.1. We call x0 a Lebesgue density point of a (complex) Radon
measure µ if there is γx0 such that

lim
ν→∞

µ(Bν)

m(Bν)
= γx0 , (5.24)

for every sequence of Borel sets {Bν}∞ν=0 such that Bν → x0 regularly.

It is well known that almost every point x0 (with respect to the Lebesgue
measure) is a Lebesgue density point of µ. If dµ = fdm + dµs is the Lebesgue
decomposition of µ, namely, f ∈ L1

loc(Rn) and µs is a singular measure, then
f(x0) = γx0 a.e. with respect to m [80, Chap. 7]. If µ is absolutely continuous
with respect to the Lebesgue measure, then a density point of µ amounts to the
same as a Lebesgue point of its Radon-Nikodym derivative dµ/dm.

Example 5.3.1. If f ∈ L1
loc(Rn) has a Lebesgue point at x0, then it has a distri-

butional point value of order 0 at x0 and (5.23) holds with β = (1, 1, . . . , 1). More
generally if f = µ is a (complex) Radon measure, then it has distributional point
value of order 0 at a point x0 if and only if x0 is a Lebesgue density point of the
measure (cf. Definition 5.3.1).

Let us verify this fact. Clearly, upon considering the measure µ − γx0(= µ −
γx0m), one may assume that γx0 = 0. By decomposing into real and imaginary
parts, we can also assume that µ is real-valued. We should show that

|µ|(B(x0, ε)) = o(εn) as ε→ 0+ (5.25)

if and only if
µ(Bµ) = o(m(Bµ)) as ν →∞, (5.26)

for every sequence of Borel sets {Bν}∞ν=0 such that Bν → x0. Assume (5.25), if
Bν → x0, there is a sequence of radii {εν}∞ν=0 such that limν→∞ εν = 0, Bν ⊆
B(x0, εν) for all ν, and there is a constant a > 0 such that m(Bν) ≥ aεnν for all ν.
Then,

|µ(Bµ)| ≤ |µ|(Bµ) ≤ |µ|(B(x0, εν)) = o(εnν ) ≤ o(a−1m(Bν)) = o(m(Bν)).

Conversely, assume that (5.26) holds for every Bν → x0 regularly. For (5.25),
it is enough to show that if a sequence εν → 0+, there is a subsequence such
that |µ|(B(x0, ενk)) = o(εnνk). Write µ = µ+ − µ− in Hahn-Jordan decomposition
form [80] so that |µ| = µ+ + µ−. Find disjoint sets S+ and S− such that µ± are
respectively concentrated at S± and Rn = S− ∪ S+. Set B±ν = S± ∩ B(x0, εν).
There are indices {νk}∞k=0 such that at least one of the subsequences {B−νk}

∞
k=0 or
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{B+
νk
}∞k=0 shrinks regularly to x0. Say B+

νk
→ x0 regularly, then µ+(B(x0, ενk)) =

µ(B+
νk

) = o(m(B+
νk

)) = o(εnνk). But we also have µ(B(x0, ενk)) = o(B(x0, ενk)) =
o(εnνk) by hypothesis. Therefore, |µ|(B(x0, ενk)) = o(εnνk), since |µ| = µ+ + µ− =
µ+ + µ+ − µ.

Example 5.3.2. The notion of distributional point values applies to distributions
that are not necessarily locally integrable nor measures, but if f ∈ L1

loc(Rn), then
(5.23) reads as∫ x1

x0,1

∫ x2

x0,2

. . .

∫ xn

x0,n

f(y)(x− y)β−1dy =
γ(x− x0)β

β1
+ o(|x− x0||β|) as x→ x0,

(5.27)
where x = (x1, x2, . . . , xn), x0 = (x0,1, x0,2, . . . , x0,n) and 1 = (1, 1, . . . , 1). Observe
that (5.27) also makes sense for a measure µ, one simply has to replace f(y)dy
by dµ(y). In particular, µ(x0) = γ distributionally at every density point of µ,
namely, at points where we merely assume that

lim
ν→∞

µ(Iν)

vol(Iν)
= γ, (5.28)

for every sequence of hyperrectangles {Iν}∞ν such that x0 ∈ Iν for all ν ∈ N and
Iν → x0 regularly. In the latter case, the distributional point value of µ will not
be, in general, of order 0 but of order ≤ n and (5.23) holds with β = (2, 2, . . . , 2).
Notice that (5.28) for balls instead of hyperrectangles does not guarantee the
existence of the distributional point value at x0; in one variable, an simple example
is provided by the absolutely continuous measure with density dµ(x) = sgnxdx at
the point x0 = 0. Naturally, the distributional point value of µ exists under much
weaker assumptions than having a density point in the sense explained here, but if
the measure µ is positive, then the notion of distributional point values coincides
with that of density points, as shown by  Lojasiewicz in [49, Sect. 4.6].

Example 5.3.3. Let a ∈ C and b > 0. One can show that the function |x|a sin(1/|x|b)
has a regularization fa,b ∈ S ′ (Rn) that satisfies fa,b(x) = |x|a sin(1/|x|b) for x 6= 0
and fa (0) = 0 distributionally [50]. Observe that if <e a < 0 the function
|x|a sin(1/|x|b) is unbounded and if <e a ≤ −n it is not even Lebesgue integ-
rable near x = 0. If <e a < −n is fixed and b > 0 is small, the order of the point
value of fa,b at x = 0 can be very large.

Example 5.3.4. In one variable, it is possible to characterize the distributional
point values of a periodic distribution in terms of a certain summability of its
Fourier series [16]. Indeed, let f(x) =

∑∞
ν=−∞ cνe

iνx ∈ S ′(R); then f(x0) = γ
distributionally, if and only if there exists κ ≥ 0 such that

lim
x→∞

∑
−x<ν≤ax

cνe
iνx0 = γ (C, κ) , for each a > 0 ,

where (C, κ) stands for Cesàro summability. Remarkably, an analog result is true
for Fourier transforms in one variable [104, 109], but no such characterizations are
known in the multidimensional case.
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The result of Walter on pointwise convergence of multiresolution expansions
was generalized by Sohn and Pahk [97] to distributions of superexponential growth,
that is, elements of K′M(R). The important case M(x) = |x|p, p > 1, of K′M(Rn)
was introduced by Sznajder and Zieleźny in connection with solvability questions
for convolution equations [99].

Our goal here is to extend the results from [114, 97] to the multidimensional
case. In particular, we shall show the following result. Given an MRA {Vj}j∈Z of
L2(Rn), we denote by qj the orthogonal projection onto Vj. If the MRA admits a
scaling function from S(Rn), then qjf makes sense for f ∈ S ′(Rn).

Theorem 5.3.1. Let f ∈ S ′(Rn). Suppose that the MRA {Vj}j∈Z admits a scaling
function in S(Rn), then

lim
j→∞

(qjf)(x0) = f(x0)

at every point x0 where the distributional point value of f exists.

Our approach differs from that of Walter and Sohn and Pahk. The distri-
butional point values are defined by distributional limits, involving certain local
averages with respect to test functions from the Schwartz class of compactly sup-
ported smooth functions. We will show a general result that allows us to employ
test functions in wider classes for such averages (Theorem 5.3.3). This will lead
to quick proofs of various pointwise convergence results for multiresolution expan-
sions of distributions. Actually, our results improve those from [114, 97], even in
the one-dimensional case, because our hypotheses on the order of distributional
point values are much weaker. For instance, the next theorem on convergence of
multiresolution expansions to Lebesgue density points of measures appears to be
new and is not covered by the results from [39, 114].

Theorem 5.3.2. Suppose that the MRA {Vj}j∈Z has a continuous scaling function
φ such that lim|x|→∞ |x|lφ(x) = 0, ∀l ∈ N. Let µ be a tempered Radon measure on
Rn, that is, one that satisfies ∫

Rn

d|µ|(x)

(1 + |x|)k
<∞ (5.29)

for some k ≥ 0. Then
lim
j→∞

(qjµ)(x0) = γx0 (5.30)

at every Lebesgue density point x0 of µ, i.e., at every point where (5.24) holds for
every Bν → x0 regularly. In particular, the limit (5.30) exists and γx0 = f(x0)
almost everywhere (with respect to the Lebesgue measure), where dµ = fdm+ dµs
is the Lebesgue decomposition of µ.

It is worth comparing Theorem 5.3.1 with Theorem 5.3.2. On the one hand
Theorem 5.3.1 requires more regularity from the MRA, but on the other hand,
when applied to a tempered measure, it gives in turn a bigger set for the pointwise
convergence (5.30) of the multiresolution expansion of µ, because the set where
µ possesses distributional point values is larger than that of its Lebesgue density
points.
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In order to study pointwise convergence of multiresolution expansions, we will
first establish two results about distributional point values of tempered distribu-
tions and distributions of M -exponential growth. A priori, f(x0) = γ distribution-
ally gives us only the right to consider test functions fromD(Rn) in (5.20); however,
it has been shown in [108] that if f ∈ S ′(Rn) then the limit (5.19) holds in the
space S ′(Rn), namely, (5.20) remains valid for ϕ ∈ S(Rn) (see also [71, 106, 119]).
Theorem 5.3.3 below goes in this direction, it gives conditions under which the
functions ϕ in (5.20) can be taken from larger spaces than D(Rn). The next useful
proposition treats the case of distributions that vanish in a neighborhood of the
point.

Proposition 5.3.1. Let f ∈ K′M,r(Rn) (resp. f ∈ S ′r(Rn)) be such that x0 /∈
supp f and let B be a bounded subset of KM,r(Rn) (resp. Sr(Rn)). Then, for any
k ∈ N, there is Ck > 0 such that

|〈f(x0 + εx), ϕ(x)〉| ≤ Ckε
k, ∀ε ∈ (0, 1], ∀ϕ ∈ B. (5.31)

Proof. There are A,C > 0 and l ∈ N such that

|〈f, ψ〉| ≤ C sup
|α|≤r, |x−x0|≥A

eM(lx)|ψ(α)(x)| (5.32)

(
resp. |〈f, ψ〉| ≤ C sup

|α|≤r, |x−x0|≥A
(1 + |x|)l|ψ(α)(x)|

)
,

for all ψ ∈ KM,r(Rn) (resp. ψ ∈ Sr(Rn)). Let us consider first the case of
f ∈ K′M,r(Rn). Substituting ψ(y) = ε−nϕ(ε−1(x− x0)) in (5.32), we get

|〈f(x0 + εx), ψ(x)〉| ≤ CeM(2lx0)ε−n−r sup
|α|≤r, |y|≥A

eM(2ly)
∣∣∣ϕ(α)

(y

ε

)∣∣∣
≤ Cνr,2l+1(ϕ)eM(2lx0)ε−n−r sup

|y|≥A/ε
eM(2ly)−M((2l+1)y)

≤ Cνr,2l+1(ϕ)eM(2lx0)ε−n−re−M(A/ε),

which yields (5.31). The tempered case is similar. In this case (5.32) gives the
estimate

|〈f(x0 + εx), ϕ(x)〉| ≤ C(1 + |x0|)lε−n−r sup
|α|≤r, |y|≥A/ε

(1 + |y|)l
∣∣ϕ(α) (y)

∣∣
≤ Cρr,n+r+k+l(ϕ)(1 + |x0|)lA−n−r−kεk.

Theorem 5.3.3. Let f ∈ K′M,r(Rn) (resp. f ∈ S ′r(Rn)). If f(x0) = γ distribution-
ally of order ≤ r, then (5.19) holds strongly in K′M,r(Rn) (resp. f in S ′r(Rn)), that
is, the limit (5.20) holds uniformly for ϕ in bounded subsets of KM,r(Rn) (resp.
Sr(Rn)).
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Proof. We can decompose f as f = f1+γχB(x0,1)+
∑
|α|≤r µ

(α)
α , where x0 /∈ supp f1,

χB(x0,1) is the characteristic function of the ball B(x0, 1), and each µα is a Radon
measure with support in the ball B(x0, 1) and satisfies (5.22). Proposition 5.3.1
applies to f1, we may therefore assume that

f = γχB(x0,1) +
∑
|α|≤r

µ(α)
α .

Let B be a bounded set in KM,r(Rn) (resp. Sr(Rn)). Note that (5.22) implies that∑
|α|≤r

∫
Rn

d|µα|(x)

|x− x0|n+|α| = C <∞. (5.33)

We have,

lim sup
ε→0+

sup
ϕ∈B

∣∣∣∣〈f(x0 + εx), ϕ(x)〉 − γ
∫
Rn
ϕ(x)dx

∣∣∣∣
≤ lim sup

ε→0+
sup
ϕ∈B

∫
|x|≥1/ε

|ϕ(x)|dx +
∑
|α|≤r

ε−n−|α|
∫
Rn

∣∣∣∣ϕ(α)

(
x− x0

ε

)∣∣∣∣ d|µα|(x)


= lim sup

ε→0+
sup
ϕ∈B

∑
|α|≤r

ε−n−|α|
∫
Rn

∣∣∣∣ϕ(α)

(
x− x0

ε

)∣∣∣∣ d|µα|(x),

The boundedness of B implies that there is a positive and continuous function G
on [0,∞) such that tn+rG(t) is decreasing on (1,∞), limt→∞ t

n+rG(t) = 0, and
|ϕ(α)(x)| ≤ G(|x|) for all x ∈ Rn, |α| ≤ r, and ϕ ∈ B. Fix A > 1. By (5.22),
(5.33), and the previous inequalities,

lim sup
ε→0+

sup
ϕ∈B

∣∣∣∣〈f(x0 + εx), ϕ(x)〉 − γ
∫
Rn
ϕ(x)dx

∣∣∣∣
≤ lim

ε→0+

∑
|α|≤r

ε−n−|α|
∫
Rn
G

(
|x− x0|

ε

)
d|µα|(x)

≤ lim
ε→0+

∑
|α|≤r

||G||∞
|µα|(B(x0, εA))

εn+|α| + lim
ε→0

∑
|α|≤r

ε−n−|α|
∫
εA≤|x−x0|

G

(
|x− x0|

ε

)
d|µα|(x)

≤ CAn+rG(A).

Since the above estimate is valid for all A > 1 and An+rG(A)→ 0 as A→∞, we
obtain

lim
ε→0+

sup
ϕ∈B

∣∣∣∣〈f(x0 + εx), ϕ(x)〉 − γ
∫
Rn
ϕ(x)dx

∣∣∣∣ = 0,

as claimed.

We obtain the ensuing corollary.

Corollary 5.3.1. Let f ∈ K′M(Rn) (resp. f ∈ S ′(Rn) ). If f(x0) = γ distribu-
tionally, then the limit (5.19) holds in the space K′M(Rn) (resp. S ′(Rn)).
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Proof. In fact, there is r such that f ∈ K′M,r(Rn) (resp. f ∈ S ′r(Rn)) and f(x0) = γ
distributionally of order ≤ r.

We end this section with the announced result on pointwise convergence of
multiresolution expansions for distributional point values. We give a quick proof
based on Theorem 5.3.3.

Theorem 5.3.4. Let f ∈ K′M,r(Rn) (resp. f ∈ S ′r(Rn)). If {qλf}λ∈R is the
(generalized) multiresolution expansion of f in an (M, r)-regular (resp. r-regular)
MRA, then

lim
λ→∞

(qλf)(x0) = f(x0) (5.34)

at every point x0 where the distributional point value of f exists and is of order
≤ r.

Proof. Assume that f(x0) = γ distributionally of order r. Note first that

(qλf) (x0) = 〈f(y), qλ(x0,y)〉 =
〈
f(x0 + 2−λy), ϕλ(y)

〉
, (5.35)

where ϕλ(y) = q0(2λx0, 2
λx0+y). The relation (5.9) implies that

∫
Rn ϕλ(y)dy = 1.

Using the estimates (5.8), one concludes that {ϕλ : λ ≥ 0} is a bounded subset
of KM,r(Rn) (resp. Sr(Rn)). Finally, invoking Theorem 5.3.3, we get at once

lim
λ→∞

(qλf) (x0) = γ + lim
λ→∞

(〈
f(x0 + 2−λy), ϕλ(y)

〉
− γ

∫
Rn
ϕλ(y)dy

)
= γ.

Note that Theorems 5.3.1 and 5.3.2 are immediate consequences of Theorem
5.3.4. Moreover, we obtain the following corollary:

Corollary 5.3.2. Suppose that the MRA {Vj}j∈Z has a continuous scaling func-
tion φ such that lim|x|→∞ e

M(lx)φ(x) = 0, ∀l ∈ N. Let µ be a measure on Rn such
that ∫

Rn
e−M(kx)d|µ|(x) <∞, (5.36)

for some k ≥ 0. Then

lim
λ→∞

(qλµ)(x0) = γx0 (5.37)

at every Lebesgue density point x0 of µ, i.e., at every point where (5.24) holds
whenever Iν → x0 regularly. In particular, the limit (5.36) exists and γx0 = f(x0)
almost everywhere (with respect to the Lebesgue measure), where dµ = fdm+ dµs
is the Lebesgue decomposition of µ.

Let us also remark that if the MRA in Corollary 5.3.2 (resp. in Theorem 5.3.2)
is (M,n)-regular (resp. n-regular), then (5.37) holds at every density point of µ
(in the sense explained in Example 5.3.2).
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5.4 Quasiasymptotic Behavior via multiresolu-

tion expansions

In this last Section we will study the quasiasymptotic behavior of a distribution
at a point through multiresolution expansions. The quasiasymptotic behavior is
a natural extension of  Lojasiewicz’ notion of distributional point values. It was
introduced by Zav’yalov in connection with various problems from quantum field
theory [113] and basically measures the pointwise scaling asymptotic properties
of a distribution via comparison with Karamata regularly varying functions. We
remark that the quasiasymptotic behavior is closely related to Meyer’s pointwise
weak scaling exponents [55]. For studies about wavelet analysis and quasiasymp-
totics, we refer to [70, 72, 86, 87, 95, 110].

In [70], Pilipović, Takači, and Teofanov studied the quasiasymptotic properties
of a tempered distribution f in terms of its multiresolution expansion {qjf} with
respect to an r-regular MRA. A similar study was carried out by Sohn [95] for
distributions of exponential type. There, it was wrongly stated in [70, Thrm. 3]
that if a tempered distribution f ∈ S ′r(Rn) has quasiasymptotic behavior at the
origin, then each of its projections qjf , with respect to an r-regular MRA, has
the same quasiasymptotic behavior as f . An analog result was claimed to hold
in [95, Thrm. 3.2] for distributions of exponential type (i.e., elements of K′M(R)
with M(x) = |x|). Unfortunately, such results turn out to be false (see Example
(5.4.1)). We will provide an appropriate characterization of the quasiasymptotic
behavior in terms of multiresolution expansions. As an application, we give an
MRA criterion for the determination of (symmetric) α-density points of measures.

Throughout the rest of this section, L always stands for an slowly varying
function at the origin and α stands for a real number. Recall Definitions 2.7 and
2.9 for quasiasymptotic behavior (quasiasymptotic) of distributions.

Example 5.4.1. Consider f = δ, the Dirac delta. Since δ is a homogeneous
distribution of degree −n, the relation (2.9) trivially holds with x0 = 0, g = δ,
α = −n, and L identically equal to 1. On the other hand,

qjf(x) = 2jn
∑
m∈Zn

φ(m)φ(2jx + m).

So, qjf(0) = 2jn
∑

m∈Zn(φ̂ ∗ ̂̄φ)(2πm), as follows from the Poisson summation

formula. If we assume that φ̂ is positive and symmetric with respect to the origin,
we get that qjf(0) ≥ 2j||φ̂||22 > 0. So

(qjf)(εx) = (qjf)(0) + o(1) as ε→ 0+ in D′(Rn).

In particular, qjf cannot have the same quasiasymptotic behavior ε−nδ(x)+o(ε−n)
as f , contrary to what was claimed in [70, 95].

The fact that each qjf is a continuous function prevents it to have quasiasymp-
totics of arbitrary degree. For instance, as the previous example, if (qjf)(0) 6= 0,
the only quasiasymptotics at 0 that qjf could have is a distributional point value.
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Moreover, if the MRA admits a scaling function from S(Rn) and f ∈ S ′(Rn), then
each qjf ∈ C∞(Rn); consequently, the only quasiasymptotics that qjf can have is
of order α = k ∈ N with respect to the constant slowly varying function L = 1,
and the g in this case must be a homogeneous polynomial of degree k. Neverthe-
less, as shown below, the quasiasymptotics of distributions can still be studied via
multiresolution expansions if one takes a different approach from that followed in
[70, 95]. The next theorem is a version of Theorem 5.3.3 for quasiasymptotics.

Theorem 5.4.1. Let f ∈ K′M(Rn) (resp. f ∈ S ′(Rn)). If f has the quasiasymp-
totic behavior (2.9), then there is r ∈ N such that f ∈ K′M,r(Rn) (resp. f ∈ S ′r(Rn))
and

lim
ε→0+

f(x0 + εx)

εαL(ε)
= g(x) strongly in K′M,r(Rn) (resp. S ′r(Rn)). (5.38)

In particular, the limit (2.7) is also valid for all ϕ ∈ KM(Rn) (resp. ϕ ∈ S(Rn)).

Proof. We actually show first the last assertion, i.e., that (??) is valid for all test
functions from KM(Rn) (resp. ∈ S(Rn)). So, let ϕ ∈ KM(Rn) (resp. ϕ ∈ S(Rn)).
Decompose f = f1 + f2 where x0 /∈ supp f1 and f2 has compact support. Clearly,
f2 has the same quasisymptotics at x0 as f . Furthermore, a theorem of Zav’yalov
[119] (see also [71, Thrm. Cor. 7.3]) 〈f2(x0 + εx), ϕ(x)〉 ∼ εαL(ε)〈g(x), ϕ(x)〉 as
ε → 0+. By the well-known properties of slowly varying functions [93], we have
that ε = o(L(ε)) as ε→ 0+ (indeed, εσ = o(L(ε)), for all σ > 0 citeSeneta). Take
a positive integer k > α+1, then εk = o(εαL(ε)) as ε→ 0+. Applying Proposition
5.3.1,

〈f(x0 + εx), ϕ(x)〉 = εαL(ε)〈g(x), ϕ(x)〉+ o(εαL(ε)) + 〈f1(x0 + εx), ϕ(x)〉
= εαL(ε)〈g(x), ϕ(x)〉+ o(εαL(ε)) +O(εk)

= εαL(ε)〈g(x), ϕ(x)〉+ o(εαL(ε)) as ε→ 0+,

as asserted. Because of the Montel property of KM(Rn) (resp. S(Rn)),

lim
ε→0+

f(x0 + εx)

εαL(ε)
= g(x) strongly in K′M(Rn) (resp. S ′(Rn)). (5.39)

The existence of r fulfilling (5.38) is a consequence of (5.39) and the representation
(1.13) (resp. (1.14)) of K′M(Rn) (resp. S ′(Rn)) as a regular inductive limit.

We also have a version of Theorem 5.3.4 for quasiasymptotics.

Theorem 5.4.2. Let f ∈ K′M,r(Rn) (resp. f ∈ S ′r(Rn)) satisfy (5.38). If {qλf}λ∈R
is the multiresolution expansion of f in an (M, r)-regular (resp. r-regular) MRA,
then {(qλf)(x0)}λ has asymptotic behavior

(qλf)(x0) = L(2−λ)(qλgx0)(x0) + o(2−αλL(2−λ)) as λ→∞, (5.40)

where gx0(y) = g(y − x0).
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Proof. The proof is similar to that of Theorem 5.3.4. By (5.35), (5.38), the ho-
mogeneity of g, and the fact that the net {ϕλ}λ∈R is bounded, we get

(qλf)(x0)〈f(x0 + 2−λy), ϕλ(y)〉
= 2−αλL(2−λ)〈g, ϕλ〉+ o(2−αλL(2−λ))

= L(2−λ)(qλgx0)(x0) + o(2−αλL(2−λ)) as λ→∞.

Corollary 5.4.1. Let f ∈ S ′(Rn). Suppose that the MRA admits a scaling func-
tion φ ∈ S(Rn). Then (5.40) holds at every point where (2.9) is satisfied.

Note that if α = k ∈ N, k ≤ r, and g = P is a homogeneous polynomial of
degree k, then (5.40) becomes (qλf)(x0) ∼ 2−kλL(2−λ)P (0) as λ→∞, as follows
from (5.9); so that one recovers Theorem 5.3.4 if k = 0. On the other hand, if
k > 0, we only get in this case the growth order relation (qλf)(x0) = o(2−kλL(2−λ))
as λ→∞.

It was claimed in [95] and [70] that the quasiasymptotic properties of f at
x0 = 0 can be obtained from those of {qjf}j∈Z. The theorems [?, Thrm. 4] and
[95, Thrm. 3.2] also turn out to be false. The next theorem provides a character-
ization of quasiasymptotics in terms of slightly different asymptotic conditions on
{qλf}λ∈R, which amend those from [70, Thrm. 4].

Theorem 5.4.3. Suppose that the MRA is (M, r)-regular (resp. r-regular). Then,
a distribution f ∈ K′M,r(Rn) (resp. f ∈ S ′r(Rn)) satisfies

lim
ε→0+

f(x0 + εx)

εαL(ε)
= g(x) weakly∗ in K′M,r(Rn) (resp. S ′r(Rn)). (5.41)

if and only if

lim
ε→0+

(q 1
ε
f)(x0 + εx)

εαL(ε)
= g(x) weakly∗ in K′M,r(Rn) (resp. S ′r(Rn)) (5.42)

and

f(x0 + εx) = O(εαL(ε)) as ε→ 0+ in K′M,r(Rn) (resp. S ′r(Rn)), (5.43)

in the sense that 〈f(x0 + εx), ϕ(x)〉 = O(εαL(ε)) for all ϕ ∈ KM,r(Rn) (resp.
ϕ ∈ Sr(Rn)).

Remark 5.4.1. The relation (5.41) holds strongly in K′M,r+1(Rn) (resp. S ′r+1(Rn)).

Proof. Observe that (5.41) trivially implies (5.43). Our problem is then to show
the equivalence between (5.41) and (5.42) under the assumption (5.43). Define
the kernel

Jε(x,y) = q21/εε,21/εx0
(y,x) = εn2n/εq0(ε21/εy+21/εx0, ε2

1/εx+21/εx0), x,y ∈ Rn,
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and the operator

(Jεϕ)(x) =

∫
Rn
Jε(x,y)ϕ(y)dy, ϕ ∈ KM,r(Rn) (resp. ϕ ∈ Sr(Rn)).

Theorem 5.2.2 implies that Jε is an approximation of the identity in these spaces,
i.e., for every test function limε→0+ Jεϕ = ϕ in KM,r(Rn) (resp. in Sr(Rn)). The
Banach-Steinhaus theorem implies that{

f(x0 + εx)

εαL(ε)
: ε ∈ (0, 1)

}
is an equicontinuous family of linear functionals, hence

lim
ε→0+

〈
f(x0 + εy)

εαL(ε)
, (Jεϕ)(y)− ϕ(y)

〉
= 0,

for each test function ϕ. Notice that

〈(q1/εf)(x0 + εx), ϕ(x)〉 = 〈〈f(y), q1/ε(x0 + εx,y)〉, ϕ(x)〉
= 〈f(x0 + εy), (Jεϕ)(y)〉,

and so,〈
(q1/εf)(x0 + εx)

εαL(ε)
, ϕ(x)

〉
=

〈
f(x0 + εy)

εαL(ε)
, ϕ(y)

〉
+ o(1) as ε→ 0+,

which yields the desired equivalence.

We illustrate Theorem 5.4.3 with a application to the determination of (sym-
metric) α-dimensional densities of measures. Let α > 0 and let µ be a Radon
measure. Following [11, Def. 2.14], we say that x0 is an α-density point of µ if
the limit

θα(µ,x0) := lim
ε→0+

µ(B(x0, ε))

ωαεα

exists (and is finite), where the normalizing constant is ωα = πα/2Γ(α+ 1/2). The
number θα(µ,x0) is called the (symmetric) α-density of µ at x0. The ensuing pro-
position tells us that if a positive measure has a certain quasiasymptotic behavior
at x0, then θα(µ,x0) exists.

Proposition 5.4.1. Let µ be a positive Radon measure and let α > 0. If µ has
the quasiasymptotic behavior

µ(x0 + εx) = εα−nL(ε)υ(x) + o(εα−nL(ε)) as ε→ 0+, in D′(Rn), (5.44)

then

lim
ε→0+

µ(x0 + εB)

εαL(ε)
= υ(B), for every bounded open set B. (5.45)

In particular, if L is identically 1 and dυ(x) = `|x|α−ndx, then x0 is an α-density
point of µ and in fact

θα(µ,x0) =
ωn`

αωα
. (5.46)
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Proof. By translating, we may assume that x0 = 0. The quasiasymptotic behavior
(5.45) then means that∫

Rn
ϕ
(x

ε

)
dµ(x) ∼ εαL(ε)

∫
Rn
ϕ(x)dυ(x) as ε→ 0+, (5.47)

for each ϕ ∈ D(Rn). Let σ > 0 be arbitrary. Find open sets Ω1 and Ω2 such that
Ω1 ⊂ B ⊂ B ⊂ Ω2 and υ(Ω2 \ Ω1) < σ. We now select suitable test functions in
(5.47). Find ϕ1, ϕ2 ∈ D(Rn) such that 0 ≤ ϕj ≤ 1, j = 1, 2, ϕ2(x) = 1 for x ∈ B,
suppϕ2 ⊆ Ω2, ϕ1(x) = 1 for x ∈ Ω1, and suppϕ1 ⊆ B. Then,

lim sup
ε→0+

µ(εB)

εαL(ε)
≤ lim

ε→0+

1

εαL(ε)

∫
Rn
ϕ2

(x

ε

)
dµ(x) =

∫
Rn
ϕ2(x)dυ(x) ≤ υ(Ω2)

≤ υ(B) + σ.

Likewise, using ϕ1 in (5.47), one concludes that

lim inf
ε→0+

µ(εB)

εαL(ε)
≥
∫
Rn
ϕ1(x)dυ(x) ≥ υ(B)− σ .

Since σ was arbitrary, we obtain (5.45). The last assertion follows by taking
B = B(0, 1) and noticing that in this case υ(B(0, 1)) = `

∫
|x|<1
|x|α−ndx = `ωn/α,

which yields (5.46).

We end with an MRA criterion for α-density points of positive measures.

Corollary 5.4.2. Suppose that the MRA is (M, r)-regular (resp. r-regular) and
let µ be a positive Radon measure that satisfies (5.36) (resp. (5.29)). If

µ(B(x0, ε)) = O(εα) as ε→ 0+, (5.48)

and

lim
ε→0+

(q 1
ε
µ)(x0 + εx)

εα−n
= `|x|α−n weakly∗ in K′M,r(Rn) (resp. S ′r(Rn)), (5.49)

then µ possesses an α-density at x0, given by (5.46).

Proof. Let us show that (5.48) leads to (5.43) with f = µ and α replaced by α−n.
Indeed, write µ = µ1 + µ2, where µ1(V ) := µ(V ∩B(x0, 1)) for every Borel set V .
Let ϕ ∈ KM,r(Rn) (resp. ϕ ∈ Sr(Rn)). Set C = supx∈Rn |x|α|ϕ(x)| < ∞ . The
condition (5.48) implies that

∫
Rn |x − x0|−αdµ(x) < ∞. Using Proposition 5.3.1

and (5.48),

|〈µ(x0 + εx), ϕ(x)| ≤ ε−n
∫
Rn

∣∣∣∣ϕ(x− x0

ε

)∣∣∣∣ dµ1(x) +O(εα)

= ε−n
∫
ε≤|x−x0|

∣∣∣∣ϕ(x− x0

ε

)∣∣∣∣ dµ1(x) +O(εα−n)

≤ Cεα−n
∫
Rn

dµ(x)

|x− x0|α
+O(εα−n) = O(εα−n).

Theorem 5.4.3 implies that µ has the quasiasymptotic behavior

µ(x0 + εx) = `|εx|α−n + o(εα−n) as ε→ 0+, in D′(Rn),

and the conclusion then follows from Proposition 5.4.1.
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[62] Pilipović, S., Tempered ultradistributions, Boll. Un. Mat. Ital. B (7)2, (1988),
235–251.
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Izvod: U ovoj doktorskoj disertaciji razmotreni su nekoliko in-
tegralne transformacije. Prva je short time Fourier transform (STFT).
Date su i dokazane teoreme o neprekidnosti STFT i ǌena sinteza na
prostoru test funkcije K1(Rn) i na prostoru K1(Rn)⊗̂U(Cn) gde U(Cn)
je prostor od celih brzo opadajuqe funkcije u proizvoǉni horizont-
alni opseg na Cn. Onda, ove rezultate neprekidnosti su iskoristeni za
ravijaǌe teorije STFT na prostoru K′1(Rn). Jedno poglavje je posveqeno
karakterizacije K′1(Rn) sa srodnih modulaciskih prostora. Dokazani
su i razliqitih Tauberovi rezultata za STFT.
Deo teze je posveqen na ridglet i Radon transformacije. Ridgelet trans-
formacija je definisana na (Lizorkin) distribucije i pokazano je da
ridgelet transformacija i ǌen operator sinteze mogu da se proxire
kako neprekidna preslikavaǌa Rψ : S ′0(Rn)→ S ′(Yn+1) i Rt

ψ : S ′(Yn+1)→
S ′0(Rn). Ridgelet transformacija na S ′0(Rn) je data preko dualnog pris-
tupa. Naxe teoreme neprekidnosti ridgelet transformacije su primeǌeni
u dokazivaǌu neprekidnosti Radonove transformacije na Lizorkin
test prostorima i ǌihovim dualima. Na kraju, dajemo Abelovih i
Tauberovih teorema koi daju veze izme�u kvaziasimptotike distribu-
cija i kvaziasimptotike rigdelet i Radonovog transfomaciju.
Zadǌe poglavje je posveqenu multirezolucijskog analizu M - eksponen-
cijalnih distrubucije. Prouqavamo konvergenciju multirezolucijkog
razvoju u razliqitih prostori test funkcije i distribucije i razmo-
trena je toqkasta konvergencija multirezolucijkog razvoju u taqku u
distributivnog smislu. Obezbe�ena je i karakterizacija kvaziasimp-
totike u pogled multirezolucijskog razvoju i dajemo dovoǉni uslov
za postojeǌe α -taqka gustine za pozitivne mere.
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