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[1] Assessing health risk in hydrological systems is an interdisciplinary field. It relies
on the expertise in the fields of hydrology and public health and needs powerful translation
concepts to provide decision support and policy making. Reliable health risk estimates
need to account for the uncertainties and variabilities present in hydrological,
physiological, and human behavioral parameters. Despite significant theoretical
advancements in stochastic hydrology, there is still a dire need to further propagate these
concepts to practical problems and to society in general. Following a recent line of
work, we use fault trees to address the task of probabilistic risk analysis and to support
related decision and management problems. Fault trees allow us to decompose the
assessment of health risk into individual manageable modules, thus tackling a complex
system by a structural divide and conquer approach. The complexity within each module
can be chosen individually according to data availability, parsimony, relative importance,
and stage of analysis. Three differences are highlighted in this paper when compared

to previous works: (1) The fault tree proposed here accounts for the uncertainty in both
hydrological and health components, (2) system failure within the fault tree is defined
in terms of risk being above a threshold value, whereas previous studies that used fault
trees used auxiliary events such as exceedance of critical concentration levels, and (3) we
introduce a new form of stochastic fault tree that allows us to weaken the assumption
of independent subsystems that is required by a classical fault tree approach. We illustrate
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our concept in a simple groundwater-related setting.
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1. Introduction

[2] Assessing the impact of water pollutants on human
health relies on our ability to accurately assess two things: first,
the transport and possible reactions between contaminants
in a hydrosystem and, second, evaluating the physiological
response of humans to such contaminants and the resulting
adverse effects on human health [e.g., Andricevic and Cvetkovic,
1996; Maxwell et al., 1998; Maxwell and Kastenberg, 1999;
Maxwell et al., 1999; Benekos et al., 2007; de Barros and Rubin,
2008; Maxwell et al., 2008]. Notoriously, both of these fields
contain uncertainty for a variety of reasons. These include the
lack of characterization data, inadequate conceptual models,
and the occurrence of natural variability in both hydrosystems
and health components [Bogen and Spear, 1987; McKone and
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Bogen, 1991; Burmaster and Wilson, 1996; Maxwell and
Kastenberg, 1999]. Given such uncertainties, following the
traditional route of making single deterministic predictions for a
given scenario has little practical purpose [U.S. Environmental
Protection Agency (EPA), 2001]. This fact has been recog-
nized in recent times by many large-scale government reg-
ulatory bodies. As a consequence, they increasingly insist
on the use of probabilistic approaches that include esti-
mates in uncertainty of risk [e.g., Rubin et al., 1994; Andricevic
and Cvetkovic, 1996; Davison et al., 2005; Persson and
Destouni, 2009].

[3] In an ideal world with extensive computational
resources, one might try to tackle such water-related health
impact problems in a probabilistic framework by running
high-resolution Monte Carlo simulations of the entire
interacting system at full complexity. However, the multi-
component (and multiscale) nature of these problems can
often render such an approach difficult (if not impossible) to
implement in practice. On the hydrological side of the
problem, heterogeneity in many physical and chemical
parameters can range over multiple orders of magnitude and
lead to scale dependence of process descriptions. Depending
on the specific problem at hand and the contaminants in
question, the number of required parameters can be very
large, far beyond parsimony, with limited spatial resolution
of the hydrosystem [Rubin, 2003; Tartakovsky and Winter,
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2008]. Similarly, on the health side, natural variability in
human behavior, age, body type, and genetic characteristics
(to mention but a few) lead to large variability in physio-
logical parameters [e.g., Maxwell and Kastenberg, 1999].

[4] Apart from the unresolved issues with natural variability
that occur in both parts of the system, it is not even entirely
clear that the conceptual mathematical models used in each
field are fully appropriate. For example, in hydrogeology,
there is an ever-increasing number of field, laboratory, and
numerical data sets, indicating that “anomalous” behavior (i.e.,
non-Fickian phenomena that cannot be described by the
traditional advection dispersion equation approaches) may, in
fact, not be all that anomalous, but rather the rule [e.g.,
Gelhar et al., 1992; Sidle et al., 1998; Silliman et al., 1997,
Levy and Berkowitz, 2003; Fiori et al., 2007]. Such anoma-
lies, observed in conservative transport, pose even further
complications for the transport of reactive solutes [Raje and
Kapoor, 2000; Gramling et al., 2002]. However, there is a
continuous emergence of new models that appear capable of
capturing these effects [e.g., Neuman and Tartakovsky, 2009;
Benson and Meerschaert, 2008; Donado et al., 2009; Bolster
et al., 2010; Edery et al., 2009]. On the health side, many
of the mathematical dose-response models rely on linear
extrapolation of data from high-dose laboratory experiments
on animals [Fjeld et al., 2007], which do not take into account
the possibility of nonlinear behavior at lower doses [Bogen
and Spear, 1987; McKone and Bogen, 1991; Burmaster and
Wilson, 1996]. In response to these limitations and uncer-
tainties on both sides of the problem, a recent series of papers
has emerged that quantified the relative gain in overall infor-
mation from enhanced characterization in each component in
probabilistic health risk assessment [de Barros and Rubin,
2008; de Barros et al., 2009].

[5] As with many applied sciences and engineering dis-
ciplines, the correct implementation of assessing health-
related risk in hydrosystems is an interdisciplinary field.
It relies on the expertise of hydrologists and physiologists/
toxicologists as well as a potentially large number of other
disciplines, depending on the specific problem being con-
sidered. Additionally, in practical situations, stakeholders
(e.g., managers, politicians, judges, etc.), who are given the
responsibility of making decisions within such complex
systems, are typically only experts in one field at most. As a
result, there is a strong need to communicate information
across interfaces between different fields in an efficient
and comprehensible manner, which is rarely an easy task
[McLucas, 2003]. For example, despite significant theoret-
ical advancements in stochastic hydrogeology over the last
several decades, stronger efforts are still needed to transfer
this knowledge to applications (see discussions by Rubin
[2003], Christakos [2004], Freeze [2004], Rubin [2004],
and Pappenberger and Beven [2006]).

2. Goals, Approach, and Contribution

[6] In this work, we propose a formal probabilistic risk
analysis (PRA) that relies on the use of fault trees and can
address all of the above mentioned issues. Fault trees
have commonly been used in risk assessment concerning
engineered systems [e.g., Bedford and Cooke, 2003]. How-
ever, for a variety of reasons, e.g., because hydrosystems are
composed of a mixture of natural and engineered compo-
nents that complicates matters, this approach has been
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receiving increasing attention in the hydrological community
[Tartakovsky, 2007; Winter and Tartakovsky, 2008; Bolster
et al., 2009]. The basic idea of this methodology is simple
and can be summarized as a divide and conquer approach: It
consists of taking a large and complex system that is difficult
to handle and dividing it into a series of quasi-independent
simpler systems (modules) that are manageable on an indi-
vidual scale. Once each of the smaller problems has been
addressed, they can be recombined in a systematic manner to
look at the large system. According to Bedford and Cooke
[2003], a rigorous PRA based on a fault tree should consist
of the following steps.

[7] 1. Define failure of the system to be examined, where
system failure must be defined a priori by stakeholders.

[8] 2. Identify the key components of the system and all
events that must occur for the system to fail.

[s] 3. Construct a fault tree that visually depicts the
combination of these events.

[10] 4. Develop a mathematical representation of the fault
tree by using Boolean algebra.

[11] 5. Compute the probabilities of occurrence of each event.

[12] 6. Use these to calculate the probability of failure for
the entire system.

[13] The advantages of the divide and conquer approach
is that for a well-developed fault tree, each key component
or event should be quasi-independent from all others (i.e.,
if there is a dependence, it should be weak). Therefore, each
event can be tackled without explicit knowledge of all
others. For example, in the work by Bolster et al. [2009],
each of the events was studied by a different person without
mutual interaction. This opens the gateway for interdisci-
plinary cooperation, as each component can be addressed
independently by the most appropriate expert.

[14] Additionally, a decision maker can use the fault tree
to visually understand where risk and uncertainty emerge
from in this system, without having to enter into the com-
plex details of each component. In some sense, the fault tree
acts as a translator of information between experts in dif-
ferent fields, thus enabling better decision making.

[15] Another benefit of such a fault tree approach is that
one can work with each individual component: For instance,
one can replace the method of examining each component
without having to touch the others. This can be thought of as
analogous to the object-oriented approach to programming,
where one only updates the necessary objects as the demand
arises, without having to rewrite an entire code. This enables
better allocation of resources and incorporation of more
advanced theories and data sets as they become available.
For example, as a starting point, one can use simple calcu-
lations to study each component. With such an initial esti-
mate, one can identify the events that contribute most to
the final risk or those that propagate the highest degree
of uncertainty through the system. This information can
be used to allocate further resources to these dominant
events, and more sophisticated and detailed models can be
pursued for these events as new data or advanced theoretical
models become available. Moreover, it can be use toward
rational allocation of resources for further data acquisition
[de Barros et al., 2009; Nowak et al., 2010] within a dynamical
and adaptive framework. Thus, fault trees can structure and
guide one through the entire process of PRA, from initial
screening to additional investigations and refinement to the
final conception of risk management strategies.
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[16] The purpose of this work is to extend the fault tree
framework used by Bolster et al. [2009] to account for
both hydrology and human physiological and behavioral
characteristics. We develop this idea by unifying the frame-
work provided by Bolster et al. [2009] with the ideas of
Maxwell and Kastenberg [1999], Maxwell et al. [1999], and
de Barros and Rubin [2008]. Bolster et al. [2009] defined
system failure by exceeding a regulatory threshold concen-
tration. In contrast, we define the ultimate prediction goal
(i.e., human health risk) to be the center of attention and
define system failure as exceeding a threshold risk value
(as done by Maxwell and Kastenberg [1999]). Such
threshold risk is often given by environmental regulation
bodies for the sensitive target at stake [e.g., EPA, 2001].
The novelty here lies in constructing a fault tree analysis
that includes the uncertainty and variability from both
hydrological and human health risk parameters. One of
the new key features of this choice is that it allows us to
investigate the role of health-related variability and uncer-
tainty in decision making. For instance, if the concentra-
tion value at a drinking water supply is higher than that
allowed but the characteristics of exposed individuals are
such that little of that contamination is ingested or metab-
olized, then individuals might be at little or no risk.

[17] We begin by defining the problem formulation and
presenting a generic methodology for developing fault trees in
hydrological systems. More precisely, we propose a stochastic
fault tree method. To elucidate this process and demonstrate
its strengths, we present a specific illustrative example. We
consider a simple groundwater contamination scenario, illus-
trating how system failure and related uncertainty therein
changes (1) according to the physical characteristics of the
flow and transport problem and (2) for different levels of
uncertainty and variability in the health component.

3. Problem Formulation

3.1. Coexistence of Water-Related Health Hazards

[18] Surface or groundwater can be polluted by the
presence of many different chemicals (either organic or
inorganic) as well as pathogenic microorganisms (bacteria,
protozoa, and viruses) [e.g., Molin and Cvetkovic, 2010].
Exposure of humans to polluted water through ingestion,
inhalation, or skin contact may produce a number of dif-
ferent diseases. Whether one of these potential diseases is
developed in a given individual depends not only on the
toxicity of the pollutant but also on the metabolism of the
individual, personal habits of the individual’s water-related
practices, and, finally, consumption and exposure habits.

[19] Diseases can be either caused by accumulation over the
years or by acute exposure, i.¢., over a very short period of time.
Synergetic effects may cause the same pollutant to have dif-
ferent toxicity in different parts of the world; for example, lung
cancer may be caused by drinking water with a high concen-
tration of trihalomethanes, but it is also likely to be developed
in people living in areas with heavy atmospheric pollution.

[20] Obviously, for a given hazardous substance, when
either concentration or time of exposure increases, so does
the potential (risk) of developing a disease. Actual existing
models are highly disputable since most of them are extra-
polations from high-dose laboratory experiments carried
out on animals such as mice to low-dose effects on humans
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[e.g., McKone and Bogen, 1991]. We denote ri(x, t), i = 1,
..., IV, as the risk associated with the development of a given
adverse health effect for a given pollutant, with N being the
number of chemicals released. In general, 7; are supposed to
be small values (otherwise, the problem is considered pan-
demic). Thus, the potential development of two or more dis-
eases at exactly the same time can be considered negligible,
and total risk can be taken as the sum of the individual risks:

N
r(x, 1) = Z:r,-(x, 7). (1)

3.2. Evaluating Health Risk for a Particular Substance
and Exposure Pathway

[21] The starting point for this section is to formulate
human health risk for a single substance i in probabilistic
terms following de Barros and Rubin [2008]. Depending on
the particular contaminant, there are a number of models to
evaluate the risk [Maxwell and Kastenberg, 1999; Morales
et al., 2000; Fjeld et al., 2007; de Barros et al., 2009;
Molin et al., 2010].

[22] In order to simplify the discussion, let us consider a
carcinogenic contaminant. The increased lifetime cancer risk
r due to the groundwater ingestion pathway (chronic expo-
sure) for an individual is expressed by an assumed linear
model as [EPA, 1989]

r(x,t) = BC(x,t), (2)

where concentration C(x, ¢) (mg/L) is an outcome of all the
relevant flow, transport, and transformation processes in the
system at hand. Here (3 is a lumped parameter that accounts
for all the behavioral and physiological parameters:

IR x ED x EF
7= "Bwxar > G)
where IR (L/d) denotes the ingestion rate, ED (years) repre-
sents exposure duration, EF (d/yr) is the exposure frequency,
BW (kg) is the body weight, AT (days) is the average time,
and Sf, is the slope factor (kg d/mg), obtained from experi-
ments. Note that C can represent a point concentration or a
flux-averaged concentration. In most health risk applications,
C corresponds either to the peak concentration or to an aver-
aged concentration over the exposure period at a environ-
mentally sensitive target [see Maxwell and Kastenberg, 1999].
All the health parameters are values corresponding to an
individual from the exposed population. These parameters
contain some level of uncertainty and vary from individual to
individual [Dawoud and Purucker, 1996]. A large degree of
uncertainty is present in Sf, because of the animal to human
extrapolation [McKone and Bogen, 1991]. Expression (2) is
merely a simplification of a more general model that includes
several exposure pathways, contaminant dependencies, and
nonlinearities [Maxwell and Kastenberg, 1999; Morales et al.,
2000; Fjeld et al., 2007; de Barros et al., 2009]:

r(x,t) = B [C(x,t) — C&]™ + Bu[C(x,t) — CH]™
+6s[Cx,t) — 5™, 4)

where the subscripts G, H, and S stand for ingestion, inha-
lation, and contact through skin, respectively, and 3; are
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Figure 1. Schematic depiction of the contamination sce-
nario considered in this work. Several potential sources
SO;, i =1, ..., N, are considered. Each source implies the
combination of a potentially hazardous solute located in a
given (sometimes unknown) location.

coefficients that relate to the toxicities of the substance for
each pathway. C¥is the corresponding threshold value, i.e., a
value below which we do not expect any adverse effects for an
individual. These threshold values are pollutant dependent.
The exponents mg, my, and mg determine the nonlinearity of
each dose-response curve [Fjeld et al., 2007]. In the case of
carcinogenic compounds, the EPA suggests using a zero
value. This indicates that no matter how small the concen-
tration is in water, risk is never null [EPA, 1989, 1991]. An
alternative is using the detection limit given by the chemical
analytical method. Equation (4) can only be used if each
individual term C; is above C% otherwise, the individual term
should be removed from the equation.

[23] For the sake of discussion but without loss of gener-
ality, we will work with the model expressed in equation (2)
to demonstrate the modular character of the methodology
proposed. It will serve to illustrate the purpose and exchange
character of the suggested methodology. Still, at any time,
more complex risk models, such as equation (4), can be
incorporated. The only prerequisite is that sufficient data
should be available to justify any more complex choice [see
Troldborg et al., 2008, 2009].

3.3. Stochastic Representation of Human Health Risk

[24] According to equation (2), risk is the product of two
quantities, both of them uncertain. Uncertainty in 5 comes
from the imperfect characterization (and lack of knowledge)
of the toxicity. However, ( is also variable since its value
varies from individual to individual within the exposed
population. Values of 3 also vary according to the popula-
tion cohort such as age groups and gender [Yu et al., 2003;
Maddalena and McKone, 2002]. Maxwell et al. [1998] and
Maxwell and Kastenberg [1999] reported that the impact of
the variability in 8 on risk is very significant.

[25] The remaining issue is to evaluate the contaminant
concentration at any particular point within an environ-
mentally sensitive target (€2,) over a period of time £,, C(x €
€,, t,), and to quantify its uncertainty. Spatial variability
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and uncertainty in concentration is due to the ubiquitous het-
erogeneity in physical and biochemical processes, boundary
conditions, and contaminant release patterns. The processes
involved are solute and soil dependent and might include
advection, diffusion, dispersion, sorption, precipitation and
dissolution, redox processes, cation exchange, evaporation
and condensation, microbial or chemical transformation, and
decay. For any given substance, an appropriate model is
written as a governing equation that depends on a number of
parameters. In most applications, there is a need to be careful
with the problem of scales since both the relevant processes
and the representative parameters are often scale dependent.

[26] Accepting that C(x € €2, t,) and 3 are uncertain, the
resulting risk 7 is regarded as a random function R, with a
cumulative distribution function (CDF) Fr(r) = Prob(R < r).
Thus, it is convenient to formulate risk in terms of exceed-
ing probabilities [e.g., Andricevic and Cvetkovic, 1996; de Barros
and Rubin, 2008]:

Prob(R > reit) = 1 — Fr(ret), (5)

with 7. representing an environmentally regulated value, for
instance, 7 = 10 or 107* [EPA, 1989].

[27] Uncertainty in the concentration can be reduced by
conditioning on measurements of either the dependent
variables (e.g., concentrations, groundwater heads, river
discharges, etc.) or the parameters themselves (through field
or laboratory tests). Details concerning different mentalities
on uncertainty reduction through conditioning can be found
in the literature [e.g., Rubin, 1991; Kitanidis, 1995; Bellin
and Rubin, 1996; Freer et al., 1996; Zimmerman et al.,
1998]. Once it is decided which components to investigate
in more detail, specific methods for optimal experimental
design can be used, e.g., for optimal sampling layouts [e.g.,
Ucinski, 2005; Nowak et al., 2010; Nowak, 2010].

4. Methodology: Fault Tree Analysis

[28] Before one can begin any fault tree analysis, one must
define the system that is being investigated. The system that we
consider in this work is depicted schematically in Figure 1.
Figure 1 illustrates several sources of contamination (SO;), a
general mean flow field, and a region that we define as the
protection region (£2,,). The sources of contamination could be
anything from natural sources (e.g., arsenic), known spill sites,
industrial regions where contamination of certain pollutants
may be probable, or agricultural lands where certain con-
taminants may occur to any other imaginable source of con-
tamination. Similarly, the protection zone could be anything
like a well field, a lake, or a residential areca. The system
defined in this work is deliberately kept generic and would, of
course, be made more specific to a particular problem under
consideration as the demand arises. On the basis of this generic
system, we will follow the six steps outlined in section 2. We
will present a more specific illustrative example in section 5.

4.1. Step 1: Defining System Failure

[20] We define failure of this system (SF) to be when risk,
as defined in section 3, exceeds a critical regulatory value:

7> et (6)

with exceedance probability given by equation (5).
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SO, P, NA.,

Figure 2. Fault tree for CCE,.

4.2. Step 2: Identifying the Key Components and Events

[30] We use this particular step to divide the problem into
two components: a hydrological contamination scenario and
the consequences of contamination on human health risk.
This is an important distinction because concentration
exceedance does not imply that the population is at risk. For
example, individuals not drinking tap water (or with
exceptional physiology) might be at little or no risk. For
such reasons, the combination of the concentration and the
health parameters is the important factor to consider (only
the joint effect can culminate in adverse health effects).

[31] The first key component follows a similar path to the
works of Tartakovsky [2007], Winter and Tartakovsky
[2008], and Bolster et al. [2009]. It focuses on the hydro-
logical component and is meant to establish whether it is
necessary at all to consider a health risk. This event is called
“critical concentration of exposure” (CCE,) and is defined
as the event that the concentration of a contaminant i, arriv-
ing at the protection zone, exceeds some critical concentra-
tion value. If such an event occurs, decision makers must
be alerted and should become concerned about the con-
sequences on human health. The lower-level events associ-
ated with this key event are as follows.

[32] Source occurrence (SO,) is the event that a contam-
inant exists. In many possible scenarios, the existence of a
contaminant source is not deterministic. For instance, a
contamination source provenient from fertilizers or pesti-
cides within an agricultural zone may (or may not) exist, and
the probability of its occurrence must be quantified.

[33] Plume path 1 (P;,) is the event that the plume evolv-
ing from contaminant source i bypasses the protection zone.

[34] Plume path 2 (P,,) refers to the event that the same
plume hits the protection zone. If such a path does not exist
because of the morphology of the hydrosystem, then there is
no reason for concern.

[35] Natural attenuation (NA,;) represents the event that
natural attenuation can decrease concentration peaks below
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a defined threshold value through chemical reactions, dis-
persion, and dilution.

[36] The second component relates to all health risk
considerations. For this component, the basic events are
the following.

[37] Ceritical concentration of exposure (CCE;) reflects the
concentration that when combined to a value [ (see the
relation in equation (2)), will result in risk exceeding its
critical value established by regulations (e.g., rei = 10 or
107%); that is, system failure will occur.

[38] Behavioral physiological component (BPC;) corre-
sponds to the event that an individual (or population cohort)
who is exposed has characteristic 3 (see equation (3)).

[39] The point to note here is that CCE; is conditioned on
a value of § provenient from BPC,, which, as highlighted in
section 3, is not a single value, and it varies within the
population on the basis of several parameters [e.g., Maxwell
et al., 1998; Maxwell and Kastenberg, 1999; Maxwell et al.,
1999; de Barros and Rubin, 2008; de Barros et al., 2009].
As expressed in equation (4), each individual contains a
specific 3 (e.g., jth individual with characteristic 3;). The
fact that CCE; can be defined only for a given value of 3
will require, in a later stage of our analysis, an extension of
the conventional fault tree approach to account for all pos-
sible values from the distribution of (.

4.3. Step 3: Building the Fault Tree(s)

[40] In step 2, we divided the problem into two sections.
In this step we will draw a fault tree for each of those
sections. The first branch of the fault tree addresses the
hydrogeological contamination scenario, leading to the key
event CCE,;. The fault tree is shown in Figure 2 and is, in
some sense, a version of the fault tree discussed by Bolster
et al. [2009]. The combination with the second branch
yields the main fault tree and represents the novelty of
this work. This main fault tree replicates for each contami-
nant species and source and is shown in Figure 3. It illus-
trates visually how we have linked contamination and
human health risk. The system failure (risk exceedance) for
contaminant i is the joint occurrence of the events CCE;
and BPC,.

[41] Those readers who are familiar with fault trees might
notice a particular gate (Boolean operator) below the R.;; event
they are not familiar with. This gate is novel, and we define it as
an “ENSEMBLE AND” gate. It reflects the fact that the R,
event must be calculated on the basis of all possible values of
[ and the concentration arriving at the protection zone. The
ensemble operator (); indicates that the averaging should
be done over the ensemble of [ to obtain the risk over the
average individual because Prob[R] = (Prob[RI(])s. The
fault tree without the operator (); would be equivalent to a
tree for a single exposed individual with known character-
istics and with known toxicity. In other words, the fault tree
shown here is generalized for every individual of the exposed
population. The fault tree depicted in Figure 3 allows us
to evaluate system failure for an average individual over a
specified population cohort (e.g., average senior with (3
specified over a range of possible values), for an average
individual over the whole exposed population (averaging
over the whole 3 range), or for a single exposed individual
(with specified 3;). This process represents the internal loop
from the nested Monte Carlo approach proposed by Maxwell
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CCE, BPC

Figure 3. Fault tree for the total system failure.

and Kastenberg [1999]. Maxwell et al. [1998] and Maxwell
and Kastenberg [1999] showed how the variabilities within
health parameters have a strong impact on human health risk
prediction. As with all fault tree analysis, Figure 3 is meant to
act as a visual aid to the user to understand where risk can
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come from. Accounting for ()5 within the fault tree implies
that one needs to account for the variability in its description
such that one can assign the probability of occurrence for the
event R.;. The ENSEMBLE AND gate generalizes the
previous fault tree by covering the whole range of population
behavioral characteristics.

4.4. Step 4: Translation to Boolean Logic

[42] This part can be viewed as the final stage in the
development of the risk assessment system. The subsequent
steps (steps 5 and 6 in section 2) involve the actual calcu-
lations of probabilities of all basic events and the combi-
nation thereof based on the expression that emerges from the
current step. First, we will write a Boolean logic expression
for the probability of event CCE; occurring. The “AND” and
“OR” operators represents multiplications and additions of
probabilities, respectively. As discussed (and as can be seen
from the fault tree in Figure 2), the appropriate Boolean
expression for failure CCE; is given by

CCE, = SOI AND P2.,i AND NA,, (7)
with probability of occurrence
Prob[CCE;] = Prob[SO;|Prob[P, ;] Prob[NA] (8)

since SO;, P, ;, and NA; are completely independent of each
other. Similarly, for the main fault tree depicted in Figure 3,
the Boolean expression for system failure associated with
each source R.i;; can be written as

Rcritﬁi = CCE, AND BPC, (9)
with probability of occurrence

Prob [Reit;| = Prob[CCE;| Prob[BPC]. (10)

Protection Zone (or Control Plane) Q

bL= (Lb’ ybL)

T Mean Flow Direction

=(L,y,)

XL)
0 y

b= (L, ¥ye)

Contaminant Source C0

Se= (Lo Vi)

Figure 4. Schematic representation of the physical problem. A contaminant with initial concentration

C, is released. U is the mean velocity.
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[43] If more contaminants are present (i > 2), then the total
system failure (SF,;) is given by

SFait = Rerit;g OR Ry OR ... OR Ry v, (11)

and the probability of system failure is given by

PI‘Ob[SFau] = PI‘Ob[SFll + PI‘Ob[SFz] + -+ PI‘Ob[SFN}. (12)

[44] Steps 5 and 6 (see section 2) are straightforward and
need no further explanation. In section 5, we will develop
them for an illustrative example.

5. Illustrative Example

[45] Our goal is to show how the methodology can
accommodate the entire range from simple to complex
problems and solution approaches. It is seldom that a large
data set is available in probabilistic health risk assess-
ment, and we cannot always solve the problem entirely. For
such reasons, it is common to make conservative assump-
tions and assess the worst-case scenario with simple models
[Troldborg et al., 2009; Bolster et al., 2009]. The scenario
under consideration assumes an almost complete absence
of site-specific data, leading to crude yet conservative
estimates of probabilities. Other existing methods than
the simple one we selected for the illustration here can be
found in the literature (see Rubin [2003] for an extensive
review). The level of complexity in the analysis of each
component and event can vary according to the available
information and the importance within the fault tree and
can easily be adapted interactively during the analysis. If
hydrological field data are available and more complex
physical-chemical processes are involved, one may opt
for numerical Monte Carlo simulations to allow more flex-
ibility in relaxing simplifying assumptions, as done by
Maxwell and Kastenberg [1999], Maxwell et al. [1999],
and de Barros et al. [2009]. Without loss of generality,
our illustrative example will focus on a groundwater con-
tamination problem. The method shown here can also be
applied to surface water bodies or to coupled catchment-
scale problems [e.g., Baresel and Destouni, 2007; Persson
and Destouni, 2009].

5.1. Physical Scenario and Assumptions

[46] We consider a regional aquifer that is confined and
2-D depth-averaged with mean flow velocity U taken along
the x direction. A degrading contaminant is continuously
released with inlet concentration C, within a rectangular
source with transverse dimension w = ysg — ysr (see
Figure 4). Once contamination has occurred, the contami-
nant plume might hit the environmentally sensitive target
represented by a control plane (CP) situated at a distance
x = L, — L; from the source zone (see Figure 4). The
schematic representation of the physical problem is given
in Figure 4.

[47] At this stage, we will evaluate the concentration field
under the worst-case scenario. This is a common approach
in human health risk assessment since decision makers must
account for safety factors when dealing with human lives
[Troldborg et al., 2008, 2009; McKnight et al., 2010]. We
assume, in accordance with the worst-case scenario phi-
losophy, that the concentration can be calculated using a
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1-D solution by neglecting transverse dispersion between
neighboring streamlines. Furthermore, longitudinal disper-
sion is also neglected. This excludes dilution processes
as described by Kitanidis [1994]. The only natural attenu-
ating factor is degradation with linear decay coefficient A
(neglecting pore-scale dispersion):

C(1) = C, exp(—A1), (13)
where 7 = x/U denotes the travel time between the source
and control plane. In sections 5.2.1, 5.2.2, and 5.2.3, we will
account for the uncertainty in 7 in order to derive a simple

expression for the concentration probability density function
(pdf), and A is known.

5.2. Quantifying Probabilities of Occurrence

5.2.1. Probability of Travel Paths
[48] Here we compute the probabilities of path 1 or 2 of
occurring, i.e., events Py and P, (see section 4 for defini-
tions). We prefer to calculate the probability of the plume
bypassing the control plane (Prob[P;]). Since Prob[P;] and
Prob[P,] are mutually exclusive, we have
Prob[P;] = 1 — Prob[Py]. (14)
In order to compute the above probabilities, we must
quantify the pdf of each contaminant particle within the
source zone intercepting the control plane of the protection
zone. Neglecting pore-scale dispersion (both longitudinal
and transverse), we approximate the time of interception ¢,
by the mean travel time #, = (L, — Ly)/U (time from the
source to the control plane). Similar to Bolster et al. [2009],
we assume a Gaussian model to describe the particle dis-
placement pdf. For alternative definitions of the displace-
ment pdf, we refer to Dagan [1987] and Rubin [2003]. Our
resulting pdf is given by

— (o)’ 4Derrty
e
7

Ly, ty) = (15)

1
VA7 Derrty

where y,, is a point within the contamination zone. D¢ is an
effective macroscopic dispersion coefficient (purely uncer-
tainty related) that can arise for a variety of reasons, e.g.,
heterogeneity [Dagan, 1989; Rubin, 2003] or temporal
fluctuations in the flow field [Dentz and Carrera, 2005],
to mention but a few. Accounting for a dispersive term in
equation (15) but not in equation (13) might seem incon-
sistent at first sight, but it is a consistent set of worst-
case assumptions.

[49] If no particles from the source bypass the control
plane either on the left or on the right, then no interception
occurs. A conservative envelope can be constructed by
considering that particles from the back right point (sg =
(Ls, ysr); see Figure 4) have to pass by the outer left point
of the protection zone (by, = (L, y5;)) and vice versa.

Prob(P;) = Prob (PLL) + Prob (PLR)
VoL 1

~ Jw ATDesrts

e —yr)’ [4Defrth dyy

e*()’h*}’vL)z/“Dsn‘tb dJ/h- (16)

* 1
+ | e
YbRY 4nD, eft 2
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Table 1. Data for Contaminants A and B

Contaminant

Parameter A B
C, (mg/L) 1 1.5
A 0.004 0.002
Ly — Lg (m) 35 60
Ysr (m) 12 4
Yyt (m) 8 2
Yir (M) 1 1
Yo, (m) 10 10
Ceit (mg/L) 0.1 0.4
Hing -5.54 -6.9
Ong 0.59 0.4

5.2.2. Probability of Natural Attenuation

[50] In section 5.2.1, we used the back end of the source
as worst-case scenario for interception with the protection
zone. The worst-case scenario for natural attenuation is
based on the front center of the source area because this
yields the shortest distance (thus, shortest time) for decay.

[5s1] Given the uncertainty in flow parameters and scarce
site characterization, we consider for illustration the travel
time 7 to be stochastic and lognormally distributed [e.g.,
Cvetkovic et al., 1992]:

o llog(r)— /20

) = ot

(17)

where 1, and o denote the travel time mean and variance in
logarithmic space and are related to the mean velocity [e.g.,
Andpricevic et al., 1994].

[52] We can now calculate the pdf for concentration on
the basis of the travel time pdf and equation (13):

1e(C) = |75 F(7), (18)

dr
dc

which allows us to evaluate the probability of the concen-
tration being above a regulatory threshold value Cy at the
sensitive target. Substituting equation (13) into equation (18),

we obtain
1 1 C
fo(C) = E.ff (X In (a)> ,

Equation (18) reflects only one possible and simple choice of
model for the concentration pdf under the conditions
assumed in the current work for illustrative purposes. It is
worth mentioning that many other models could be used in
this approach under more generic conditions [e.g., Rubin
et al., 1994; Bellin and Tonina, 2007; Cirpka et al., 2008].
For example, other choices for travel time distributions are
given by Rubin [2003, chapter 10] and Sanchez-Vila and
Guadagnini [2005]. If hydrogeological data are available,
one could also follow the approach described by Rubin and
Dagan [1992] to condition the travel time pdf.
5.2.3. Probability of Risk Exceedance

[53] On the basis of equation (5), we can evaluate the
probability that the risk will exceed a threshold value 7.

(19)

DE BARROS ET AL.: UNCERTAINTY, RISK, AND DECISION MAKING IN HYDROLOGY

W05508

Here we present a risk distribution for the commonly used
risk model given in equation (2). In order to evaluate the risk
CDF (F) on the basis of the pdf f of the health parameters
and concentration pdf f- we have

e e "\ 1
Fr(rait) = ./0 /0 J3(B)fc (B) Bd”dﬁ»

where we used statistical independence between 3 and C.
The concentration pdf comes from equation (18), while fj3
is determined from population studies [e.g., Dawoud and
Purucker, 1996] or the data provided by Maxwell et al.
[1998] and Benekos et al. [2007]. If a single individual with
characteristics 3, is exposed, then equation (20) becomes

(20)

Frlre) = /0 /O 5(53— B,)e (i)idrdﬁ
1

B8) B
Fr(Ferit) :ﬂ_/o Cmfc (é)dh

where we used the properties of the Dirac delta 6: f3(5) =
6(6 — B,). This feature is incorporated in the fault tree
represented in Figure 3 and illustrates how the approach can
be used to cover cases for a single exposed individual and
for a fully exposed population (and also for different popu-
lation cohorts, e.g., gender and/or age).

(21)

6. Results and Discussion

[54] We illustrate the methodology by considering a sim-
ple example for cancer risk. Two species (A and B) are
continuously released from their source locations and may
pose a threat to human lives. The two contaminants are
released in different locations, with different source dimen-
sions and initial concentrations (to reproduce the varying
range of typical situations found in the field). Both con-
taminants are released from line sources with dimensions of
4 m (for contaminant A) and 2 m (for contaminant B).
Contaminant A is closer to the protection zone (35 m), while
contaminant B is farther away (60 m). These values as well
as other relevant parameters are summarized in Table 1. The
main sources of uncertainty under consideration here are the
contaminant travel times (equation (17)). We also account for
the variability in the health-related parameter (3, equation (3).
For the current scenario, we assume that travel time standard
deviation is equal to o, = 0.1 day and that D¢ = 0.1 m?/d.

[55] Since we have two distinct contaminants, the values
for § are different. For instance, contaminant A affects a
specific population cohort, while contaminant B affects a
different one (thus reflecting variability). In this example,
we assume both values of 3 to be lognormally distributed
with mean ju,4 and standard deviation o0y,4; see Table 1
(values given in logarithmic space). Figure 5 illustrates the
pdf of [ for contaminants A and B. Risk estimates were
obtained using the linear model in equation (2), and their
corresponding probabilities of exceeding a regulatory value
are computed through the CDF provided in equation (20).

[s6] Given that contamination is known to exist (SO
with probability 1), we need to evaluate the probabilities
associated with each branch of the fault tree using the
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Figure 5. Distributions for the health-related parameters for contaminants A (solid line) and B (dashed

line).

steps described in section 4. The events and their corre-
sponding probabilities are summarized in Table 2 for both
contaminants.

[57] With the data given in Table 1 and using equation
(16), the probability of the plume hitting the sensitive tar-
get is Prob[P,] = 0.38 for contaminant A and Prob[P;] =
0.26 for contaminant B. From the results given in Figure 6,
we can also extract the probabilities of the concentration
being above a regulatory threshold value C.. The proba-
bilities of C > C,,; for contaminant A is 0.18, whereas for
contaminant B we have 0.015. This is caused by the phys-
ical setup of the problem since the source for contaminant
A is closer to the environmentally sensitive target than to the
release location of contaminant B. This shows how the
extension of the contaminant source as well as its distance
from the protection zone influences the probabilities of the
plume hitting the target and of the concentration exceedance.

[s8] Figure 7 depicts the risk CDFs for both contaminants.
Assuming that the critical risk value established by the
regulatory agency is 7o = 107, we can compute the risk
exceedance probabilities Prob(R > r.;,) using equation (5),
and we obtain 0.69 and 0.54 for species A and B, respec-
tively. With equation (10), the probability of system failure
can be obtained (values given in Table 2).

[s9] Next, we illustrate a sensitivity analysis to identify
which parameters are more relevant in predicting the system
failure for contaminants A and B. In addition, it serves as a
first screening tool to see which parameters are dominant in
each of the branches of the fault tree and may require more
detailed investigation. The parameters chosen to perform
the sensitivity analysis are @ = {U, Der, A, 0, ting, Omga}-
We perturb, one by one, each parameter within 8 by 10%
and reevaluate the probability of system failure each time.
The resulting differences (between the perturbed and
unperturbed case) given by AProb[SF] are depicted in
Figures 8 and 9 for contaminants A and B, respectively.

[60] One striking difference between Figures 8 and 9 is the
sensitivity of system failure to the health-related parameters:
Contaminant A is more sensitive to the health-related param-

eters than contaminant B. This result aligns well with the
results of de Barros and Rubin [2008]. They showed that the
relative significance of health-related parameters decreases
with travel distance because of the uncertainty in transverse
plume position increases [Rubin, 1991]. Moreover, we note
that both contaminants respond differently to all other param-
eters, with the exception of the mean velocity.

[61] For contaminant A, the macroscopic effective dis-
persion parameter (D.g) is less important (see Figure 8)
since the source area for contaminant A is close to the
environmental target. Over short travel distances, the mac-
roscopic effective dispersion has a small probability of
making the plume bypass the protection zone (event P,). In
contrast, Dqs has a larger significance in the probability of
system failure for contaminant B because its source is
located farther away from the target (event P,).

[62] The decay coefficient () is the second most important
parameter relative to the others for contaminant A. Since the
source for pollutant A is so close to the protection zone,
decay is the only process that can significantly reduce the
probability of system failure. The opposite occurs for con-
taminant B since the significance of other events is higher.

[63] Figure 10 shows how the coefficients of variation of
the statistical distribution of risk change for each perturba-
tion in 6. This quantifies how sensitive the uncertainty is in
assessing health risk to each individual parameter. In the

Table 2. Computed Probabilities for the Hypothetical Illustrative
Case

Contaminant

Event Parameter A B
SO Prob[SO] 1 1
P, Prob[P;] 0.38 0.26
NA Prob(C > Cery) 0.18 0.015
Rt Prob(r > Rt 0.69 0.54
SF Prob(SF) 0.047 0.0022
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Figure 6. Concentration pdfs for contaminants A (solid line) and B (dashed line) according to equation (18).

current simple example, A and U have stronger effects on
the uncertainty of risk for both species A and B than all
other parameters. We also observe that the mean and stan-
dard deviation of the health-related component (w3 and
omg) have a significant contribution in the final risk pdf.
These health parameters have a stronger contribution to the
spread of the risk pdf for contaminant A (closer to the
source) than for B. For predictions closer to the source,
characterization of the health parameters becomes important
since concentrations are still high. As the distance between
the contaminant source and receptor increases, the contam-
inant plume’s peak concentration decreases because of the
physical processes involved (in our case, decay). Source
dimensions and distance to the protection zone have a def-
inite role in defining the significance of the health para-

meters in the final risk. Again, this agrees with the results
from de Barros and Rubin [2008].

[64] Although we have used a simple linear dose-
response curve to evaluate cancer risk for the illustration,
many other alternatives exist, with varying levels of uncer-
tainty. For instance, the work of Yu et al. [2003] provides
detailed epidemiological dose-response curves and param-
eter uncertainties for arsenic that are age and gender
dependent. Such dose-response curves are less subject to
uncertainty than cancer risk models because the latter rely
on extrapolated animal-to-human data. This implies that if a
contaminant site has several contaminants, different types of
risk models could be used. This would lead to different
relative contributions to uncertainty propagation in assessing
system failure, as discussed by de Barros et al. [2009].

1.0 T

0.8

Fy(r)

041

0.0

Contaminant B

Contaminant A

1077 1076

1073

1074 0.001

r

Figure 7. Risk CDF Fr(rl for contaminants A (solid line) and B (dashed line). The regulatory threshold

is defined to be 7 = 10 .
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Figure 8. Sensitivity analysis for contaminant A: change
in the probability of system failure AProb[SF] if each
parameter in @ is perturbed by 10%.

[65] An important and attractive feature of the method-
ology shown is that it allows one to observe, in a most
graphical manner, the sensitivity of the probabilities in
system failure for each branch of the tree. This is a crucial
basis for supporting managing decisions. For example, it
indicates how to allocate resources toward further site
characterization via prioritization according to highest risk
contributions and highest sensitivity.

7. Summary and Conclusions

[66] In this work, we used the fault tree methodology to
evaluate human health risk in a probabilistic manner. The
approach breaks complex problems into individual events
that can be tackled individually. The main differences

Sensitivity Analysis in System Failure for Contaminant B

0.005
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0.003

APF[SF]

0.002

0.001 +

U D o A

o . g

o—[n,B
Figure 9. Sensitivity analysis for contaminant B: change
in probability of system failure AProb[SF] if each parameter
in @ is perturbed by 10%.
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Figure 10. The dependency of the risk coefficient of var-
iation for contaminants A and B on the perturbed parameter.
Each parameter in 8 was perturbed by 10%. The coefficient
of variation is equal to the risk standard deviation divided by
its mean. Results were evaluated using equation (20). ACV
corresponds to the change in the coefficient of variation.

between the ideas proposed here and the previous works
[Tartakovsky, 2007; Winter and Tartakovsky, 2008; Bolster
et al., 2009] are as follows: (1) The fault tree proposed here
accounts for the uncertainty in both hydrogeological and
health components. (2) System failure is defined in terms of
risk being above a threshold value. (3) We introduced of a
new form of stochastic fault tree that weakens the assump-
tion of independent events that is necessary in conventional
fault tree analysis.

[67] Although we used only a crude and simple setting to
illustrate the methodology, the approach can be used with
arbitrarily more complex models. However, such simple
approaches can be useful for performing a preliminary
screening in PRA [see Troldborg et al., 2008, 2009]. For
instance, with an initial estimate based on simple models,
one can identify the events that contribute most to the final
risk estimate or those that propagate the highest degree of
uncertainty throughout the system. This information can
then be used to invest further resources to these specific
events, and more elaborate models can be used if additional
data become available. The divide and conquer and modu-
larity features of the proposed framework easily allow the
methods or tools used in each component to be easily
exchanged (and refined) in later analysis without being
intrusive in other components.

[68] Moreover, assessing health-related risk in hydro-
systems is an interdisciplinary field, and it relies on the
expertise from a large number of disciplines (for example,
hydrologists, engineers, public health experts, etc.). As a
result, communicating the information across interfaces
between different fields in an efficient and comprehensible
manner is needed such that reliable water management
decisions are made. The divide and conquer approach
inherent to fault trees allows individual experts to work on
the individual problems with clear communication interfaces
given by the fault tree structure. The approach allows
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decision makers to better visualize the components culmi-
nating in system failure (e.g., population at risk) as well as
the uncertainty emerging from each subsystem. This is
appealing from the decision maker’s perspective since it
does not require entering into the complex details of each
component of the PRA and helps communicate probabilistic
concepts to practitioners. Furthermore, it acts as a translator
to experts from different fields, thus aiding public authori-
ties in policy making and water management.

[69] Despite the fact that our work focused on a ground-
water contamination application, it can be also used in other
problems, such as soil contamination, well vulnerability, and
surface water and catchment-scale coupled problems [e.g.,
Frind et al., 2006; Baresel and Destouni, 2007; Troldborg
et al., 2008, 2009; Persson and Destouni, 2009]. Further-
more, an emerging challenge consists in using the ideas
discussed in this paper to tackle a fully integrated hydro-
system (groundwater, soil, surface water, etc.) where the
need for dividing a complicated problem into smaller ones
and interdisciplinary communication are even more evident
[Persson and Destouni, 2009; McKnight et al., 2010]. For
instance, Bertuzzo et al. [2008] studied how river networks
(acting as environmental corridors) affect the spreading of
cholera epidemics. These authors clearly showed how hydro-
logical, health, and demographical data need to be considered
in order to capture an accurate description of the main con-
trolling factors dictating the spread of cholera epidemics.

[70] As pointed out in the literature, practitioners are
still reluctant to embrace the concepts of uncertainty
[Pappenberger and Beven, 2006]. Such resistance was also a
matter of discussion in a 2004 forum published in Stochastic
Environmental Research and Risk Assessment [Christakos,
2004; Freeze, 2004; Rubin, 2004]. A common conclusion
is that the dialogue between the interdisciplinary groups is
of utmost importance. Thus, having a tool that allows one
to illustrate, in a rather simplistic manner, these concepts
(uncertainties) and its impact on society (for example,
through risk) provides a step toward strengthening the bridge
between the scientific developments in stochastic hydro-
geology and the state of practice.
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