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We analyze the relative importance of the selection of (1) the geostatistical model depicting the
structural heterogeneity of an aquifer, and (2) the basic processes to be included in the
conceptual model, to describe the main aspects of solute transport at an experimental site. We
focus on the results of a forced-gradient tracer test performed at the “Lauswiesen”
experimental site, near Tübingen, Germany. In the experiment, NaBr is injected into a well
located 52 m from a pumping well. Multilevel breakthrough curves (BTCs) are measured in the
latter. We conceptualize the aquifer as a three-dimensional, doubly stochastic composite
medium, where distributions of geomaterials and attributes, e.g., hydraulic conductivity (K) and
porosity (ϕ), can be uncertain. Several alternative transport processes are considered:
advection, advection–dispersion and/or mass-transfer between mobile and immobile
regions. Flow and transport are tackled within a stochastic Monte Carlo framework to
describe key features of the experimental BTCs, such as temporal moments, peak time, and
pronounced tailing. We find that, regardless the complexity of the conceptual transport model
adopted, an adequate description of heterogeneity is crucial for generating alternative equally
likely realizations of the system that are consistent with (a) the statistical description of the
heterogeneous system, as inferred from the data, and (b) salient features of the depth-averaged
breakthrough curve, including preferential paths, slow release of mass particles, and
anomalous spreading. While the available geostatistical characterization of heterogeneity can
explain most of the integrated behavior of transport (depth-averaged breakthrough curve), not
all multilevel BTCs are described with equal success. This suggests that transport models simply
based on integrated measurements may not ensure an accurate representation of many of the
important features required in three-dimensional transport models.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

The success of environmental risk assessment and
remediation practices of contaminated groundwater bodies
strongly relies on the characterization of the spatial variations
of key hydrogeologic features of aquifers and proper assess-
ment of relevant transport mechanisms and associated
parameters. Incorporating these features in stochastic flow
All rights reserved.
and transport models is then conducive to a representation of
the system in terms of (a) relevant (statistical) moments of
solute concentrations or, more completely, (b) a set of
alternative and equally likely realizations of contaminant
distributions. The last 50 years have been characterized by
intense and exciting debates which have led to significant
advances in theoretical and operational development of
stochastic and/or deterministic (numerical/analytical) tech-
niques for the analysis of flow and transport in the subsurface
under a variety of conditions. In this context, major issues of
concern in hydrogeology include modeling of heterogeneity
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of hydrogeologic properties and relevant processes governing
solute transport [see the recent compilation of de Marsily
et al., 2005].

Tracer tests have traditionally been regarded as appro-
priate and efficient tools to infer information about aquifer
properties at various scales of interest (laboratory and field
scales) and for various flow regimes (natural or forced-
gradient conditions). For a review of modern tracer testing
techniques, the interested reader is referred to the work of
Ptak et al. (2004).

Interpretation of tracer tests performed in real sites faces
many challenges. On one hand, it is important to properly
choose the underlying transport equation amongst a set of
models ranging from the classical ADE (advection–dispersion
equation) to CTRW (continuous time random walk). A recent
review of drawbacks and merits of various techniques for the
reproduction of observed tracer plumes, as reflected by BTCs
(breakthrough curves) or spatial distributions of concentra-
tions, is offered by Berkowitz et al. (2006). Second, due to our
incomplete knowledge of the system,which is persistent at all
scales of investigation, one should be very careful when using
a deterministic approach to interpret observed BTCs. For
example, by disregarding the underlying heterogeneity of the
system one might obtain interpreted parameters that are
apparently not realistic, but actually contain information
about the unsampled heterogeneity (Sanchez-Vila and Car-
rera, 1997; Fernandez-Garcia et al., 2002). A third challenge
comes from the fact that most of the stochastic hydrogeology
literature relies on the assumption that spatial variation in
hydraulic conductivity is the salient controlling factor that
should be included in transport models. The variability of
other parameters, such as porosity, as well as the impact of
cross-correlation between hydraulic parameters is usually
disregarded in real applications, despite it has been shown in
synthetic aquifers to produce a significant effect in mass
fluxes (Hassan, 2001).

In this context, a salient question is whether the key goal
in the interpretation of a given tracer test is to obtain the best
possible fit to the measurements by means of models that
include some representative (flow and transport) parameters,
or to explicitly include some measurement of uncertainty
associated with modeling results. Here, we look at the
problem form the perspective that it is possible to describe
the main features of an observed BTC by means of multiple,
equally likely manifestations of the system, along the lines of
Salamon et al. (2007). Thus, our interest is not to calibrate
model parameters but, instead, to evaluate the predictive
capability of forward stochastic transport models based on a
high-resolution three-dimensional geostatistical description
of the test site and on simple conceptual transport models.
We illustrate the problem starting from the measurements
taken during a tracer test performed at the “Lauswiesen”
experimental site (Germany), where four multilevel break-
through curves were measured within the pumping well,
using a flow separation technique. Our distinctive aim is to
analyze the importance of properly modeling the uncertain
distribution of geomaterials and associated attributes
(hydraulic conductivity and porosity) on our ability to
reproduce the key features of the depth-averaged and
multilevel breakthrough curves. These include the first
temporal moments and the recorded pronounced tailing.
To this end, we compare the relative impact of (a) the
choice of the underlying governing transport processes (i.e.,
advection, dispersion — either local or macroscale − and/or
mass-transfer between mobile and immobile matrix phases)
and (b) the choice of different models to describe the
(random) heterogenity of the system (i.e., only hydraulic
conductivity or both conductivity and porosity display
random variations) on our ability to reproduce the observed
features of the BTCs. In this context, we perform numerical
flow and transport simulations within a Monte Carlo frame-
work upon treating the aquifer as a three-dimensional,
doubly stochastic composite medium.

The structure of the paper is as follows. We devote
Section 2 to a brief description of the experimental field site
and the outline of the aquifer characterization procedures
and tracer test design and implementation. Then, we present
the details of the numerical modeling technique in Section 3.
Section 4 compares the features of the (probabilistic) BTCs
obtained upon incorporating in our procedure different
conceptual models of the heterogeneous structure of the
site. Finally, we summarize the main results and conclusions
of this paper.

2. Field setting and experiments

The aquifer under investigation is located at the “Laus-
wiesen” experimental field site (Fig. 1), near Tübingen in the
Neckar river valley. An extensive presentation of the main
geological features and hydrogeologic characterization of the
site has been offered by Riva et al. (2006). For the sake of
completeness, herewe briefly summarize the field setting and
aquifer characterization results. Then we present details of
the tracer test.

2.1. Outline of field setting and characterization

The aquifer consists of alluvial material overlain by stiff
silty clay and underlain by hard silty clay. The lithostrati-
graphic characterization has been performed on the basis of
the stratigraphy obtained from the drilling of 150 mm-
diameter monitoring wells (Sack-Kühner, 1996; Martac and
Ptak, 2003) and of one 400 mm-diameter pumping well. The
location of monitoring and pumping wells is shown in Fig. 1.
Thewellswere drilled until themarly bedrock constituting the
impermeable aquifer bottom of variable depth was identified.
The aquifer saturated thickness is about 5 m. Water table
measurements showed a regional hydraulic gradient of about
0.1–0.2% with a general groundwater flow direction from
South-West toward North-East. As detailed by Riva et al.
(2006), general groundwater flow and transport patterns in
the area have been analyzed by means of an existing
deterministic two-dimensional model, covering an area of
about 3×1 km2 which includes the test site. On these bases,
average porosity ϕ=9.8% was obtained by fitting individually
simulated breakthrough curves to those obtained fromdepth-
averaging of multilevel–multitracer field experiments.

Extensive field and laboratory scale aquifer investigation
procedures, including sieve analyses, flowmeter measure-
ments and pumping tests were applied. The sieve analyses,
performed on drill core samples (taken as point measure-
ments, compared to the scale of the investigation domain)



Fig. 1.Map of the site and location of the pumping and monitoring wells at the “Lauswiesen” site (background from Google Earth). The global piezometric surface
based on groundwater level measurements is also reported, together with the estimated general flow direction at the site. From Riva et al. (2006).
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indicated very heterogeneous, highly conducive alluvial
deposits. More than 400 grain distribution curves are
available within the test area. These are distributed along 12
verticals (wells B1, B2, …, B5 and F0, F1, F2, …, F6 in Fig. 1).

A multivariate geostatistical facies-based parameteriza-
tion approach was applied to characterize the heterogeneous
three-dimensional aquifer structure. The analysis comprises
three parts: multivariate cluster analysis (MCA), univariate
statistics of K, and variography. The complete analysis can be
found in Riva et al. (2006), and a short summary is presented
here. From the MCA procedure (McQueen, 1967), three
different types of aquifer materials (clusters/facies) were
identified to describe the heterogeneity of the aquifer
lithology. Distributions of K values within each facies were
determined from the grain size distribution curves (the
results are compiled in Table 1). It is noted that ignoring the
existence of different lithologies and treating all samples
together leads to a variance of ln K close to 3.0.



Table 2
Main results of the three-dimensional geostatistical analysis of Y=ln K

Cluster 1 Cluster 2 All samples

Variogram type Spherical Spherical Spherical

Nugget 0.05 0.05 0.05
Sill 2.36 1.30 2.86
Horizontal range [m] 10 10 12
Vertical range [m] 0.90 0.80 0.90

Results are presented separately for samples of cluster 1 and cluster 2 and by
analyzing jointly all samples collected in the system as if they belonged to a
single, homogenized, lithofacies.

Fig. 2. Results of the calibration procedure for the laboratory scale tracer
experiment. Normalized concentration, cR=c/cmax, where c is concentration
and cmax is the maximum observed concentration. Normalized time, tR=(q t)/
(ϕ L), where q is Darcy's flux, ϕ is porosity, t is time, and L is the length of the
column. Data are properly fitted by means of an ADE with two fitting
parameters (dispersivity and porosity).

Table 1
Main results of the multivariate cluster analysis procedure (KG and σY

2

respectively are the geometric mean of hydraulic conductivities and variance
of natural log-conductivities of samples)

Cluster 1 Cluster 2 Cluster 3 All
samples

Description Moderately sorted
gravel, very few
fines and around
13% sand

Poorly sorted
gravel, few fines
and around
24% sand

Well sorted
sand, very
few fines and
23% gravel

Percentage
of samples

53 44 3 100

KG [m/s] 5.92×10−3 0.83×10−3 0.31×10−3 2.22×10−3

σY
2 2.41 1.35 0.32 2.97
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Finally, the variography analysis was divided in two
successive steps. First, indicator variography is used to
characterize the spatial distribution of facies. All indicator
variograms display a slight horizontal anisotropy, with largest
horizontal ranges between 11 m (for Clusters 1 and 2) and
35 m (for Cluster 3) and a smallest range of about 6 m for all
clusters. Vertical ranges are of the order of 0.5 m. The next
step was obtaining the variograms for the Y=ln K values. The
analysis was performed separately for clusters 1 and 2 (cluster
3 values were taken as constant since its relative volumetric
fraction is only 3% and the corresponding internal variability
of Y is relatively modest, as illustrated in Table 1) and upon
considering all samples jointly (all belonging to a single
Spatial Random Function). All Y random functions can be
modeled by means of axisymmetric variograms, with a
vertical range significantly smaller than its horizontal
counterpart. Table 2 summarizes the main parameters of
the variogram models.

Following Riva et al. (2006), we adopt an experimentally
derived linear relationship between the (natural) logarithms
of effective porosity and hydraulic conductivity. We note that
joint measurements of porosity, ϕ, and hydraulic conductivity
were not available at the Lauswiesen site. Thus the relation-
ship between ϕ and K was derived on the basis of data
collected at a nearby site (Horkheimer Insel site, as reported
by Ptak and Teutsch, 1994) where hydraulic conductivity was
obtained from permeameter measurements using 100 mm
diameter drill core samples of the Neckar valley aquifer and
sieve analyses, while ϕ was evaluated from gravity drainage
after the permeameter measurements. The mean drainage
porosity ranges between 1.1% and 18.6% with an arithmetic
mean equal to 9.3%. On the bases of the information presented
by Ptak and Teutsch (1994), the following empirical relation-
ship was assumed (when K is expressed in m/s):

ln � ¼ a ln K þ b; a ¼ 0:350; b ¼ −0:186 ð1Þ

2.2. Column tracer tests

During the drilling of the wells at the “Lauswiesen” site,
plastic liners were used to collect continuous aquifer material
core samples. A laboratory tracer experiment was performed
using a 0.50 m long, 0.10 m diameter, column filled with
aquifer material. Small flow rate (4×10−6 m3/min) peristaltic
pumps were used to induce an effective transport velocity
comparable to field conditions. A slug injection of sodium-
bromide was performed and electrical conductivity measure-
ments were taken at the column outlet. The resulting
breakthrough curve was interpreted by means of the
analytical solution of Sauty (1980), which is based on an
ADE approach. This provided an estimated dispersivity value,
α ≅ 0.08 m, and a porosity estimate of about 13%. The good
fitting between the data and the interpretation with the ADE
model is reproduced in Fig. 2.

2.3. Forced-gradient field tracer tests

To investigate solute transport behavior at the field scale in
three dimensions, a multilevel–multitracer technique was
developed and tested at the site (Ptak et al., 2004). The tracer
testing was run under Dirac type tracer injection and
convergent flow forced-gradient conditions. A complete
description of the instrumentation, injection and sampling
technique is presented by Martac and Ptak (2003) and Ptak
et al. (2004).

Here, we focus on the convergent flow field test where
groundwater was pumped out of well F0 using a suction
pump (pumped flow rate Q=14 l/s), and the tracer was
injected instantaneously into well F2 (located at a distance of
52 m from F0; see Fig. 1), and four multilevel breakthrough
curves were measured within the pumping well itself using a
flow separation technique (Ptak et al., 2004). A depth-
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averaged BTC was then obtained on the basis of the recorded
multilevel BTCs, according to:

cint tð Þ ¼ ∑
n

j¼1
fjcj tð Þ ð2Þ

Here, cint(t) is the depth-averaged concentration at time t,
n=4 is the number of multilevel BTCs recorded, cj(t) is the
Fig. 3. Recorded multilevel BTCs at pumping well F0 and resulting depth-
averaged BTC obtained from Eqs. (2) and (3).
concentration measured at level j and time t. The thickness
associated with each individual concentration sampling level,
Δzj (j=1, 2, 3, 4) is (levels are numbered in ascending order
from the bottom, i.e., level 1, to the top, i.e., level 4, of well F0):
Δz1=Δz2=Δz3=0.75 m, Δz4=1.35 m.

The volumetric flux fraction associated with level j, fj, can
be calculated on the basis of the available impeller flowmeter
measurements at well F0, as:

fj ¼
∑
Nj

i¼1
Ki � Δzið Þ

∑
N

i¼1
Ki � Δzið Þ

ð3Þ

Here, Nj and N respectively are the number of vertical
intervals with flowmeter records included in level j and the

total number of vertical intervals at well F0, and Ki is the
hydraulic conductivity representative of a vertical interval of
thickness Δzi. The measured conductivities correspond to
vertical intervals ranging in length from 3 to 35 cm. Details of
the impeller flowmeter location are presented in Martac and
Ptak (2003), where it can be seen that the vertical description
of K from direct flowmeter measurements in F0 is available
only for the upper part of thewell (approximately 1.36m from
the mean groundwater level). In absence of additional
information, we set hydraulic conductivity as uniformly
distributed along the remaining part of the borehole and
fixed its value as the weighted average of the conductivities
measured in the upper part of the well. The volumetric flow
fractions associated with each concentration sampling level
and calculated on the basis of (3) are: f1= f2= f3=0.19, and
f4=0.43.

After a quasi-steady-state flow regime was reached,
sodium-bromide was injected at F2 (injection time was 80 s,
and injected mass was 15 kg). To create a pulse-like injection
condition, the injection well was immediately flushed with
groundwater to force the tracer into the aquifer. Continuous
re-mixing in the injection well was carried out by pumping
water from the bottom of the well, and re-injecting it close to
the surface. This operation was performed for 48 h. Bromide
concentrations were obtained by ion chromatography.

Fig. 3 depicts the four multilevel breakthrough curves
recorded at well F0 together with the depth-integrated BTC
obtained by Eqs. (2) and (3).

The total mass recovered in F0 after 21 days from injection
is about 40% of the injected mass. This is possibly caused by a
combination of a number of factors: mass trapped at the
bottom of the injection well driven by density contrasts,
development of imperfect convergent conditions (transient
behaviour of the groundwater flow field), local-scale hetero-
geneities around the injection and pumping wells (in
particular possible small-scale low conductivity zones
between the well construction and surrounding media, i.e.
skin), and limitation of the total BTC observation time.
The analysis of the individual multilevel BTCs indicates
that mass recovery at the pumping well is not uniformly
distributed along the vertical. Specifically, more than the 80%
of the mass recovery occurs at levels 1 (21% of total recovery)
and 4 (62%). Mass recovery at levels 2 and 3 is about 7% and
10%, respectively, probably indicating that these two levels
are representative of some low-conducive flow paths within
the system. All the curves are characterized by heavy tails,
thus pointing at the existence of anomalous (non-Fickian)
transport behavior at the site.

3. Modeling approach

For the numerical modeling, we concentrate on the region
of size of about 800m×800m×8m, includingwells F0 and F2,
within which Riva et al. (2006) have developed a stochastic
three-dimensional flow model (see Fig. 4). The stochastic
variability of geomaterials and their attributes is modeled
within the rectangular region (of size 250 m×400 m×8 m)
reported in Fig. 4, while the remaining part of the aquifer is
considered as a homogeneous system. A three-dimensional
block-centered finite different grid comprising a total of
2.90×106 cells was used. Refinement of cell sizes was
performed in the proximity of wells (where cells sizes were
set to 0.33m×0.40m×0.30m)with gradual increasing of cells
sides with distance. The boundary conditions and additional
information can be found in Riva et al. (2006).

Amongst various different possibilities, we conceptualize
the heterogeneous aquifer as a doubly stochastic process.
First, the spatial distribution of the different material blocks is
random; second, the distribution of attributes (hydraulic
conductivity and porosity) within each identified material
block is also random. The lithofacies distribution is described
via the indicator geostatistical analysis and hydraulic con-
ductivity is modeled as a correlated random process within
each material. Attributes of different materials are considered
uncorrelated (Winter et al., 2003). Two models of hetero-
geneity are considered: (1) HM1: porosity is kept constant
throughout the domain; (2) HM2: the distribution of porosity



Fig. 4. Limits of the local three-dimensional model. The rectangular region highlighted demarcates the sub-domainwithinwhich the aquifer is modeled as a doubly
stochastic process. In the remaining of the domain parameters were taken as homogeneous. From Riva et al. (2006).
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is linked to the spatial variability of hydraulic conductivity
according to the linear relationship described in Section 2.1.

One hundred Monte Carlo iterations were performed for
each of the heterogeneous models considered. The sequential
indicator simulator of categorical variables SISIMPDF
(Deutsch and Journel, 1998) was used to obtain multiple
conditional three-dimensional spatial distributions of the
three identified facies, with blocks of size 2.0m×1.0m×0.3m.
When finer discretization is required for computational
purposes, each block is then further divided into smaller
cells with the same value of hydraulic conductivity. When a
well falls within a cell, the subdivision into smaller cells is
performed by assigning a higher conductivity to the cell
containing the well (K=2.0 m/s) while a smaller value
(K=0.2 m/s) is assigned to the cells located around the well
to simulate the presence of a gravel pack [e.g., Juhasz, 2001].

The random distribution of conductivity considered was
simulated according to the following steps: (a) three-dimen-
sional unconditional realizations of log-conductivities of
Clusters 1 and 2 were generated on the same grid by using
the code GCOSIM3D (Gómez-Hernández and Journel, 1993);
hydraulic conductivity of Cluster 3 was taken as constant and
equal to its geometric mean (this modeling choice is justified
by the observation that the relative volume occupied by this
type of material is low and the corresponding internal
variability of log-hydraulic conductivity is relatively modest,
σY
2=0.32); (b) appropriate conductivity values were then

assigned to the numerical blocks according to the indicator
distribution.

Simulations of the steady-state flow problem for each
Monte Carlo realization were conducted with the finite
difference code MODFLOW2000 (Harbaugh et al., 2000).
Constant pumping (Q=0.014 m3/s) at the (fully screened) well
F0 was simulated by a concentrated sink at the bottom of the
aquifer at the planar location identified by F0.

Various conceptual models of transport, differing in terms
of the governing basic processes included, are investigated for
each Monte Carlo iteration: (a) purely advective transport;
(b) an advection–dispersion model (ADE); and (c) a double
porosity model, with mass-transfer between mobile and
immobile regions. The latter is described by the following
governing equations (Haggerty et al., 2001):

�m
Acm
At

þ �im
Acim
At

¼ −qrcm þr � �mDrcmð Þ ð4Þ

Acim
At

¼ β cm−cimð Þ ð5Þ

with appropriate initial and boundary conditions. Here, ϕm

and ϕim are the porosities of the mobile and immobile

regions, respectively associated with solute concentrations cm
and cim; β [T−1] is the effective mass-transfer coefficient; q is
the Darcy velocity; and D is the hydrodynamic dispersion
tensor. We emphasize that mass-transfer processes are used
to represent subgrid Darcy-scale mass fluxes which are not
explicitly described by the numerical flow model. Thus, the
immobile domain essentially depicts subgrid low velocity
areas where solute mass can enter and temporarily be
delayed with respect to processes occurring within mobile
regions. In our application, the effect of local-scale dispersion
was assumed to be negligible as compared to the mass-
transfer processes caused by subgrid heterogeneity.

Tracer transport was simulated with the random walk
particle tracking code RW3D (Fernandez-Garcia et al., 2005;
Salamon et al., 2006). The approach is computationally
efficient and not affected by problems associated with



7M. Riva et al. / Journal of Contaminant Hydrology 101 (2008) 1–13
numerical dispersion (Salamon et al., 2007). The randomwalk
code uses a hybrid scheme for the velocity interpolation that
provides local as well as global divergence-free velocity fields
within the solution domain. It also provides a continuous
dispersion tensor field that approximates well mass balance
at grid interfaces of adjacent cells with contrasting hydraulic
conductivities (LaBolle et al., 1996; Salamon et al., 2006). A
constant-displacement scheme (Wen and Gómez-Hernández,
1996), which modifies automatically the time step size for
each particle according to the local velocity is employed in
order to decrease computational effort. Mass-transfer pro-
cesses are efficiently incorporated by switching the state of
the particle between mobile/immobile matrix phases accord-
ing to appropriate transition probabilities (Salamon et al.,
2006).

When modeling transport on the basis of the ADE, a local-
scale (Darcy scale) longitudinal dispersivity was fixed at 0.10 m,
close to thevalueobtained fromthe laboratory tracer test results
described in Section 2.2. For the purpose of our simulations,
transverse horizontal and vertical local-scale dispersivity values
were chosen to be one order of magnitude less than the
longitudinal dispersivity, resulting in a value of 0.01 m.

In the double porosity model we set ϕim=0.6 ϕ and
ϕm=0.4 ϕ. These values have been adopted according to the
results of a sensitivity analysis (performed for a limited set of
Monte Carlo simulations) on the value of ϕim and the ratio
ϕim/ϕm. In a first set of analyses (sensitivity scenario A), the
mobile porosity, ϕm, was considered as a random variable
linked to K by Eq. (1). Three cases were analyzed for ϕim: (i)
ϕim=2%; (ii) ϕim=10% and (iii) ϕim=ϕm. We note that the
spatial distribution of the total porosity in these three cases is
not constant. We then evaluated the effect of changes in ϕim

and ϕm in three cases (sensitivity scenario B): (i) ϕm=0.5ϕ,
ϕim=6%; (ii) ϕm=ϕim=0.5ϕ; and (iii) ϕm=0.4ϕ, ϕim=0.6ϕ.
Here ϕ is the porosity obtained by Eq. (1). These preliminary
results highlighted that: (a) the concentration values obtained
in the sensitivity scenario B provide a better representation of
the rising limb of the experimental (depth-averaged) BTC
curve and of the time at which the concentration reaches its
peak (this suggests that the porosity obtained with Eq. (1) can
be better interpreted as some representative value of the total
amount of mobile and immobile porosity rather than strictly
an effective one); (b) the results obtained with (ϕm=ϕ-
im=0.5ϕ) and with (ϕm=0.4ϕ, ϕim=0.6ϕ) are very similar.
This suggests that one would have a really hard time
discriminating between the results obtained using these two
different sets of parameters in a stochastic framework.

Tracer injection in the model was performed upon
uniformly allocating 20,000 particles, each having the same
normalized mass fraction, along the vertical corresponding to
the location of well F2 and releasing them instantaneously.
The normalized injected mass was calculated on the basis of
the mass recovered during the test. A sensitivity analysis
performed for a few Monte Carlo iterations on the number of
particles revealed that 20,000 particles result in a good
compromise between the computational time and the
accuracy of the reconstructed multilevel BTCs.

The assessment of the ability of a given model to
reproduce (in an ensemble sense) the key features of
contaminant transport during the tracer test was performed
upon analyzing the following different quantities, associated
with the measured and modeled (integrated and multilevel)
BTCs:

(1) the non-centered first order moment, T1, linked to the
mean advective time of the system; it is defined as

T1 ¼
∫
∞

0
tc tð Þdt

∫
∞

0
c tð Þdt

ð6Þ

where, c(t) is the concentration (measured or computed)
at the observation well at time t (in the double porosity

model, c (t) it is the mobile concentration);
(2) the centered second order moment, τ2, defined as

τ2 ¼
∫
∞

0
t−T1½ �2c tð Þdt
∫
∞

0
c tð Þdt

ð7Þ

which provides ameasure of the spreading the BTC around
its center of mass;(3) the skewness coefficient, Cs, render-
ing a measure of the symmetry of the BTC, and defined as

Cs ¼
∫
∞

0
t−T1½ �3c tð Þdt

∫
∞

0
t−T1½ �2c tð Þdt

� �3=2 ∫
∞

0
c tð Þdt

� �1=2
ð8Þ

(4) the peak concentration, cpeak, the time at which cpeak is
attained, tpeak, and the time of first arrival of solute, ta;

(5) the slope of the tail of the BTC in semilog plot.

The above quantities are calculated for each BTC obtained
within the Monte Carlo process and their distributions are
compared with the corresponding quantities calculated on the
basis of the experimental BTCs. Analysis of convergence of the
Monte Carlo simulations evidenced that, even though 100Monte
Carlo iterations do not completely lead to statistical stability, the
obtained results allow a meaningful qualitative analysis of the
process. A detailed analysis of the results is reported in Section 4.

4. Modeling results and discussion

4.1. Integrated (depth-averaged) breakthrough curve

The impact of accounting for the spatial variability of porosity
is analyzed in Fig. 5 when transport is modeled as a purely
advective process within each Monte Carlo iteration. Fig. 5a,b
contrast the integrated experimental BTC against the ensemble
average and median BTCs obtained for the geostatistical hetero-
geneity model HM1, respectively with constant porosity ϕ=9.8%
(see Section2.1) andϕ=13% (see Section2.2). As seen in Section2,
both values are based on the model of Sauty (1980); while the
former value is the average effective porosity obtained by fitting
individuallyeachof themultilevel–multitracerfield experiments,
the latterwas derivedon thebasis of a laboratory scale tracer test.

The experimental BTC is reported in terms of a normalized
concentration, cintnorm(t) [s−1], defined as

cnormint tð Þ ¼ Q � cint tð Þ
m0

ð9Þ

where Q [m3/s] andm0 [kg] respectively are the total pumping
rate at the well and the total mass recovered during the test.



Fig. 5. Depth-averaged (integrated) normalized experimental BTC and
ensemble mean and median Monte Carlo-based BTCs for purely advective
solute transport: (a) geostatistical model HM1 with constant porosity
ϕ=9.8%; (b) geostatistical model HM1 with constant porosity ϕ=13%; and
(c) geostatistical model HM2. Monte Carlo-based envelopes associated with
probability levels P+=0.95 and P−=0.05 are also reported.
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Numerical BTCs are also offered in terms of a consistently
normalized concentration. Envelopes associated with prob-
ability levels P+=0.95 and P−=0.05 are also reported in the
figure, in order to provide a comprehensive depiction of the
range of variability of the Monte Carlo-based BTCs. Fig. 5c,
provides the corresponding curves for the geostatistical
model HM2. We emphasize that a Monte Carlo procedure
offers an ensemble of equally likely realizations of the system
and its response to the induced stress (i.e., the tracer
injection), and that the observed data are conceptualized as
one of an infinite number of alternative possibilities. This is
precisely the type of result which is needed in the context of
assessment of uncertainty associated with predictions of the
system state. As already stated, our aim is not to reconstruct
reality by calibrating flow and transport processes, but to
explore the extent at which relevant transport features
observed in the field can be consistently reproduced (in an
ensemble sense) by different conceptual models, based on a
high-resolution three-dimensional geostatistical description
of the site.

We note that for all three cases the experimental data lie
(with few exceptions) within the bandwidth associated with
probability ΔP=P+−P−=0.90. Adopting a constant porosity
leads to a consistent underestimate (in the mean) of the first
arrival and peak times. These quantities are better reproduced
(in a mean sense) by explicitly incorporating in the procedure
the variability of porosity at the site. The pronounced tailing
observed in the field is qualitatively captured by the Monte
Carlo realizations for all three cases, albeit with different
degrees of success. Another interesting result is that inclusion
of porosity variability does not dramatically impact the
uncertainty associated with predicted BTCs, as qualitatively
observed in the figures. These results evidence that, even
though heterogeneity of porosity is usually not as pronounced
as that of hydraulic conductivity, the description of transport
processes at the site greatly benefits from including spatial
variability of porosity in the modeling effort.

We then analyze the effect of the different transport
processes investigated in the context of the heterogeneity
model HM2. Fig. 6a contrasts the integrated (normalized)
experimental BTC against the ensemble average and median
(normalized) BTCs obtained when transport is depicted by
means of a purely advective scheme. Results associated with
the complete Monte Carlo set of simulations are also reported
in the figure, in order to provide a comprehensive depiction of
the range of variability of the Monte Carlo-based BTCs.

A similar depiction is reported in Fig. 6b and c when
transport is respectively described by means of an ADE or
with a double porosity model, with the fixed (non-calibrated)
parameters described in Section 3. In the latter we adopted a
spatially uniform mass-transfer rate coefficient, β [T−1]. A
sensitivity analysis of the shape of the integrated BTC on β
was performed for a limited set of Monte Carlo iterations
upon varying β between 10−6 and 10−4 s−1 (indicating a
characteristic mass-transfer time from tens to fractions of
days, respectively). For each individual realization, the lowest
values of β resulted in an early time behavior which is very
similar to the response of the system when transport is
modeled only by advection. The largest value of β allowed a
satisfactory qualitative reproduction of the overall behavior of
the measured BTC for each tested Monte Carlo iteration. On
these bases, we adopted a constant β=10−4 s−1 in all
simulations presented in this paper.

Fig. 6 reveals that when porosity variability is explicitly
included in the structural model of the porous medium, the
three transport models considered render quite similar
descriptions of the integrated BTC at the site. A relevant
feature which can be observed is that the pronounced tailing
evidenced by the measurements can be qualitatively repro-
duced by each of the transport models investigated, albeit
with different degree of success, even without resorting to
fine calibration of the transport parameters (e.g., by means of
stochastic inversemodeling). This is illustrated in Fig. 7, which
visually compares the quality of selected simulated break-
through curves that provide a good qualitative agreement



Fig. 7. Depth-averaged (integrated) normalized experimental BTC versus
selectedMonte Carlo simulations for geostatistical heterogeneitymodel HM2
when transport is depicted by means of (a) purely advective process, (b) an
ADE and (c) a double porosity model.

Fig. 6. Depth-averaged (integrated) normalized experimental BTC and
ensemble mean and median Monte Carlo-based BTCs for geostatistical
heterogeneity model HM2 when transport is depicted by means of (a) purely
advective process, (b) an ADE and (c) a double porosity model. Results
associated with the complete Monte Carlo set of simulations are also
reported.

9M. Riva et al. / Journal of Contaminant Hydrology 101 (2008) 1–13
with the experimental data for the different conceptual
transport models adopted.

A quantitative analysis of the results provided by the three
transport models examined within the context of the
geostatistical model HM2 is presented in Table 3. For each
model we report the first three temporal moments, the peak
concentration, cpeak, the time at which cpeak is attained, tpeak,
and the time of first arrival of solute, ta, as computed on the
basis of the experimental integrated BTC together with the
main statistics of the results obtained from our Monte Carlo
simulations. Specifically, for each quantity we report the
minimum and maximum values, the mean, median and
standard deviation, and the values associated with probabil-
ities 0.05, and 0.95. Figs. 8 and 9 depict cumulative
distributions of quantities reported in Table 3 as obtained
on the basis of numerical Monte Carlo iterations for the three
transport models analyzed.
The following features can be highlighted:

(a) In general, differences amongst the results obtained on
the basis of the three transport models tested are mild;

(b) The main statistics of T1 and τ2 are similar for the
purely advective and the double porosity models and
are consistent with the observed reality;

(c) The main statistics and the cumulative distributions of
tpeak, are similar for the three transportmodels analyzed
and are consistent with available observations;

(d) The model rendering the highest consistency with
measurements in terms of the best fit to the cpeak and
ta values is the double porosity model;

(e) The ADE model with non-calibrated local-scale dis-
persivities provides the worst results (in an ensemble
sense) for τ2.



Fig. 8. Cumulative distributions of (a) T1, (b) τ2, and (c) Cs as obtained on the
basis of numerical Monte Carlo iterations for the depth-averaged BTC and the
three transportmodels tested. Theexperimental valueobserved is also reported
togetherwith thewidth of the interval including 90% of the realizations (i.e., the
difference between the values associated with probabilities 0.05, and 0.95).

Table 3
Significant statistics of the Monte Carlo-based depth-averaged breakthrough
curves for the geostatistical heterogeneity model HM2 and the various
transport models analyzed

T1 τ2 CS cpeak tpeak ta

[d] [d2] [−] [s−1] [d] [d]

Experiments 4.378 8.648 1.52 2.71E−6 1.969 0.719
Minimum Purely

advective
model

1.554 0.485 0.79 4.16E−6 0.813 0.729

ADE model 1.473 0.240 0.96 2.77E−6 1.104 0.688
Double
porosity model

1.542 0.678 0.89 2.69E−6 0.854 0.313

Maximum Purely
advective
model

9.177 173.750 26.37 3.24E−5 5.021 3.771

ADE model 5.777 11.886 5.49 1.60E−5 5.063 3.188
Double
porosity model

9.157 173.430 19.22 9.29E−6 5.104 2.188

Mean Purely
advective
model

3.328 8.658 4.38 1.14E−5 2.143 1.375

ADE model 2.928 1.713 2.31 7.67E−6 2.268 1.161
Double
porosity model

3.313 9.005 3.94 5.33E−6 2.190 0.663

Median
(P=0.5)

Purely
advective
model

3.090 2.767 3.65 9.92E−6 1.979 1.292

ADE model 2.788 1.162 2.15 7.49E−6 2.146 1.104
Double
porosity model

3.074 3.267 2.94 5.24E−6 2.042 0.604

Standard
deviation

Purely
advective
model

1.193 19.313 3.64 5.39E−6 0.828 0.457

ADE model 0.791 1.891 0.94 2.30E−6 0.694 0.368
Double
porosity model

1.186 19.182 3.07 1.42E−6 0.811 0.301

P−=0.05 Purely
advective
model

2.025 0.728 1.23 5.09E−6 1.063 0.813

ADE model 1.954 0.370 1.12 4.69E−6 1.479 0.729
Double
porosity model

2.019 1.016 1.13 3.31E−6 1.225 0.354

P+=0.95 Purely
advective
model

5.829 27.338 9.67 2.33E−5 3.696 2.231

ADE model 4.253 4.779 4.05 1.17E−5 3.652 1.729
Double
porosity model

5.808 27.938 9.35 7.96E−6 3.546 1.273
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One of the main features of the observed BTC is the
pronounced tailing. In our numerical simulations the resulting
slope is a consequence of two concurring factors: (1) the
randomness of the hydraulic properties and (2) the choice of
the transport model. We calculated the tail slope of each
individual Monte Carlo BTC by plotting the latter in a semilog
scale and then on the basis of least square regression of tail
values. Fig. 10 reports the frequency distribution of the tail
slope for all 100 simulations based on the geostatistical model
HM2and for the threedifferent transportmodels investigated.
Main slope statistics are reported, together with the slope of
the tail of the experimental depth-integrated BTC. It is clear
that the ensemble average and median slope of all three
transport models tend to overestimate the experimental
result, while only a few realizations provide a result that is
close to (or smaller than) the observed one. From Fig. 10 it can
also be observed that the ADE model provides the worst
representation (in statistical terms) of the observed tail slope
in the experiment.

4.2. Multilevel breakthrough curves

We start by noting that the strongly heterogeneous
distribution of geomaterials at the site favors the occurrence
of preferential flow paths that heavily condition the transport
process. Thus, as noted in Section 2.3, mass recovery at the
pumping well is not uniformly distributed along the vertical,
and this is likely due to the fact that the intermediate
sampling levels (level 2 and 3, respectively) are associated
with low-conducive flow paths within the system.

The conclusions presented in Section 4.1 regarding the
effect of the choice of the conceptual model of aquifer



Fig. 9. Cumulative distributions of (a) cpeak, (b) tpeak, and (c) ta as obtained on the
basis ofnumericalMonteCarlo iterations for thedepth-averagedBTCand the three
transport models tested. The experimental value observed is also reported
together with the width of the interval including 90% of the realizations (i.e., the
difference between the values associated with probabilities 0.05, and 0.95).

Fig. 10. Frequency distribution of the slope of the tails of the Monte Carlo-
based depth-averaged BTCs (as calculated from a semilog representation of
the BTCs) for all 100 simulations based on the geostatistical heterogeneity
model HM2 when transport is depicted by means of (a) purely advective
process, (b) an ADE and (c) a double porosity model. Main slope statistics are
reported, together with the slope of the tail of the experimental depth-
integrated BTC.
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heterogeneity on the integrated BTC can be extended to the
individual multilevel BTCs. Fig. 11 reports the field data
corresponding to the BTCs recorded at levels 1 to 4, together
with the probabilistic results obtained by 100 Monte Carlo
simulations (including ensemble average and median BTCs)
with the transport parameters adopted in Section 4.1. Here,
for the purpose of illustration we only present the results
corresponding to scenario HM2 and the double porosity
model. The remaining transport models are conducive to
similar plots in qualitative terms. The experimental BTC
associated with sampling level j (j=1,..., 4) is reported in terms
of normalized concentrations, cjnorm(t) [s−1], defined as

cnormj tð Þ ¼ Q � fj � cj tð Þ
m0

ð10Þ
Monte Carlo-based numerical BTCs are also presented in
terms of consistently normalized concentrations.

While the models adopted provide a reasonable approx-
imation for the BTCs corresponding to levels 1 and 4, the
(ensemble) reproduction for levels 2 and 3 is quite poor. This
is probably due to the type and quantity of measurements
performed at the site for the characterization of the hetero-
geneous distribution of materials and associated attributes.
While the data are sufficiently adequate to describe the most
conducive paths between injection and recovery well, more
refined measurements appear to be needed to characterize
the less conductive regions. This is consistent with the
structure of the system, where a main matrix of relatively
high conductivity (identified with geomaterials belonging to
cluster 1) can be found.

As a consequence, we note that the available information
allows describing the vertically averaged features of



Fig. 11. Multilevel normalized experimental BTC and ensemble mean and median Monte Carlo-based BTCs for geostatistical heterogeneity model HM2 when
transport is depicted by means of a double porosity model for (a) level 1, (b) level 2, (c) level 3 and (d) level 4. Results associated with the complete set of Monte
Carlo simulations are also reported.
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transport at the site. At the same time, description of the
most connected paths, on the basis of the available measure-
ments, is sufficiently adequate to capture some of the three-
dimensional transport features at the site, namely those
associated with the levels where large mass recovery is
observed.

5. Conclusions

Stochastic modeling of the non-Fickian behavior of break-
through curves observed at the Lauswiesen forced-gradient
tracer test experiment was performed to investigate the
relative importance of the selection of (a) the conceptual
model of the structural heterogeneity of the system and (b)
the transport model adopted to represent basic processes
involved in contaminant transport at the Darcy scale. Our
work leads to the following major conclusions.

(1) An adequate description of heterogeneity, in this case
by means of a doubly stochastic medium with random
geological facies and hydraulic properties, is sufficient
to capture the relevant features of the depth-averaged
breakthrough curve, i.e., temporal moments and long
tails.
(2) In this case, representation of the spatial distribution of
porosity, in addition to hydraulic conductivity, is crucial
to reproduce the early arrival of breakthrough curves.
Nonetheless, the late-time behavior of breakthrough
curves, in terms of the observed heavy tailing, is still
mostly controlled by the spatial distribution of hydrau-
lic conductivity and is not much influenced by the
spatial fluctuations of porosity.

(3) Our simulations show that velocity fluctuations, which
are likely enhanced by the forced-gradient conditions,
largely dominate transport phenomena in the Lauswie-
sen site. Thus, formal inclusion of the local dispersive
and subgrid mass-transfer processes in the transport
model do not provide significant improvement.

(4) At least at the investigated scale, transport processes
are primarily controlled by the spatial variability of
hydraulic properties. This indicates that key aspects
associated with reliable modeling of solute transport at
the Lauswiesen site are not primarily included in the
conceptual model of transport but in the interpretation
and proper representation of the heterogeneity.

(5) Although the available description of heterogeneity can
explain most of the integrated behavior of transport
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(depth-averaged breakthrough curve), it does not
ensure an adequate representation of the complete
three-dimensional features of transport, since multi-
level breakthrough curves associated with low con-
ductive areas are not successfully reproduced (in a
multirealization sense). Thus, our results indicate that
an accurate description of the geometrical features of
hydrofacies or of higher-order moments of the
hydraulic properties is needed to completely describe
the system. It is emphasized that cautionmust be taken
in applying transport models which are based on
integrated measurements, since use of vertically
averaged information might not be sufficient to
capture many of the important features required in a
three-dimensional model.
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