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SUMMARY 

In the generation of quadrilateral unstructured meshes) special attention is focussed to the shape of the 
elements. This is because it is well knO\vn that the distortion of the elements and the accuracy of the 
analysis are closely related. However) in adaptive schemes it is also essential that the newly generated 
mesh meets the prescribed element sizes in order to obtain a solution with the desired precision. In 1982 
Giuliani developed a robust rezoning algorithm based on geometrical criteria. It gives proven results in 
a smooth element size distribution) but elements do not verify the prescribed element size when sharp 
distributions appear. This paper presents a modification of the Giuliani method that generates non­
distorted elements while preserving the element size. Similar to the original method) this modification 
can be extended to three-dimensional cases. 
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I. INTRODUCTION 

The efficiency of a h-adaptive strategies relies in two ingredients. First, computing an accurate 
bound of the error, from which the desired element sizes are deduced. Second, generating a 
new grid with well-shaped elements of the prescribed size. It is important to note that the 
verification of the element size plays a basic role in this kind of processes, because it is 
assumed that the error of the finite element solution is proportional to hf(pl, where h is the 
characteristic element size, p is the degree of the interpolation polynomial and f is some 
positive function of p, see Reference [2] for a detailed discussion on remeshing techniques. 
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Triangular elements are extensively used in h-adaptive techniques. However, in several plas­
ticity applications as well as in some incompressible fluid formulations quadrangular elements 
are preferred. 

Quadrilateral mesh generation algorithms References [3-7, 9, 10] initially yield meshes with 
very distorted elements. Therefore, mesh quality enhancement procedures are needed in order 
to improve the overall mesh quality. There are two basic ways to meet this goal. The first 
one, often called make-up techniques, is focussed in the improvement of the mesh topology. 
The second one, called mesh smoothing, improves the shape of the elements by modifYing 
the position of the inner nodes once the topology is fixed. Concerning the final element size 
of the mesh, the former plays a minor role because, in general, the smoothing algorithm is 
able to distribute elements inside the domain. Therefore, special attention has to be focussed 
on the smoothing algorithm. 

Nowadays, there exists a wide range of smoothing algorithms. For instance, Reference 
[8] extends the scope of the variational methods, widely used for structured grids, to non­
structured triangular meshes. Other commonly used smoothing technique for unstructured 
meshes is the so-called Laplacian method [11,12], which computes the new nodal posi­
tion solving the Laplace equation. This technique has an important drawback: in non-convex 
domains, nodes may run outside it. Techniques to preclude such a pitfall either increase the 
computational cost enormously or introduce new terms in the formulation that are particular 
for each geometry. Giuliani [1] developed a new rezoning algorithm based on geometrical 
criteria. This method modifies the position of every node in order to minimize a geometric­
oriented average distortion of elements meeting on it. These modifications are done with an 
explicit iterative procedure. In this case, nodes cannot depart from the domain because this 
is an unstable position in terms of distortion and squeeze. 

h-adaptive techniques l13, 14J first compute a solution on a given coarse mesh. Then, a new 
element size distribution is computed from a local measure of the estimated error. Therefore, 
it is crucial that the mesh generator preserves the prescribed element size. In this sense, it is 
essential that the smoothing algorithm also maintains the size. Giuliani method gives proven 
results for smooth element size distributions, but it yields unsatisfactory meshes when sharp 
distributions appear. This is due to the fact that zones with high density tend to lose elements 
after several remeshing iterations at advanced stages of the analysis. The cause of this problem 
may be found at the heart of the rezoning principle (see Reference [1] for details). 

Therefore, it is important to develop a smoothing algorithm that obtains well-shaped ele­
ments while the prescribed element size is maintained. This is the goal of the present paper. 

2. DISTORTION METRIC 

A basic point for mesh smoothing techniques is how to quantify the mesh quality. The 
distortion metric developed by Oddy et al. [15] is used in this work. It accounts for both 
shearing and stretching effects. Moreover, it is not affected by rigid-body motions and is 
independent of the element size. It is computed from the Jacobian of the iso-parametric 
mapping) J) as 

(1) 
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where 

(2) 

Notice that four-noded linear isoparametric elements are assumed. According to previous anal­
ysis [15, 16], the distortion metric is evaluated at the nodes in an element and the highest 
value is chosen to represent the quality of the element. If IJI becomes null or negative in an 
element, then D is set to an arbitrarily large positive value. 

In order to visualize the distortion measure defined in Equation (I), Figures I(a) and I(b) 
show the distortion values corresponding to the effect of shearing and stretching an square 
element respectively. Note that D is zero for a square element. 

3. IMPROVED ALGORITHM 

In the original Giuliani method, an influence domain is defined for every node Pi of the 
unstructured quadrilateral mesh. This domain is defined by the set of triangles obtained by 
joining all nodes connected to node Pi via the element sides (dashed area in Figure 2(a». 
The distortion of e.5lch triangle is defined in terms of its height, h, the average height in the 
influence domain, h, the distance between vertex Pi and the midperpendicular of its opposite 
§ide, d, and the average length of the opposite edges to point Pi in the influence domain, 
b (Figure 2(b) shows a graphical interpretation of the basic elements of a generic triangle). 
This distortion reads 

(3) 

The new position of Pi is found by minimizing the sum of distortions in the influence domain. 
This is iteratively repeated for all the nodes in a Gauss-Seidel-like procedure, until conver­
gence is achieved (see Reference [I] for details on the implementation of the algorithm). Th~ 
redistribution of nodal density mentioned above is due to the presence of the mean height h 
in the expression of the distortion, which tends to equalize the size of all the triangles to the 
mean size in each influence domain. 

In order _to overcome this problem an improved algorithm is developed. The basic idea is 
to replace h by the theoretical height of a triangle rectangle and isosceles on P;. This height is 
bj2 when the length of the opposite side to Pi is b (Figure 2(b». Note that if each triangle in 
the influence domain were rectangle and isosceles on Pi, then the mesh would be structured. 
A straightforward implementation of this modification is to substitute h by bj2 in the original 
algorithm. 

In order to stop the iterative procedure the following criterion is used: the maximum relative 
displacement must be less than a given tolerance. That is, for each iteration and node Pi the 
following values are computed: the displacement, bi, of Pi during this iteration and the shortest 
element edge, in contact with Pi. The smoothing algorithm is stopped when 

Q == max - ~Tol { bi} 
i=l, ... ,np c; (4) 
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Figure l. Values of the distortion metric D due to: (a) the ±tearing of a square el=mt; 
(b) the stretching of a square el=mt. 

where np is the total number of nodes and Tol is the prescribed tolerance. Usually, Tol is 
prescribed as 0.5 xIO-" where n is the number of significant digits desired for the position 
of a node. Note that in practical computations 1 or 2 significant digits are enough for a 
reasonable description of the mesh. 

Numerical experiments show that the modifiro algorithm has a higher rate of convergence 
than the original algorithm. For instance, Figure 3 plots the logarithm of Q versus the number 
of iterations for both algorithms and the mesh presentro in the third example of next section. 
The prescribed tolerance in this case is Tct =0.5 X 10-3 . Note that the modified algorithm 
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Figure 2. (a) Representation of the influence domain (shadowed) of node P;; 
(b) basic elements of a generic triangle. 
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Figure 3. Comparison of the rate of convergence of the smoothing algorithms: original algorithm 
(dot line) and modified algorithm (solid line). 

generates a significant reduction of Q during the initial iterations. For instance, if one signif­
icant digit is desired for the new position of a node (Tol = 0.5 X 10-1), which is a reasonable 
value for practical purposes, only 16 iterations are needed with the modified algorithm, whereas 
the original algorithm needs 92 iterations. Moreover, the ratio of convergence of the modified 
algorithm is 1.34 faster than the original one. Similar behaviour has been detected when both 
algorithms were applied to other meshes. 

This modification can be extended to three-dimensional meshes. In these cases, the influence 
domain is composed by the set of tetrahedrons obtained by joining all nodes connected to 
node Pi via the elements sides. The expression of the distortion metric (3) is still valid, being 
h the height of the tetrahedron and h the mean height in the influence domain (see Reference 
[1] for details). The idea is now to use the height each tetrahedron would have if it were 
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Figure 4. Basic elements of a tetrahedron in the influence domain of node P;. 

(a) '-----______ ----" (b) LL-______ ----" 

(c) '----------L'--------' (d) 

Figure 5. Robustness of the rezoning algorithm: (a) initial mesh for a square domain; (b) final mesh 
for a square domain; (c) initial mesh for an L-shape domain; (d) final mesh for an L-shape domain. 

rectangle and 'isosceles' on ~ (see Figure 4). It is straightforward to see that this height can 

be expressed in terms of the area of the opposite side, A, as h = V(2A)/(3v'3). 

4. NUMERICAL EXAMPLES 

In order to show the performance of the improved algorithm, four examples are presented 
in this section. The objective of the first one is to show that the robustness of the method 
is still preserved. Figure 5( a) presents a very distorted initial mesh. It is smoothed using 
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Figure 6. Ccmparison of the obtained remIts with the ct iginal and the modified mloothing 
algorithm: (a) initial meffi; (b) di~ortion distriblt ion ov ... the initial mesh; (e) mloothed 
meffi using the ct iginal algorithm; (d) di~ortion distribution obtained using the ct iginal 
algorithm; (e) mloothed mesh using the modified algorithm; (f) di~ortion di~ribution 

obtained using the modified algorithm. 

the improved algorithm, and the optimal mesh for this case is obtained in few iterations (see 
Figure 5(b). An L-shape domain with an inner node placed outside the domain is presentro in 
Figure 5(c). The smoothed mesh is presented in Figure 5(d). Notice that, even in non-convex 
domain cases, the modified algorithm still places nodes inside the domain. 

The second one is a simple comparison behveen the original and modifiro algorithm. The 
original domain is a unit square meshro inln four quadrilaterals: hvo squares of sizes 0.25 
and 0.75 and hvo rectangles (see Figure 6(a)). Although the hvo square elements have no 
distortion (D=O), the mesh can be improvro because the hvo rectangle elements are stretched 
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Figure 7. Comparison of the obtained results with the original and the modified smoothing algorithm: 
(a) initial mesh; (b) smoothed mesh using the original algorithm; (c) smoothed mesh using the 
modified algorithm; (d) detail of the obtained mesh using the original algorithm; (e) detail of the 

obtained mesh using the modified algorithm. 

(D = 3.55), see Figure 6(b). The smoothed mesh obtained using the original algorithm is 
shown in Figure 6(c) and the associated distortion is presented in Figure 6(d). The distortion 
range is [0.84,3.55] and the mean value of the distortion is D=2.46. Figures 6(e) and 6(f) 
show the smoothed mesh and the distortion of its elements when the modified algorithm is 
used. The distortion range is now [0.88 xl 0-2,3.55]. It can be appreciated how the original 
algorithm tends to equalize the element size, while the modified one keeps the density of the 
original mesh as far as possible. Note that, although the same maximum value is obtained 
for the distortion measure (1), smaller values are also obtained and the mean value of the 
distortion is now D = 1.91. 
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Figure 8. Comparison of the obtained results with the original and the modified smoothing algorithm: (a) 
distribution of the element distortion using the original algorithm (dotted line) and the modified algo­
rithm (solid line); (b) distribution of the relative error of the characteristic element size using the original 

algorithm (dotted line) and the modified algorithm (solid line). 

The goal of the third example is to show that the modified algorithm preserves the el­
ement size in the regions where small values are prescribed. In this case the domain is a 
square of length 5. It is discretized using the mesh generator algorithm previously devel­
oped [9,10]. A constant element side h=O.Ol is prescribed on the bottom while h= 1 on 
the upper side. The prescribed element size value over the domain is computed as linear 
interpolation of the prescribed values on the lower and upper sides. Figure 7(a) shows the 
mesh before any smoothing technique is applied. It can be observed that highly distorted 
elements appear. The smoothed meshes using the original and the modified algorithm are 
presented in Figures 7(b) and 7( c), respectively. The tolerance used to stop the smooth­
ing algorithms is Tol = 0.5 xl 0-2. Note that the modified algorithm maintains the prescribed 
small values of the element size on the base. This feature is highlighted in Figures 7(d) 
and 7( e), where a detail near the bottom-right comer of the obtained meshes using the original 
and modified algorithm is presented. In order to compare the quality of the final meshes, the 
distributions of the element distortion metric, Equation (1), for both algorithms are presented 
in Figure 8(a). Note that less distorted elements are generated with the modified algorithm 
(there is a difference of two orders of magnitude in the number of elements with small values 
of the distortion measure between both algorithms). Moreover, the mean value of the element 
distortion using the modified algorithm is 15=1.13 whereas using the original algorithm it 
is 15 = 2.87. This is because no stretched elements are generated near the bottom side. In 
order to measure if the prescribed element size is verified, the characteristic element size is 
computed as the square root of the element area. Then, it is compared with the characteristic 
element size obtained from the prescribed values. Figure 7(b) shows the distribution of the 
relative error of the characteristic element size obtained using both algorithms. This relative 
error is defined as the absolute value of (obtained size/prescribed size) - 1. Note that the 
modified algorithm tends to generate more elements that meet the prescribed values (there is 
a difference of one order of magnitude in the number of elements with small relative error). 
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Ca) Cb) 

Ce) 

Figure 9. Application of the modified algorithm to adaptive computations: (a) initial mesh; (b) obtained 
mesh with YfL = 3 per cent; (c) obtained mesh with YfL = 5 per cent. 

Moreover, if the original algorithm is used, the mean value of the obtained relative error 
is r = 0.44 and its maximum (r max = 1.78) is located at the bottom of the square (precisely 
the region of computational interest). On the other hand, if the modified algorithm is used, 
the mean value of the relative error is reduced to r = 0.14 and its maximum (r max = 0.82) 
is located outside the region of computational interest. Note that a smooth variation in the 
element size is obtained notwithstanding the remarkable element size gradient in both cases. 

In the fourth example an application of the modified algorithm to adaptive computations is 
presented. A plane strain adaptive analysis of a dam is conducted using the new remeshing 
strategy developed by Diez and Huerta [2]. Starting from a initial mesh (see Figure 9(a)) 
two meshes are obtained for two different values of the acceptability criterion: 1JL = 5 per cent 
and r/L=3 per cent (Figures 9(b) and 9(c), respectively). Note that regular and well-shaped 
elements are generated even in a small region where a high gradient of the element size is 
prescribed. 

5. CONCLUSIONS 

A modification of the smoothing algorithm developed by Giuliani [1] is presented in this 
paper. It is proved that the new algorithm generates well-shaped elements. Moreover, when 
sharp distributions of the element size are prescribed, in contrast with the original algorithm, 
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it is able to maintain the prescribed element size, specially in the regions where small values 
are specified. This property is its basic charactenstic and makes it reliable when dealing with 
adaptive techniques. 
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