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ABSTRACT 

The arbitrary Lagrangian-Eulerian (ALE) formulation, which is already well established in the 
hydrodynamics and fluid-structure interaction fields, is extended to materials with memory, namely, 
non-linear path-dependent materials. Previous attempts to treat non-linear solid mechanics with the ALE 
description have, in common, the implicit interpolation technique employed. Obviously, this implies a 
numerical burden which may be uneconomical and may induce to give up this formulation, particularly 
in fast-transient dynamics where explicit algorithms are usually employed. Here, several applications are 
presented to show that if adequate stress updating techniques are implemented, the ALE formulation could 
be much more competitive than classical Lagrangian computations when large deformations are present. 
Moreover, if the ALE technique is interpreted as a simple interpolation enrichment, adequate-in opposition 
to distorted or locally coarse - meshes are employed. Notice also that impossible computations (or at least 
very involved numerically) with a Lagrangian code are easily implementable in an ALE analysis. Finally, 
it is important to observe that the numerical examples shown range from a purely academic test to real 
engineering simulations. They show the effective applicability of this formulation to non-linear solid 
mechanics and, in particular, to impact, coining or forming analysis. 

KEY WORDS Arbitrary Lagrangian-Eulerian formulation Finite elements Non-linear continuum mechanics Time 
integration schemes Large boundary motion Applications 

INTRODUCTION 

The arbitrary Lagrangian-Eulerian formulation (ALE) is concerned with the kinematic 
description (i.e. the relationship between the moving media and the computational grid) which 
is a fundamental consideration in determining a method for the numerical solution of 
multi-dimensional continuum mechanics problems. This formulation is now fairly well established 
in the fluid mechanics field, with special emphasis on hydrodynamics and fluid-structure 
interaction. Obviously, important lines of research are still open; for instance, large boundary 
motion analysis or optimal meshes and remeshing algorithms. But the most important challenge 
for the ALE technique lies, perhaps, in its extension to continuum mechanics in general, and, 
in particular, to non-linear solid mechanics where path dependent material behaviour is fairly 
common, e.g. plasticity. 

Two classical descriptions are normally employed in continuum mechanics. The first one is 
Lagrangian, in which the mesh points coincide with the material particles. In this description, 
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no convective effects appear, and this considerably simplifies the numerical calculations; 
moreover, a precise definition of the moving boundaries and interfaces is obtained - recall that 
each element contains always the same amount of material. However, the Lagrangian description 
does not satisfactorily handle the material distortions that lead to element entanglement. On 
the other hand, the second description is the Eulerian viewpoint, which allows strong distortions 
without problems because the mesh is fixed with respect to the laboratory frame and the 
continuum flows through it. However, this latter approach presents two important drawbacks: 

(i) convective effects, which introduce numerical difficulties, arise due to the relative movement
between the grid and the particles;

and 
(ii) sophisticated mathematical mappings are required to follow the interface movement and

they often lead to inaccuracies.

Because of the shortcomings of purely Lagrangian and Eulerian descriptions, arbitrary 
Lagrangian-Eulerian techniques were developed, first in finite differences, Noh1 and Pracht2,
among others; and then in finite elements3.4·5•6• 7•8 , among others. This approach is based on
the arbitrary movement of the reference frame, which is continuously rezoned in order to allow 
a precise description of the moving interface and to maintain the element shape. 

However, in all references cited previously, the application of the ALE formulation is restricted 
to inviscid or viscous fluids in both assumptions: compressibility or incompressibility. The 
advantages and power of this technique in fluid-structure problems are the reason for its 
introduction and popularization in finite element codes, see Donea et al.

3 and Belytschko et

al.
4

• But the fluid domain is the only one treated by the ALE formulation while the structure 
remains associated to the classical Lagrangian description. On the other hand, non-linear 
viscosity can only be taken into account in the context of generalized Newtonian fluids, Huerta 
and Liu 7• 

The reason for this bias in the applications of the ALE method, is the fact that in inviscid or 
viscous fluids, even the generalized Newtonian ones, the stress tensor is determined by the 
velocity field at every instant: the material has "no memory". Due to the fact that in the ALE 
method material points and grid nodes may not coincide, obvious difficulties appear with 
"memory" materials. That is, materials where the stress is a function of state variables that differ 
from particle to particle because they are affected by the motion of the material points which 
possess different stress and strain histories. This is also the case for the Eulerian formulation 
where the same difficulties have precluded its applications to non-linear solid mechanics. 

Only very recently, some attempts to treat non-linear path-dependent materials have appeared 
in the literature9•10•11•12• These approaches have in common that an implicit interpolation
technique is needed. Obviously, this implies a numerical burden which may be uneconomical 
and may induce to give up ALE methods. This is particularly true in fast-transient dynamic 
analysis of solids where explicit algorithms are usually employed. Here several applications arc 
presented to show that if adequate stress updating techniques are implemented13 the ALE
formulation could be much more competitive than classical Lagrangian computations. Moreover, 
if the ALE formulation is interpreted as a simple interpolation enrichment, adequate - in 
opposition to distorted or locally coarse - meshes are employed. Notice also that impossible 
computations (or at least very involved numerically) with a Lagrangian code are easily 
implementable in an ALE analysis. 

The outline of the present paper is arranged as follows. First, the notation and fundamentals 
of the ALE description are introduced. A general overview of the governing issues in ALE is 
presented, it ranges from the kinematics (the fundamental concern of the ALE), conservation 
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equations, boundary conditions and their implementation in large boundary motion context,
to equations of state with their peculiar implementation difficulties and, obviously, remeshing
which is inherent to the ALE techniques. Then, the time integration scheme employed for the
fast-transient dynamic analysis is discussed, with special emphasis on the particularities
introduced by the ALE formulation. Finally, several numerical examples, both academic
(designed to prove the accuracy of the computations) and with engineering applications, are
described and discussed. 

NOTATION AND FUNDAMENTALS 

Notation and preliminaries 

A continuous medium under motion is always formed by the same material points; however,
its configuration may change with time. In order to describe its motion a one-to-one mapping
relating the initial position of a material point X with its actual position, x, at time t is needed.
This is usually done by means of the displacement vector 

d = x(X, t) - X (1) 

The one-to-one mapping condition is formally insured by requmng that the Jacobian 

J = det[ox;J is non-vanishing. Note that standard indicial notation is adopted; lower-case 
ax

j 

subscripts denote the components of a tensor and repeated indices, summations over the
appropriate range, usually the number of spatial dimensions. The material region is denoted by
Rx and it is related to the particles or material points, X, while R

x 
and x denote the spatial

region, also known as the laboratory  configuration, and coordinates. They represent the
configurations of the continuum at the initial instant and at time t, respectively. 

Two classical viewpoints are considered to describe the motion defined by ( 1 ). The first one
is Lagrangian in which Rx is taken as the reference; that is, the reference sticks to the particles.
The second one, known as Eulerian, uses the spatial configuration, symbolized by Rx

, as the
reference; that is, the reference is fixed in the laboratory. In what follows, the displacements in
Lagrangian form are denoted as d**(X, t) while in an Eulerian description they are written as
d(x, t). 

In the arbitrary Lagrangian-Eulerian (ALE) description, the computational frame is a
reference independent of the particle motion and it may be moving with an arbitrary velocity
in the laboratory system; the continuum viewed from this reference is denoted as R

1
, and the

coordinates of any point are denoted as l· Obviously, one-to-one transformations relating the
reference to the material and spatial domains are needed. They can be represented, symbolically,
as: 

and 

{R
1 

x [O, oo[-+ Rx (J) 
(l, t)t-+ (J)(l, t) = x 

'l'{R
1 

x [O, oo[-+ Rx

(l, t)t-+ 'l'(i, t) = x

(2) 

(3) 

where t denotes time. These transformations present, as previously, non-vanishing jacobians
and are schematically represented in Figure 1. 
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Particle Motion = <I> o 14,1-1 

Spatial Domain 
( current configuration of Rx I 

Reference Domain 
I fixed I 

Figure I Schematic diagram for the domains and mappings in the ALE description 

It is important to notice that the choice of an arbitrary reference does not imply that both 
(I) and 'I' are chosen arbitrarily. In fact, once 'I', or (I), is defined the other is automatically 
determined by the particle motion. For instance, if 'I' is the identity function, the reference 
domain, R

x
, is equivalent to the material region, Rx, (I) is the particle motion and a Lagrangian 

description is used. On the other hand, when (I) is the identity function at any time, the referential 
description corresponds to an Eulerian viewpoint and '1' 1 is the particle motion. In any case, 
the generality of the ALE formulation allows to prescribe 'I' in a subset of R

,. 
x [O, oo[ while 

(I) is defined on the rest. This will be discussed in detail in the remeshing section. 
A graphical interpretation of the three different descriptions is presented in Figure 2. In the 

Lagrangian case, the mesh nodes follow the particle motion, in the Eulerian description the 
nodal points remain fixed in the laboratory during the complete process and, finally, with the 
ALE formulation the grid nodes move arbitrarily with respect to the particles and to the 
laboratory. 

Once the reference is defined, the kinematics in the ALE description that link it to the classical 
Lagrangian and Eulerian descriptions are overviewed. A more detailed treatment is presented in 
References 5 and 7 For simplicity the fundamental equations governing the motion of the 
continuum are expressed in the spatial domain, thus involving spatial derivatives. On the other 
hand, both material and spatial domains are generally in motion with respect to the reference, 
while R

x 
is fixed throughout this formulation. Consequently, it is convenient to express the 

material time derivatives in a referential form. Finally, it is important to notice that the 
conservation equations involve material time derivatives. In what follows, a simple procedure 
to relate material time derivatives with referential time derivatives and spatial derivatives, 
originally devised in Reference 6, is presented. 
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LAGRANGIAN X, = X, 

EULERIAN X,= x1 

6 material point

Q node

A.LE. 

particle motion 

mesh motion 

Figure 2 One dimensional example of Lagrangian, Eulerian and ALE mesh and particle motion 

Consider a physical property F expressed as f(x, t), f*(x, t), and f**(X, t) in the spatial, 
referential and material descriptions, respectively. Its material derivative can be written as: 

where 

of**(X, . ) iJJ*(x, ·) iJf* - = +w;-
iJt iJt axi 

\Vi = 

iJx;(X, ·)

ac 

is the velocity of the material points in the referential domain. 

(4) 

(5)
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The formal mathematical notation for time derivatives is usually substituted in the literature, 
since Donea5, by a more engineering type of notation. That is, given f(?,, t), 

aJ(?., . ) 
= 

aJIat at { (6) 

meaning, that the partial derivative is taken "holding ?, fixed". This remark is important in 
order not to confuse this notation with the classical mathematical sense of I:, which is 
"particularized at?,". Moreover, to simplify the subsequent developments, the star notation used 
to distinguish the three configurations (spatial, referential, or material) will be dropped. 

Equation (4) relates the material time derivative with the referential time derivative. However, 
spatial derivatives are desired instead of derivatives off with respect to X· Equation (4) is further 
simplified by means of the following definitions of material velocity, v, and mesh velocity, v:

and 

vi = 
a
a�t (7a) 

D; =
a
a�t (7b) 

respectively. If the physical property is the spatial coordinate x, (4) and (7) yield: 

or 

where 

• ax;
(8) V·=V·+W·-

I I 

J a• Xi

(9) 

(10) 

is the convective velocity. While w is the material velocity in the reference, c is the relative 
velocity of the particles with respect to the mesh in the laboratory system. Finally, substituting 
(10) into (4) and using the chain rule, yields the classical relationship between the material time
derivative, the referential time derivative and the spatial derivative:

!Ix = !Ix + c; ::; ( 11) 

ALE formulation of the conservation laws 

Under the ALE description, the conservation laws that govern the motion of the continuum 
are written, in strong form, as: 

co11ti1111ity 

(12a) 
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boundaries are "natural boundary conditions", and thus, they are automatically included in the 
weak, or variational form of (12). 

However, if part of the boundary is composed of a material surface, then a mixture of both 
conditions is sometimes required 17

• Firstly, the conditions required on a material surface are: 

(a) no particles can cross it, and
(b) stresses must be continuous across the surface (if a net force is applied to a surface of zero

mass the acceleration is infinite).

And two types of material surfaces are usually present: free surfaces, and solid wall boundaries 
which may be frictionless or not. 

Along a solid wall boundary the particle velocity is defined (or coupled to a structure system 
in fluid-structure interaction problems). The requirement that no particles can cross it, can be 
simply verified if w is prescribed equal to zero along that boundary, i.e. v = v from (8) which 
consists in defining the material surface as Lagrangian. However, this condition may be relaxed 
imposing only the necessary condition: w equal to zero along the normal to the boundary. The 
latter allows remeshing tangent to the boundary, the advantages of this type of relaxed boundary 
condition are evident in the pulling example shown later. The dynamic condition is automatically 
verified along rigid boundaries, but it presents the classical difficulties in fluid-structure interaction 
problems when compatibility at nodal level in velocities and stresses is required. An extensive 
discussion for this case is found in Reference 14. 

Along the other type of material surface, i.e. free surface, problems arise because its position 
is unknown. Thus, the kinematic and dynamic conditions must be imposed and solved. The first 
one, the kinematic condition can be formalized as: 

C·n
.,, 

= 0 (14) 

in an Eulerian description. However, since the boundary is moving, its equivalent in referential 
form is preferred because the referential domain is fixed, namely: 

w·nx = 0 (15) 

where nx is the exterior normal to the referential domain. While the second one, the dynamic 
condition expresses the stress-free situation: 

(16) 

and, as mentioned earlier, it is directly taken into account by the weak formulation. 
In conclusion, free surface problems are the only ones that introduce a new equation, (15), 

that must be verified along that boundary. It is obvious that this new equation has a strong 
influence on the remeshing techniques employed. 

Equations of state 

The initial boundary value problem is not defined until the state equations which reflect the 
behaviour of the continuum, are specified. Here two of such equations are needed, the first one 
relates temperature and density to energy: 

e = e(p, 0) (17) 

The second relates stress and/ or its derivatives to temperature, and velocity and/ or its derivatives. 
The latter constitutive relationship admits several formal representations, here only two of them 
are discussed. They include, however, most of the engineering materials in fluid or solid mechanics. 
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First of all, the Cauchy stress tensor is defined as a function of velocity, temperature and 
density fields: 

a= s(O, p, v) (18) 

For instance, any generalized Newtonian fluid, Bird et al.22, falls in this category because 
its constitutive relationship is written as: 

(
OV· OV·

)
(J •• = pc'i 

. + 
µ 

_. + _J 

I) I) 
!I !I UXj UX; 

(19) 

where c5,1 is the Kronecker delta; µ is the dynamic viscosity which is shear rate dependent; p is
the pressure which is uniquely determined by density and temperature for compressible fluids 
or by the velocity field for incompressible fluids. In any case, it is important to notice that ( 18) 
represents a class of no memory materials. Observe that the stress tensor is uniquely determined 
at each spatial point given the other instantaneous fields. 

The other formal representation of the stress constitutive relationship is associated with 
path-dependent materials, or materials with memory. It relates the material time derivative of 
the Cauchy stress tensor with the same material fields as previously and with the stress field: 

0(1

, - = r(O, p, v, a)
ac x

(20) 

Any of the frequently employed rate type constitutive equations may be written in the previous 
form. Therefore (20) models a wide range of solid materials and problems, going from small 
strain linear elasticity to strongly non-linear large strain elasto-plasticity. For instance, any 
hypo-elastic material can be defined as behaving in the following way: 

(21) 

where .1afi is the objective increment of stresses and represents the part of a due to actual 
straining of the material ("pure deformation"), i.e.: 

(22) 

C is the material response matrix which usually depends on the stress, a; v
1k

,IJ are the components 

of the velocity stretch tensor, vii.ii = � (ov; + ovi). The rest of the terms of (21) are associated
2 OX) OX; 

to the rotation of the stress tensor. Two formulations are usually employed, the Green-Naghdi 
formulation if W is taken as the rate of rotation matrix, or the more usual 
Zaremba-Jaumann-Noll or co-rotational formulation when Wis the spin tensor. In the latter, 

1 
(

OV· OV·
)the components of W are simply v

1
;,

11 
= - -' - -1 

• Usually, these terms associated to the
2 ox

) 
OX; 

rotation are written as: 

(23a) 

where 

(23b) 
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The generalized fourth order tensor C which represents the material response, can be derived 
in terms of the Jaumann rate of the Cauchy stress tensor: 

(24a) 

or in terms of the Truesdell rate, as: 

(24b) 

In the previous equation the tensor C* is needed to insure the objectivity of C, and it is defined by: 

(24c) 

Finally, in order to be consistent with the ALE formulation the material time derivative in 
(21) is replaced by the referential one making use of (11), which yields:

auij' auij
- = -Ck - + CijklV{k,I) + SiJUV[k,IJ 
at l axk 

(25) 

Notice that now, in opposition to (18), the constitutive equation must be integrated, and the 
decomposition of the stress rate in three terms, transport, pure deformation and the rotational 
part, should be exploited during the time integration. 

The generalization to elasto-plastic materials is readily obtained by defining a yield surface 
and supposing that the strain rate is linearly separable into elastic and plastic components. It 
is very important to notice that the hardening rules which explicitly define the evolution of the 
yielding surface during plastic deformation, are usually written in incremental or rate form. That 
is, the yielding limit in isotropic hardening or the back stresses in the kinematic hardening are 
described by an equation such as (20), and consequently the same time integration algorithm 
is used for the stress tensor and related variables. Note also that (20) or (25) are not exclusive 
of path-dependent materials but Hookean linear elasticity, for instance, is also included. 
Consequently, an efficient integration algorithm for (25) can uniformly treat most of the structural 
mechanics problems. 

Apart from physical considerations, this classification is also numericaJly sound, because 
the algorithms associated to ( 18) or to (20) are completely different; in fact, the classification is 
intrinsically related to the ALE formulation. Classically, the so-called phenomenological 
mathematical models represented by (18) where no updating is necessary, are used in fluid 
mechanics where an Eulerian formulation is usually employed. On the other hand, incremental 
constitutive relations are common in structural/solid mechanics and are normally associated to 
a Lagrangian formulation. The updating of any physical property in a Lagrangian description 
is simple because the reference follows the particles; while in the ALE or the Eulerian formulation 
such an update is much more involved. This explains why the ALE formulation was naturally 
developed in fluid mechanics and only recently it is applied in solid mechanics problems9

•
10

•
11

•
12

. 

Remeshing 

The equations that must be solved are ( 12), (13 ), ( 17) and (18) or (20) but also (9) is necessary 
and therefore, the resolution is only possible if the mesh velocities are given in the domain. The 
remeshing techniques are concerned with the definition of v. For instance, if v = 0, the Eulerian 
description is imposed, but if v = vis prescribed, the Lagrangian description is used. It is obvious 
that finding the best choice for these velocities and a low cost algorithm for updating the mesh 
constitutes one of the major problems of the ALE description (cost meaning, here, computer 
time and computer storage). 
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As a consequence of the discussion on boundary conditions, two cases are considered. The 
first one assumes that all the boundaries of the domain have a known position at every instant, 
this includes Eulerian inflow /outflow boundaries, prescribed boundary motion of material 
surfaces and solid-wall boundaries. The second is associated to unknown free surfaces on the 
boundary of the domain (or material surfaces in general), and will be reduced to the former 

once the position of the free surface is known. This means verifying the kinematic condition of 
the free surface, namely (14) or (15). These equations are readily verified if the material surface 
is defined as Lagrangian, i.e. e == w == O; this is useful in structural mechanics problems. However, 
in large boundary motion problems, the element size along these Lagrangian surfaces can induce 
prohibitive computer cost or numerical inaccuracy. Therefore a relaxed condition expressed by 
(14) and (15), is recommended, see also Huerta and Liu17• In this respect several important

remarks should be advanced:

• Equation (14) or (15) are defined along the material surface, therefore, these equations are
not solved in the complete domain but only along free surfaces. The extra equation induced
by the unknown position of the boundary is consequently less costly than the other field
equations.

• The general formulation presented here does not describe the material surface with an elevation
(over a datum level) parameter, thus vertical or folded surfaces (such as the ones present in
coating flows or shell impact), for example, may be studied (see also the dam break problem
in Huerta and Liu 7). 

• Equations (14) and (15) are scalar and only relate mesh and particle motion normal to the
material surface. This implies that the user has the choice of deciding the mesh motion along
the material surface. This is referred to as mesh sliding along the boundary and has the

important advantage of precluding the use of pure Lagrangian nodes on these surfaces. Most
of the examples shown later make use of these remeshing features but in the pulling analysis the
advantages of such a procedure are clearly outlined. Finally, it should be noticed that the
choice between (14) or (15) obeys to numerical efficiency and user's preferences.

At this point, the case of unknown free surfaces is reduced to the one where all the boundaries
of the domain are fixed or have a known prescribed motion. Therefore, the continuous remeshing 
is completely defined once � is given in the interior of the domain. This can be done by simple 
ad hoc formulae, using geometrical considerations18

, solving potential equations that maintain 
element regularity19•11, or any other mesh generation algorithms that conserve the element
connectivity. Most of these remeshings are based on defining new locations for the nodes, and 
then computing the mesh velocities by finite difference approximation (i.e. increment of 
displacement over increment of time). If structured meshes are used, the authors recommend to 
use simple ad hoc formulae where the mesh velocity is linearly interpolated between the velocities 
at both ends of the inter-element lines. This is an extremely simple and efficient algorithm which 
maintains element regularity and it is obviously more cost effective than solving potential 
equations previous to the evaluation of the mesh velocities. 

TIME INTEGRATION 

In this section a brief discussion on the time integration schemes is presented. Keeping in mind 
the fast-transient dynamic context, the second order in time integration scheme presented in 
Reference 20 is generalized for the integration of the constitutive equation within the ALE 
formulation. After the finite element integration of the momentum equation, (12b), the system 
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of algebraic ordinary differential equations that must be integrated, is: 

Ma = r••t - 11(v) - L f BTO' dx 
e Rt 

(26) 

where M is the mass matrix; a is the nodal acceleration vector; f••1 is the vector of externally
applied loads; 11(v) is the convective vector (relative motion between mesh and particles); and
the last term is the internal force vector which is left as the sum of the element contributions.
The element internal force vector is evaluated by means of the matrix of shape function derivatives,
B, and the Cauchy stress tensor a. 

Since an explicit scheme is sought, the mass matrix, M, is substituted by the lumped
(diagonalized) mass matrix, ML, uncoupling the system defined by (26). Then the stability
condition must be enforced; it is associated to the minimum Courant number of equivalently
to the maximum eigenvalue of the system. In fact, in clasto-plastic analysis, this stability condition
is related to the minimum element size and, as it will be shown in the numerical examples, the
ALE formulation is advantageous because it allows to maintain during the deformation process
regular shaped elements. 

On the other hand, the constitutive equation, (25) for elasto-plastic materials or (20) in general,
must also be integrated. The finite element interpolation and integration for the stresses is
different from those of velocities or displacements. In fact, stresses arc needed at each quadrature
point for further numerical integration of the internal work, see (26). In a similar manner to
Reference 11 a multiple stress collocation technique is used in the weak form, where the collocation
points do coincide with the quadrature points 13• The induced system of algebraic equations is
explicit and trivial (the mass matrix coincides with the identity matrix), it may be written as: 

f = r - 'la (27) 

where f represents the vector of rate of stresses at the quadrature points, r is the Lagrangian
stress rate which includes only the pure deformation and rotation part, while 'la is associated
to the transport of stresses, see (25). 

As a matter of fact, a split-step algorithm is used to integrate in time this last system of
ordinary differential equations. First of all, a pseudo-Lagrangian stress is obtained by simply
integrating the Lagrangian stress rate, r; that is, assuming zero convective velocities. Then, the 
pseudo-Lagrangian stress is convected adding the contribution due to 'la· The particular 
expression for 'la depends on the time scheme employed, any numerical formulation for first 
order hyperbolic or conservation equations may be implemented. Here a Lax-Wendroff and a
Godunov-type techniques were adopted to the particular nature of the stress fields (discontinuous
element to element) and the desired numerical constraints (explicit code) 13• 

In order to maintain a central difference scheme for the time integration of (26) and (27), an
uncoupled algorithm is devised. If accelerations are computed from (26) at time t" then velocities
are evaluated at t•+ 1'2 by: 

(28a) 

Once the velocities are known at the half step, (27) is enforced. The stress rate is then computed
at t•+ 112 and consequently stresses and displacements are simply updated by equations similar
to the previous one, namely: 

-r•+ 1 
= 

-r•-1 + .1ti'"+ 1/2 + @(.1£2) 

d"+ 1 = dn-1 + .1tv•+ 1/2 + @(.1t2) 
(28b) 

(28c) 

12



NEW ALE APPLICATIONS IN SOLID DYNAMICS 

With these new values, the right hand side term in (26) as well as the mass matrix can be 

evaluated at ,n+ 1
; thus, the acceleration is computed at the new time step (n + 1) and the process 

repeated as many times as needed. 
The time scheme presented has the advantage that both conservation of momentum and the 

constitutive equation are solved separately with the best suited technique in each case. For 
instance while simple updating techniques can be used in (26) if the relative motion of the mesh 
and the particles is small, on the contrary the stress (and stress related variables such as the 
yield stress) sensitivity to convection imposes sophisticated updating schemes. Moreover, as 
mentioned previously, the interest in interpolating the stresses directly at the quadrature points, 
precludes a simple coupling between the second order ordinary differential equations in (26) 
and the first order ones (27). Finally, such an algorithm allows second order accuracy and it is 
easily generalized to time partitioning computations. It must be noticed, however, that the second 
order accuracy is lost in variable time stepping computations. 

NUMERICAL EXAMPLES 

In this section the ALE formulation and the explicit time integration procedure are applied to 
several problems that range from purely academic test to engineering simulations. The first one 
is an elastic-plastic one-dimensional wave propagation problem first reported in Reference 9. 
This problem which has an obvious analytical solution in the elastic case allows to compare the 
numerical results with the exact solution. Moreover, the effectiveness of the formulation and in 
particular of the convection procedures, can be easily established. 

The second example is the well known bar impact benchmark test. It is a classical test for 
impact codes and a full large strain demonstrative computation. It allows the comparison of 
Lagrangian and ALE results and presents a full range of boundary surfaces going from an axis 
of symmetry to free material surfaces with large boundary motion. A simple transformation of 
this example induces the following numerical simulation where necking appears and the 
effectiveness of the ALE formulation is demonstrated compared with the Lagrangian description. 

Finally, an engineering example is shown. It simulates a coining process which is difficult and 
tedious to model a classical update Lagrangian description. However, it does not present any 
difficulty in the context of an ALE formulation and comparisons between a fast (dynamic) die 
velocity and a slow (quasi-static) die velocity are shown. 

011e-dime11sio11al stress wave problem 

This elastic(-plastic) one-dimensional stress wave problem is presented here to assess the 
ALE formulation in the structural mechanics context. The material properties and element size 
are chosen equal to those used in Reference 9, for easier comparisons. Note, however, that the 
stress update schemes implemented here do not need special numerical parameters "a la" 
Streamline Upwind Petrov-Galerkin. 

A schematic problem statement is shown in Figure 3, where the constants for the isotropic 
hardening material are given. The infinitely long elastic(-plastic) rod is discretized in 400 elements 

of 0.1 size. The problem is assumed isothermal and constant density is supposed throughout. 
The propagation of a square compression stress wave (-100 in amplitude, 4.5 in width) is 
simulated under several descriptions: Lagrangian, Eulerian and ALE. For the latest two 

arbitrarily chosen mesh velocities are imposed, one negative (CASE A) and one positive (CASE 
B). Since the purpose of this simulation is to provide a severe test to the formulation and the 
algorithms the mesh velocity is taken equal to one fourth of the speed of sound, notice that the 
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Figure J Schematic statement of the one-dimensional slress wave problem 

material velocity of the particles is almost negligible in front of the mesh velocity. In fact, in the 
ALE cases the mesh velocity is initially set to zero (Eulerian description) and suddenly modified 
to a constant value (0.25 in modulus) after t = 24. The domain and duration of the simulation 
are such that no reflected waves appear, and the stress waves are superimposed in the figures 
to compare them. 

Figure 4 shows the comparison between all cases in elastic and elasto-plastic regimes for the 
two stress update procedures, the Lax-Wendroff (L-W) type algorithm and the Godunov-type 
(G) update. Several remarks can be advanced, first of all, the implemented stress update
algorithms introduce high frequency damping, as expected, and thus, the ll'iggles are almost
suppressed. On the other hand, the monotonic algorithm of the Lagrangian description (no
artificial damping was implemented) produces the unrealistic oscillations. Note that the Eulerian
description, where the convection velocity is the particle velocity, presents a similar behavior
because the particle velocity is almost negligible; the amplitude of the oscillations is nonetheless
reduced.

To see the influence of the mesh motion direction, i.e. CASE A versus CASE B, Figure 5 
presents the superposition of both cases for every stress update algorithm. Notice that the 
Godunov-type algorithm is insensitive to the mesh direction. On the other hand, the 
Lax-Wendroff technique which captures sharper fronts, shows small differences between both 
cases. 
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Finally, Figure 6 shows the influence of the time increment in the solution. As expected, the 
lower the Courant number the larger the relative phase error, in the L-W scheme. However, 
the solution is still very adequate since the dissipative character of the scheme damps out the 
shorter wavelengths. Note also that this time dependency is negligible in the Godunov-type 
of update. 

Bar impact benchmark test 

The bar impact problem is chosen here for several reasons: it is a standard benchmark problem 
for fast-transient dynamic computer codes, although no analytical solution exist the ALE results 
can be compared to the Lagrangian ones, and the advantages of the proposed formulation are 
clearly outlined. 

A cylindrical bar of radius 3.2 mm and length 32.4 mm impacts a rigid frictionless wall at an 
initial velocity of 227 m/s. The material is assumed elasto-plastic with E = 117 Gpa, v = 0.350, 
a

>
. 400 MPa, p = 8930 kg/m3, and a plastic modulus E

P 
= 100 MPa. The time-step is variable 

and automatically chosen by the code to maintain the numerical stability, a maximum Courant 
number of 0.5 is imposed in the smaller element. An axisymmetric mesh of 250 bilinear elements 
is employed. 

In Figure 7, the calculated deformed shapes for the Lagrangian (left) and ALE (right) 
descriptions are compared at every 10 µs (only the mesh is shown) up to the final 80 µs. Only 
the Godunov-type stress update algorithm is shown because negligible differences are found 
comparing with the Lax-Wendroff technique. The difference between the Lagrangian and ALE 
calculations for the radius and axial length are 0.5% and 0.4%, respectively. 

Important differences, however, are observed in the time-step, !:J.t, employed, see Figure 8. 
The uniformity of the mesh, maintained by the Giuliani1 8 algorithm, allows larger and more 
uniform time increments. This obviously induces an important difference in the computer time 
required for the simulation. While the Lagrangian description needed 3 hours 44 min (31 700 
time-steps), the ALE formulation used 27 min (1900 time-steps). 

The adequacy of the stress updating algorithm is stressed in the last figure of this example. 
The distribution of final yield stress (directly related to the plastic strain) is plotted for the 
Lagrangian case and the ALE analysis. While Figure 9a shows a remarkable similarity between 
both simulation (observe that the contour lines are almost coincldent), Figure 9b shows important 
differences between the plastic zones at the final instant. In the latest case, no stress update 
procedure is implemented but the remeshing is performed. This is obviously a wrong calculation 
because no history dependent state variables are transported and the path-dependency is not 
reflected in the computations. However the height and width of the final bar present differences 
of only 1.3% and 6.5%, respectively, with the Lagrangian results. This suggests that the measures 
of final height and width are weak indicators of the goodness of the algorithm and that other 
results, such as the distribution of final yield stress, must be compared when dealing with this 
benchmark test. 

Bar pulling and necking analysis 

This example is a simple extension of the previous one. The same geometry and material are 
taken, even the same initial velocity is prescribed but now the sign is opposite. Thus the present 
example simulates a sort of pulling test. It has been chosen because it presents another possible 
advantage of the ALE formulation. While the Lagrangian analysis suffers from excessive element 
distortion, precisely where the necking occurs, the ALE description allows a regular element 
size distribution everywhere, see Figure 10. Figure 11 compares the yield stress distribution at 
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different instants and, obviously, the Lagrangian computation shows large inaccuracies due to 
the mesh distortion. It should be noticed, in this figure, that the free surface nodes are not 
defined as Lagrangian and that the remeshing allows tangential sliding of the mesh nodes along 
material surfaces even under large boundary motion. 

Simulation of a forming process 

Finally, an engineering problem is presented, a similar example is presented in Reference 21 
but in a static analysis. It consists in an elasto-plastic material with E = 200 GPa, v = 0.30, 
u,. = 250 MPa, p = 8930kg/m3, and a plastic modulus E

P 
= lGPa. The body is deformed by

a rigid frictionless tool with a prescribed velocity, only a quarter of the domain (a rectangular 
region of 3 cm by 1 cm) is studied because two axes of symmetry are supposed, and a plane 
strain analysis is conducted using 2 x 2 Gauss integration. The analysis is performed up to a 
60% reduction in height of the original piece. A schematic statement of this problem is presented 
in Figure I 2. 

Note that the frictionless boundary condition is rather difficult to implement in the Lagrangian 
case. Moreover, different meshes are needed (see, for instance, Ref ere nee 21) depending on the 
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Figure 12 Schematic statement of the symmetric coining problem 

reduction required because every reduction induces different deformations and consequently, 
diverse element distortions. And finally, the Lagrangian description needs an ad hoc mesh, 
particularly refined under the edge of the tool where most of the deformation occurs. 

Figure 13 shows the evolution of the yield stress (equivalent plastic strain) during the 
deformation process for a punching velocity of 60 m/s. The ALE formulation allows to maintain 
element regularity and an accurate description of the boundary motion. The evolution of the 
plastic areas are always leaded by the right comer of the tool. Notice however that as expected, 
a plastic band is clearly detected between the previously mentioned corner and the center of the 
specimen. 

To compare the influence of the dynamic effects different punch velocities are studied. Figure 
14 shows the comparison between the final deformed shapes. The influence of the dynamic effects 
is negligible for die velocities under 3 m/s; but, as expected, the fast velocity cases induce a 
larger back extrusion while the quasi-static simulations allow larger amount of material to flow 
outward. The external free surface shape is clearly dependent on the dynamic effects. 
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SUMMARY AND CONCLUSIONS 

The general overview and summarized discussion of the ALE formulation presented here indicates 
the applicability and effectiveness of this technique in generalized continuum mechanics problems. 
The applications shown are focussed in non-linear solid mechanics because the ALE formulation 
is already well expounded in the hydrodynamic and fluid-structure interaction fields. 

This technique enhances the basic advantages of the finite element method for modelling 
complex geometries and boundary conditions. It allows a uniform and simple treatment of both 
confined boundaries and large boundary motion of free surfaces, as well as an excellent flexibility 
in moving the computational mesh. The result is a very versatile modelling technique which 
permits accommodation of large continuum distortion and boundary motion, numerical efficiency 
(from a computational cost point of view}, and accurate numerical modelling in particular on 
material surfaces mapping and interpolation enrichment over determined areas. 

After the introduction to the ALE notation and fundamentals, a discussion of the primary 
governing issues has been presented. Kinematics which are the fundamental concern in ALE, 
are necessary to develop the governing equations of the continuum problem. Then several specific 
and inherent concerns of the ALE technique, boundary conditions implementation for large 
boundary motion, equations of state, and remeshing are discussed. Their adeQuate 
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implementation is crucial for the applicability and effectiveness of the proposed technique; thus 
the discussion focusses on their advantages and drawbacks. All of the previous remarks are 
general in the ALE formulation, while the time integrationl algorithm employed is especially 
designed for the implementation of the ALE formulation in a fast-transient dynamics code. 

Finally, it is important to notice that the numerical examples shown range from purely 
academic tests to real engineering simulations. They show the applicability of this formulation 

to non-linear solid mechanics and in particular to impact, coining or forming analysis. 
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