Curved fluid membranes behave laterally as an effective viscoelastic
medium
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The lateral mobility of membrane inclusions is essential in biological processes involving membrane-bound macromolecules,
which often take place in highly curved geometries such as membrane tubes or small organelles. Probe mobility is assisted by
lateral fluidity, which is thought to be purely viscous for lipid bilayers and synthetic systems such as polymersomes. In previous
theoretical studies, the hydrodynamical mobility is estimated assuming fixed membrane geometry. However, fluid membranes
are very flexible out-of-plane. By accounting for the deformability of the membrane and in the presence of curvature, we show
that the lateral motion of an inclusion produces a normal force, which results in a nonuniform membrane deformation. Such
a deformation mobilizes bending elasticity, produces extra lateral viscous and elastic forces, and results in an effective lateral
viscoelastic behavior. The coupling between lateral and out-of-plane mechanics is mediated by the interfacial hydrodynamics
and curvature. We analyze the frequency and curvature dependent rheology of flexible fluid membranes, and interpret it with a
simple four-element model, which provides a background for microrheological experiments. Two key technical aspects of the
present work are a new formulation for the interfacial hydrodynamics, and the linearization of the governing equations around a
cylindrical geometry.

1 Introduction

Lipid membranes are highly flexible and malleable interfaces,
which behave as in-plane viscous fluids in physiological con-
ditions. The interfacial fluidity and bending flexibility are cru-
cial for many cellular functions involving membrane shape
transformations, such as vesicular or tubular trafficking, ' or
shaping the cell organelles, and also for variety of dynamics
observed in biomimetic systems. ~ The interfacial fluidity is
also essential to the mobility of inclusions such as membrane
proteins ' or fluid domains,® the transport of lipids between
cells through membrane tubes,”’ and lateral reorganizations,
such as the formation of lipid rafts. '” Other amphiphilic mem-
branes such as polymersomes ' also exhibit in-plane fluidity,
with a hyper-viscous behavior. = Our goal here is to under-
stand if and how shape deformations affect the lateral mobility
of inclusions in fluid membranes.

The lateral motion of membrane probes subjected to
stochastic or external forces has a long and rich history, dat-
ing back to the work of Saffman and Delbriick (SD).’ This
theory estimates the diffusion coefficient through the hydro-
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dynamic mobility of an inclusion of size a in an inextensi-
ble membrane of interfacial viscosity (; embedded in bulk
fluid of viscosity u;. For inclusions much smaller than the
SD length scale ¢sp = L/, such as proteins in cell mem-
branes, the mobility is inversely proportional to the interfacial
viscosity (s, with a weak logarithmic dependence on fsp/a
for infinite planar membranes. While the dependence on a is
still controversial in some regimes, '~ it has been recently pre-
dicted theoretically "~ and verified experimentally with mem-
brane tubes - that the mobility of probes is significantly modi-
fied by the membrane curvature. In short, highly curved mem-
branes are geometrically confined and the correction in the
mobility is In(R/a) instead, where R is the radius of curvature
of the curved membrane, in close correspondence with the SD
estimate for membranes of finite size.

The SD theory and subsequent refinements, either consid-
ering planar “~'~ or curved membranes, assume that the
membrane geometry is fixed. Since the membrane rheology is
assumed to be Newtonian, which is consistent with various ex-
periments, these theories predict a purely viscous lateral
behavior. Here, by lifting this approximation and allowing the
membrane to deform out-of-plane, we find that curved fluid
membranes with bending elasticity behave laterally as an ef-
fective viscoelastic medium, and consequently exhibit much
richer rheology, including frequency-dependent mobility, and
non-zero storage modulus. At the root of this behavior, we
show that the purely lateral motion of an inclusion produces




shape disturbances in a curved membrane, which in turn cou-
ple the lateral behavior with the bending elasticity of the mem-
brane. All these couplings are mediated by curvature and in-
terfacial viscosity, and have escaped previous studies about
membrane dynamics, which either assume fixed shapes or lin-
earize the dynamical equations about planar states.”” Even
theoretical studies accounting for the effect of thermal undu-
lations on the diffusion of inclusions, which we ignore here,
predict purely viscous lateral behavior.3 2 The curvature and
frequency dependent probe mobility that we identify here can
influence the way membrane-bound macromolecules or lipid
domains diffuse in cell membranes of different geometries,
and may help engineer interfacial processes in functionalized
polymersomes. **°

The mechanics of interfacial fluids necessarily involves the
tools of differential geometry, and has been formulated in var-
ious ways since the early work of Scriven.?’:?® Here, we rely
on and further expand a geometric formulation of the gov-
erning equations? in Section 2. At the end of this section, we
provide a physical interpretation of the equations, which
vividly show the tight coupling between shape dynamics, cur-
vature elasticity, and interfacial hydrodynamics. To avoid
loosing these couplings in the linear response, we then lin-
earize the governing equations about a cylindrical geometry in
Section 3. In Section 4, we make a connection with contempo-
rary microrheology,”*" which could experimentally test our
predictions, by adapting to the present setting the Generalized
Stokes-Einstein relations linking viscoelastic rheology to the
statistics of probe trajectories. We then illustrate the lateral
response of a curve membrane by applying a tangential point
force on a cylindrical membrane, in Section 5. We describe
the anisotropy and viscoelasticity of the effective lateral be-
havior, analyze it from the viewpoint of microrheology, and
examine its curvature dependence. We collect the conclusions
in Section 6.

2 Mechanics of a viscous, curved, and evolving
interface

We develop next a variational model for an inextensible New-
tonian fluid interface with bending elasticity embedded in a
bulk fluid in the limit of vanishing Reynolds number. We
adopt here the common assumption of ignoring the mem-
brane extensibility, and consequently disregard the bilayer ar-
chitecture and the dissipative forces due to inter-monolayer
friction,”” which may nevertheless play an important role in
some situations such as the extrusion of membrane tethers.
We have considered elsewhere a model including the bilayer
architecture, and analyzed it by either linearizing it around
curved geometries ™ or by performing fully nonlinear simu-
lations. ** However, for the purpose of the present work, such

a complex model hides the key ideas without bringing addi-
tional insight.

Fig. 1: Depiction of the dynamical fluid interface I". Assuming no-
slip, the velocity of the surrounding fluid V" at I is that of the inter-
face, which is decomposed into a tangential component v, describing
the interfacial flow, and a normal component v, along the unit normal
to the surface n, describing the shape changes. The bulk fluid exerts
tractions on either sides of the interface, given by T = 4. ob*,
where o+ is the bulk stress tensor on the + and — sides of the mem-
brane.

The fluid interface is represented by a surface I with unit
normal n. Its first and second fundamental forms are denoted
by g and k = —Vn, where V; is the surface nabla operator
or covariant derivative. The components of the inverse of the
metric tensor are denoted in a given coordinate system as g/,
so that ggg/* = 8,."'. The mean curvature (average of principal
curvatures) is H = (1/2)g : k = (1/2)g"k;;, while the Gaus-
sian curvature (the product of the principal curvatures) can be
computed as K = det(k;;g’).

The surface I" is embedded in a bulk fluid. Assuming no-
slip, the interface velocity V' is that of the bulk fluid. We
decompose V into a tangential component v describing the
interfacial flow, and a normal component v, describing shape
changes of the interface, see Fig. 1. In this setting, the rate-of-
deformation tensor takes the form*’~*"

1
d=3 (Viv+Vsv") —vik. )
Consequently, the interface inextensibility condition reads
0 =trace(d) = Vs-v—2Hv,, 2)

which strongly couples shape changes and interfacial flows in
the presence of curvature. Following a Boussinesq-Scriven
model for an inextensible Newtonian fluid interface, the inter-
facial stress tensor reads o = —Xg + 2ud, where pi is the in-
terfacial viscosity and X is the scalar membrane tension keep-
ing the inextensibility constraint.

The governing equations for the interfacial fluid dynam-
ics can be elegantly deduced with variational methods, which
also provide a framework for simpler numerical simulations
and analytical calculations. Indeed, the analytical treatment of




the interfacial fluid mechanics for spherical or cylindrical ge-
ometries becomes particularly simple by using the dissipation
functionals derived below and exploiting the vector calculus
identities of vector spherical or cylindrical harmonics. "~ The
Rayleigh dissipation potential for an inextensible interfacial
viscous fluid can be expressed as **+*°

Wy, = /F ped : d.dS. 3)

As detailed in Appendix A this potential admits an alternative
form, which highlights the geometry, the individual roles of
v (interfacial flow) and v, (shape changes), and involves the
usual vector calculus surface operators (divergence, curl). For
closed surfaces, we have

1
W, =/l‘s [§|Vs x v[* 4+ (Vs-v)* —K[v|?
r
(C))
—2v,k : Vv +v2(4H? —2K)] ds,

which grouping terms to annihilate V- v — 2Hv, due to local
inextensibility becomes

1
Wi = [ e[ 319 x o~ Kl
%)
—2vn(k—2Hg): Vv — 2Kv§] ds.

The dynamics of the system can be obtained by minimizing
the total Rayleigh dissipation potential, which also includes
that of the bulk embedding fiuid, plus the rate of change of the
elastic energy of the interface with respect to the variables ex-
pressing the rate of change of the system,’’ possibly subject
to constraints. Considering for simplicity an infinite embed-
ding fluid without body forces, its dissipation potential can
be written exclusively in terms of the velocity of the mem-
brane, Wy, [v,v,]. On the other hand, the rate of change of
the Helfrich bending energy E = [.-(x/2)H?dS, where K is
the bending modulus and we have ignored the spontaneous
curvature for simplicity, depends only on the normal veloc-
ity E[v,].”” With all these ingredients, the tangential and nor-
mal Euler-Lagrange equations for the viscous interface with
bending stiffness, together with the inextensibility constraint
in Eq. (2), follow from annihilating the variations of

Wy, [0,v2] + W, [0, va] + Efva] — /r %(Vs-v —2Hv,)dS, (6)

with respect to v, v, and X, and integrating by parts. Focusing
on the role of the interfacial fluid (the bulk fluid and curvature
elasticity contributions are classical), the tangential balance of
linear momentum at the interface is

0=—p;[Vs x Vs xv—2Kv+2(k—2Hg)- V)

—vE+ (), @

where t%* is the tangential component of the traction exerted
by the bulk fluid on the + and — sides of the membrane, see
Fig. 1. It is interesting to note that the second and third terms
of the interfacial viscous contribution (first line) vanish for
planar membranes, and the third term vanishes for membranes
of fixed geometry. For curved membranes of fixed shape,
the mobility of inclusions depends on curvature because of
(1) the second interfacial viscous term, i.e. —2uKv, (2) the
asymmetry of the bulk fluid tractions in a curved geometry,
and (3) the topology of some curved geometries, e.g., cylin-
ders or spheres, where the interfacial velocity field due to a lo-
calized force may not decay in the membrane perimeter. The
viscous term depending on the gradient of the normal velocity
and the curvature shows that non-uniform shape changes in-
duce interfacial viscous tractions, and therefore influences the
lateral mobility.

The balance of linear momentum normal to the membrane
leads to the scalar equation

0 =—2u, [k: Vv — (4H* —2K)v,| +2HT

_ (z,’,’+ _z,‘,’—) +x[AH +4HH? -K)], ®
where 2% are the normal components of the tractions exerted
by the bulk fluid. The first term in this equation represents
normal tractions due to the interfacial viscosity, the second
term embodies Laplace’s law, and the last term is the normal
traction due to bending elasticity. Remarkably, the interfacial
viscosity contribution completely vanishes at a planar config-
uration, which explains why this effect is generally neglected,
e.g. when studying the dynamics of fluctuations.”” The term

—2ugk : Vo is a normal traction generated by a nonuniform
interfacial flow in the presence of curvature, and clearly shows
that the lateral motion of an inclusion in a curved fluid mem-
brane generates a shape disturbance near the features of the
associated interfacial flow. A crucial consequence of this ob-
servation is that, through curvature, the lateral interfacial hy-
drodynamics couple with the out-of-plane bending elasticity,
which is at the root of the effective lateral viscoelastic behav-
ior reported later. The second interfacial viscous term drags
shape changes, which in turn influences the lateral mobility,
and as we show elsewhere, can play a crucial role in the fluctu-
ations of membranes of curvature close to or larger than £gp.
Figure 2 shows a simplified representation of the system under
consideration, and how the lateral effective viscoelas-tic
behavior emerges from a curvature-dependent coupling be-
tween lateral and out-of-plane motions. Note that, although
in principle the bulk hydrodynamics could contribute to the
coupling between lateral and normal dynamics in the pres-
ence of curvature, such contribution is negligible compared
to that of the interfacial hydrodynamics. Indeed, for highly
curved membranes and common inclusions, both the radius of
curvature and the inclusion size are much smaller than £gp.
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Fig. 2: Simplified rheological model illustrating the lateral mobility
(x) of a membrane inclusion under the action of a lateral force f;. In
the absence of curvature, the coupling damper has no effect, ¢, = 0,
and therefore the lateral rheology is purely viscous, where ¢; repre-
sents the net effect of the interfacial and bulk viscosities, whereas the
out-of-plane motion x, is viscoelastic due to bending elasticity, and
bulk and interfacial viscosities. The coupling damping coefficient c.
becomes increasingly large with increasing curvature, which leads to
a normal force exciting the viscoelastic out-of-plane response upon
a purely lateral force on the inclusion. Thus, the lateral effective be-
havior is viscoelastic.

Thus, the physical origin of c. is essentially the coupling term
—2ugvyk : Vo in the dissipation potential in Eq. (4).

3 Linearized governing equations for cylindri-
cal membranes

We derive next the linearized equations around a cylindri-cal
state using a variational method rather than the Euler-
Lagrange equations, i.e. we minimize the Rayleigh dissipa-
tion potential plus the rate of change of elastic energy subject
to inextensibility constraints. This method simplifies combin-
ing different physical mechanisms and eases the calculations.
We have checked the resulting equations for the bulk flow and
for the curvature energy with other works.'4® The interfacial
flow equations have not been derived before and have been
checked by computing in different ways the dissipation for a
number of prescribed membrane velocity fields.

Disturbances around an equilibrium state

We linearize the model developed in Section 2 around an equi-
librium cylindrical state, characterized by its radius r, its
equilibrium surface tension X, and the equilibrium pressure
difference across the membrane py. These three parameters
should obey the relation py = —k/(2r3) + Xo/ro, encoding
radial balance of forces. "

We parametrize the midsurface of a tubular membrane I" at
a given time ¢ in cylindrical coordinates as

x(0,z;t) =r(0,z;t)er +ze,, )

where 6 € [0,27], z € [0,L], and L is the length of the tube.
We denote by e,, eg, e, the unit basis vectors of the cylin-
drical coordinates, and express the metric tensor, the normal
vector, the second fundamental form, and the surface and vol-
ume elements as

gi=0x, gij=gi-gj, i=0,z
ge X g;

_J97% .
" lgexg T (10)
2
dS =|ge x g;| d0dz, dV = % dOdzdr.

We call u the shape disturbances from the equilibrium cylin-
drical state, r(0,z;t) = ro +u(0,z;t), and represent it with a
Fourier expansion,

u(8,2:1) = ¥ ttrm(t)Ym(6,2), (11)

where Y,,(8,z) = ¢/(m0+kn2) k., — 2nx /L, and m, n are inte-
gers running from —eo to +oco. From this point on, we drop the
explicit dependence on time of the coefficients in the various
expansions. Similarly, we expand the surface velocity as

v=Y) (v;me, +v2 €0 +vf,mez) Yoom- (12)
nm

Note that iy, = v/, Alternatively, it is convenient to expand
this field differently to compute the interfacial dissipation. In
analogy with vector spherical harmonics,~ we describe the
surface velocity field with vector cylindrical harmonics

V =Y (VinYom + Vi O + vl ), (13)
n,m

where Y;(0,2) = Yamer, Wnm(0,2) = roVsYum, and @,y =
e,x¥,,,. Some mathematical properties of vector cylindrical
harmonics are given in Appendix B. We define the following
arrays containing the components in these two representations

vf,,,, vrnm
Vam=1{ V8 Wom =14 vim
nm nm E) nm nm bl
vznm VSr%n)
which are related by
1 0 0
W,,,,, = 0 im/lnm iknro/knm Vnm; (14)
0 —ikpro/Apm  im/Aym

~
Bum

where Ay, = r3k2 +m?.




Membrane free energy

The free energy of an inextensible membrane, including the
bending energy and the work of pressure and surface tension
can be written as

= E/(2H)zds+zo/alS—po/dV, (15)
2 Jr r 4

where V is the volume enclosed by the membrane. By intro-
ducing the expansion in Eq. (11), retaining up to second order
terms, and noting that linear terms vanish since we linearize
about an equilibrium state, we obtain the harmonic expansion
of the free energy (see Appendix C)

1 *
IT =TIy + E Z anEmnunm7 (16)
n,m

where ()* denotes complex conjugation and conjugate trans-
position for matrices, E, = 2L (anm / r(3) —p+2m/ ro),

and gum = —Aum/2 + lnzm —m?+ 1. It follows immediately
that
. 1 y
II= ) Z (U Enm Vg ~+ UnmEnm Vi) » an
n,m

Note that the stability of the equilibrium state holds if E,,,;, > 0
for all n and m. This is always the case if pg = 0, as considered
in all the examples of the paper.

Inextensibility

The dynamical equations of inextensible fluid membranes
should satisfy the local mass conservation constraint in
Eq. (2). The surface tension deviation from X

2(0,2) =%(0,2) —Z0 = Y Zum¥um(6,2),  (18)

n,m

acts a Lagrange multiplier for this constraint, which is en-
forced variationally with the expression

Cinext:/i(vs.v_zl)nH)dS. (19)
T

With the identities in Appendix B, the linearized form of the
equation above is

cinext — ZﬂroLZEnm (—kﬂmv,(,},z/ro - vf,m/ro)
nm (20)
= ZﬂroLZEnm (imvgm/ro + ik, — v;m/r0> ,
nm

where we have used Eq. (14) in the last step.

Interfacial dissipation

Replacing the vector cylindrical harmonic expansion of the
interfacial velocity in Eq. (13) into Eq. (4), taking advantage of
the expressions in Appendix B, and mapping back to the usual
Fourier expansion of the velocity with Eq. (14), we express the
membrane interfacial dissipation potential at the cylindrical
equilibrium state as

ZV* DIV, 1)
where
pmem 2/27’(2)2 21/1122/}’(2)2 —2k m/ro
o ”7':roL =B, 2m*[rg 245,/ Bn.
s —2ky,m/rg 0 nm/"o
Bulk dissipation

A general solution to the 3D Stokes equations in cylindrical
coordinates is given by,

VP(r,0,2) =V (r,0,2) + Vx [gF
410, [th'E r,0 Z]—i—ahi r0,2)e;, (22)
= —2upd2h* (1,8,2),

rBzeZ}

p=(r,0,2)

where V is the bulk nabla operator, and f*(r,0,z), g*(r,0,z),
h*(r,0,7) are cylindrical harmonic functions given by

[(r,0,2) Fom
g5(r0.2) =YX Gi, ¢ Polkn,r)Yun(6,2). (23)
hi (ra 97Z) i Hi’l

Here, P (ky,r) denote modified Bessel functions of the sec-
ond and first kind, i.e. P, = K, (|kn|r) and P, = L,(|kn|r).
Since lim,_,0 Ky, (x) = limy_yeo[;(x) = +oo, the modified
Bessel functions of the first and second kind are appropriate
solutions for the exterior and interior bulk fluid, respectively.
We can calculate the coefficients of the harmonic functions
(F, G, and H) by imposing the non-slip boundary conditions
on the surface. Expressing the bulk fluid velocity surround-
ing the cylindrical surface as V’* = V/*e, + Vé’ *eg JrVZb *e,,
and recalling Eq. (22), we have

1
VIE =0, f* + ~dpgt +rdZht,
r
1 1
Vo =—0f* — 08" — ~0oh" + 35, 24
VIE =0 f* + rdjh* + 0:h*t.

Combining Egs. (23), (24) and (12), the bulk and surface ve-
locities can be related through the coefficients of the harmonic




functions as

Fo 1
Gry ¢ =(Q%)" Vam, (25)
H:I:

nm

where the components of Q- are given in Appendix D.

The traction vector acting on the surface of a tube in cylin-
drical coordinates for an incompressible Newtonian fluid is,

—pE 20,0, VPE

1prdy (V7 /7) + 1pdg (VEE) /1
My (azvrbi + 8rvzbi)

T+ = :i:er-o'bi =+

Replacing Egs. (24,25) into the above relation, we find

T = 213, Y VS (Qi) ™ Vi, (26)

nm

where the nonzero components of S; are given in Ap-
pendix D. From Eq. (26), the dissipation potential for the bulk
fluid in the absence of body forces can be written as

1 o
W, =5 /F V. TP+ 48 = 3 Y Vi D Vo, (27)

nm

where DK = 270y | =S5, Qi)™ + 875, (Qy) ™' |- The

final expressions for the components of the dissipation matrix

DUk which is Hermitian, are given in Appendix D.

Linearized governing equations

As in Section 2, we obtain the dynamics of the system by
minimizing the rate of change of free energy, plus the to-
tal dissipation potential, plus the power of the external forces
with respect to the variables expressing the rate of change of
the system and subject to constraints (here inextensibility).
For this purpose, we form the Lagrangian £ (V,,, Zum) =
T[V,m] + WOV, + TIV,] 4+ CPXV,,, 0] collect-
ing Egs. (17,21,27,20). Expressing the external force with
Fourier expansion f(0,z,¢) = Y., foxt(¢)Ym(6,z), we can

express the external power as [I™' =Y, V¥ X where fo5! =

2mroLfiX. Making the Lagrangian stationary, we obtain a set

of algebraic-differential equations

Dﬁ,‘;ﬁ, an :|{ Vnm } { fllﬂ’l+f$1):r£ }
= ; (28)
{ LI, 0 Lm 0
where DSt = DIk pmem 7 — [ —Epityy 0 0 ], and

Ll,=2nrgL[ —1/ry im/ro ik, ].Inverting the matrix in
the left-hand-side and recalling that v}, = i, the governing
equations in Eq. (28) can be expressed as

where the coefficients denoted by k and g follow from simple
algebraic calculations. The first row can be easily be inte-
grated to an exponential function of time, and the remaining
algebraic equations provide the tangential velocities and sur-
face tension disturbances.

4 Probe mobility and membrane rheology

The SD theory assumes a purely viscous drag to motion, and
relates through the Stokes-Einstein relation the diffusion co-
efficient to the viscosity of the embedding medium. Modern
microrheology generalizes the Stokes-Einstein relations to lin-
ear viscoelastic (LVE) media,” and provides a link between
the statistical properties of the motion of probes beyond sim-
ple diffusion, e.g., the mean squared displacement (MSD(t) =
(Ar?(1))), and the rheology of the medium. The hydrody-
namical mobility, which can be probed under either an exter-
nal force (active microrheology), or stochastic thermal forces
(passive microrheology), becomes frequency-dependent for a
general LVE medium.”' The theory summarized below pro-
vides a precise mapping between the measurements of active
and passive microrheology. We exploit this correspondence in
Section 5, where we calculate the lateral response to an ap-
plied force, evaluate the effective viscoelastic behavior, and
then reconstruct a typical measurement of passive microrheol-
ogy, the MSD.

The hydrodynamic mobility M is generalized for LVE ma-
terials as

vP(1) :[ M- fP() ar,

where f7 is the force applied on the probe, here the membrane
inclusion, and v (1) is the velocity of the probe. For a purely
viscous medium, the response to a force is instantaneous. By
taking the Laplace transform of the previous equation, we can
compute the frequency-dependent mobility of the probe from
the applied force and the response as

M(s)="(s)/F" (s), (30)

where s is the Laplace frequency, and the Laplace-transformed
functions are denoted by a tilde. From fluctuation-dissipation,
the translational mobility of a probe in N dimensions and the
MSD are related by

MSD(s) = 2NkBTA7I(s). (31)

Given the frequency-dependent mobility, we introduce an ef-
fective lateral viscoelastic modulus. The theory behind in-
terfacial microrheology is not fully established. To account
for the fact that we deal with a two-dimensional medium, we

ugm k:ém g ;ém
v k g
S A YUMIE S P )
nm %m nm
m k,,m 0
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modify the usual bulk relations relating mobility to viscoelas-
tic modulus®' following the SD theory. Since for a bulk vis-
cous medium M o< (upa) ™', while for a membrane inclusion M
o (us)~!, a dimensionally correct interfacial viscoelastic
modulus follows from G (s) = s/M ™ (s). Replacing s by iw,
we obtain the complex viscoelastic modulus of an equivalent
two-dimensional medium as G(®) = G'(w) + iG"(®). The
real part G’ is the storage modulus and G” the loss modulus
char-acterizing the elastic and viscous components of the
medium under an oscillatory force.

5 Results

To show that a nonuniform interfacial flow generates shape
deformations on a curved membrane, and examine the conse-
quences of this effect on the lateral mobility, we consider a
cylindrical membrane and subject it to a tangential point force
in either the longitudinal or the azimuthal direction, in a set-
up previously employed in membranes of fixed shape.'* The
point force is implemented by imposing a Dirac delta distribu-
tion in space at z=0, and 6 = 0, and a Heaviside step function
in time, i.e. f'(0,z,1) = 8(0)3(z)H(t)(foeo + f.€.), Where
fe,and f; are constants. The Fourier expression of the external
force then can be written as f&X! = 2H (t)(fgeq + fre:)/7L.
Following Henle and Levine, '~ we limit the number of Fourier
modes in accordance to a cut off length scale ¢, =~ a represent-
ing the size of the inclusion as nymax = L/(274;), Mmax =10/ £e-
Thus, this problem has three length-scales. We place ourselves
in the regime where £, is much smaller than £s, and smaller
than ro. In the calculations below, we choose £, = 10~34gp),
and L long enough so that the disturbances created by the point
force have decayed at the tube ends. We check that the rheo-
logical properties are insensitive to further increasing L.

We non-dimensionalize energy by k, and length by {sp =
Us/up. The non-dimensional radius is then 7 = ro/£sp. For
fixed geometry, the purely viscous system reacts instanta-
neously to the applied force because of the absence of iner-
tia or elasticity. '* Here, elasticity introduces a time-dependent
response with a characteristic relaxation time. To have relax-
ation times close to one, we consider the following radius-
dependent time-scale T = 873 (s +2170) /k = 872(1 +2F)1o,
where 7o = £3,1p/k."" For highly curved tubes, 7 < 1, we
have 7 = 8r31;/x, which is independent of the bulk viscos-
ity. For phospholipids in water, £gp is on the order of a few
um, while for polymersomes £sp, is in the order of mm. For a
tube of radius rp = 1 pm, the characteristic time 7 is 0.5 s for
a phospholipid fluid membrane and around six minutes for a
fluid polymersome.

Hydrodynamics and shape deformation

Figure 3 presents the transient response of the system to a
point-load, in either the longitudinal or the azimuthal direc-
tion. We consider two tubes of different radii. The transient
response is illustrated by plotting three selected snapshots of
the shape, the interfacial velocity field, and the surface tension
att = 0, when the shape has not changed, at # = +oco0, when the
system has reached steady state, and at an intermediate time.
In all cases, there is a clear correlation between the interfacial
hydrodynamics and the shape deformations. The membrane
exhibits a negative out-of-plane displacement relative to the
outer normal ahead of the point load, where the surface ten-
sion disturbance is negative, and a positive out-of-plane dis-
placement behind the point load. As noted previously,'* the
velocity field on the surface is more localized relative to r for
}j;gfger tubes, since the decay length-scale is \/rofsp. The sha

ormation as a result” of f, is more markedly non-
axisymmetric for larger tubes, since modes that deform the
cross-section become softer as rq increases. Our calculations
show that for phospholipid membranes (k= 10~'?J), the typ-
ical lateral force exerted by a molecular motor ( f, ~ 1 pN)*!
can induce shape deformations whose maximum amplitude is
about 0.05 r for a tube of ro= 50 nm.

In Figure 4, we report more details about the dynamics of
the interfacial velocity field for a tube of radius ro = 0.02 £sp.
Figure 4(a) shows the transient velocity of the inclusion, a sig-
nature of an effective viscoelastic lateral response. The max-
imum velocity of the particle occurs at t = 0, when the force
is applied and the membrane is not deformed, and then at-
tains the steady state in a time-scale commensurate to 7, which
is a significantly shorter (more than one order of magnitude)
for the azimuthal motion. Thus, the inclusion encounters ini-
tially less resistance to motion as compared to later at steady
state. Interestingly, the simple rheological model in Fig. 2
exhibits a similar behavior. It can be observed that for this
small radius, v, under a longitudinal force does not fully de-
cay in the azimuthal direction, and exhibits back-flow on the
side opposite to the point where the force is applied at 7 = +
(a-3). This effect explains part of the radius dependence of
the purely viscous steady-state rheology, more specifically the
Inrg dependence of mobility. Similarly, vg resulting from fp
does not decay in the tube perimeter. For large tubes, which
exhibit radius-independent behavior, these effects are absent.
We note that at steady state, the membrane undergoes no shape
changes, v, = 0 in (a-4) and (b-4), and thus the response of the
viscoelastic linearized system is equivalent to that of a tube of
fixed geometry.

Frequency dependent rheology

Having seen that the lateral behavior of a curved deformable
fluid membrane is viscoelastic, we now quantify this re-
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Fig. 3: Transient response of a tubular fluid membrane immersed in a viscous bulk fluid subjected to a tangential point force in the longitudinal
(a,c) and azimuthal (b,d) direction. Here and in all other examples, the pressure difference p is zero. We represent the interfacial flow (blue

arrows), the shape disturbances, and the membrane tension deviations from o (color map, in units of 10° f /£sp). The out-of-plane disturbances
have been amplified by a factor of about 20 x/( f £sp) (a,b), and 200 x/( f £sp) (c.d), and the tubes have been rescaled in the longitudinal

direction by a factor of 1 (a,b) and 1/6 (c,d).
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Fig. 4: Dynamical response of a thin tube of radius ro = 0.02 £sp upon (a) longitudinal and (b) azimuthal point forces. (1) In-plane velocity
of the inclusion, or probe velocity v,P , as a function of time. (2) Longitudinal profile of the in-plane velocity passing through the inclusion,
(3) azimuthal profile of the in-plane velocity passing through the particle, and (4) longitudinal (a)/azimuthal (b) profile of the normal velocity

passing through the inclusion, at different time instances.

sponse invoking the generalized Stokes-Einstein relations '
summarized in Section 4. Since the mobility of the inclu-
sion is strongly anisotropic, we treat separately the longitudi-
nal and the azimuthal response, and consequently take N = 1
in Eq. (31). Recalling Eq. (30) and substituting 7' (s) = f./s,
and f} (s) = fo/s since the applied force is a Heaviside step
function in time, we have

s?MSD(s) _ s7(s)

| — 32
T i i=z0. 32

M;(s) = s/G,-(s) =

Therefore, we can calculate the mean squared displacement in
the time-domain as

MSD;(t) = (25T /f)) /o'v,!’(t)dt, i=2,0. (33)

The frequency-dependent and anisotropic lateral rheology
of a curved and deformable cylindrical membrane of radius
ro = 0.02 £sp is shown in Figure 5. The system behaves like
an effective linear viscoelastic (LVE) medium, which we com-
pare with the purely viscous (PV) response of a membrane of
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Frequency-dependent lateral rheological properties (left: mobility in the Laplace domain, middle: storage and loss moduli in the

Fourier domain, right: MSD as a function of time) of a tubular membrane in the longitudinal (top row) and azimuthal (bottom row) directions.
In this figure, we select specific material parameters representative of a phospholipid membrane in the fluid phase in water: k¥ = 10719 J,
£sp =5 pum, and 7 = 4.2 ms. The tube radius is ro = 0.02 £sp = 100 nm. The linear viscoelastic (LVE) behavior of the deformable membrane
is represented by solid lines, while the purely viscous (PV) response of a tube of fixed geometry is represented by dashed lines for comparison.

fixed geometry. Examining first the mobility of the viscoelas-
tic deformable system as a function of Laplace frequency (left
panels), we observe that the mobility transitions from the PV
behavior of the rigid system at low frequencies (steady state)
to a significantly higher plateau at high frequencies. The to-
tal increase of mobility is about two-fold for this example.
This result may have experimental implications, as it suggests
that the mobility measured in the low-frequency limit, e.g.,
by active microrheology under constant force, should differ
significantly from that operative in high frequencies, due for
instance to stochastic thermal forces, and probed with differ-
ent experimental techniques. The longitudinal and azimuthal
behavior is qualitatively very similar. As for the viscoelastic
complex modulus (middle column), the system exhibits a loss
modulus that approximately follows G” « @, and is notice-
ably smaller than that of the PV system, particularly for low
frequencies (about two times smaller along z and three times
smaller along 6). More interestingly, the storage modulus G’
of the LVE model displays more structure with three different
regimes separated by two characteristic frequencies. It is con-
stant at high frequencies, follows G’ o @? at low frequencies,
and exhibits a more complex behavior that approximately fol-

lows G’ o< @ for ® € (@*,w**). These two characteristic fre-
quencies can also be observed in the mobility plots in the left
panels. We observe that the behavior is dominantly viscous
at all frequencies, as quantified by the phase-lag angle §, de-
fined by tand = G” /G’. The ratio G” /G’ attains its maximum,
in the order of 10 for this tube, close to ®*. Many of these fea-
tures are also present in the simple rheological model in Fig. 2,
which nevertheless has only one time-scale and therefore the
intermediate regime G’ o« @ is absent. Indeed, for this model
, Cky@?

G = S o
c2w? + k2

cZe,®

0w——=F— 34
“O-a2gie Y

where the PV behavior is recovered by setting ¢, =0, k, =
+oo, or @ = 0. We finally report the predicted MSD, which
could be measured with sufficient resolution to capture the
systematic deviation from the simple diffusive behavior as a
signature of viscoelasticity. In both the longitudinal and the
azimuthal directions, MSD(z) is concave and progressively
reaches the linear dependence on time.

The two characteristic frequencies @* and @** arise from
two independent length scales, the tube radius r and the inclu-
sion size a. The first characteristic frequency is proportional to




the inverse of the relaxation time-scale defined earlier, @* o«
1/7. For ro < £sp, we check that @} ~ 1/7 = k/(8u,r}),
while in the azimuthal direction @ is about one order of mag-
nitude faster, as already noted in Fig. 4-1. The higher char-
acteristic frequency stems scales as ®** o k/(u;a*). Figure
6 examines the dependence of the ratio G /G’ on tube ra-
dius and inclusion size. It can be observed that indeed w*
and ®** decrease as rp and a increase, respectively. There-
fore, the width of the G’ «< ® regime, where viscoelasticity
is more pronounced, scales with rg /a Conversely, it can be
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—_Tg = 0.02 ng .‘-
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Fig. 6: Dependence of the ratio G/ (®)/G.(®) on the inclusion size
a (left) and on the tube radius rq (right).

We now examine the dependence of rheology on tube ra-
dius relative to £sp at fixed inclusion size. As a measure rep-
resentative of the rheology in the high and low-frequency lim-
its, we consider the two horizontal asymptotes of M;(s), see
Fig. 5, left column. The lower asymptote, for low Laplace
frequencies, coincides with the purely viscous and frequency-
independent mobility in a cylindrical membrane of fixed ge-
ometry, while the larger asymptotic mobility at high frequen-
cies reflects the viscoelastic nature of the deformable mem-
brane. For large radii, as shown in Figure 7, all mobilities col-
lapse to the SD estimate for planar infinite membranes (dashed
red line). The low frequency/purely viscous behavior (blue
squares) reflects the In(rp/a) dependence of the SD estimate
for membranes of finite size. As shown in the figure, the vis-
coelastic response at high frequencies (black circles) of the
deformable system progressively deviates from the low fre-
quency response as the radius decreases. The high-frequency
mobility of the viscoelastic deformable system can differ from
that of the purely viscous rigid system by a factor of 2 for
ro = 10_2&5‘1_).

SD planar infinite
08 membrane

ro/lsD
2.
2
z g high s
= s
X 1
0
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10° 10" 10° 10'
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Fig. 7: Dependence of the mobility in the high (black circles) and
low (blue squares) frequency limits on the radius of the tube, in
the longitudinal (top) and azimuthal (bottom) directions. The low-
frequency limit coincides with the purely viscous (PV) behavior of a
tubular membrane with fixed shape. The dashed red line shows the
SD estimate for the mobility in an infinite planar membrane.

6 Conclusion

We have shown that curved fluid membranes behave laterally
as an effective viscoelastic medium, even if the membrane flu-
idity is purely viscous. Consequently, the lateral mobility of
a membrane inclusion is frequency-dependent, and the effec-
tive storage modulus is non-zero. At the root of this result is
the observation that the lateral motion of a probe generates a
non-uniform interfacial flow, which in the presence of curva-
ture creates a shape deformation mobilizing the out-of-plane
viscoelastic response. To capture this effect, two theoretical
ingredients developed here are essential: (1) a general for-
mulation of the interfacial hydrodynamics at finite curvature,
and (2) the linearization of the governing equations around a
curved state.

This result may provide new insights in the diffusion
of membrane proteins or membrane domains in the highly
curved and heterogeneous environment of cell organelles, or
in cell-cell communication through membrane nanotubes. **
The physical mechanisms identified here could also help rec-
oncile mobility measurements in lipid bilayers obtained with
techniques probing different time-scales.” From a techno-
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logical perspective, our results may be particularly relevant
to understand interfacial processes of functionalized polymer-
somes, +*° which hold great promise as drug-delivery carri-
ers, biosensors, or nanoreactors. **+*°

The effect identified here can in principle be observed in
lipid bilayer tubes, although the experimental resolution of re-
cent related experiments'> may be insufficient to discern it. As
shown by our results, the viscoelastic behavior is stronger for
tubes of small radius relative to the SD length-scale, and for
large inclusions. Polymersomes, with £sp in the millimeter
range, appear as an ideal model system to experimentally in-
terrogate the lateral viscoelasticity of fluid membranes of dif-
ferent curvatures with mircorheological techniques. In these
systems, it may even be possible to observe the shape distur-
bances under an applied lateral force.

A number of variations on the model analyzed here can be
envisaged, including spherical geometries, or bulk fluids of
different viscosity on either side of the membrane. Our theory
can be combined with refinements of the SD theory, such as
those accounting for the shape of the inclusion, e.g. in terms
of hydrophobic mismatch*® or intrinsic curvature,*” which
have been shown to modify the purely viscous response
without in-troducing a qualitatively different rheological
behavior. The case of membrane curving inclusions is
particularly intriguing since, even in a nominally planar
bilayer, they locally pro-duce curvature and therefore effects
similar to those reported in here are likely to play a role. The
theory developed here can also be extended to account for the
bilayer architecture, i.e. the monolayer extensibility and the
inter-monolayer fric-tion. From our preliminary calculations,
such effects may only become significant for inclusions
spanning only one mono-layer, but this issue deserves further
study. To ascertain the dependence of the viscoelastic
behavior on curvature, probe size, or material parameters, it
would be particularly useful to particularize the theory in
different asymptotic regimes and obtain explicit expressions.
Finally, here and in most studies, the mobility of probes under
the action of stochastic thermal forces is analyzed assuming
that the background medium is not fluctuating, invoking scale
separation between the probe and the solvent molecules.
However, membrane fluctuations can be significant and span a
wide range of time and length scales. Several studies have
shown that the fluctuations can modify noticeably the
diffusion coefficient in a purely viscous response.”® 2*
Including fluctuations together with the cou-plings between
shape dynamics, interfacial flow, and curvature described
here, may help better understand probe mobility at different
scales, and establish a link with molecular dynamics
observations and simulations.*34%
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A New form of the viscous dissipation potential
for a Newtonian fluid interface

We start from the form of the interfacial viscous dissipation
potential in Eq. (3). By defining the tangential component
of the rate-of-deformation tensor, d = (1/2) (V,v+ V') =
d+v,k, we have

d:d=d:d—2vk:Voo+v:(4H*-2K). (35)
Examining the first term, we have
d:d==-Vsv:Vsvo4+=-Vsv:Vv'. (36)

2 2

We now focus on Vv : V,v. As discussed in”’ and refer-
ences therein, while the surface Laplacian for a function is un-
ambiguous, there are two different notions of surface Lapla-
cian for a vector field. On the one hand, the rough Lapla-
cian of a vector field v can be computed as (A;v)’ = gV,
where by (-); we denote covariant differentiation. On the
other hand, acting on differential 1-forms, e.g. gijvf , on can
define the Laplace-de Rham operator AR — —§d — d&, where
d and 4 are the exterior derivative and co-differential op-
erator respectively ‘", In the language of vector calculus,
ARy = —V x V x v+ V(Vs-v). The two Laplacians are re-
lated by the Bochner formula A;v = ARv + Kv. With a direct
calculation and the Bochner formula, we have

1 o 1
Vsv: Vo= EA;|'0|2 —v-Av= 5A5|v|2 —v-ARv —K|v|%.
(37
Indeed, recalling that the covariant differentiation of the met-
ric vanishes, we have

1 2 1y i j Koi _j

FAs|v” = 58" (@i ) = gijg” (Vv (38)
=8i jgklv'|kzvj +8i jg“V' v |-

From standard identities of exterior calculus on manifolds~',

we have the following equations

v (8dv) = |dv|? — xd(v A*dv),

(39
v (ddv) = |dv|* —xd(dv Axv),
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where x is the Hodge star operator. Adding these two equa-
tions and rewriting in the language of vector calculus, we ob-
tain

—v- ARy = |V x v)? + (V- v)?

—Vix[(n-Vyxv)v— (Vs -v)xv], 40

where *v is a tangent vector field on I" orthogonal to v. Sum-
marizing the equations above, we obtain

Ve Voo = |V xv]? + (V- v)? = K|v)?
L, 41)
—|—§As|'v\ —Vix[(n-Vixv)v— (Vs -v)*v],

where we point out the important fact that the terms in the
second line of this equation are null-Lagrangians, i.e. when
integrated over I they can be expressed by integration by parts
(Stoke’s theorem) as an integral over the boundary of I'. Thus,
these terms do not contribute to the Euler-Lagrange equations,
and for a closed surface their integral vanishes identically.
We examine now the second term in Eq. (36). Recalling
the identity relating the Kronecker delta and the permutation
symbol in two dimensions, &/ 8/ = g;&/' + 8!8/, we have

Vsv: VS’UT = Vi‘jvj‘,- = 61/5; vi‘lvk‘j
= exe! V) + 88V k)
= (siks-” v"vk‘j)“ —egel VIVE i+ (Vg 0)
(42)
Manipulating the second term in the last line we find
Eikgﬂ Vivk\jl = (5,‘]515 - 6i[61{)vivk\jl = (Vk|ik - Vk\ki)

:K‘v|27

(43)

where in the last equality we have used the fact that the second
covariant derivative does not commute. Thus, we obtain

Vow: Vol =(V, v)> =Ko+ (siksf’ v"vku) (44)

i’
where the last term is a divergence, and therefore a null La-
grangian. Collecting all the terms, we have

~ ~ 1
d:d:E|VS x 0|2+ (Vs-0)? =Ko+ .4 (v),  (45)

where .4 (v) is a null Lagrangian collecting the last two terms
in Eq. (41) and the last term in Eq. (44). Integrating .4 (v)
over a surface with boundary, it is easy to find the resulting
boundary terms. For a closed surface, we find the form of the
dissipation potential in Eq. (4), or recalling local inextensibil-
ity the alternative form in Eq. (5). The derivation of the tan-
gential and normal Euler-Lagrange equations (7,8) follows di-
rectly by taking variations, integrating by parts, and recalling
that V- (k —2Hg) = 0 due to the Codazzi-Mainardi relations.

B Calculations in vector cylindrical harmonic

Using the vectorial form of cylindrical harmonics for the sur-
face velocity field Eq. (13), it is easy to derive the following
identities

)L” 2'nm
Vi X Oy = — = VS;Q Yo, Vi Upy = — V£1}72 Youm,
ro ro
1 1 2
VUum:k = _l’iz ( zvﬁmzynm _manOVEanYnm) s
0

where A, = r3k2 +m?*. We also have the orthogonality rela-
tions

‘/I_,}fr;n(eaz)'}fn/m/(e,Z) das 27["0[46””/6’”"1/’
AW;m(67Z)'Wi1’m’(6,Z) as =

/r(I,Zm(e’Z)'(I)n’m’(Gﬂ) s =

ZAnm nrOLénn’ 6mm’ )

22um Tero L0y Sy -

C Elastic energy calculations: cylindrical coor-
dinates

Recalling Eq. (11), lengthy but direct calculations lead to the
following expressions

2 1 u > 2
H? dA =~ |1 = — + — —2roAsu+ 15 (Asu)
ro ro ro

1 P 3 2 duuge

— - +— + 229 godz,
) (“,z) 2r(2) ( 79) r(z) 2

2
Uy +uuge —rolge
2H dA = ( 1 — ol — Ut + 1) dedsz,
0

1
dA =7 (rgu?, + 215 + 2urg + ') dOdz,
rg V0% :

where Agu = u gg + ”.,zz/’"(%~
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D Bulk fluid traction: tubular membranes

The components of the matrix that maps the bulk and surface
representations of the velocity field are

Qlil = [:F\k”|r0Pnf+1—|—mP,ﬂ /70,

Qzlt2 = imPE /ro,

Q1i3 = [()an—m)Prfi|kn|vr0Pni:+1]/rO;
QEtI = imP5 /1o,

0n = [lklroP,, —mPy.] /ro.

Q§E3 = l[( 2_m)PrT:Fm|kn|”0P;f+1]/r0a
05 = ikaroPy /1o,

0n = 0

0% = ik [(m+1)PEF |kalroPE, ],

where we have dropped the subindices nm. We note that in
these expressions P = P.-(K,ry) are scalars that depend on n

and m alone, since the radius is fixed on the cylinder.

+

In Eq. (26), the nonzero components of S;,,

are given by

Sli1 = 2 [i|kn\r0Prf+1 +(7L,,m—m)P,ﬂ /r(%
S5 = 2[Flkalro (14 Aum) Py + (m—1) Ay —m) Py ] /15

S5 = —[22lkalroPE, + (A +m* —2m) Pir| /15
S3i2 = fk,,mP,ff/ro

Sh = 2mi[Flke|roPL, + (m—1)Pr] /1§

S5 = 2mi[(m—1)Py F|kalroPy 1] /75

Sy = 2mi[(Awm+1—2m) Py £2lky|roPi ] /15
S5 = 2kei [mPy F |ka|roPi, ] /10

S5 = 2idumkaPyr /10,

where we have dropped the subindices nm.
Recalling the final expression for the bulk dissipation ma-
trices, and introducing some notation

DK = 27roLpty | —Sihy (Qih) ™ 4 S Q) ™

+ —
Dnm Dnm

we have the following expressions for the components of these
matrices

—2|kn| (k27 = |kn|r(3m+2) 0ty + (4m+2m* — 2k2r2) 07 + 2|k |rmard)

Df, =
i k3|13 — (3k2r2m + 2k2r2) oy + [kyr|(2m? + 4m — K2r2) o2 + mkZr2 ol
ot _ —2imky| (k2r? — (2|knr| + 3|kpr|m) ot + (2m? +4m — kar?) o2 + (1+m)|kyr|o)
2 k313 — (3m+2)k2r oy + (4m+2m? — k2r2)r|ky |02 + k2r2mos
Dy, = -Dj
bt — —2ilknlknr (K2r* — [knr|(Bm+ 1) 0t 4 (2m+2m* — kar?) o2 + |kyr|maosd)
B k3|13 — k2r2(3m —2) oty + |y |[r(2m2 + 4m — k2r2) a2 + K2r2mad
bulk
Djy = -Dj*"
_— \kn| (—2K27% + |knr|(4 — K202 + 6m) Q. + (4212 — 8m — 4m? + 2k2r°m) a2 + (|3 |1 — 4|k, |rm) a2
2 k3|13 — k2r2(3m +2) oty + |y |[r(2m2 + 4m — k2r2) a2 + K2r2ma
DI = _m|kn|knra+(_|knr|+2ma++a42r|knr|)
2 k3|13 — k2r2(3m+2) oty + |kyr| (2m2 + 4m — k2r2) a2 + mk2r2as
Dy, = Dy
pi, - k| (2272 — |k (6m 4 m*) 0y + (4m? +2m3) a2 + |kyr|m? o)

k3|3 — (2k2r2 + 3k2r2m) oy + |kyr|(2m? + 4ma2 — k2r) o2 + k2rloim
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—2kn| (—Kk21% — |k |F(2+ 3m)or— — (2m® — dm + 2217 ) 0% + 2|k, [rmo )

— 3|3 = k2r2(3m+2) o + |kn|r(K2r2 — 2m2 — 4m)a® + k2rima
—2imlky| (—k2r? — ko |r(3m+2) o — (2m? +dm+k2r?) & + |ky|r(m+ 1))

2 — 3| r — k2r2(3m+2) o |ky |r(—2m? — dm + k2r2) o2 + k2r2mo?
o = —Dn

e —2iky |kn|r (k272 + (k2% — 2m — 2m?) 02 — |ku|r(3m+ 1) 0t— + |ky|rmoi® )
B — 3|3 —K2r2(3m+2) o + |k |r(k2r2 —2m2 — d4m) o2 + K2r2ma?
5 = Dy
_ Kl (2k2r? + |kn|r(6m +4 — k212 ) o + (—2k2r2m + 4m? + 8m — 4k2r? ) 0% + |ky |r(K2r? — 4m) o )
2 — 3|3 —I2r2(3m+2) ot + |k |r(K2r2 — 2m2 — 4m) o2 + K2rimod
. —mOt_ky k|1 (—|kn|r — 2moi_ + 0% |k, 1)
B BB k22 (3m A+ 2) 0 A k| r (k212 — 2m? — dm) a2 + k2r2ma

Dy, = Dy

D — &y | (2]{%}’2 + |k |rm (6 +m) o — |k |rm*a® + (4m> + 2m3)a3)
3 =

where we have dropped the subindices nm and oy =

PE/PE .
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