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MULTILEVEL BALANCING DOMAIN DECOMPOSITION AT EXTREME SCALES ∗

SANTIAGO BADIA† ‡ , ALBERTO F. MARTÍN† ‡ , AND JAVIER PRINCIPE† ‡

Abstract. In this paper we present a fully-distributed, communicator-aware, recursive, and interlevel-overlapped
message-passing implementation of the multilevel balancing domain decomposition by constraints (MLBDDC) precon-
ditioner. The implementation highly relies on subcommunicators in order to achieve the desired effect of coarse-grain
overlapping of computation and communication, and communication and communication among levels in the hierarchy
(namely inter-level overlapping). Essentially, the main communicator is split into as many non-overlapping subsets of MPI
tasks (i.e., MPI subcommunicators) as levels in the hierarchy. Provided that specialized resources (cores and memory)
are devoted to each level, a careful re-scheduling and mapping of all the computations and communications in the al-
gorithm lets a high degree of overlapping to be exploited among levels. All subroutines and associated data structures
are expressed recursively, and therefore MLBDDC preconditioners with an arbitrary number of levels can be built while
re-using significant and recurrent parts of the codes. This approach leads to excellent weak scalability results as soon
as level-1 tasks can mask coarser-levels duties. We provide a model to indicate how to choose the number of levels and
coarsening ratios between consecutive levels and determine qualitatively the scalability limits for a given choice. We have
carried out a comprehensive weak scalability analysis of the proposed implementation for the 3D Laplacian and linear
elasticity problems. Excellent weak scalability results have been obtained up to 458,752 IBM BG/Q cores and 1.8 million
MPI tasks, being the first time that exact domain decomposition preconditioners (only based on sparse direct solvers)
reach these scales.

1. Introduction. The simulation of scientific and engineering problems governed by partial dif-
ferential equations (PDEs) involves the solution of sparse linear systems. The time spent in an implicit
simulation at the linear solver relative to the overall execution time grows with the size of the problem
and the number of cores [22]. In order to satisfy the ever increasing demand of reality and complex-
ity in the simulations, scientific computing must advance in the development of numerical algorithms
and implementations that will efficiently exploit the largest amounts of computational resources, and a
massively parallel linear solver is a key component in this process.

The growth in computational power passes now through increasing the number of cores in a chip,
instead of making cores faster. The next generation of supercomputers, able to reach 1 exaflop/s, is
expected to reach billions of cores. Thus, the future of scientific computing will be strongly related to
the ability to efficiently exploit these extreme core counts [1].

Only numerical algorithms with all their components scalable will efficiently run on extreme scale
supercomputers. On extreme core counts, it will be a must to reduce communication and synchronization
among cores, and overlap communication with computation. At the largest scales, linear solvers are based
on preconditioned Krylov subspace methods. Algorithmically scalable preconditioners include (algebraic)
multigrid (MG) [30] and some domain decomposition (DD) algorithms [31]. However, this theoretical
property is not enough for practical weak scalability, since the preconditioner itself must allow for a
massively scalable implementation. Today’s most scalable algorithms/implementations present practical
limits of parallelism, e.g., due to the small, coarse problems to be solved in the hierarchical process for
DD/AMG, and the loss of sparsity and denser communication patterns at coarser levels of AMG [7].

DD preconditioners make explicit use of the partition of the global mesh, e.g., for the finite element
(FE) integration, into sub-meshes (subdomains), and provide a natural framework for the development
of fast and robust parallel solvers tailored for distributed-memory machines. One-level DD algorithms
involve the solution of local problems and nearest-neighbors communications. A (second level) coarse
correction (coupling all subdomains) is required to have algorithmic scalability, but it can also harm
the practical (CPU time) weak scalability. Two-level DD algorithms include the Balancing Neumann-
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Neumann preconditioner (BNN) [23], the Balancing DD by Constraints preconditioner (BDDC) [13],
and FETI-DP preconditioners [15]. The practical scalability limits of a two-level DD implementation
is determined by the coarse solver computation, whose size increases (at best) linearly with respect to
the number of subdomains. The coarse problem rapidly becomes the bottleneck of the algorithm as we
increase the number of cores, since it irremediably produces a severe parallel efficiency loss (all the cores
not involved in the coarse solver computation are idling).

Weak scalability can be sustained even when incurring in notable parallel efficiency loss, by increas-
ing the number of cores dealing with the coarse solver, e.g., by means of a message-passing sparse direct
solver as the one in MUMPS [2]. The complexity of this type of solvers is quadratic for three dimensional
problems, and a quadratic increase of the number of cores is needed to keep constant the computational
time. However, the scalability of sparse direct solvers is limited to some hundreds of cores, harming the
overall weak scalability of the two-level BDDC method at some point [3].

A salient feature of BDDC methods is the fact that the constrained Neumann and Dirichlet local
problems, as well as the coarse problem, can be computed in an inexact way, e.g., using one AMG cycle
without affecting the algorithmic scalability of the method [14]. The use of inexact coarse solvers is
also possible for FETI-DP methods, after some modifications [20]. Since AMG solvers maintain weak
scalability much further than message-passing sparse direct methods, inexact versions of BDDC and
FETI-DP methods exhibit improved weak scalability, even though such implementations still incur in
the parallel efficiency loss commented above. Inexact FETI-DP methods, in which local problems are
computed with direct solvers and the coarse problem is approximated using AMG, have been exploited
in [20].

The BDDC preconditioner has some salient properties that permit to overcome this parallel over-
head, making it an excellent candidate for extreme scale solver design:

(P1) It allows for a mathematically supported extremely aggressive coarsening and the coarse matrix
has a similar sparsity pattern as the original system matrix. On memory-constrained supercom-
puters, it is in the order of 105 for sparse direct methods [5] (see Sect. 5).

(P2) Coarse and fine components can be computed in parallel, since the basis for the coarse space is
constructed in such a way that it is orthogonal to the fine component space with respect to the
inner product endowed by the system matrix [5].

(P3) Due to the fact that the coarse matrix has a similar structure as the original system matrix, a
multilevel extension of the algorithm is possible [25,32].

Property (P1) is readily exploited in any BDDC implementation.

The efficient exploitation of (P2), i.e., the orthogonality between coarse and fine spaces, is not
trivial. However, this property makes possible a parallel computation of coarse and fine corrections, i.e.,
overlapped in time. In [5], we have classified all the duties in an exact (i.e., using sparse direct solvers)
BDDC-PCG algorithm into fine and coarse duties. These duties have been re-scheduled to achieve
the maximum degree of overlapping while preserving data dependencies. The actual implementation of
this idea requires significant code refactoring, since it involves a switch from SPMD (Single Program
Multiple Data) to a MPMD (Multiple Program Multiple Data) parallel execution mode; cores are
divided into those having fine grid duties and those having coarse grid duties. This bulk-asynchronous
approach reduces synchronization among cores, and overlaps communications/computations, following
the exascale solver paradigm [1]. It has been exploited in [5], where we have performed scalability
analyses for the 3D Poisson and linear elasticity problems on a pair of state-of-the-art multicore-based
distributed-memory machines (HELIOS and CURIE). Excellent weak scalability has been attained up
to 27K cores for reasonably high local problem sizes; both local and coarse problems were solved by
using the multi-threaded sparse direct solver PARDISO [28]. Further, the clear reduction of computing
time and memory requirements of inexact solvers compared to sparse direct ones made possible to get in
[6] excellent weak scalability results for the inexact/overlapped implementation of the two-level BDDC
preconditioner, up to 93,312 cores and 20 billion unknowns on JUQUEEN.

With regard to (P3), a multilevel BDDC (MLBDDC) algorithm has been proposed in [25], where the
coarse problem at the next BDDC level is approximated by its BDDC approximation. An implementation
of the MLBDDC method that does not exploit (P2) can be found in [29]. Even though the CPU cost of the
coarse problem is reduced, since the coarse problem is still serialized with respect to the fine component,
the implementation in [25] still suffers from parallel efficiency loss. Further, since the condition number
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bound slightly increases with the number of levels [25], the detailed numerical experiments in [29] are
not conclusive to prove the benefit of the multilevel extension (see, e.g., Tables 4, 7, and 8 in [29]).

In this work, we extend the approach in [5] for the two-level BDDC method to MLBDDC. Exact
two-level methods with serial coarse solver are effective till some tens of thousands of cores. Beyond
that point, the coarse problem cannot be masked anymore by fine duties. In order to go to larger core
counts, we extend here the approach in [5] for the two-level BDDC method to MLBDDC, i.e., to exploit
both (P2) and (P3). We present a fully-distributed, communicator-aware, recursive, and interlevel-
overlapped message-passing implementation of the MLBDDC preconditioner. Fully-distributed (versus
centralized) means that all data structures (and thus associated computations/communications) are
distributed among cores, including the coarse-grid problem at all levels of the MLBDDC preconditioning
hierarchy. Communicator-awareness refers to the fact that the codes highly rely on subcommunicators
in order to achieve the desired effect of coarse-grain overlapping of computation and communication,
and communication and communication among levels in the hierarchy (namely inter-level overlapping).
Essentially, the main communicator is split into as many non-overlapping subsets of MPI tasks (i.e.,
MPI subcommunicators) as levels in the hierarchy. On a given intermediate k-th level, the coarse-grid
problem built on level k-1 is distributed among the subset of MPI tasks devoted to level k. Provided that
specialized hardware resources (cores and memory) are devoted to each level, a careful re-scheduling and
mapping of all the computations and communications in the algorithm lets a high degree of overlapping
to be exploited among levels. Finally, recursive implementation means that all subroutines and associated
data structures are expressed recursively, and therefore MLBDDC preconditioners with an arbitrary
number of levels can be built while re-using recursively recurrent parts of the code (e.g., communicator
creation, local solvers, inter-level data transfers, etc.).

This approach leads to excellent weak scalability results as soon as level-1 tasks can mask coarser-
levels duties. We provide a model to indicate how to choose the number of levels and coarsening ratios
between consecutive levels and determine qualitatively the scalability limits for a given choice. Finally,
we present a comprehensive weak scalability analysis of the proposed implementation for the three-
dimensional (3D) Laplacian and linear elasticity problems. Excellent weak scalability results have been
obtained up to 458,752 cores and 1.8 million MPI tasks. These are unprecedented results for exact
domain decomposition preconditioners (equipped with sparse direct solvers) that represent more than
one order of magnitude (in terms of scalability limits) improvement with respect to the best results
up-to-now [5], showing the tremendous potential of the algorithmic approach proposed herein. Thanks
to these results, the software platform FEMPAR [4] in which we have implemented the MLBDDC
algorithm is in the High-Q club (since 2014) of the most scalable codes on the JUQUEEN IBM Blue
Gene/Q supercomputer [11].

Let us summarize the contributions of this work:
• Novel recursive implementation of MLBDDC methods based on multilevel overlapping strategies

in time, in order to fully mask the coarse-grained tasks on much larger core counts than two-level
methods.
• Detailed exposition about how to efficiently exploit this novel approach on state-of-the-art

supercomputers, including the exploitation of recursion in a multilevel setting for the overlapped
deployment of tasks and the construction of sub-communicators.
• Comprehensive weak scalability analysis of the proposed strategy for both Laplacian and linear

elasticity problems on the IBM Blue Gene/Q supercomputer, up to 458,752 cores and 1.8 million
MPI tasks (subdomains).

This work is structured as follows. The MLBDDC preconditioner is presented in Sect. 2. In Sect. 3,
we present an overlapped MLBDDC implementation of the algorithm, which overlaps multiple level
computations, and we elaborate a model to determine the scalability limits for a given choice of the
number of levels and the coarsening ratios between consecutive levels. In Sect. 4 we provide some
implementation keys such as the recursive creation of MPI sub-communicators. In Sect. 5, we report a
comprehensive set of numerical experiments. Finally, in Sect. 6, we draw some conclusions and define
future lines of work.

2. Multilevel balancing domain decomposition. In this section we state the MLBDDC pre-
conditioner. In Sect. 2.1, we introduce some basic notation. Sect. 2.2 is devoted to the two-level BDDC
algorithm. Finally, the MLBDDC algorithm is defined in a recursive way in Sect. 2.3, relying on the con-

3



cepts introduced in Sect. 2.2 for the two-level algorithm. In any case, the description of the algorithms
is concise, and we refer the reader to [10,24] for a detailed exposition of two-level BDDC methods, and
to [25] for the multilevel extension. Further, a thorough presentation of practical implementation details
for domain decomposition methods can be found in [4].

2.1. Problem setting. Let us consider a bounded polyhedral domain Ω ⊂ Rd with d = 2, 3
and a quasi-uniform partition (mesh) T0 with characteristic size h0. Usually, T0 is a partition into
tetrahedra/hexahedra for d = 3 or triangles/quadrilaterals for d = 2. We consider a quasi-uniform
partition T1 of T0 into nsbd

1 sub-meshes, which induces a non-overlapping domain decomposition of
Ω into subdomains Ωi1, i = 1, . . . , nsbd

1 (of characteristic size h1). The interface of Ωi1 is defined as

Γi1 := ∂Ωi1 \ ∂Ω and the whole interface (skeleton) of the domain decomposition is Γ1 :=
⋃nsbd

1
i=1 Γi1.

As model problem, we study the Poisson problem and linear elasticity on Ω, for an arbitrary forcing
term and boundary conditions (as soon as the problem is well-posed). Let us consider a conforming
FE space V̄1 ⊂ H1(Ω). We denote by Vi1 the restriction of V̄1 into Ωi1 ∈ T1, i.e., local FE spaces.

V1 := V1
1 × . . .×Vn

sbd
1

1 is the global FE space of functions that can be discontinuous on Γ1. Let us also
define the projection E1 : V1 → V̄1 as some weighted average of interface values (see, e.g., [24]). We note
that T0 and the FE type defines V̄1, whereas T1 is also required to define the local and discontinuous
spaces Vi1 and V1, respectively. The Galerkin approximation of the problem at hand (with respect to
V̄1) leads to the global linear system of equations to be solved:

A1x1 = f1. (2.1)

The subdomain FE matrix corresponding to Vi1 is denoted by Ki
1. K1 is the block-diagonal global sub-

assembled FE matrix on V1. (Along the paper, we denote with the letter K a sub-assembled matrix
and with A the corresponding fully assembled one.) Analogously, we define the local sub-assembled
right-hand side gi1 and its global counterpart g1. The system matrix A1 and right-hand side f1 can be
obtained after the assembly of K1 and g1.

The non-overlapping partition induces a reordering of DoFs into interior and interface DoFs, i.e.,
u1 = [u1I

, u1Γ
]t. We also define the interior restriction operator R1I

u1 := u1I
. It leads to the following

block structure of the global assembled, global sub-assembled, and local matrices:

A1 =

[
A1II

A1IΓ

A1ΓI
A1ΓΓ

]
, K1 =

[
A1II

K1IΓ

K1ΓI
K1ΓΓ

]
, Ki

1 =

[
Ai1II

Ai1IΓ

Ai1ΓI
Ki

1ΓΓ

]
,

respectively. Matrices A1II
, A1IΓ

, A1ΓI
and K1ΓΓ

present a block-diagonal structure (very amenable to
parallelization). Matrices K1IΓ

and K1ΓI
are trivial extensions (by zeroes) of A1IΓ

and A1ΓI
, respectively.

2.2. Two-level BDDC preconditioner. In the sequel, we state the two-level BDDC algorithm,
describing the set-up of the preconditioner and its application. The input required to set-up the BDDC
preconditioner is (T1, V̄1,K1). We recall that T1 is a subdomain partition, V̄1 is the global FE space,
and K1 is the global sub-assembled matrix.

The construction of the BDDC preconditioner requires a partition of the degrees of freedom (DoFs)
corresponding to V̄1 on Γ1 into objects, which can be corners, edges, or faces. Next, we associate to some
(or all) of these objects a coarse DoF. The coarse DoFs can be the values of the function at the corners,
or the mean values of the function on edges/faces. Three common variants of the BDDC method are
referred as BDDC(c), BDDC(ce) and BDDC(cef), where we enforce continuity on only corner coarse
DoFs, corner and edge coarse DoFs, and corner, edge, and face coarse DoFs, respectively. The definition
of the objects and the coarse DoFs can be implemented as an automatic process for arbitrary partitions
and physical problems (see [4]). It involves the use of a kernel detection mechanism in order to preserve
the well-posedness of the BDDC preconditioner (see [33]). Once we have defined the coarse DoFs, we
can define the BDDC FE space Ṽ1 as the subspace of functions in V1 that are continuous on coarse
DoFs; clearly, V̄1 ⊂ Ṽ1 ⊂ V1.

The BDDC preconditioner is a Schwarz-type preconditioner that combines interior corrections with
corrections in the BDDC space Ṽ1 (see, e.g., [10, 31]). We define the interior correction operator as
P1 := Rt1I

A−1
1II
R1I

, which involves the set-up of (Ai1II
)−1, i.e., local Dirichlet problems. The BDDC

correction is expressed as E1K̃
−1
1 Et1, where K̃1 is the Galerkin projection of K1 onto Ṽ1.

4



The set-up of the BDDC correction requires some elaboration. Let us consider a decomposition of
the BDDC space Ṽ1 into a fine space Ṽ1f

of vectors that vanish on coarse DoFs and the K-orthogonal

complement Ṽ1c , denoted as the coarse space. As a result, the BDDC FE problem can be decomposed
into fine and coarse components, i.e., x̃1 = K̃−1

1 Et1r1 = x1f
+ x1c

. Since fine and coarse spaces are
K1-orthogonal by definition, they can be computed in parallel.

The fine space functions in Ṽ1f
vanish on coarse DoFs (which are the only DoFs that involve

continuity among subdomains). Due to the K1-orthogonality, the fine component can be defined as
x1f

:= E1K
−1
1f
Et1, where K1f

is the Galerkin projection of K1 onto Ṽ1f
. Let us note that, since the coarse

DoFs are fixed (to zero) in the fine correction, and these are the only DoFs that couple subdomains,
the set-up of K−1

1f
only involves the solution of local Neumann problems with constrained values at

the corresponding subdomain coarse DoFs, denoted by (Ki
1f

)−1. For a comprehensive exposition of the

implementation issues regarding the solution of constrained Neumann problems we refer to [4].

The coarse space Ṽ1c
⊂ Ṽ1 is built as Ṽ1c

= span{φ1
1, φ

2
1, . . . , φ

ncts
1

1 }, where φα1 ∈ Ṽ1c
is the coarse

shape function associated to the coarse DoF α, i.e., it takes value one on α and vanish on the rest of
coarse DoFs. As a result, its computation also involves K−1

1f
(see [4]). Let us note that the support of φα1

is the set of subdomains that contain α. Thus, at every subdomain we only compute the coarse space
basis functions related to owned coarse DoFs. We denote by Φ1 the matrix with columns the coarse
shape functions. We define the coarse matrix K1c

as the assembly of the subdomain local matrices

Ki
1c

= Φi1
t
Ki

1Φi1, for i = 1, . . . , nsbd
1 . Further, in a two-level algorithm, we have to set-up A−1

1c
, e.g.,

after assembling the subdomain contributions in one processor. Using the fact that P1A1P1 = P1, the
two-level BDDC preconditioner can be stated in a compact form as:

M1 := P1 + (I1 − P1A1)Et1(Φ1A
−1
1c

Φt1 +K−1
1f

)E1(I1 − P1A1)t,

where I1 is the identity matrix.

2.3. Multilevel BDDC preconditioner. The two-level BDDC algorithm involves as input
(T1, V̄1,K1) and automatically generates the coarse DoFs and the corresponding coarse BDDC space
Ṽ1c and coarse matrix K1c . We can easily observe that the BDDC method is suitable for a multilevel
generalization (see [32] for three-levels and [25] for the general case). We can consider a coarse partition
T2 of T1, obtained by aggregation (coarsening) of subdomains in T1. For every subdomain Ωj2 ∈ T2, its
portion of the coarse system matrix is at our disposal via the assembly of local sub-assembled matrices
Ki

1c
for subdomains Ωi1 ∈ T1 such that Ωi1 ⊆ Ωj2, in the same fashion as above with FE matrices. Further,

the coarse space Ṽ1c
is a FE-like space associated to T1, and we can also generate its corresponding space

of discontinuous functions with respect to T2. Therefore, we can readily define the BDDC preconditioner
associated to the coarse system matrix K1c

, the coarse space Ṽ1c
, and the partition T2. In the sequel,

we express the multilevel method in a formal way.
We create a hierarchy of quasi-uniform partitions (T1, T2, . . . , Tn`−1) by aggregation, where n` is

the number of levels in the BDDC method. T`+1 is a partition of T`. For every subdomain Ωi` ∈ T` there

is only one Ωj`+1 ∈ T`+1 such that Ωi` ⊂ Ωj`+1, and we will denote j as fat(`, i). We can readily use all
the notation in Sect. 2.2 just replacing 1 by `.

As input of the MLBDDC method, we require the sub-assembled subdomain matrix K1 related
to T1, the global FE space V̄1, and the hierarchical partitions (T1, T2, . . . , Tn`−1). The set-up of the
MLBDDC preconditioner is as follows:

For ` = 1, . . . , n` − 1,
– Set-up (P`,K

−1
`f
,K`c ,Φ`, E`) using the procedure described in Sect. 2.2 replacing

(T1, V̄1,K1) by (T`, V̄`,K`)
– If ` == n` − 1
∗ Set-up A−1

n`−1c

– Else
∗ Initialize the next level with V̄`+1 ≡ Ṽ`c , K`+1 ≡ K`c

After all these operators are set-up, we are in position to define the MLBDDC preconditioner M in a
recursive way as follows: M ≡M1 where

M` = P` + (I` − P`A`)Et`(Φ`M`+1Φt` +K−1
`f

)E`(I` − P`A`)t, for ` = 1, . . . , n` − 1, and Mn`
= A−1

n`−1c
.
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We refer to [25] for a proof of the following theorem, about the condition number of the BDDC-
preconditioned system matrix. We note that the results in [25] have been originally proved for the
Laplacian problem. It can be extended to the linear elasticity case by combining the two-level bound
for the condition number of BDDC and FETI-DP methods for 3D linear elasticity (see, e.g., [21]) with
the multilevel analysis in [25].

Theorem 2.1. The condition number of the BDDC preconditioned system matrix for the Laplacian
and linear elasticity problem is bounded as

κ(MA) ≤ C
n`−1∏
`=1

(
1 + log

(
h`
h`−1

))2

,

for BDDC(c) or BDDC(ce) in 2D, and BDDC(ce) and BDDC(cef) in 3D, where C > 0 is a constant
that does not depend on the hierarchical partition, i.e., number of levels n` and characteristic sizes.

3. An extreme scale parallel distributed-memory implementation. In this section we
cover in detail a novel approach for the parallel distributed-memory implementation of the MLBDDC-
Preconditioned Conjugate Gradient (PCG) algorithm. In Sect. 3.1, we present the rationale underlying
the novel approach that we pursue for the extreme scale implementation of this algorithm. In Sect. 3.2
we cover the building blocks of the parallel algorithm subject of study. In Sect. 3.3 we discuss a use case
that illustrates how the techniques proposed are applied to a three-level BDDC-PGC solver in order
to reach maximum performance benefit. Finally, in Sect. 3.4 we analyze how to choose values for the
coarsening ratios governing subdomain aggregation in order to let the techniques proposed to be fully
effective, including an estimation for the number of subdomains in which the global problem can be
split while still reaching this goal.

3.1. Rationale underlying novel implementation approach. In this section we present the
rationale behind the novel approach that we pursue for the extreme scale implementation of the PCG-
MLBDDC solver. This rationale is built around Fig. 3.1, which illustrates two possible implementation
approaches for this algorithm.

The implementation approach illustrated in Fig. 3.1(a) is the one typically followed by most of the
existing code implementations of (ML)BDDC and related DD algorithms [8, 26, 29]. It comes naturally
into mind as it reflects the multilevel structure of the preconditioner. It is also relatively easy to code
due to its bulk-synchronous structure. However, it does not exploit all the parallelism which is readily
available in the algorithm as it serializes the computation and application of the MLBDDC hierarchy.
For example, as discussed in Sect. 2, the fine and coarse-grid correction can be computed in parallel due
to the K-orthogonality constraint underlying the BDDC space. Many other opportunities for parallelism
are not exploited by this implementation approach. (See Sect. 3.3 for a full coverage of such opportunities
in the case of a three-level MLBDDC-PCG solver.) As a first side effect, there is a significant loss of
parallel efficiency due to idle MPI tasks. Due to the aggressive coarsening of these methods, the number
of tasks at level 1 is much larger than those at higher levels. Thus, in such implementations, there is a
notable aggregated idling time roughly equal to the number of cores being used times the time spent at
levels higher than 1. It also has a negative impact in the energy consumption of such implementations.
As a second side effect, the memory available on the core responsible for the coarsest-grid problem has to
be shared among data structures corresponding to all levels. Provided the already very limited memory
per core on current (and future) multicore-based massively parallel processors (e.g., it is only 1GB for
the IBM BG/Q supercomputer), this limits even more the load per core that fits into memory (and thus
that of the global problem size).∗

Fig. 3.1(b) illustrates the novel implementation approach that we propose in this paper. It pursues
full exploitation of the parallelism available in the algorithm. In order to reach this goal, the global
MPI communicator is split into as many disjoint subsets of MPI tasks, i.e., subcommunicators, as levels
in the MLBDDC preconditioning hierarchy. All MPI tasks are only in charge of a single subdomain
at a particular level. Besides, the steps of the algorithm are re-organized (i.e., re-scheduled) in such
a way that computation and communication in the global critical path is performed/issued as soon

∗We note that a distributed-memory solver for the coarsest-grid problem [16, 26, 29] can mitigate the impact of these
side effects, but the parallel overhead due to idle MPI tasks still remains.
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Fig. 3.1. Pictorial view of two possible approaches for the parallel distributed-memory implementation of the MLB-
DDC preconditioner. (a) Recursive, fully-distributed. (b) Recursive, fully-distributed, communicator-aware, inter-level
overlapped.

as possible, letting a high degree of coarse-grain overlapping to be exploited among levels. Provided
that the MPI tasks at each level are mapped to disjoint (specialized) compute nodes, the full memory
available per core can be used to accommodate the data structures corresponding to each of the levels
in the hierarchy. The target is to tune the number of levels and number of tasks per level for the
problem at hand in such a way that first level duties can completely absorb (i.e., mask) coarser-grid
duties by the effect of inter-level overlapping. We note that this strategy has been pursued in [5] for a
two-level BDDC preconditioner with remarkable scalability for the solution of 3D Laplacian and Linear
elasticity problems on medium-sized clusters (up to 27K cores). In order to boost scalability up to
current supercomputer core counts (in the order of one million), in this work we extend the techniques
in [5] from the two-level BDDC method to the multilevel setting.

3.2. Building blocks. In Alg. 1 we present the main phases of the parallel distributed-memory
solution of the linear system (2.1) via the MLBDDC-PCG solver. We can distinguish an initial phase
encompassing lines 1-2 of Alg. 1, where the MLBDDC preconditioner is set-up, and an iterative phase
in line 6, where the PCG solver is accelerated by means of the MLBDDC preconditioner. The PCG
consists of a repeated sequence of the following four basic operations: application of the preconditioner,
sparse matrix-vector products, inner products and vector updates [27].

Algorithm 1: Solve A1x1 = f1

1: Set-up M (symbolic stage) Alg. 2
2: Set-up M (numerical stage) Alg. 3
3: Set initial solution x01
4: x01I := x01I +A−1

1II
R1I (f1 −A1x

0
1)

5: r01 := f1 −A1x
0
1

6: x1 := PCG(A1,M ,r01,x01) Invokes Alg. 4

In the message-passing implementation of Alg. 1, all matrices, vectors, and associated computations
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are distributed among MPI tasks conformally with the hierarchy of non-overlapping partitions under-
lying the MLBDDC preconditioner. Let us denote by task(`, i) the one-to-one mapping that assigns a
MPI task to every subdomain Ωi` ∈ T`, for every level `. Any vector x` ∈ V` is distributed conformally
with T`, i.e., the portion xi` of x` is stored in MPI task task(`, i). Analogously, matrix K` is distributed
such that every diagonal block Ki

` is stored in MPI task task(`, i). Vectors in V̄` ⊂ V` are distributed
as those in V`, with the particularity that they must be continuous on the interface, i.e., values on
interface DoFs must match among MPI tasks sharing them. As a result, data structures describing the
distributed-memory layout of such vectors must provide additional gluing information. We refer the
reader to [4] for a comprehensive coverage of such data structures in a two-level BDDC preconditioner
context. The discussion there straightforwardly applies to the MLBDDC preconditioner.

In Algs. 2-3 we collect all the steps required to set up the MLBDDC preconditioner, while those
required for its application to a residual vector at each PCG iteration are shown in Alg. 4. In this
work we consider sparse direct methods [12] for the exact (up to machine precision) solution of the
subproblems within the MLBDDC preconditioning hierarchy. Indeed, the reader might have already
observed that Algs. 2, 3 and 4 match the stages involved in the direct solution of sparse linear systems.
In particular, preconditioner set-up is split into a symbolic stage in Alg. 2 (with GC denoting the
graph which describes the sparsity pattern of matrix C), followed by a numerical stage in Alg. 3.
Alg. 2 essentially builds and symbolically factorizes the graph associated to local matrices Ai``II , Ki`

`f
,

for ` = 1, . . . , n` − 1, i` = 1, . . . , nsbd
` , and that of the global coarsest-grid matrix An`−1c

. As part
of the symbolic analysis, a fill-in reordering is applied to the graph. On the other hand, Alg. 3 is in
charge of the numerical factorization of these matrices. Once the sparse Cholesky factor of (each of)
these matrices is set-up, Alg. 4 solves the corresponding linear systems required for the application of
MLBDDC preconditioner hierarchy by means of sparse forward/backward substitution. We note that
the Dirichlet pre-correction in Alg. 4 (see lines 2 and 3) can be omitted at the first level, since the
interior residual is already zero due to the initial interior pre-correction (see line 4 of Alg. 1).

Algorithm 2: MMLBDDC set-up (symbolic stage)

1: Reord+Symb fact(GAi
`II

) `

2: Identify local coarse DoFs `
3: Reord+Symb fact(GKi

`f

) `

4: Gather coarse-grid DoFs `→ `+ 1
5: if ` == n` − 1 then
6: Build GAn`−1c

`+ 1

7: Reord+Symb fact(GAn`−1c
) `+ 1

8: else
9: Build G

K
j
`c

`+ 1

10: Define GK`+1 ← GK`c
and invoke Alg. 2 with `← `+ 1 `+ 1, . . . , n`

11: end

Let us finally describe the meaning of labels at the end of the steps in Algs. 2, 3 and 4. On the one
hand, MPI tasks task(`, ·) are in charge of the steps labeled as “`”, while MPI tasks ∪n`

k=`+1 task(k, ·)
perform those labeled as “`+ 1, . . . , n`”. Note that in Algs. 2, 3, and 4 we are assuming, without loss of
generality, that An`−1c

is centralized on a single MPI task at the last level (so that a serial sparse direct
solver can be used for the solution of the coarsest-grid problem). However, this problem can be also
distributed among several MPI tasks (and solved by means of a message-passing sparse direct solver as
the one in MUMPS [2]). On the other hand, labels “`→ `+ 1” refer to data transfers among MPI tasks
in two consecutive levels. More precisely, among level ` MPI tasks, task(`, i), and their parents at level
`+ 1, i.e., task task(`+ 1, j) such that j = fat(`, i).

3.3. Use case for a three-level BDDC-PCG solver. According to Sect. 3.1, the steps in
Algs. 2-4 have to be judiciously re-organized in order to fully exploit all parallelism which is readily
available in these algorithms. Table 3.1 depicts the result of this exercise for a three-level BDDC-
PCG solver. (We have considered a three-level algorithm for the sake of simplicity when discussing the
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Algorithm 3: MMLBDDC set-up (numerical stage)

1: Num fact(Ai
`II

) `

2: Num fact(Ki
`f

) `

3: Compute Φi
` `

4: Compute Ki
`c := (Φi

`)
tKi

`Φ
i
` `

5: Gather Ki
`c `→ `+ 1

6: if ` == n` − 1 then
7: An`−1c := assemble(Ki

`c) `+ 1
8: Num fact(An`−1c) `+ 1

9: else

10: Kj
`c

:= assemble(Ki
`c), for i such that j = fat(`, i) `+ 1

11: Define K`+1 ← K`c and invoke Alg. 3 with `← `+ 1 `+ 1, . . . , n`

12: end

Algorithm 4: z := M−1
MLBDDCr

1: if ` > 1 then
2: Compute δi`I := (Ai

`II
)−1ri`I `

3: Compute ri`Γ := ri`Γ −A
i
`ΓI
δi`I `

4: end

5: Compute ri` := (E`
i)tr` `

6: Compute ri`c := (Φi
`)

tri` `

7: Gather ri`c `→ `+ 1

8: Compute si`f := (Ki
`f

)−1ri` `

9: if ` == n` − 1 then
10: rn`−1 = assemble(ri`c) `+ 1

11: Compute zn`−1 := A−1
n`−1rn`−1 `+ 1

12: Scatter zn`−1 into zi`c `+ 1→ `

13: else

14: rj`c := assemble(ri`c) for i such that j = fat(`, i) `+ 1

15: Define r`+1 ← r`c , z`+1 ← z`c ,
16: and invoke Alg. 4 with `← `+ 1 `+ 1, . . . , n`

17: Scatter zj`+1 into zi`c , for i such that j = fat(`, i) `+ 1→ `

18: end

19: Compute si`c := Φi
`z

i
`c `

20: Compute zi` := Ei
`(s

i
`f

+ si`c) `

21: Compute zi`I := −(Ai
`II

)−1Ai
`IΓ
zi`Γ `

22: if ` > 1 then
23: Compute zi`I := zi`I + δi`I `
24: end

overlapping potential of our approach, even though the implementation of the algorithm is recursive
and can be applied to an arbitrary number of levels; see Sect. 3.4 and 4.) In this table, the steps to be
performed have been grouped into coloured regions in order to clarify the exposition. In particular, green
regions encompass local computations and nearest neighbor communications residing at the first level,
while blue regions those at the second level. There are three of such green and blue regions separated
by gather and scatter communication stages among first and second level MPI tasks (uncolored at the
table). Blue regions are in turn split by communication stages among second and third level MPI tasks
(colored in gray). Finally, red regions include computations at the third level separated by the latter
communication stages.

Let us now characterize the balance that has to be struck among the time spent in the colored regions
of Table 3.1 in order to let the techniques proposed to be fully effective. To do such characterization,
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` = 1 MPI tasks ` = 2 MPI tasks ` = 3 MPI task

Identify local coarse DoFs

Gather coarse-grid DoFs

Symb fact(G
K

i1
`f

) Build G
K

i2
1c

Symb fact(G
A

i1
`II

) Identify local coarse DoFs

Num fact(Ki1
`f

) Gather coarse-grid DoFs

Compute Φi1
1 Symb fact(G

K
i2
`f

) Build GA2c

Ki1
1c

:= (Φi1
1 )tKi1

1 Φi1
1 Symb fact(G

A
i2
`II

) Symb fact(GA2c
)

Gather Ki1
1c

Num fact(Ai1
`II

) Ki2
1c

:= assemb(Ki1
1c

)

Solve A1II δ
0
1I = R1I r1 Num fact(Ki1

`f
)

x01I := x01I + δ01I Compute Φi2
2

r01 := f1 −A1x
0
1 Ki2

2c
:= (Φi2

2 )tKi2
2 Φi2

2

Algorithm 5 (k ≡ i1) Gather Ki2
2c

Num fact(Ai1
`II

) A2c := assemb(Ki2
2c

)

Num fact(A2c)

Gather ri11c
Solve Ki1

`f
si1`f := ri1` ri21c := assemb(ri11c)

Algorithm 5 (k ≡ i2)

Gather ri22c
Solve Ki2

`f
si2`f := ri2` r2c := assemb(ri22c)

Solve A2cz2c = r2c
Scatter z2c into zi22c

Algorithm 6 (k ≡ i2)

Scatter zi22 into zi11c
Algorithm 6 (k ≡ i1)

Algorithm 5

if ` > 1 then

δk`I := (Ak
`II

)−1rk`I
rk`Γ := rk`Γ −A

k
`ΓI
δk`I

end

rk` := (Ek
` )tr` r

i
`c := (Φi

`)
tri`

Algorithm 6

sk`c := Φk
` z

k
`c

zk` := Ek
` (sk`f + sk`c)

zk`I := −(Ak
`II

)−1Ak
`IΓ
zk`Γ

if ` > 1 then

zk`I := zk`I + δk`I
end

Table 3.1
Mapping of Algs. 2-4 to MPI tasks that maximizes inter-level overlapping for a three-level BDDC-PCG solver.

we take as basis a key observation derived from the table: full effectiveness is fulfilled if and only if the
MPI tasks at the second level issue the gather and scatter communication operations among first and
second level MPI tasks at most at the same time as those in the first level. Any delay of second level
MPI tasks in reaching these communication stages (with respect to first level MPI tasks) immediately
implies parallel efficiency loss. In such situation (we will later analyze on which factors does it depend
to get it), the steps encompassed in green areas will fully absorb (i.e., mask) the latency associated to
coarser-grid level duties (i.e., blue and red regions in Table 3.1). The reader should note at this point
that this scenario leads to remarkable performance and scalability, provided that steps encompassed in
green regions are of local nature, therefore fully parallel.

An obvious necessary but not sufficient condition to achieve full effectiveness is that the steps
encompassed by each of the three blue regions at the second level take less time than those at the
corresponding green regions. Let us discuss on which factors does this depend for each of the three
green/blue region pairs separately, restricting ourselves to the most computationally-dominant steps:

• In the first green/blue region pair, the symbolic factorization of the graph associated to Dirichlet
and constrained Neumann problems, the numerical factorization of a constrained Neumann
problem, and the computation of Φi11 at the first level, should take at least the same time as the
former two symbolic factorizations at the second level. Provided that numerical factorization
has higher order of complexity than symbolic factorization (see Sect. 3.4), this goal is relatively
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easy to achieve.
• In the second green/blue region pair, the numerical factorization of the Dirichlet problem matrix,

and the solution of a linear system with this matrix, should take at least the same time as the
numerical factorization of the constrained Neumann and Dirichlet problems matrices and the
computation of Φi22 at the second level. Provided that there are two numerical factorizations at
the blue region per one at the green one, it becomes harder to achieve our goal in this case. This
is is still feasible though, e.g., by enforcing sufficiently smaller subdomain sizes at the second
level compared to the sizes of the ones at the first level.
• Analogously, in the last green/blue region pair, the solution of a constrained Neumann problem

at the first level should at least take the same time as the solution of two Dirichlet problems
(see Alg. 5 and 6), and a Neumann constrained problem at the second level.

At this point, we note that blue regions are in turn split by communication stages among second and
third level MPI tasks (colored in gray in Table 3.1). Therefore, if the time spent in red regions becomes
“large enough”, then communication stages below these red regions can in turn delay second level MPI
tasks with respect to first level ones up to an extent that starts threatening the full effectiveness of this
approach. In fact, it irremediably happens at some point when the number of MPI tasks at the coarsest
level is kept fixed in a weak scaling analysis. In order to analyze this effect, we split again the discussion
among overlapping regions, in order to infer how the coarsest level duties can harm the effectiveness of
the overlapping between first and second level MPI tasks. We focus on the second and third region since
there is no potential level-2 idling in the first overlapping green/blue area:

• When the symbolic factorization of the level-3 coarse matrix in the first red region becomes
dominant, i.e., it cannot be masked by the symbolic factorization of the graph associated to
Dirichlet and constrained Neumann problems and the numerical factorization of a constrained
Neumann problem in the second blue region, level-2 MPI tasks have to wait at the corresponding
gather communication. As a result, the first red region (level-3) can potentially degrade the
effectiveness of the second green/blue overlapping area.
• When the numerical factorization of the coarsest matrix (in charge of level-3 MPI tasks) cannot

be masked by the numerical factorization and triangular solve of the second and third blue
regions, level-2 tasks have to wait in the corresponding gather communication. Idling of level-2
MPI tasks also occurs when the third red region (one sparse backward/forward solve) cannot
be masked by the three sparse backward/forward solves in the third blue region. As a result,
the second and third red regions (level-3) can potentially degrade the effectiveness of the third
green/blue overlapping area.

In a weak scaling scenario, the subdomain problem size at the first and second levels is fixed. On
the other hand, for a fixed number of MPI tasks at the third level, the third level local problem size
increases with the number of subdomains at the second level. As a result, to maximize the scalability
of the method, it is interesting to make subdomain coarsening from the first to the second level as
aggressive as possible, but always keeping second level (blue) regions masked by first level (green) ones.
If this strategy does not allow to achieve full effectiveness within the whole range of core counts of
interest, a possible solution is to introduce an additional level in the hierarchy to ameliorate the growth
of the time spent in red regions.

We stress that the discussion in this section applies up to minor details to MLBDDC preconditioning
hierarchies with an arbitrary number of levels. At any pair of intermediate levels (1-2, 2-3, 3-4, etc.), one
has to deal with pairs of regions very close to those green/blue region pairs in Table 3.1 (up to the fact
that the input data structures of first level MPI tasks are provided by a FE integration module, instead
of being gathered from the previous level). Any of the regions at the intermediate levels (included the
ones at the last level) have the potential of threatening full effectiveness if the time spent on any of them
becomes “sufficiently large”, in a some sort of delay-ripple effect that finally causes first level MPI tasks
having to waste time on the communication stages among first and second level MPI tasks. In any case,
the effect coarsest-level duties have in green/blue region pairs is the same regardless of the number of
levels.

3.4. Estimates for effective coarsening ratios. In this section we provide a comprehensive
discussion about an effective choice of the coarsening ratios governing subdomain aggregation among
partitions at different levels, in order for the overlapped multilevel implementation to be fully effective.
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It depends on the number of levels being used and the subdomain size at every level, which in turn
depends on the coarsening ratios being used in the definition of the hierarchical partitions.

Before entering upon the subject, let us recall the complexity of the main stages of the direct
solution of sparse linear systems. In sparse direct methods, provided that a 3D problem is being solved,
the symbolic factorization has a cost csfn

4
3 , the numerical factorization a cost cnfn

2, and the triangular
system solve a cost ctsn

4
3 , where n is the size of the coefficient matrix, and the constants csf , cnf , and

cts do depend on the particular algorithms, their implementation, and the underlying hardware.
Let us now enter upon the subject, and consider partitions that are well-balanced at all levels, i.e.,

all subdomains at the same level have (roughly) the same number of elements. We denote by m` (resp.
N`) the local (resp. global) number of elements at level `, and by p` the number of subdomains at level

`. We note that N`+1 = p`, and that m` = N`

p`
= p`−1

p`
= N`

N`+1
=
(
h`+1

h`

)d
.

In a weak scaling scenario of one-level algorithms, the global problem size N1 and the number of
subdomains p1 with level-1 duties increase in such a way that m1 = N1

p1
is kept fixed. For a multilevel

algorithm, we aim to keep the effectiveness of the preconditioner in terms of iteration counts, which
requires to keep the bound of the condition number given by Theorem 2.1 constant. Thus, we enforce
that the local number of elements m` = p`−1

p`
is fixed at levels ` = 1, . . . , n`−2, which involves to increase

p` accordingly. Level n` is assumed to be mapped to one (or at least to a fixed) number of MPI tasks.
Given m` (number of local mesh elements, where we denote by elements the subdomains of the

previous level), the actual size of the local system is denoted by β`m` (number of local DoFs), where
β` is affected by the type of DoFs in the BDDC method for ` > 1 or by the order of the FE space for
` = 1.

Let us assume that we keep fixed the number of levels n` in a weak scalability analysis. The questions
that arise are: How do we choose the coarsening ratios between levels to attain optimal scalability? Fixing
a hierarchical partition, at which number of MPI tasks the overlapping strategy will stop being effective?

The definition of the hierarchical partition can be parametrized by the desired number of elements
per level, namely m1, . . . ,mn`−1. In order to answer (qualitatively) the former questions, let us make
two assumptions:

1. The bulk of the CPU time in the overlapped regions is spent at the different phases of the
sparse direct solvers (symbolic factorization, numerical factorization, triangular system solves).
Nearest-neighbor communications at level 1, all communications among levels ` = 2, . . . , n`,
and other steps are assumed to be negligible.

2. The cost of the phases of a sparse direct method when applied to the constrained Neumann
problem is assumed to be identical to that of the corresponding ones involved in the solution of
the Dirichlet problem.

The validity of the first assumption increases with the local problem size, but it is mild for reasonably
loaded cores (about 256 KB of memory per core), due to the low CPU cost (and excellent scalability)
of nearest-neighbor communications and the reduced number of cores at levels greater than one. The
second assumption is also reasonable, since both problems have almost the same size.

Taking into account the steps in each of the three green/blue region pairs in Table 3.1, their com-
plexities (see above), and the previous assumptions, we easily infer that the steps at level `+ 1 are fully
masked by level-` steps if the following over-pessimistic condition holds:

cnf(β`m`)
2 + 2cts(β`m`)

4
3 ≥ 2cnf(β`+1m`+1)2 + nΦcts(β`+1m`+1)

4
3 , (3.1)

which corresponds to the second and third green/blue regions in Table 3.1, where nΦ denotes the
maximum number of coarse DoFs per subdomain. This is a sufficient condition to fully mask coarse
duties by level-1 (fine) duties, but by any means necessary.

As commented above, in a weak scaling scenario and a fixed number of levels, the coarsest-grid
related steps CPU time will increase. Scalability loss will only affect the overall execution time when
level-1 regions cannot mask the ones at level 2. Considering the effect that the coarsest level has in
level-1 regions (see above), we get the following additional sufficient (over-pessimistic) conditions to
fully mask coarse duties by level-1 (fine) duties:

β1m1 ≥
(
csf
cnf

) 1
2

(βn`
mn`

)
2
3 , (β1m1)

4
3 ≥ (β2m2)

4
3 + (βn`

mn`
)

4
3 +

(
cnf

cts

)
(βn`

mn`
)2, (3.2)
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which correspond to the second and third region, respectively. We can easily observe out of these
constraints that the most challenging one is the latter, because we have to mask steps with higher
complexity. Let us consider the worst-case scenario in which the last level is centralized on a single MPI
task. The number of elements at the last level will increase in a weak scaling scenario as follows:

mn`
= pn`−1 =

pn`−2

mn`−1
= . . . =

p1

mn`−1 · · ·m2
. (3.3)

Replacing (3.3) in (3.1) and (3.2), we get an indication about the maximum number of cores that can be
used before loosing parallel efficiency. However, in order to use this formula, we need to provide a value
for the ratios cts

cnf
and csf

cnf
. We estimated this constant by regression for the sparse direct solver codes

and computer architecture used in Sect. 5 for the 3D Laplacian problem for five structured cubic meshes
(from 4, 096 to 512, 000 FEs), getting cts

cnf
≈ 400 and csf

cnf
≈ 500. These large values are expected, since the

cost per flop for numerical factorization is low, due to the intensive use of the cache hierarchy by means
of the Level 3 BLAS, whereas the triangular solution and symbolic factorization are memory-bounded.

Let us consider two practical examples from Sect. 5. In 3D, and linear FEs, a local problem size per
subdomain of m1 = 203 fits into the 1 GB of memory available per core. β ≈ 1 for linear FEs, and β ≈ 4
for BDDC(ce) when solving the Laplacian problem. In this case, taking as an example a three-level
BDDC(ce) method with m2 = 73, condition (3.1) easily holds whereas condition (3.2) combined with
(3.3) leads to p1 . 422, 919 subdomains. A four level algorithm with m1 = 203, m2 = 43, and m3 = 33

leads to p1 . 2, 252, 500. For linear elasticity, where the values of β have to be multiplied by a factor
of three, the last case leads to p1 . 1, 714, 300. These bounds are in agreement with the numerical
results obtained in Sect. 5 for these combinations, and are an indication of the potential of the strategy
presented so far.

4. Code implementation details. In this section, we sketch, thorough (simplified) Fortran95
code snippets, some key hints for the MPI-parallel implementation of the approach presented in Sect. 3.
In particular, Listing 1 sketches the initialization of the MLBDDC preconditioner data structure (i.e.,
type(mlbddc) derived data type), while Listing 2, its numerical set-up stage (see Alg. 2). We stress
that, for simplicity and brevity, many details related to software engineering practices in our software
package (see Sect. 5) have been omitted, as e.g., those related with algorithm and code parameters, error
and memory handling, or data encapsulation. Still, we expect these hints to be useful for practitioners
willing to implement in their software the novel techniques proposed herein.

Let us start with the subroutine in Listing 1. This subroutine takes as input arguments a set of
four MPI communicator handlers. comm world is a communicator handler that includes all MPI tasks
that contribute to the computation. (In most cases it will be mpi comm world, or more conveniently, a
duplicate of it.) comm l1 and comm lgt1 are two communicator handlers for (disjoint) subcommunicators
of comm world which include the MPI tasks at the first level in the hierarchy, and those at higher levels,
respectively. Finally, intcomm l1 lgt1 is a handler for a MPI intercommunicator among the former and
latter subcommunicators. This intercommunicator is not used for preconditioner set-up, but actually
during the iterative solution phase. It allows (one of the) first level MPI tasks to signal (broadcast) higher
levels tasks whether the iterative process converged (or not). We note that these four communicators are
created outside the subroutine, in an initialization stage of our simulation software, and encapsulated
in a derived data type which controls the MPI parallel environment. Any subroutine in the code needs
access to this object to properly dispatch the path to be followed by each of the MPI tasks in comm world.
Finally, nlev, and tsks per lev dummy arguments refer to n`, and p`, for ` = 1, . . . , n`−1, respectively,
while fat map is an array that drives subdomain aggregation among levels. In particular, on input to the
root call of this subroutine, fat map(`)=task(`+1, fat(`, i)) on MPI task task(`, i). fat map is generated
in preprocessing phase, when the partition of the FE mesh is performed, by (recursively) partitioning
the graph of subdomains.

In lines 24-34 of Listing 1, comm world is split into subcommunicators such that first level MPI
tasks provide fat map(1) as the color, while second level ones, their rank identifier in comm l2. The
rest of tasks do not contribute to data transfers among the first and second level, and therefore provide
color=mpi undefined. Therefore, a subcommunicator is created for each subset of first and second level
MPI tasks that have to exchange data. (Later on this section we will cover how to efficiently implement
these data transfers.) In preparation to the recursive call, second level and higher level MPI tasks enter
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1 recursive subroutine mlbddc_init(comm_world ,comm_l1 ,comm_lgt1 ,intcomm_l1_lgt1 , &
2 nlev ,tsks_x_lev ,fat_map ,M)
3 integer , intent(in) :: comm_world ! World MPI communicator
4 integer , intent(in) :: comm_l1 ! 1st lev tasks MPI comm
5 integer , intent(in) :: comm_lgt1 ! > 1st lev tasks MPI comm
6 integer , intent(in) :: intcomm_l1_lgt1 ! Intercomm l1 <=> lgt1
7 integer , intent(in) :: nlev ! # of levels in MLBDDC
8 integer , intent(in) :: tsks_x_lev(nlev -1) ! # of MPI tasks per level
9 integer , intent(in) :: fat_map(nlev -1) ! 1st ->2nd map of coarse FEs

10 type(mlbddc), intent(out) :: M ! MLBDDC preconditioner
11
12 ! Local variable declarations (ierr , lgt1_rank , etc.) go here
13 M%comm_world=comm_world
14 M%comm_l1=comm_l1
15 M%comm_lgt1=comm_lgt1
16 M%intcomm_l1_lgt1=intcomm_l1_lgt1
17 M%nlev=nlev
18
19 call mpi_comm_get_rank(M%comm_world ,wrank ,ierr)
20
21 ! Create comm_world ’s subcommunicators for level1 to/from level2 data transfers
22 ! * A subcommunicator is created for each task in comm_l2 (l2_rank =0,1,...)
23 ! * It includes l2_rank and all tasks in comm_l1 that transfer data to l2_rank
24 if (belongs_to(M%comm_l1)) then
25 call mpi_comm_split(comm_world , color=fat_map (1), key=wrank , &
26 M%comm_l1_to_l2 , ierr)
27 else if (belongs_to(M%comm_l2)) then
28 call mpi_comm_get_rank(M%comm_l2 , l2_rank)
29 call mpi_comm_split(comm_world , color=l2_rank , key=wrank , &
30 M%comm_l1_to_l2 , ierr)
31 else
32 call mpi_comm_split(comm_world , color=mpi_undefined , key=wrank , &
33 M%comm_l1_to_l2 , ierr)
34 end if
35
36 ! Recursively init M%p_M_c (i.e., mlbddc preconditioner for coarse -grid problem)
37 if (nlev >2 .and. belongs_to(comm_lgt1)) then
38 ! Split comm_lgt1 into comm_l2 and comm_lgt2
39 call mpi_comm_get_rank(M%comm_lgt1 , lgt1_rank , ierr)
40 if (lgt1_rank < tsks_x_lev (2)) then
41 call mpi_comm_split(M%comm_lgt1 , color=1, key=lgt1_rank , M%comm_l2 , ierr)
42 M%comm_lgt2 = mpi_comm_null
43 else
44 call mpi_comm_split(M%comm_lgt1 , color=2, key=lgt1_rank , M%comm_lgt2 , ierr)
45 M%comm_l2 = mpi_comm_null
46 end if
47
48 ! Create intercomm comm_l2 <=> comm_lgt2
49 if (belongs_to(M%comm_l2)) then
50 call mpi_intercomm_create( M%comm_l2 , loc_lead=0, comm_world , &
51 & rem_lead=tsks_x_lev (2),intcomm_l2_lgt2 ,ierr)
52 else
53 call mpi_intercomm_create( M%comm_lgt2 , loc_lead=0, comm_world , &
54 & rem_lead=0,intcomm_l2_lgt2 ,ierr)
55 end if
56
57 ! comm_lgt1 => world_comm , comm_l2 => comm_l1 , comm_lgt2 => comm_lgt1
58 ! intcomm_l2_lgt2 => intcomm_l1_lgt1
59 call mlbddc_init(M%comm_lgt1 , M%comm_l2 , M%comm_lgt2 , intcomm_l2_lgt2 , &
60 nlev -1, tsks_x_lev (2:), fat_map (2:), M%p_M_c)
61 end if
62 end subroutine mlbddc_init
63
64 function belongs_to(mpi_comm)
65 integer , intent(in) :: mpi_comm
66 logical :: belongs_to
67
68 belongs_to = (mpi_comm /= mpi_comm_null)
69 end function belongs_to

Listing 1
Simplified Fortran95 MPI recursive subroutine in charge of preconditioner initialization.

lines 37-61, while those at the first level just exit the subroutine in the search of additional first level
duties. The former set of tasks split comm lgt1 into comm l2 and comm lgt2 in lines 39-46, while an
intercommunicator among comm l2 and comm lgt2 is created in lines 49-55. This intercommunicator is
required if the coarse-grid problem is to be solved, e.g., by a (n` − 1)-level BDDC-PCG or Richardson
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1 recursive subroutine mlbddc_setup_num(A,M)
2 type(par_matrix), intent(in) :: A ! (Distributed -memory) matrix
3 type(mlbddc) , intent(inout) :: M ! MLBDDC preconditioner data structure
4 real (8), allocatable :: subd_elmat (:,:) ! Subdomain contrib to coarse matrix
5
6 if (belongs_to(M%comm_l1)) then
7 call constrained_neumann_problem_setup(A,M)
8 call compute_coarse_grid_basis_vectors(A,M)
9 allocate(subd_elmat(M%nl_coarse ,M%nl_coarse))

10 call compute_subd_elmat(A,M,subd_elmat)
11 call transfer_assemble_snd(M,subd_elmat)
12 deallocate(subd_elmat)
13 call setup_dirichlet_problem(A,M)
14 else if (belongs_to(M%comm_l2)) then
15 call transfer_assemble_rcv(M)
16 end if
17
18 if (M%nlev >2 .and. belongs_to(comm_lgt1)) then
19 ! Recursively set -up M%p_M_c (i.e., mlbddc preconditioner for coarse problem)
20 call mlbddc_setup_num(M%p_A_c ,M%p_M_c)
21 else if (M%nlev == 2 .and. belongs_to(comm_lgt1)) then
22 ! Set -up M%M_c (serial solver) for M%A_c (serial coarse -grid matrix)
23 call serial_solver_setup_num(M%A_c ,M%M_c)
24 end if
25 end subroutine mlbddc_setup_num
26
27 subroutine transfer_assemble_snd(M,subd_elmat)
28 type(mlbddc) , intent(inout) :: M ! MLBDDC preconditioner data structure
29 real (8) , intent(in) :: subd_elmat(M%nl_coarse , M%nl_coarse)
30 real (8), allocatable :: buf_snd (:) ! Message buffer
31 ! Rest of local variable declarations go here (np, ierr , etc.)
32
33 call mpi_comm_get_size(M%comm_l1_to_l2 ,np,ierr)
34
35 allocate(buf_snd(M%max_nl_coarse **2))
36 call pack(M, subd_elmat , buf_snd) ! Pack subd_elmat into buf_snd
37
38 ! Issue (parallel) global collective
39 call mpi_gather ( buf_snd , M%max_nl_coarse **2, mpi_double_precision , &
40 rcv_dum , int_rcv_dum , mpi_double_precision , &
41 root=np -1, M%comm_l1_to_l2 , ierr)
42
43 deallocate(buf_snd)
44 end subroutine transfer_assemble_snd
45
46 subroutine transfer_assemble_rcv(M)
47 type(mlbddc) , intent(inout) :: M ! MLBDDC preconditioner data structure
48 real (8), allocatable :: buf_snd (:), buf_rcv (:), all_subd_elmat (:)
49 ! Rest of local variable declarations go here (np, ierr , etc.)
50
51 call mpi_comm_get_size(M%comm_l1_to_l2 ,np,ierr)
52
53 allocate(buf_snd(M%nl_coarse **2),buf_rcv(np*M%max_nl_coarse **2), &
54 all_subd_elmat(M%sz_all_subd_elmat))
55
56 ! Issue (parallel) global collective
57 call mpi_gather ( buf_snd , M%max_nl_coarse **2, mpi_double_precision , &
58 buf_rcv , M%max_nl_coarse **2, mpi_double_precision , &
59 root=np -1, M%comm_l1_to_l2 , ierr)
60
61 call unpack(M, buf_rcv , all_subd_elmat) ! Unpack buf_rcv in all_subd_elmat
62
63 ! Assemble contribs to serial (M%A_c) or distributed (M%p_A_c) coarse matrix
64 if (M%nlev > 2) then
65 call par_mat_ass(np , M%p_coarse , M%l_coarse , all_subd_elmat , M%p_A_c)
66 else ! M%nlev == 2
67 call mat_ass(np , M%p_coarse , M%l_coarse , all_subd_elmat , M%A_c)
68 end if
69
70 deallocate(buf_snd ,buf_rcv ,all_subd_elmat)
71 end subroutine transfer_assemble_rcv

Listing 2
Simplified Fortran 95 MPI recursive subroutine in charge of preconditioner set-up (numeric).

iterative solver (instead of by a single application of this preconditioner). Finally, the data structure
corresponding to the coarse-grid problem n`−1-level BDDC preconditioner (i.e, M%p M c) is initialized by
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a recursive call to mlbddc init in line 60. Note that in the recursive call the set of four communicators
(comm lgt1, comm l2, comm lgt2, intcomm l2 lgt2) play the role of (comm world, comm l1, comm lgt1,
intcomm l1 lgt1), respectively, on input to the recursive call.

The subroutine in charge of the numerical set-up stage of the MLBDDC preconditioner is shown in
Listing 2. It takes as input an instance A of the type(par matrix) derived data type, and it sets up an
instance M of the preconditioner data structure. The former derived data type internally accommodates
a distributed sparse matrix, including the data describing its memory layout conformally with a non-
overlapping partition into subdomains. A first stage of preconditioner set-up encompasses lines 6- 16,
and only involves first and second level MPI tasks. In particular, in lines 7 and 13 first level MPI tasks
set up the local solver for the constrained Neumann and Dirichlet problems, respectively, and compute
the coarse-grid basis vectors in line 8. In preparation for the coarse-grid problem matrix assembly, first
level MPI tasks first compute subdomain contributions to the coarse-grid problem and store them in
subd elmat; see line 10. Then, first and second level MPI tasks enter transfer assemble snd and
transfer assemble snd in lines 11 and 15, respectively. By means of these two subroutines, second
level MPI tasks gather subdomain contributions from (their corresponding) first level MPI tasks. These
contributions are then assembled in lines 64-68 of Listing 2. We note that these contributions are
assembled in a type(par matrix) instance M%p A c, in case of any intermediate level of the hierarchy,
or in a serial (centralized) sparse matrix instance M%A c, at the end of the hierarchy (see lines 65 and 67,
respectively). A final stage of Listing 2 encompassing lines 18-24, recursively sets up, at any intermediate
level, the (n` − 1)-BDDC preconditioner on second and higher level MPI tasks (see line 20), or sets up,
at the end of the hierarchy, the serial solver instance M%M c for the coarse-grid problem matrix instance
M%A c on the last level MPI task (see line 23).

The implementation of inter-level data transfers in Listing 2 deserves further attention. A sub-
communicator for each subset of ` and ` + 1 level MPI tasks that have to exchange data was created
during preconditioner initialization. Each set is defined as those i having the same fat(`, i)) together
with fat(`, i)) (their master) which permits the reuse of the code implementing a two-level BDDC in
which the coarse solver is solved serially in a single separated MPI task [5]. These data transfers are
implemented in lines 39 and 57 in such a way that multiple independent mpi gather operations are
issued simultaneously on each of these subcommunicators. By means of performance analysis tools,
we could confirm that these implementation approach is able to efficiently exploit the underlying net-
work hardware parallelism of the IBM BG/Q supercomputer. In particular, these communication stages
take asymptotically constant time provided ` and ` + 1 level MPI tasks are scaled proportionally (i.e.,
weak scaling scenario). Another technical detail is that the code in Listing 2 exploits fixed message
size collectives, instead of variable message sizes ones (mpi gatherv), and therefore the actual (variable
size) data to be sent, has to be packed to/unpacked from the (padded) message buffer on entry/exit
to mpi gather. Although our actual code provides both solutions, we observed in practice that fixed
message-size collectives lead to much better performance/scalability (despite the overhead associated to
padding).

Finally, we would like to stress that the mapping in Table 3.1 for a three-level BDDC-PCG solver
(and the one corresponding to a MLBDDC preconditioner with an arbitrary number of levels) is not
statically coded in the software, but instead results from the recurrent application of two techniques,
namely recursion and communicator-awareness, in order to strategically deploy a different path for the
MPI tasks residing at each level.

5. Numerical experiments. In this section, we study the weak scalability of the MLBDDC-PCG
solver codes based on the implementation techniques presented in Sect. 3 and 4. As model problems,
we consider the Laplacian (Sect. 5.2) and linear elasticity (Sect. 5.3) 3D PDEs on regular domains,
discretized with structured (cartesian) FE meshes. We stress, however, that the algorithms and software
are designed to handle arbitrary geometries and unstructured meshes as well. As performance metrics,
we will focus in the number of PCG iterations required to converge, and the total computation time.
In all the experiments reported in this section, this time will include both preconditioner set-up and the
preconditioned iterative solution of the linear system (2.1).

5.1. Experimental framework. The novel techniques proposed in this paper for the MLBDDC-
PCG solver were implemented in FEMPAR. FEMPAR, developed by the members of the LSSC team at
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CIMNE, is a parallel hybrid OpenMP/MPI, object-oriented software package for the massively parallel
Finite Element (FE) simulation of multiphysics problems governed by PDEs. Among other features, it
provides the basic tools for the efficient parallel distributed-memory implementation of substructuring
DD solvers [4]. The parallel codes in FEMPAR heavily use standard computational kernels provided
by (highly-efficient vendor implementations of) the BLAS and LAPACK. Besides, through proper in-
terfaces to several third party libraries, the local Dirichlet and constrained Neumann problems at each
intermediate level of the hierarchy, and the global coarsest-grid problem at the last level, can be exactly
solved via sparse direct solvers. In this work, we in particular explore HSL MA87 [18], which provides a
highly-efficient parallel multi-threaded DAG-based code implementation of the supernodal sparse direct
Cholesky solver. The nested dissection algorithm available in METIS (v5.1.0) [19] was used as a fill-in
reducing ordering for HSL MA87. FEMPAR is released under the GNU GPL v3 license, and is more
than 200K lines of Fortran95/2003/2008 code long.

All experiments reported in this section were obtained on either FERMI, located in Bologna (Italy)
at CINECA, or JUQUEEN, located in Jülich (Germany) at the Jülich Supercomputing Center (JSC).
They belong to the next generation of IBM Blue Gene family of supercomputers, the so-called BG/Q
supercomputers. In particular, FERMI is configured as a 10-rack system, featuring a total of 10,240
compute nodes, and JUQUEEN as a 28-rack one with a total of 28,672 compute nodes. These nodes are
interconnected by an extremely low-latency five-dimensional (5D) torus interconnection network. Each
compute node is equipped with a 16-core, 4-way hardware threaded core, IBM Power PC A2 processor,
and 16 GBytes of SDRAM-DDR3 memory (i.e., 1GByte/core), and runs a lightweight proprietary CNK
Linux kernel. The codes were compiled using IBM XLF Fortran compilers for BG/Q (v14.1) with
recommended optimization flags. The customized MPICH2 library available on these systems was used
for message-passing. The codes were linked against the BLAS/LAPACK available on the single-threaded
IBM ESSL library for BG/Q (v5.1), and HSL MA87 (v2.1.1).

5.2. 3D Laplacian results. In this section we study the weak scalability of the MLBDDC-PCG
solver codes in FEMPAR for the solution of the 3D Laplacian problem on the unit cube Ω = [0, 1]×[0, 1]×
[0, 1], with a constant forcing term f = 1, and homogeneous Dirichlet boundary conditions on the whole
boundary ∂Ω. We consider a global conforming uniform mesh (partition) of Ω into hexahedra and a

trilinear FE discretization (i.e., Q1 FEs). This 3D mesh is partitioned into a cubic grid of p1
1
3 ×p1

1
3 ×p1

1
3

cubic subdomains, with p1 being the total number of first level subdomains. The first level subdomain

size is m1
1
3 ×m1

1
3 ×m1

1
3 FEs. The size of the global FE mesh is therefore equal to (m1p1)

1
3 ×(m1p1)

1
3 ×

(m1p1)
1
3 .

5.2.1. Sensitivity of preconditioner robustness to subdomain aggregation. In this section
we study, for a three-level BDDC preconditioner, the impact that the coarsening ratio m2 governing
aggregation (of first level subdomains into second level ones) has on preconditioner robustness. This
will be measured as the number of iterations that the preconditioned iterative solver takes to meet the
convergence criteria.

In Figs. 5.1 and 5.2 we plot the number of PCG iterations (y-axis) as a function of p1 (x-axis) for the
three-level BDDC(ce) and BDDC(cef) preconditioners, respectively. We set the initial solution vector
guess x0 = 0 (see line 3 of Alg. 1), and the PCG iteration was stopped whenever the residual rk1 at a
given iteration k satisfied ‖rk1‖2 ≤ 10−6‖r0

1‖2. This set-up also applies to the rest of experiments in this
paper. We kept fixed p3 = 1, while the number of subdomains in the first and second levels were scaled
proportionally as p1 = m2p2, and p2 = k3, respectively, with k = 2, 3, 4, . . ., subject to the constraint
that p1+p2+p3 can at most be 458,762, i.e., the number of cores available on JUQUEEN. We considered
several values m1 = 103, 203, 303 and 403 for the size of first level subdomains, and for each value of m1,
the number of first level subdomains per second level subdomain was varied as m2 = 43, 83, 123, 143 and
163 in order to determine the sensitivity of the preconditioner robustness to m2. The y-axis of the plots
in Fig. 5.2 was scaled to match the ones in Fig. 5.1 to increase readability.

As can be observed from Figs. 5.1 and 5.2, and expected from condition number bounds (see
Theorem 2.1), the profile of all plots is such that an asymptotically constant number of PCG iterations
is (or will finally be) reached beyond some value of p1. The sensitivity of the robustness of the three-level
BDDC(ce) preconditioner with respect to m2 can be observed in Fig. 5.1; a much lower impact can be
observed in Fig. 5.2 for the three-level BDDC(cef) preconditioner. The general trend for “small enough”
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Fig. 5.1. Sensitivity of the number of three-level BDDC(ce)-PCG solver iterations to m2 = 43, 83, 123, 143 and 163.
From top to bottom, and left to right: m1 = 103, 203, 303 and 403, respectively.

values of p1 is that, for fixed p1 and m1, the larger the value of m2, the smaller the number of PCG
iterations. For example, for p1 =110K, and m1 = 403, the number of PCG iterations is 44, 39, 33, and 27,
for m2 = 43, 83, 123 and 163, respectively (see Fig. 5.1). This counter-intuitive observation (with respect
to condition number bounds) can be explained by the fact that the two-level BDDC preconditioner
robustness for the (coarse-grid) linear system gets favoured by very small second level subdomain grids
for small p1 and large m2.

However, m2 also impacts how fast the asymptotic regime is reached, and the asymptotically con-
stant number of PCG iterations which is reached. In particular, for fixed m1, the larger the value of m2,
the slower it takes to reach asymptotically constant number of iterations, but the higher the asymptotic
number of iterations is. This justifies the crossover which is observed among the plots corresponding to
some combinations of m2 (e.g., for m2 = 43 and m2 = 83 in the top left corner of Fig. 5.1). In any case,
the balance reached is such that this crossover is not achieved in most of the cases, or it is only achieved
for “large” p1, within the range of core counts of interest. This may in fact have a positive (unintended)
effect on the performance of the strategy suggested in Sect. 3.3, i.e., maximize m2 while keeping the
blue regions below the green ones in Table 3.1.

Finally, by comparing the plots in Figs. 5.1 with the ones in 5.2 it can be observed that the three-level
BDDC(cef), apart from being less sensitive to the choice of m2, is also more robust than the three-level
BDDC(ce) preconditioner, as it takes less iterations to converge, specially for large values of m1. This
enhanced robustness becomes at the price of heavier second and third level coarse-grid problems. In
Sect. 5.2.3, we will evaluate to what extent this increase can still be absorbed by means of inter-level
overlapping.

5.2.2. Scalability under low loads on FERMI. In this section we study the weak scalability
of the MLBDDC-PCG solver codes on FERMI with “small” first level subdomain sizes, in particular,
of m1 = 103 (1K) and 153 (3.4K) FEs. For these values of m1, memory consumption per core for MPI
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Fig. 5.2. Sensitivity of the number of three-level BDDC(cef)-PCG solver iterations to m2 = 43, 83, 123, 143 and 163.
From top to bottom, and left to right: m1 = 103, 203, 303 and 403, respectively.

tasks at the first level is very moderate compared to the 1GB available per core on FERMI, in particular
of 19.7 and 29.9 MB, respectively. On the other hand, the time spent in the green areas of Table 3.1 is
also very moderate, posing a challenge to the full effectiveness of the approach proposed in this paper
(see Sect. 3.3).

Figs. 5.3(a) and (b) show, up to 64K FERMI cores, the weak scalability for the total computation
time and number of PCG iterations, respectively, for the three-level (solid lines) and four-level (dashed
lines) BDDC(ce) (left-hand side) and BDDC(cef) (right-hand side) solvers, with m1 = 103 (colored
in black), and m1 = 153 (colored in blue). We consider two different set-ups for the three-level BDDC
preconditioner, corresponding to m2 = 43, and m2 = 63, respectively, while a single one for the four-level
BDDC, in particular, m2 = 33, and m3 = 33. For the three-level BDDC, we kept fixed p3 = 1, while
the number of subdomains in the first and second levels were scaled proportionally as p1 = m2p2, and
p2 = k3, respectively, with k = 2, 3, 4, . . .. For example, the five points of the plots corresponding to
m2 = 63 (see, e.g, curve with unfilled squares in the right-hand side of Fig. 5.3(b)), are obtained with
k = 2, 3, 4, 5 and 6, respectively. For the four-level BDDC, the number of first, second, and third level
subdomains were scaled proportionally as p1 = m2p2, p2 = m3p3, p3 = k3, with k = 2, 3, 4, so that we
only have three points for the four-level BDDC plots.

The results of Fig. 5.3 clearly reveal three different scenarios for the balance achieved among the
time spent in the colored regions in Table 3.1. First, for the three-level BDDC with m2 = 43, a heavy
third level is revealed (i.e., too much time spent in the red areas of the table). For example, if we focus on
the scalability of the three-level BDDC(ce) solver with m1 = 103 on the left-hand side of Fig. 5.3(a), we
can see that scalability starts (significantly) degrading beyond p1 = 4K cores; this degradation is even
more severe for the three-level BDDC(cef) solver (see right-hand side of the figure), due to a heavier
coarsest-grid problem. In order to (try to) get rid of this, one can be more aggressive when aggregating
first level subdomains into second level ones, that is, to consider a larger value of m2 = 63, leading to
a second interesting scenario in Fig. 5.3. With such choice of m2, we reduce the size of the coarsest-
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Fig. 5.3. Weak scalability for the total computation time (a) and number of PCG iterations (b) of the MLBDDC(ce)
(left) and MLBDDC(cef) (right) solvers in the solution of the 3D Laplacian PDE with m1 = 103 and 153 FEs on FERMI.

grid problem (and therefore the time spent in the red areas of Table 3.1), but we increase the size of
second level subdomains. In particular, as can be observed from Fig. 5.3(a) with m1 = 103, up to an
extent that now a heavy second level is revealed. This is confirmed by the (initially) higher computation
times of the three-level BDDC solver with m2 = 63 compared to those of m2 = 43. We stress that,
although in this scenario an asymptotically constant computation time is reached (up to 64K cores),
a lot of computational resources are wasted (and therefore parallel and energy efficiency), as first-level
cores have to wait (for second-level ones) on communication stages among these two levels. The final
(desirable) scenario is the one corresponding to the four-level BDDC method, which reveals a balance
such that full effectiveness is achieved. For small p1, computational times of the four-level BDDC method
are comparable to those of the three-level BDDC method with m2 = 43 (actually smaller for the former
due to an smaller m2 = 33), as in both cases first level duties can mask coarser-grid duties (i.e., the
green areas in Table 3.1 dominate). As we scale p1, the four-level BDDC can still maintain the desired
balance (within the range of core counts studied), as it cuts down the time spent in red areas by the
introduction of an additional level in the hierarchy.

5.2.3. Scalability under medium and high loads on JUQUEEN. In this section we study
the weak scalability of the MLBDDC-PCG solver codes up to the full JUQUEEN 28-rack IBM BG/Q
system, with larger first level subdomain sizes than those considered in Sect. 5.2.2, in particular, of
m1 = 203 (8K), 253 (15.6K), 303 (27K), and 403 (64K) FEs. Memory consumption per first level MPI
task was in this case of 80, 146, 233, and 651MB, respectively.

Figs. 5.4(a) and (b) show, up to the full JUQUEEN system (i.e., 458,762 cores), the weak scalability
for the total computation time and number of PCG iterations, respectively, for the three-level (solid
lines) and four-level (dashed lines) BDDC(ce) (left-hand side) and BDDC(cef) (right-hand side) solvers,
with m1 = 203 (colored in black), 253 (colored in blue), 303 (colored in red), and 403 (colored in green)
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FEs. The results for the four-level BDDC are only reported as a reference for the first two values of
m1. We consider m2 = 73 for the three-level BDDC preconditioner, and m2 = 43, and m3 = 33 for
the four-level BDDC one. The number of subdomains in each level were proportionally scaled as in
Sect. 5.2.2, with k being at most 6 and 11, respectively.
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Fig. 5.4. Weak scalability for the total computation time (a) and number of PCG iterations (b) of the MLBDDC(ce)
(left) and MLBDDC(cef) (right) solvers in the solution of the 3D Laplacian PDE with m1 = 203, 253, 303 and 403 FEs
on JUQUEEN.

Remarkable scalability can be observed in Fig. 5.4(a) for the three-level BDDC-PCG solver up
to full 28-rack IBM BG/Q system, in a practical demonstration of the tremendous potential of the
algorithms and codes subject of study. For all values of m1 considered, the time spent in green regions
of Table 3.1 is “sufficiently large” up to an extent that full effectiveness can already be obtained with
a three-level method in the whole range of core counts of interest. In other words, a balance can be
struck such that first level duties completely absorb the latency associated to coarser-grid levels. This is
fulfilled for both the BDDC(ce), and BDDC(cef) preconditioner, despite the additional work incurred in
coarser-grid levels by the introduction of face constraints in the latter BDDC space. This can be readily
observed in Fig. 5.4 by the fact that the increased robustness of the BDDC(cef) (i.e., less number of
PCG iterations in Fig. 5.4(b)) immediately translates in lower computation times (compare the plots
in the left and right-hand side of Fig. 5.4(a)). Another observation than confirm all these evidences is
that the computational times of the four-level BDDC preconditioner are very close to that of the three-
level BDDC preconditioner (and therefore three-level BDDC method suffices to keep under control the
growth of the time spent in the coarsest-grid level).

5.2.4. Rising the challenge: extra concurrency via overdecomposition. In this section we
study the weak scalability of the MLBDDC-PCG solver codes under a partition of the problem into more
subdomains than physical cores involved in the parallel computation (i.e., under an overdecomposition of
the problem at hand). The cores of the IBM BG/Q supercomputer require that at least two instructions
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are issued per cycle from different hardware threads in order to fully fill their instruction pipeline [17]
(and therefore achieve peak flop performance). Therefore, using more MPI tasks per physical core it
might be possible to improve the aggregated efficiency of the parallel computation.† We in particular
explore in this section 4 MPI tasks/core. (We also performed experiments with 2 MPI tasks/core,
although the results with 4 MPI tasks/core confirm a higher profit from the hardware threads in terms
of aggregated efficiency.) However, the usage of this technique significantly challenges scalability of the
algorithm/code/hardware combination. In particular, 4 MPI tasks/core implies a very moderate amount
of memory of 256MB/MPI task, and a 4-fold increase in the coarse-grid problem size to be solved at each
level of the hierarchy. This challenge is, however, aligned to current/and future HPC trends of having
much more concurrency and less memory per core. Besides, each physical core becomes responsible for
the computation and communication of four different subdomains. In order to cope with a smaller load
per core, and larger coarse-grid problems, we had to consider a four-level BDDC preconditioner to cope
for the growth of time spent in the coarsest-grid level.

Figs. 5.5(a) and (b) report the weak scalability for the total computation time and number of PCG
iterations, respectively, for the four-level BDDC(ce) and BDDC(cef) solvers, with m1 = 103 (colored
in black), 203 (colored in blue), and 253 (colored in red) FEs. We considered m2 = 43, and m3 = 33,
scaling the number of first, second, and third level MPI tasks proportionally as p1 = m2p2, p2 = m3p3,
p3 = k3, with k = 2, 3, 4, . . . , 10. The resulting number of tasks were mapped to 4 time less cores (i.e.,
4 MPI tasks/core). Therefore, for the largest value of k, we mapped 1.73M first level subdomains on
448.3K cores.
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Fig. 5.5. Weak scalability for the total computation time (a) and number of PCG iterations (b) of the four-level
BDDC(ce) (left) and BDDC(cef) (right) solvers in the solution of the 3D Laplacian PDE with m1 = 103, 203 and 253

FEs on JUQUEEN with 4 MPI tasks/core.

†Due to restrictions inherent to the IBM BG/Q supercomputer software/hardware stack, this can be done at most up
to 4 MPI tasks/physical core (i.e., 4 subdomains handled by each physical core).
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As can be observed in Fig. 5.5, still remarkable scalability is achieved with our approach despite
the 4-fold increase in the number of subdomains. In particular, full absorption of coarse-grid duties is
achieved by means of interlevel-overlapping for all combinations of preconditioner and m1, except for
the four-level BDDC(cef) and m1 = 103, where a mild degradation of scalability is achieved beyond
p1 = 592.7K subdomains. We stress that we did not actually fine-tuned the values of m2 and m3, nor
the number of levels for this experiment. A larger value of m3 (e.g. 43), or a further level, could improve
the situation for this particular case.

Apart from confirming remarkable scalability, we compared, on smaller test cases, the computation
times of the codes using 16 and 64 MPI tasks/node (with the same number of MPI tasks/level in both
cases), confirming an approximately 50% save in aggregated efficiency by the exploitation of hardware
multi-threading (i.e., the computation time with 64 MPI tasks/node was approximately twice as much
the one with 16 MPI tasks/node).

5.3. 3D linear elasticity results. In this section we evaluate the weak scalability of the
MLBDDC-PCG codes when applied to a vector-valued problem, namely the Q1 FE approximation
of the (compressible) 3D linear elasticity PDE (with first and second Lamé parameters equal to 1 and
1
10 , respectively) on a unit cube Ω = [0, 1]×[0, 1]×[0, 1], a constant forcing term f = 1, and homogeneous
Dirichlet boundary conditions on the whole boundary. The same experiment set-up to that selected for
the three-level BDDC preconditioner in Sect. 5.2.3 is considered here, except for the size of first level
subdomains, which we now set-up as m1 = 153 (3.4K), 203 (8K), and 253 (15.6K) FEs. The largest
subdomain size in this set is much smaller than the largest one considered for the 3D Laplacian problem
in Sect. 5.2.3 (i.e., m1 = 403). The linear elasticity problem is a vector-valued problem with 3 unknowns
per FE mesh node. This implies that, for a given FE mesh, the size of the discrete operator is 3 times
larger than that of the Laplacian problem, and has 9 times more nonzero entries. Indeed, with m1 = 253

the memory consumption per first level MPI task is 713MB, compared to 146MB for the same value of
m1 in the case of the 3D Laplacian problem.

Fig. 5.6(a) and (b) report, up to the full 28-rack IBM BG/Q system, the weak scalability for the
total computation time and number of PCG iterations, respectively, for the three-level BDDC(ce) and
BDDC(cef) solvers, with m1 = 103 (colored in black), 203 (colored in blue), and 253 (colored in red)
FEs.

As evidenced in Fig. 5.6, the approach pursued in this paper is also able to obtain remarkable
scalability even for a much more computationally intensive problem such as the linear elasticity problem.
Provided a “sufficiently large” m1, i.e., 203 and 253 FEs for BDDC(ce) and BDDC(cef), respectively,
a MLBDDC hierarchy equipped with 3 levels is already sufficient to fully overlap coarser-grid duties
in the full range of cores available on the JUQUEEN supercomputer. For smaller values of m1, some
(mild) degradation of scalability is observed beyond some point, e.g., for 153, beyond p1 = 175.6K first
level subdomains, which would require an additional level to keep perfect scalability.

6. Conclusions and future work. In this article, we have presented a highly scalable parallel
implementation of exact MLBDDC methods, i.e., based on sparse direct solvers for the local (and
coarsest) problems. The proposed implementation is based on recursion and communicator-awareness,
in order to strategically deploy MPI tasks with duties at only one level and overlap interlevel tasks, based
on the fact that fine and coarse corrections at every level of the MLBBDC method can be computed in
parallel. The result is a MPMD and bulk-asynchronous implementation with reduced synchronization
among cores, which overlaps communications/computations of the different levels. Due to the recursive
implementation, it can be used for an arbitrary number of levels.

This implementation leads to close to perfect weak scalability results as far as (embarrassingly
parallel) level-1 duties can mask tasks at higher levels. We have provided a model that helps us to choose
effective coarsening ratios among cores and indicates when the overlapped strategy will start loosing
effectiveness. In any case, the main motivation of this work is not only to attain excellent weak scalability
but also to reduce drastically the aggregated idling, via the interlevel-overlapped implementation. It
turns out in improved parallel efficiency, energy awareness, and reduced time-to-solution.

A detailed scalability analysis has been carried out for the proposed implementation of the algo-
rithms, reaching the whole JUQUEEN Blue Gene/Q, up to 458,752 cores and 1.8 million MPI tasks
(subdomains), for both Laplacian and linear elasticity problems. These are the largest scale problems
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Fig. 5.6. Weak scalability for the total computation time (a) and number of PCG iterations (b) of the three-level
BDDC(ce) (left) and BDDC(cef) (right) solvers in the solution of the 3D linear elasticity PDE with m1 = 103, 203 and
253 FEs on JUQUEEN.

reported so far for exact DD preconditioners. Both three-level and four-level algorithms have been ex-
plored. In order to stress the proposed implementation, (1) the coarsest-level problem has been solved in
only one processor, i.e., no parallelization has been exploited at the last level, and (2) we have considered
overdecomposition, i.e., to use a partition of the problem into more subdomains than physical cores in-
volved in the parallel computation, reaching up to 1.8M subdomains. The results show a close to perfect
weak scalability for low to moderate local problem sizes, i.e., infra-utilizing the memory resources per
core. The use of more than four levels or a distributed computation of the coarsest problem can be of
interest with the thousand-fold increase in the number of cores expected in the near future.

Future work will include the extension of the framework to Krylov-cycling MLBDDC methods, in
order to increase preconditioner robustness and keep constant the number of iterations as we go to more
levels, and the development of inexact MLBDDC (hybrid AMG-BDDC) algorithms and implementa-
tions. We finally note that this implementation approach can also be applicable to other preconditioners,
like the BPX (additive MG) algorithm [9], in order to improve parallel efficiency, time-to-solution, and
weak scalability.
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