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[1] We present a method for the stochastic simulation of point‐to‐point transport
connectivity honoring data from three types of information: (1) travel time estimates
obtained from field tracer tests; (2) estimates of flow connectivity indicators obtained
from the relatively fast or slow flow response that is observed at a point location given
the flow impulse at another location, and (3) measurements of transmissivity at a local
scale. The method thus efficiently integrates data obtained from different hydraulic tests,
each sampling different areas within the aquifer. To achieve this, we first extend the
concept of point‐to‐point flow connectivity and transport connectivity, mathematically
formulated by Trinchero et al. (2008) for pumping conditions, to support a more general
flow configuration. Interestingly, point‐to‐point flow connectivity can be generally seen
as a weighted integral of transmissivity over the entire domain, the weighting function
being proportional to the sensitivity of heads with respect to the natural log of
transmissivity per unit of aquifer volume. On the contrary, point‐to‐point transport
connectivity is a weighted integral along the particle path of the solute mass that involves
two variables: transmissivity and flow connectivity. Each variable has its own distinct
weighting function. The weighting function of transmissivity is inversely proportional to
both the homogeneous travel time and the point velocity sampled along the travel path. On
this basis, we show how to generate conditional point‐to‐point transport connectivity
maps. The method avoids the inference of cross‐covariance functions between variables
measured over different scales and sampled areas (which cannot be otherwise estimated
with a few data measurements) by expressing them as a function of the local
transmissivity covariance function. An example of the method is provided to evaluate the
worth of including tracer data to delineate capture zones of abstraction wells originally
defined from local transmissivity measurements. Monte Carlo simulations reveal that the
impact of including tracer data is a maximum when the travel time data are obtained at a
location different than that of transmissivity measurements. The reason is that weighting
functions give larger weights to the injection location, so introducing tracer test data at
points where transmissivity is already known is somewhat redundant.
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1. Introduction

[2] The concept of hydraulic connectivity lacks a rigorous
mathematical definition in porous media. Still, connectivity
is an easily understandable subject. Loosely speaking, two
points of an aquifer are well connected if an action taking
place at one of them has a fast and observable response at
the other one. Yet this response at a given point should be
compared with some average or characteristic behavior of
the aquifer, leading to a somewhat ill‐defined property.
[3] Initial work on connectivity focused on the charac-

teristic response associated with the domain as a whole.
From a qualitative standpoint, the interconnection of high

hydraulic conductivity values (K) increases the amount of
water than can flow with respect to aquifers where high‐K
bodies are not connected. This is obviously the case for a
fully stratified medium, where it is well known that flow
takes place preferentially parallel to stratification. In more
realistic scenarios, such as sand bodies embedded in a less
conductive matrix, the flow system in the aquifer is mainly
controlled by the continuity and interconnectedness of the
sand rather than by its actual local hydraulic conductivity
values, which was reported first by Fogg [1986] and later
extended to transport (actually travel time estimates) by
Poeter and Townsend [1994].
[4] These findings were numerically confirmed by a

number of authors who used different approaches to gen-
erate fields with an enhanced connectivity of the points
displaying local high K values. As an example, Sanchez‐
Vila et al. [1996] used a Boolean approach to embed
interconnected elongated features over a realization of a
multi‐Gaussian field. Their main conclusion was that the
presence of such structures yielded effective transmissivity
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values, Teff, larger than those corresponding to a multi‐
Gaussian field. About the same time, Gómez‐Hernández
and Wen [1998] generated connected fields by increasing
the correlation lengths of extremely high or low K values in
a multi‐indicator model. They found that travel times esti-
mated from multi‐Gaussian fields are not conservative,
meaning that pollutants can travel faster than predicted from
such random field models. These findings regarding Teff and
fast travel times were later confirmed by Zinn and Harvey
[2003], who developed their own ad hoc connected fields.
LaBolle and Fogg [2001] showed that connectivity of low‐
permeability hydrofacies plays an important role in the
success of remediation actions.
[5] Thus, the concept of aquifer connectivity is directly

related to the presence of conductive features that display
some spatial continuity. As such, geostatistical methods
based on two‐point statistics (such as variograms) are not
able to capture most of the important connectivity features
occurring in natural formations (i.e., preferential flow
channels [Western et al., 2001; Kerrou et al., 2008]). In
past years a significant number of connected fields have
been used because, contrary to multi‐Gaussian fields, they
produce breakthrough curves displaying power‐law tailing
[e.g., Zheng and Gorelick, 2003; Willmann et al., 2008;
Fernàndez‐Garcia et al., 2009], similar to that observed in
real aquifers. These fields can be constructed using models
such as multiple‐point geostatistics [e.g., Strebelle, 2002].
[6] The picture of aquifer connectivity is completed by

discussing point‐to‐point connectivity [e.g., Trinchero et al.,
2008]. This concept is more intuitive because it relies on the
loose definition specified earlier. For example, two points
can be said to be well connected whenever a pumping
operation taking place at one of them is noticeably observed
at the other one in a short period of time. If this pumping is
used for parameter identification using, for example, the
Cooper‐Jacob method, a fast response would lead to an
estimation of the storage coefficient, Sest, smaller than the
actual value [Meier et al., 1998]. Then Sest becomes an
apparent value [Sanchez‐Vila et al., 2006], and the ratio
between Sest and the real S value (provided it exists) can be
regarded as an indicator of point‐to‐point connectivity
[Sanchez‐Vila et al., 1999; Knudby and Carrera, 2005].
Another indicator of flow connectivity was suggested by
Knudby and Carrera [2006] to be the apparent diffusivity
Dr (estimated transmissivity divided by estimated storage
coefficient). The reliability of this indicator was assessed
using a Monte Carlo analysis. They found that Dr has a
certain degree of correlation with indicators of both trans-
port and flow global connectivity. Frippiat et al. [2009]
suggested that the head and flow variances can be used to
identified preferential paths and flow barriers. Flow dis-
tributions were also used for identifying the presence of
channels in fractured media [de Dreuzy et al., 2001].
[7] Alternative definitions of connectivity indicators can

be considered when the outcome of tracer tests is consid-
ered. We could also state that two points are well connected
if pumping at one of them and injecting a conservative tracer
in the other leads to faster tracer travel time than that ex-
pected in a homogeneous medium. This interpretation of the
fast arrival of tracers was used by Sanchez‐Vila and Carrera
[1997] and Fernàndez‐Garcia et al. [2002] to characterize
the presence of preferential flow paths occurring between
the pumping well and the injection location.

[8] Despite the existence of different indicators of con-
nectivity, it is reasonable that all of them should be somehow
related. Trinchero et al. [2008] analyzed the relationship
between two of these indicators: the storage coefficient
estimated using the Cooper‐Jacob method, Sest (indicator of
flow connectivity), and the relative advective travel time, ta
(indicator of transport connectivity). These authors assessed
this relationship in multi‐Gaussian random fields and
developed a framework for the delineation of capture zones
around an abstraction well used for the production of
drinking water. Nevertheless, in its current formulation the
analytical solution is limited to convergent flow conditions
induced by a single pumping well and it is not directly
applicable to real applications because it requires a full
knowledge of the aquifer (spatial distribution of transmis-
sivity) that is usually not available and is economically
unfeasible to obtain in standard field campaigns.
[9] We start by generalizing the relationship between

flow and transport connectivity indicators to incorporate a
general flow configuration. Then we present a stochastic
framework for the delineation of connectivity patterns using
a limited and sparse number of measurements. The lack of
complete knowledge of the variables involved in the prob-
lem is overcome by treating them as regionalized variables
or random functions. The methodology allows for condi-
tioning the results to three types of data obtained from dif-
ferent field tests and measurement scales, namely (1) travel
time estimates obtained from field tracer tests, (2) estimates
of flow connectivity indicators, and (3) measurements of
transmissivity at a local scale. The fact that the tracer and
flow connectivity data depend on the separation distance of
the field tests renders the method the capability of efficiently
integrating data obtained from different hydraulic tests, each
one sampling different areas within the aquifer. The ability
of the methodology to properly delineate capture zones
is assessed through stochastic estimation (i.e., ordinary
co‐kriging) and sequential Gaussian simulations based on
different sets of measurements.

2. General Theory: Point‐to‐Point Connectivity

2.1. Flow Connectivity Between Two Points

[10] We consider a two‐dimensional heterogeneous
confined aquifer under quasi steady state flow conditions.
The heterogeneous structure is characterized by a spatially
varying natural log of transmissivity, Y(x) = ln T(x), where
T is the local transmissivity tensor. All other properties are
assumed homogeneous throughout the domain. Our goal is
to examine the time response of the pressure head at a
given observation location, xi, given a (constant‐in‐time)
flow impulse at another location, xp. We only consider the
case in which these two points are actually connected
through a flow path, so there is a specific streamline that
passes through them. This setup includes, for example,
convergent or dipole flows in the presence of a regional
trend or not.
[11] We start by decomposing Y(x) around an equivalent

homogeneous transmissivity tensor, Y0 = ln T0, that is
obtained by replacing the heterogeneous system by a homo-
geneous one based on some criteria (e.g., the reproduction
of the total net flow discharge throughout the domain).
In general, even when transmissivity is locally isotropic,
Y(x) = Y(x)Id (Id is the identity matrix), the equivalent
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transmissivity of a heterogeneous medium is better described
as a full tensor, so we can formally write

YðxÞ ¼ Y0 þ Y
0 ðxÞ; ð1Þ

where Y′ (x) is the deviation from the equivalent homoge-
neous tensor. By replacing Y(x) by Y0 the corresponding
flow problem is written as

r � eY0rh0
� �þ f wðxpÞ ¼ S

@h0
@t

; ð2Þ

where fw is the source/sink term, which includes the con-
stant‐in‐time impulse at xp, and S is the aquifer storage
coefficient. Solving (2) with appropriate boundary condi-
tions and assuming quasi steady state flow, one obtains the
head field h0 (x) of the equivalent homogeneous medium,
which allow us to decompose h(x) into

hðxÞ ¼ h0ðxÞ þ h
0 ðxÞ; ð3Þ

where h′ is the deviation from the homogeneous solution.
Here we have avoided writing the time dependence of
groundwater heads to indicate that h, h0, and h′ are referred to
as pseudo steady state conditions (large times, i.e., t → ∞).
[12] In a general anisotropic medium the flow vector and

the hydraulic gradient are not necessarily collinear. In this
case, it is convenient to express Darcy’s law in terms of
directional transmissivity, T(x), which is defined as the ratio
between the specific discharge at a given point x and the
component of the hydraulic gradient in the direction of flow,

TðxÞ ¼ kTðxÞJðxÞk2
½TðxÞJðxÞ� � JðxÞ ; ð4Þ

where J(x) is the hydraulic gradient at the x point. Note that
we used the convention that scalar attributes refer to the
corresponding directional property. Because of this con-
vention, the hydraulic head at a given location of the aquifer
is a function of the directional transmissivity field, T(x). On
the basis of this condition and denoting Y(x) = ln T(x), we
can formally represent the head at a given xi location as

hðxiÞ ¼ FiðY Þ; ð5Þ

where Fi is a functional that relates a given (directional)
transmissivity field, Y(x), to the head value at xi. We write
h(xi) in terms of the expansion

hðxiÞ ¼ FiðY0Þ þ Fð1Þ
i ðY0Þ�Y þ 1

2!
Fð2Þ
i ðY0Þ�Y 2 þ � � � ; ð6Þ

where the operator Fi
(n) (Y0) is known as the nth‐order

Fréchet derivative of Fi (Y) [e.g., Milne, 1980]. The first‐
order derivative is referred to simply as the Fréchet
derivative. Realizing that Fi (Y0) = h0 in (6), the pertur-
bation h′ can be written as

h
0 ðxiÞ ¼ Fð1Þ

i ðY0Þ�Y þ Oðk�Yk2Þ: ð7Þ

[13] If higher‐order terms represented by O(kdYk2) are
neglected, the problem is linear and can be expressed as a
convolution integral

h
0 ðxiÞ ¼

Z
<2

Kiðxi � x; Y0Þ�Y ðxÞdx; ð8Þ

where Ki (x, Y0) is the Fréchet kernel associated with
the h(xi) value. This kernel establishes the relationship
between a small (first‐order) perturbation in the transmis-
sivity field, Y(x), and the corresponding change in the head
field.
[14] In a mildly heterogeneous aquifer (small variance

of the natural log of transmissivity, sY
2), we have that Y′ ≈

dY (i.e., the perturbation around some mean value), and a
first‐order approximation of h′ is written as

h
0 ðxiÞ ¼

Z
<2

Kiðxi � x; Y0ÞY 0 ðxÞdx: ð9Þ

[15] Given the observation of the head response, h(xi), at
a given location, xi, two points are well connected in terms
of flow when the head response is faster than expected from
the equivalent homogeneous flow problem given by (2).
That is to say, at pseudo steady state conditions (large
times), one observes that h(xi) < h0 (xi) or h′ (xi) < 0. On the
basis of this observation, we can consider the following
indicator of flow connectivity between two points of the
aquifer:

!
0 ðxi; xpÞ ¼ h

0 ðxiÞ
m0

; ð10Þ

where negative w′ values denote strong point‐to‐point flow
connectivity, and m0 is a constant positive parameter that
normalizes h′. Thus, the indicator of flow connectivity
between two points can generally be written as

!
0 ðxi; xpÞ ¼ �

Z
<2

Uðxi; xp; xÞY 0 ðxÞdx; ð11Þ

where

Uðxi; xp; xÞ ¼ �m�1
0 Kiðxi � x; Y0Þ ð12Þ

is a weighting function of the natural log of transmissivity
that establishes the relationship between flow connectivity
and the departure of Y(x) from the equivalent homogeneous
solution.
[16] Analytical expressions of the Fréchet kernels can be

derived using either the adjoint Green’s function approach
or the series expansion approach. Assuming radial flow
conditions induced by a pumping well, Sanchez‐Vila et al.
[1999] derived the corresponding Fréchet kernels valid at
large times. In this flow configuration, the indicator of
point‐to‐point flow connectivity, w′, has an interesting
meaning. By normalizing the pressure head in (10) by

m0 ¼ Qw

4�T0
; ð13Þ

they found that w′ expresses the ratio between the estimated
storage coefficient obtained by interpreting the late‐time
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behavior of drawdown data using Jacob’s method and the
true aquifer storage coefficient [Sanchez‐Vila et al., 1999],

!
0 ¼ ln

Sest
S

� �
; ð14Þ

and the actual expression in terms of Fréchet kernels is

!
0 ðriÞ ¼ �

Z
<2

Uðr; �ÞY 0 ðr; �ÞdV ; ð15Þ

Uðr; �Þ ¼ r � ri cos �

rðr2 þ r2i � 2rri cos �Þ ; ð16Þ

where (r, �) are the cylindrical coordinates centered at the
pumping well, and ri is the radial distance between the
pumping and the observation wells. For transient flow
conditions, Knight and Kluitenberg [2005] derived explicit
analytical expressions of the Fréchet kernels for both
pumping and slug tests.
[17] For problems where it is not possible to derive an

explicit expression of the Fréchet kernels, one can also
parameterize the Y(x) field to numerically solve for the
sensitivities using (1) a first‐order perturbation approach, (2)
the sensitivity equation, or (3) the adjoint‐equation method.
In these cases, it is convenient to know the relationship
between Fréchet kernels and the traditional sensitivity
coefficients. By representing the continuous random field
Y(x) by a finite set of attributes associated with a support
volume W, {Yi, i = 1, …, M}, given, for example, by the
elements of a numerical mesh, equation (9) is reduced to

h
0 ðxiÞ ¼

XM
k¼1

Z
Wi

Kiðxi � x; Y0Þdx
� �

Y
0
k : ð17Þ

[18] Since the Taylor series expansion of h can also be
written as

h
0 ðxiÞ ¼

XM
k¼1

@FiðY0Þ
@Yk

Y
0
k ; ð18Þ

it follows that

@FiðY0Þ
@Yk

¼
Z
Wi

Kiðxi � x; Y0Þdx: ð19Þ

[19] If the support volume Wi associated with Yi is suffi-
ciently small so that the integral depends strongly on Ki (xi)
within Wi, then

Kiðxi; Y0Þ � 1

Wi

@FiðY0Þ
@Yk

; ð20Þ

which expresses that U is proportional to the sensitivity of
heads with respect to Y per unit of aquifer volume.

2.2. Transport Connectivity Between Two Points

[20] We aim at quantifying the travel time, ta, between
two points xi and xp that are actually connected through a
streamline ’. The streamline located between xi and xp is
denoted as ’ip and is defined parametrically by x = x(s),
where s is the arc length of the streamline. By convention,

we denote x(s) simply as xs, and the value of an attribute or
variable at a given streamline location, xs, is denoted as
a(xs) = a(s). On the basis of this notation, the characteristic
travel time between xi and xp is

ta ¼
Z
’ip

1

vðsÞ ds; ð21Þ

where v(s) = kv(xs)k is the flow velocity at the xs streamline
position. By Darcy’s law, the magnitude of the groundwater
velocity in the direction of flow is

vðsÞ ¼ TðsÞ
b�

JðsÞ; ð22Þ

where � is the aquifer porosity, b is the aquifer thickness,
J(s) = −dh/ds is the hydraulic gradient in the direction of
flow, and T(s) is the directional transmissivity.
[21] We start by decomposing the velocity field, v(s),

around its equivalent homogeneous velocity field, v0(s), so
that

vðsÞ ¼ v0ðsÞ þ v
0 ðsÞ; ð23Þ

where

v0ðsÞ ¼ T0ðsÞ
b�

J0ðsÞ; ð24Þ

v
0 ðsÞ ¼ v0ðsÞ eY

0 ðsÞ JðsÞ
J0ðsÞ � 1

� �
: ð25Þ

[22] Taylor series expansion of the travel time around
v0(s) gives

ta ¼
Z
’ip

1

v0ðsÞ 1� v
0 ðsÞ

v0ðsÞ þ
v
0 ðsÞ

v0ðsÞ
� �2

þ � � �
" #

ds: ð26Þ

[23] Introducing (24) and (25) into (26), and expanding
eY′(s) = 1 + Y′(s) + 1/2!Y′2(s) + � � �, we have

ta ¼
Z
’ip

1

v0ðsÞ 1� Y
0 ðsÞ � J

0 ðsÞ
J0ðsÞ þ � � �

� �
ds: ð27Þ

[24] In practice, ta is ill defined because it depends on the
true streamline, which is largely uncertain owing to the
scarce knowledge of the aquifer. To overcome this limita-
tion, we approximate the true streamline curve, ’, by its
homogeneous counterpart, y, defined by the parameteriza-
tion x = x0 (s0), where s0 is the arc length of y. This
streamline is known from the solution of the equivalent
homogeneous flow problem given by (2). Thus,

Y
0 ðsÞ ¼ Y

0 ðs0Þ þ dY
0 ðs0Þ
ds

s
0 þ � � � ; ð28Þ

1

v0ðsÞ ¼
1

v0ðs0Þ �
1

v20ðs0Þ
dv0ðs0Þ

ds
s
0 þ � � � ; ð29Þ

J
0 ðsÞ

J0ðsÞ ¼
J

0 ðs0Þ
J0ðs0Þ þ

1

J0ðsÞ
dJ

0 ðs0Þ
ds

s
0 � J

0 ðs0Þ
J 20 ðsÞ

dJ0ðs0Þ
ds

s
0 þ � � � ; ð30Þ
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and we obtain the following first‐order approximation of the
travel time response observed at the xp location:

ta �
Z
 ip

1

v0ðs0Þ 1� Y
0 ðs0Þ � J

0 ðs0Þ
J0ðs0Þ

� �
ds0: ð31Þ

[25] Second‐order expansions accounting for uncertainty
in Y under uniform and convergent flow conditions were
presented by Rajaram [1997] and Riva et al. [2006b],
respectively. The first term in (31) is the zero‐order
approximation of the travel time, defined as

ta0 ¼
Z
 ip

1

v0ðs0Þ ds0: ð32Þ

[26] Integrating the third term in (31) by parts, we can
express the travel time as a function of the normalized head
response w′(s0) (flow connectivity) and Y′(s0),

ta � ta0 1�
Z
 ip

W0ðs0ÞY 0 ðs0Þds0 þ
Z
 ip

W1ðs0Þ!0 ðs0Þds0
 

�W2ðsiÞ!0 ðsiÞ þW2ðspÞ!0 ðspÞ
!
; ð33Þ

where W0 is a weighting function of the fluctuations of the
natural log of transmissivity (deviations from the equivalent
homogeneous value) and W1 and W2 are the weighting
functions associated with flow connectivity,

W0ðs0Þ ¼ 1

ta0v0ðs0Þ
; ð34Þ

W1ðs0Þ ¼ � 1

ta0

d

ds0

m0

v0J0

� �
; ð35Þ

W2ðs0Þ ¼ m0

ta0v0ðs0ÞJ0ðs0Þ
: ð36Þ

[27] Equation (33) expresses that the travel time response
observed at a given location deviates from its expected
equivalent homogeneous value because of the interplay of
the fluctuations of the natural log of transmissivity and flow
connectivity sampled along the solute particle path. The
weighting functions W1 and W2 are related through

dW2

ds0
¼ �W1: ð37Þ

[28] The series expansion in (33) is truncated at the first
order in sY. In an attempt to overcome the latter truncation,
we view (33) as the first two terms of an exponential
expansion and we generalize the final solution as

ta � ta0 exp �
Z
 ip

W0ðs0ÞY 0 ðs0Þds0 þ
Z
 ip

W1ðs0Þ!0 ðs0Þds0
 

�W2ðsiÞ!0 ðsiÞ þW2ðspÞ!0 ðspÞ
!
: ð38Þ

[29] This exponentiation is a widely used procedure in
stochastic subsurface hydrology [e.g., Gelhar and Axness,
1983]. Otherwise, the estimation of ta through (33) may
yield negative values, which are not physically possible.
Because the travel time ta0 depends on the initial and final
position of the streamline yip, it renders the weighting
functions {W0, W1, W2} to be not only a function of the
position along the particle path xs0 = x(s0) but also a
function of the initial and final positions of the streamline,
yip. For clarity hereinafter, this dependency was included
in the expressions of the weighting functions, so Wi (s0) ≡
Wi (xi, xp, xs0) (i = 0, 1, 2).
[30] Two points of the aquifer, xi and xp, are well

connected in terms of transport when the observed travel
time response is more rapid than that expected from the
equivalent homogeneous problem. On the basis of this
conceptualization of transport connectivity, the following
indicator of point‐to‐point transport connectivity between xi
and xp can be defined:

�
0 ðxi; xpÞ ¼ ln

ta
ta0

� �
; ð39Þ

where negative t′ values denote strong transport connec-
tivity between xi and xp and vice versa. Substituting (38)
into (39), we obtain

�
0 ðxi; xpÞ � �

Z
 ip

W0ðxi; xp; xs0ÞY
0 ðxs0Þds0

þ
Z
 ip

W1ðxi; xp; xs0Þ!
0 ðxs0 ; xpÞds0

�W2ðxi; xp; xiÞ!0 ðxi; xpÞ þW2ðxi; xp; xpÞ!0 ðxp; xpÞ:
ð40Þ

[31] From (40) we see that transport connectivity tends to
increase (leading to negative t′ values) because of two joint
effects: (1) transmissivity values along the particle path are
larger than T0 (the equivalent field transmissivity), so Y′ > 0;
and (2) the hydraulic response along the particle path is
faster (small w′) than that attributed to the homogeneous
solution. The last two terms in (39) reflect the boundary
conditions of flow connectivity at the injection and at the
observation location, xi and xp.

3. Analytical Solutions of Transport Weighting
Functions

[32] Analytical solutions of the weighting functions Wi

can easily be obtained for relatively simple flow systems.
Let us consider an infinite confined aquifer. The aquifer is
heterogeneous and characterized by an equivalent isotropic
transmissivity tensor written as T0 = T0Id. The flow system
is at steady state and determined by the existence of a
single pumping well under the influence of a background
natural gradient, Jn. The natural gradient is oriented
parallel to the x direction such that ∂h/∂x > 0. The well
has a small radius (rw → 0), is located at the origin of
coordinates (xp = 0), and pumps water at a constant rate
Qw. Under these conditions and by the principle of super-
position, the velocity field and the travel times associated
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with an equivalent homogeneous medium are given by
Bear and Jacobs [1965]:

v0ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x0ðx; yÞ þ v2y0ðx; yÞ

q
ð41Þ

vx0 ðx; yÞ ¼
q0
�
þ Qw

2�b�

x

x2 þ y2
; ð42Þ

vy0ðx; yÞ ¼
Qw

2�b�

y

x2 þ y2
; ð43Þ

J0ðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J 2x0 ðx; yÞ þ J 2y0ðx; yÞ

q
; ð44Þ

Jx0ðx; yÞ ¼ Jn þ Qw

2�T0

x

x2 þ y2
; ð45Þ

Jy0ðx; yÞ ¼
Qw

2�T0

y

x2 þ y2
; ð46Þ

ta0ðxi; yiÞ ¼
�

q0
xi þ �Qw

2�bq20
ln

Qw sin �

Qw sin �þ 2�bq0yi

� �
; ð47Þ

where v0(x, y) and J0(x, y) are the velocity and hydraulic
gradient at the (x, y) location, respectively; q0 is the spe-
cific discharge defined as q0 = T0J0/b; (xi, yi) is the solute
injection location; and � is the angle between the injection
line and the x axis, that is, � = tan−1 (yi/xi). By substituting
(41)–(47) into (34), the corresponding analytical expres-
sions of the weighting functions associated with the
transport connectivity indicator are written as

W0ðx; yÞ ¼ 1

v0ðx; yÞta0ðxi; yiÞ
; ð48Þ

W1ðx; yÞ ¼ C1Qw

ta0ðxi; yiÞv30ðx; yÞðx2 þ y2Þ ; ð49Þ

W2ðx; yÞ ¼ C2

v0ðx; yÞJ0ðx; yÞta0ðxi; yiÞ
; ð50Þ

where C1 and C2 are constant values defined as C1 = m0T0/
p�2b2 and C2 = m0. Two limiting cases are worth noticing.
Whenever the natural gradient Jn is negligible or the
injection is near the well, we approach radial flow condi-
tions and the weighting functions can be simply written as

W0ðrÞ ¼ W1ðrÞ ¼ C3
2r

r2i
; ð51Þ

W2ðrÞ ¼ C3
r2

r2i
; ð52Þ

where C3 = 4pT0m0/Qw. These solutions agree with the
work of Trinchero et al. [2008], who already showed that
under pumping conditions the weighting functions of the

transport connectivity indicators are linearly increasing
with the radial distance from the well.
[33] On the contrary, whenever the pumping rate Qw is

small or the injection is far away from the well, we get close
to uniform flow conditions and, in the limit when Qw → 0,
we obtain

W0ðxÞ ¼ 1

xi
; W1ðxÞ ¼ 0; W2ðxÞ ¼ C2

Jnxi
: ð53Þ

[34] Here it is important to note the large impact that the
flow system has on the transport connectivity indicators. By
comparing (53) and (51) we see that, whereas in radial flow
conditions the weighting functions W0 and W1 increase
linearly with the radial distance from the pumping well (thus
giving more weight to the transmissivity values far from the
pumping well), in uniform flow conditions, all the trans-
missivity values along the streamline are equally important.

4. Conditional Expectation of Transport
Connectivity Indicators

[35] From (40) an estimate of t′ would imply perfect
knowledge of the spatial distribution of Y and w′. Obviously,
this is not possible, so we need to estimate t′ from an
incomplete knowledge of the system. We wish to get the
“best” estimate (and corresponding uncertainty) of t′ (x0,
xp0) from nearby measurements of (1) transmissivity, Y(xi)
(i = 1, …, NY); (2) point‐to‐point transport connectivity,
t′ (xi, xpi) (i = 1, …, Nt); and (3) point‐to‐point flow con-
nectivity, w′ (xi, xpi) (i = 1, …, Ns). The data measurements
of the indicators of flow and transport connectivity can be
representative of different streamlines; for example, the
estimates of w′ and t′ can be obtained from pumping and
tracer tests performed at different wells. To include these
measurements, the xpi location of a given streamline denotes
the final location of the streamline starting at the xi location.
[36] Essentially, we want to obtain the best unbiased

linear estimator of t′ (x0, xp0) of the form

�
0
CKðx0; xp0Þ ¼

X
i

�Yi Yi þ
X
i

��i �
0
i þ
X
i

�!i !
0
i; ð54Þ

where t′CK (x0, xp0) is the estimator of transport connectivity
between x0 and xp0, and by convention we denote t′i = t′(xi,
xpi) and w′i = w′ (xi, xpi) as measurement values.
[37] The relative contribution of each observation is based

on the spatial dependency of the attributes. To this end, we
consider Y(x) = ln T(x) to describe a correlated random
function quantified by its expectation mY and the two‐point
covariance function, Cyy (xi, xj). The attributes w′ and t′ are
linearly dependent on Y′ and, therefore, can also be
described as two correlated random functions with zero
mean (i.e., mt = 0 and mw = 0).
[38] The weight coefficients of the predictor are obtained

by requiring the unbiasedness condition while minimizing
the variance of the estimator error, similar to the widely
known cokriging interpolation method. Taking the expected
value of (54), we get the unbiasedness constraint

X
i

�Yi mY ¼ 0: ð55Þ
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[39] The minimization of the variance of the estimator
error, sCK

2 = E [(t′CK − t′)2], under the unbiasedness con-
straint requires the minimization of the objective function L
involving one Lagrangian parameter m:

@L

@�Yi
¼ 0;

@L

@��i
¼ 0;

@L

@�!i
¼ 0;

@L

@�
¼ 0; ð56Þ

where

Lð�Yi ; ��i ; �!i ; �Þ ¼
1

2
E ð� 0

CK � �
0 Þ2

h i
� �

X
i

�Yi mY

 !
: ð57Þ

[40] On the basis of this equation, the weight coefficients
are determined by solving the following linear system of
equations:

P
	

P
j �

	
j EðZ

0

iZ

0
	jÞ � �m
 ¼ EðZ 0


i�
0
0Þ 
 ¼ Y ; �; !; i ¼ 1; . . . ; nP

i �
Y
i mY ¼ 0;

(

where t′0 = t′CK (x0, xp0), and the random variable Z′ai is
defined as

Z
0

i ¼

Y
0
i ¼ Yi � mY if 
 ¼ Y ;
�

0
i ¼ �

0
i if 
 ¼ �;

!
0
i ¼ !

0
i if 
 ¼ !:

8<
: ð58Þ

[41] The minimized estimation variance of t′CK (x0, xp0)
can then be written as

�2CK ¼ Eð� 02Þ �
X



X
i

�
i EðZ
0

i�

0
0Þ; ð59Þ

where

EðZ 0

iZ

0
	jÞ ¼

EðY 0
i Y

0
j Þ ¼ Cyyðxi; xjÞ if ð
 ¼ Y Þ; ð	 ¼ Y Þ;

EðY 0
i �

0
j Þ ¼ Cy� ðxi; xjÞ if ð
 ¼ Y Þ; ð	 ¼ �

0 Þ;
EðY 0

i!
0
jÞ ¼ Cy!ðxi; xjÞ if ð
 ¼ Y Þ; ð	 ¼ !

0 Þ;
Eð� 0

i �
0
j Þ ¼ C�� ðxi; xjÞ if ð
 ¼ �

0 Þ; ð	 ¼ �
0 Þ;

Eð� 0
i!

0
jÞ ¼ C�!ðxi; xjÞ if ð
 ¼ �

0 Þ; ð	 ¼ !
0 Þ;

Eð!0
i!

0
jÞ ¼ C!!ðxi; xjÞ if ð
 ¼ !

0 Þ; ð	 ¼ !
0 Þ:

8>>>>>>>>>>><
>>>>>>>>>>>:

ð60Þ

[42] Typically, we have only a very limited amount of
data. Thus, although crucial for the delineation of connec-
tivity patterns, we cannot, in general, estimate the covari-
ance functions between {Y′, t′}, {Y′, w′}, {t′, t′}, {t′, w′},
and {w′, w′} because too few pumping and tracer tests are
available at a given site. Here we overcome this problem by
employing the approximate analytical solution of t′ to
express all the required covariance functions as a weighting

function of Cyy. Explicit expression of the covariance
functions are given in Appendix A.

5. Stochastic Simulation of Transport
Connectivity Indicators

[43] On the basis of the estimates of point‐to‐point
transport connectivity, one can easily generate alternative,
equally probable realizations of t′ while honoring data va-
lues of (Y, t′, w′) at different locations. For simplicity, we
only consider the sequential Gaussian simulation algorithm,
but it could be extended to other simulation techniques such
as simulating annealing or multiple‐point geostatistics. For
more details on the theory of the sequential Gaussian sim-
ulation of a random field we refer to the work of Gómez‐
Hernández and Journel [1993].
[44] This approach consists of drawing sequentially the

value of a variable (t′) from its conditional probability
density function. The attribute t′ is considered a multi‐
Gaussian random variable and thereby its conditional
cumulative density function (CCDF) follows a Gaussian
distribution. The mean and variance of the distribution are
derived from the previous cokriging system with the only
consideration that the conditioning must include not only all
available data values of the attributes (Y, t′, w′) but also the
previously simulated t′ values.
[45] In short, the algorithm proceeds as follows:
[46] 1. Define a random path that visits each node of the

grid map with centroid location u. At each node, retain
neighboring information about (Y, t′, w′).
[47] 2. Use the cokriging system defined in section 4 to

estimate the mean, mt (u), and variance, st
2 (u), of the

CCDF of t′ at the visiting location u.
[48] 3. Draw a random number p from a uniform distri-

bution U(0, 1).
[49] 4. Calculate the simulated value as t′ (u) =

G−1 (p)st (u) + mt (u), where G
−1 (p) is the inverse function

of the standard Gaussian CDF.
[50] 5. Add the simulated value t′ (u) to the data set and

go back to step 2 until the path has been completed.

6. Simplifying Approaches

[51] In problems requiring a detailed site characterization,
such as in the operation of an underground radioactive waste
repository, the covariance and cross‐covariance functions of
all variables can be directly inferred from data. However, in
most practical situations, only a few hydraulic tests are avail-
able at a given site, so the approximation of the covariance
functions given in Appendix A are needed. In those cases, the
large number of space integrals involved in the approximation
causes the computation of the covariance functions related
to t′ and w′ to be highly computationally demanding.
[52] In an attempt to avoid this burden, we consider two

simplifications of the transport connectivity indicators. These
simplified expressions are also often needed in tackling many
engineering problems, such as in the risk analysis of ground-
water remediation strategies [Bolster et al., 2009]. By dis-
regarding the influence of the hydraulic response to transport
connectivity, the following approximation can be used:

�
0
I ðxi; xpÞ ¼ �

Z
 ip

W0ðxi; xp; xs0ÞY
0 ðxs0Þds0; ð61Þ
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which greatly simplifies equation (40). This simplification was
successfully used by Trinchero et al. [2008] to delineate time‐
related capture zones of pumping wells. These authors showed
that this approximation causes only a slight overestimation of
the low‐connectivity patterns, leading to smaller capture zones
than desirable in areas of low connectivity. In this context, the
following overconservative simplification can be used:

�
0
czðxi; xpÞ ¼ �

0
I ðxi; xpÞ; �

0
> 0;

0; �
0 � 0:

	
ð62Þ

[53] By a conservative approach, we mean that the
approximation tends to only slightly underestimate transport
connectivity. This tendency is shown in section 7 for pump-
ing conditions, where we compare the captured area given by
(61) and (62) with the numerical solution obtained from
particle tracking simulations in a Monte Carlo framework.

7. Example of Application

[54] This section presents an illustrative example of the
method developed to generate transport connectivity maps. In
particular, the example deals with a day‐to‐day application of
the method in which scarce knowledge of the aquifer calls for
the combined use of the simplifying approaches and the
approximation of the covariance functions of t′ and w′. The
focus here is on the delineation of point‐to‐point transport
connectivity patterns induced by a single pumping well.
[55] We consider a synthetic heterogeneous aquifer whose

domain is 101 × 101 units in length. The well is located at
the center of the domain and pumps water out at a constant
rate (i.e., Qw = 30 L3/T). Flow is at steady state and a
constant head is fixed at all outer boundaries. Heterogeneity
is described by a spatially varying transmissivity, which is
modeled as a correlated random function. All other aquifer
properties are assumed constant. The distribution of the
natural log of transmissivity in the aquifer describes a multi‐
Gaussian random function with zero mean and a variance

varying between sY
2 = 1 and sY

2 = 2. The correlation structure
is characterized by an isotropic spherical variogram model
with an integral scale of 20 units length.
[56] The performance of the method is evaluated using

two different approaches: by visual inspection of transport
connectivity maps (i.e., comparison of the spatial distribution
of t′I with its true solution) and by analyzing the behavior of
appropriate performance indices. For any given realization of
Y, the true solution of point‐to‐point transport connectivity
was numerically calculated via backward particle tracking
simulations. To perform the simulations, the simulated
steady state flow velocities obtained using a finite difference
code, MODFLOW‐2000 [Harbaugh et al., 2000], were used
in a random walk code, RW3D [Fernàndez‐Garcia et al.,
2005; Salamon et al., 2006], to simulate backward travel
times of particles initially released at the pumping well using
a purely advective model. Transport connectivity was then
related to the travel time ta through

taðxi; xwÞ ¼ �r2i b�

Qw
exp �

0 ðxi; xwÞ: ð63Þ

[57] The chosen performance indices quantify the error
produced when forecasting well capture zones obtained
from (63). Thus, the analysis evaluates the forecast of the
time‐related captured zone of 50 days, which is a widely
used travel time for designing safeguard zones of an
abstraction well. The performance indices are defined as

emiss ¼ Afore

Areal
; eover ¼ Aover

Asim
; ð64Þ

where Afore is the area of the real capture zone that is cor-
rectly predicted, Areal is the real captured area, Asim is the
area simulated by the model, and Aover is the nonreal area
that is predicted by the model. Figure 1 illustrates the def-
inition of the different capture areas used to determine emiss

and eover. In Figure 1, Amiss is the area of the real capture
zone that is not identified by the forecast, so Areal = Amiss +
Afore. Thus, the first index emiss is the percentage of the real
capture zone that has not been identified, whereas eover is
the percentage of the forecasted area that is unnecessarily
protected. Similar performance indices were used by Kerrou
et al. [2008].
[58] The example fulfills two main objectives. On the one

hand, in section 7.1, we use the synthetic aquifer to evaluate
the performance of the simplified expressions of the trans-
port connectivity indicators; on the other hand, the synthetic
aquifer is employed in section 7.2 to illustrate the generation
of conditional point‐to‐point transport connectivity maps
honoring scarce data obtained from different sources.

7.1. Assessment of t′I and t′cz
[59] The performance of the simplified expression of the

connectivity indicators given in section 6, t′I and t′cz, are
evaluated using Monte Carlo simulations. We consider 200
realizations of the transmissivity field generated through a
sequential Gaussian simulation program, GCOSIM3D
[Gómez‐Hernández and Journel, 1993]. For any given
transmissivity field, the estimation of t′I and t′cz was per-
formed numerically using one quadrature of the integrals
defined in (61) and (62). The estimated connectivity values

Figure 1. Definition of the captured areas used to deter-
mine the performance indices (see equation (64)).
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were then used to calculate the related capture zones and
performance indices obtained through (63) and (64). Here
the assessment of t′I and t′cz assumes that the spatial distri-
bution of the transmissivity field is completely known
(without conditioning).
[60] Results presented in Figure 2 show the cumulative

distribution function of the performance indices. Here thin
lines correspond to the estimation of t′ by t′I (61), whereas
dashed lines corresponds to t′cz given by (62). Remarkably,
the fact that the approximation of transport connectivity t′I
and t′cz provides relatively good predictions of the captured
area for both degrees of heterogeneity, sY

2 = 1 and sY
2 = 2,

indicates that the simplified transport connectivity indicators
are rather robust for the flow condition examined. Notice,
for instance, that 80% of the simulations corresponding to t′I
were able to predict more than 80% of the real captured
area. Furthermore, as expected by its definition which dis-
regards low connectivity values, the use of the approxima-
tion t′ ≈ t′cz substantially improves the forecast of the
captured area, which is now almost fully captured in most of
the realizations. In this process, it is important to note that
the overestimated area given by t′cz is still rather similar to
that of t′I.
[61] In principle, the analytical solutions developed in

section 2 are only valid for small degrees of heterogeneity
(i.e., sY

2 < 1). In this context, we note that because these
results were obtained for sY

2 = 1 and sY
2 = 2, it adds con-

fidence to the applicability of our analytical solutions to
field problems with larger sY

2.

7.2. Stochastic Simulation of Transport Connectivity

[62] We now illustrate the generation of conditional
point‐to‐point transport connectivity maps honoring data
obtained from different sources. For this purpose, an arbi-
trary individual aquifer realization of the random field with
sY
2 = 1 was chosen to represent the true aquifer. On the

basis of this realization, we attempt to infer the transport
connectivity patterns when only a limited amount of
information is known. Here the only information required to
generate conditional transport connectivity maps is the
covariance function of Y, the location and features of the
pumping well, and the data. Connectivity values are simu-
lated over a regular grid formed by square cells of unit size.
The support volume of the local transmissivity measure-
ments is represented by the size of the grid cells. Because
the example focuses on radial flow conditions, the transport
weighting functions Wi are known analytically from (51)
and (52). Yet we note that the methodology is general
and that, for more complex flow systems, the weighting
functions can also be directly computed by means of (20)
and (34).
[63] The example is designed to evaluate the worth of

including tracer data in a capture zone that has been designed
using only available local transmissivity data. To perform
this evaluation, the following scenarios were considered:
(A) 16 equally spaced measurements of Y are known; (B) 16
equally spaced measurements of Y and 16 measurements of
t′ are known at the same exact location (i.e., Yi and t′i share
the same location); (C) 16 equally spaced measurements of
Y and 16 measurements of t′ are known at different loca-
tions; and (D) 100 equally spaced measurements of Y are
known.
[64] Figure 3 compares the true transport connectivity

map, numerically generated using particle tracking, with
those obtained from the stochastic estimation and one
Gaussian simulation of t′I in scenario D. Remarkably, both
the stochastic estimation and the simulation of connectivity
can be used to identify the three highly connected zones. As
expected, the estimation produces globally smooth surfaces,
while a better representation of the natural variability of
connectivity is provided by the stochastic simulation.
[65] The method was then tested using the previously

defined performance indices. The simulated area Asim was

Figure 2. Cumulative distribution function of the performance indices obtained for sY
2 = 1 and sY

2 = 2.
Thin lines correspond to the capture zone determined by (61), whereas dashed lines correspond to the
capture zone estimated with the simplified overconservative approach given by (62).
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obtained by the stochastic generation of t′I over 300 reali-
zations, while the true captured area Areal was determined
from backward particle tracking simulations. Figure 4 shows
the cumulative distribution function of emiss and eover for all
scenarios. As expected, when more data are available, the
capture zone is better represented; the area not identified by
the forecast eover and its uncertainty (dispersion within the
efore data) is smaller. This is clearly the case for the over-
estimated area (Figure 4a) but not for the predicted one
(Figure 4b). In this case, the addition of a few t′i data values
(scenarios B and C, Figure 4b) is shown to provide more
information on connectivity than adding many Yi values
(scenario D).
[66] By looking at scenarios B and C in Figure 4, we see

that when tracer data belong to a different location than that
of the measurements of transmissivity a more faithful
delineation of the capture zone is simulated. Notice that
Figure 4 exhibits an important reduction of efore for the same
degree of overestimation, eover. This behavior is a direct
consequence of the shape of the weighting function W0,
which in this case gives larger weights to the transmissivity
data close to the injection location. Thus, introducing tracer
test data at points where transmissivity is already known is
found to be somewhat redundant.
[67] Figure 5 shows the isoprobability contour lines of the

capture zone for all the scenarios considered. The isoprob-
ability maps were calculated by estimating, at every centroid
cell of the domain, the frequency at which the travel time is
smaller than 50 days. In scenario A, where only 16 trans-
missivity measurements are known, the 0.5 isoline of the
capture zone is almost circular, being close to the homo-
geneous solution (Figure 5a). When tracer data and trans-
missivity measurements share the same location (scenario
B), a little improvement in the delineation of the capture
zone is obtained. The reason is that, under convergent flow
conditions, transport connectivity is mostly affected by the
transmissivity data near the injection location and, therefore,
transmissivity measurements and tracer data provide almost
the same basic information. On the contrary, when tracer
data and transmissivity measurements sample different areas
(scenario C), the 0.5 isoline of the simulated capture zone
approximates the real one, and the prediction is also less
uncertain (Figure 5c).

[68] Whenever the number of transmissivity measure-
ments available increases by an order of magnitude (scenario
D), the accuracy of the method also increases dramatically
(Figure 5d) and a good agreement is observed between the
0.5 isoline and the real perimeter of the capture zone.
Nevertheless, those parts of the protection perimeter that
correspond to highly connected zones still show high
uncertainty, probably because of the lack of tracer test data
in scenario D.

8. Conclusions

[69] We presented a general method for the stochastic
simulation of point‐to‐point transport connectivity honoring
data from three different sources: (1) travel time estimates
obtained from field tracer tests, (2) estimates of flow con-
nectivity indicators obtained from the relatively fast or slow
response that is observed at a given location provided a flow
impulse at another location, and (3) measurements of
transmissivity at a local scale. The method can be used with
generic flow configurations and it can easily integrate data
obtained from different hydraulic tests, each one sampling
different areas within the aquifer. In doing this, the fol-
lowing main findings are highlighted.
[70] 1. Point‐to‐point flow and transport connectivity are

conceptually different but related. We generalized the
mathematical approximate relationship between point‐to‐
point transport connectivity and point‐to‐point flow con-
nectivity given by Trinchero et al. [2008] for converging
flow conditions to support other flow configurations and
problem setups.
[71] 2. Point‐to‐point flow connectivity is seen as a

weighted integral of transmissivity over the entire domain.
Generally speaking, the weighting function is given by the
sensitivity of heads with respect to the natural log of trans-
missivity per unit of aquifer volume. On the contrary, the
point‐to‐point transport connectivity is a weighted integral
along the particle path of the solute mass that involves two
variables: transmissivity and flow connectivity. Each variable
has its own weighting function. The weighting function of
transmissivity is inversely proportional to the travel time and
sampled velocity along the particle path.
[72] 3. For uniform flow conditions the weighting func-

tions of the transport connectivity indicator assign equal

Figure 3. Visual comparison of (a) the real connectivity map obtained from particle tracking simulations
with (b) the connectivity map obtained through stochastic estimation of t′I (scenario D) and (c) one real-
ization of the stochastic simulation of connectivity t′I (scenario D).
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weight to all the transmissivity values along the particle
path. On the contrary, in radial flow conditions the trans-
missivity values farthest from the pumping well are the most
influential.
[73] 4. Simplified expressions of point‐to‐point transport

connectivity are provided to efficiently delineate time‐
related capture zones in heterogeneous aquifers. The
approach allows one to easily incorporate flow connectivity
measures (hydraulic response) obtained from pumping tests
as well as transport connectivity measures (travel times)

obtained from forced‐gradient tracer tests into the delinea-
tion of capture zones. Monte Carlo simulations in moder-
ately heterogeneous aquifers with sY

2 = 1 and sY
2 = 2 showed

that the simplified expressions yield adequate estimates of
the corresponding time‐related capture zones, where t′cz is
the most conservative one.
[74] 5. A stochastic framework conducive to generating

conditional maps of point‐to‐point transport connectivity
honoring data obtained from different sources is provided.
Thanks to the general expression of point‐to‐point flow and

Figure 4. Cumulative distribution function of (a) eover and (b) efore obtained over 300 conditional
sequential Gaussian simulations of point‐to‐point transport connectivity for the four different scenarios
considered.
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transport connectivity, the method avoids the inference of
cross‐covariance functions between variables measured over
different scales (which cannot be otherwise estimated
because there are typically not enough data) by expressing
them in terms of the covariance function of transmissivity.
[75] 6. An example of the method is provided to evaluate

the worth of including tracer data in an otherwise trans-
missivity‐based capture zone of an abstraction well. Several
scenarios based on different available measures of trans-
missivity and travel times were envisioned. A visual
inspection of the stochastically generated connectivity maps
shows the ability of the method to identify the highly
connected zones. Moreover, Monte Carlo simulations reveal

that the worth of tracer data is a maximum whenever the
travel time data stem from a tracer test performed at a dif-
ferent location than that of transmissivity measurements.
The reason is that the weighting function of transmissivities
associated with converging flow conditions gives larger
weights to the injection location, making redundant the
tracer test information whenever the injection is performed
at a point where local transmissivity is known.

Appendix A: Covariance Functions

[76] Because too few pumping and tracer tests are avail-
able at a given site, we cannot typically estimate the
covariance functions between {Y′, t′}, {Y′, w′}, {t′, t′}, {t′,

Figure 5. Isoprobability contour lines of the capture zone induced by a pumping well (thin lines)
obtained from conditional stochastic simulations of connectivity t′I: red line, true capture zone numeri-
cally simulated through particle tracking; green line, capture zone of an equivalent homogeneous
medium; blue line, 0.5 isoline.
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w′}, and {w′, w′}. This problem can be overcome by em-
ploying the approximate analytical solution of t′ to express
all the required covariance functions as a weighting function
of Cyy. This is written as

Cy!ðxi; xjÞ ¼ �
Z
<2

Uðxj; xpj ; xÞCyyðxi; xÞ dx; ðA1Þ

Cy� ðxi; xjÞ ¼ �
Z
 jp

W0ðxj; xpj ; xs0ÞCyy xi; xs0ð Þds0

þ
Z
 jp

W1ðxj; xpj ; xs0ÞCy! xi; xs0ð Þds0

�W2ðxj; xpj ; xjÞCy!ðxi; xjÞ þW2ðxj; xpj ; xpjÞ
� Cy!ðxi; xpjÞ; ðA2Þ

C!!ðxi; xjÞ ¼
Z
<2

Z
<2

Uðxi; xpi ; x
0 ÞU

�ðxj; xpj ; x
0 0 ÞCyyðx0

; x
0 0 Þ dx0

dx
0 0
; ðA3Þ

C�� ðxi; xjÞ
¼
Z
 ip

Z
 jp

W0ðxi; xpi ; xs00ÞW0ðxj; xpj ; xs0 00 ÞC
yyðxs00 ; xs0 00 Þds

0
0ds

0 0
0

�
Z
 ip

Z
 jp

W0ðxi; xpi ; xs00ÞW1ðxj; xpj ; xs0 00 ÞC
y!ðxs00 ; xs0 00 Þds

0
0ds

0 0
0 ;

þ
Z
 ip

W0ðxi; xpi ; xs00ÞW2ðxj; xpj ; xjÞCy!ðxs00 ; xjÞds
0
0

�
Z
 ip

W0ðxi; xpi ; xs00ÞW2ðxj; xpj ; xpjÞCy!ðxs00 ; xpjÞds
0
0

�
Z
 ip

Z
 jp

W1ðxi; xpi ; xs00ÞW0ðxj; xpj ; xs0 00 ÞC
!yðxs00 ; xs0 00 Þds

0
0ds

0 0
0

þ
Z
 ip

Z
 jp

W1ðxi; xpi ; xs00ÞW1ðxj; xpj ; xs0 00 ÞC
!!ðxs00 ; xs0 00 Þds

0
0ds

0 0
0

�
Z
 ip

W1ðxi; xpi ; xs00ÞW2ðxj; xpj ; xjÞC!!ðxs00 ; xjÞds
0
0

þ
Z
 ip

W1ðxi; xpi ; xs00ÞW2ðxj; xpj ; xpjÞC!!ðxs00 ; xpjÞds
0
0

þ
Z
 jp

W2ðxi; xpi ; xiÞW0ðxj; xpj ; xs0 00 ÞC
!yðxi; xs0 00 Þds

0 0
0

�
Z
 jp

W2ðxi; xpi ; xiÞW1ðxj; xpj ; xs0 00 ÞC
!!ðxi; xs0 00 Þds

0 0
0

þW2ðxi; xpi ; xiÞW2ðxj; xpj ; xjÞC!!ðxi; xjÞ
�W2ðxi; xpi ; xiÞW2ðxj; xpj ; xpjÞC!!ðxi; xpjÞ
�
Z
 jp

W2ðxi; xpi ; xpiÞW0ðxj; xpj ; xs0 00 ÞC
!yðxpi ; xs0 00 Þds

0 0
0

þ
Z
 jp

W2ðxi; xpi ; xpiÞW1ðxj; xpj ; xs0 00 ÞC
!!ðxpi ; xs0 00 Þds

0 0
0

�W2ðxi; xpi ; xpiÞW2ðxj; xpj ; xjÞC!!ðxpi ; xjÞ
þW2ðxi; xpi ; xpiÞW2ðxj; xpj ; xpjÞC!!ðxpi ; xpjÞ; ðA4Þ

C�!ðxi; xjÞ ¼
Z
 ip

Z
<2

W0ðxi; xpi ; xs00ÞUðxj; xpj ; xÞCyyðxs00 ; xÞdx ds
0
0

�
Z
 ip

Z
<2

W1ðxi; xpi ; xs00ÞUðxj; xpj ; xÞC!yðxs00 ; xÞdx ds
0
0

þ
Z
<2

W2ðxi; xpi ; xiÞUðxj; xpj ; xÞC!yðxi; xÞ dx

�
Z
<2

W2ðxi; xpi ; xpiÞUðxj; xpj ; xÞC!yðxpi ; xÞ dx:
ðA5Þ
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