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Summary. This paper summarizes the development for a large displacement for-
mulation of a membrance composed of three-node triangular elements. A formulation
in terms of the deformation gradient is first constructed in terms of nodal variables.
In particular, the use of the right Cauchy-Green deformation tensor is shown to lead
to a particulary simple representation in terms of nodal quantities. This may then
be used to construct general models for use in static and transient analyses.
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1 Introduction

The behavior of curved, thin bodies can be modeled by a membrane theory of shells.
In such a theory only the in-plane stress resultants are included. The deformation
state for a membrane may be represented by the position of points on the two-
dimensional surface. General theories for shells may be specialized to those for a
membrane by ignoring the resultant couples and associated changes in curvature
deformations as well as any transverse shearing effects. A numerical approximation
to the shell may then be constructed using a finite element approach. Examples for
general shell theory and finite element solution may be found for small deforma-
tions in standard books.[1] Theory for large deformation can proceed following the
presentations of Simo et al.[2, 3, 4, 5] or Ramm et al.[6, 7, 8, 9, 10, 11, 12, 13]

For the simplest shape finite element composed of a 3-node triangular form with
displacement parameters at each vertex (a 9-degree of freedom element) it is far
simpler to formulate the membrane behavior directly. This is especially true for large
displacement response. Here the initially flat form of a simple triangular response
is maintained throughout all deformation states. Consequently, one may proceed
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directly with the construction of the kinematic behavior, even in the presence of
large strains. This approach is followed in the present work.

The loading of a membrane is often by pressures which remain normal to the
surface throughout all deformations. Such follower loading generally leads to a form
which yields an unsymmetric tangent matrix. Such formulation has been presented
in works by Schweizerhof and Ramm[14] and by Simo et al.[15] The general approach
presented in the last work is used for the special case of the flat triangular element
used in this work.

The formulation included in the present study includes inertial and damping
terms based on second and first time derivatives of the motion. These are discretized
in time using standard techniques (e.g., the Newmark method[16, 17]). Both explicit
and implicit schemes are presented together with all linearization steps needed to
implement a full Newton type solution. The inclusion of the damping term permits
solution of the first order form in order to obtain a final static solution. Generally,
the first order form is used until the final state is reached at which point the rate
terms are deleted and the full static solution achieved using a standard Newton
iterative method.

The work presented is implemented in the general purpose finite element solution
system FEAP[18] and used to solve example problems. The solution to some basic
example problems are included to show the behavior of the element and solution
strategies developed.

2 Governing Equations

Reference configuration coordinates in the global Cartesian frame are indicated in
upper case by X and current configuration in lower case by x. The difference between
the coordinates defines a displacement u.

Using standard interpolation for a linear triangle positions in the element may
be specified as

X = ξα X̃
α

(1)

in the reference configuration and

x = ξα x̃α (2)

for the current configurations. If necessary, the displacement vector may be deduced
as

u = ξα ũα (3)

In the above X̃
α
, x̃α, ũα denote nodal values of the reference coordinates, current

coordinates and displacement vector, respectively. Furthermore, the natural (area)
coordinates satisfy the constraint

ξ1 + ξ1 + ξ3 = 1 (4)

It is convenient to introduce a surface coordinate system denoted by Y1, Y2 with
normal direction N in the reference state and y1, y2 with normal direction n in the
current state (see Fig. 1).
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Fig. 1. Description of coordinates for triangular element

Placing the origin of the YI and yi coordinates at nodal location X̃
1

and x̃1,
respectively, the unit base vectors may be constructed from the linear displacement
triangle by aligning the first vector along the 1− 2 side. Accordingly, we define the
first unit vector as

v1 =
x̃2 − x̃1

‖x̃2 − x̃1‖ =
∆x̃21

‖∆x̃21‖ (5)

where

∆x̃ij = x̃i − x̃j and ‖a‖ =
(
aT a

)1/2

.

Next a vector normal to the triangle is constructed as

v3 = ∆x̃21 ×∆x̃31 (6)

and normalized to a unit vector as

n =
v3

‖v3‖ (7)

The vector v3 plays a special role in later development of nodal forces for follower
pressure loading as it is twice the area of the triangle times the unit normal vector
n.

Finally, a second orthogonal unit vector in the plane of the triangle is be com-
puted as

v2 = n × v1 . (8)

The above developments have been performed based on the current configura-
tion. However, reference quantities may be deduced by replacing lower case letters
by upper case ones (e.g., v1 → V 1, etc.).
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With the above base vectors defined, positions in the plane of the triangle may
be given directly as

yi =
(
x − x̃1) · vi (9)

In general, an interpolation may be given as

y = ξαỹα (10)

We note from Eq. (9) that ỹ1 is identically zero hence Eq. (10) reduces to

y = ξ2 ỹ2 + ξ3 ỹ3 . (11)

However, the constraint (4) still restricts the admissible values for ξ2 and ξ3.

2.1 Deformation Gradient

From the above description of the motion of the triangle it is now possible to deduce
the deformation gradient in the plane of the triangle as

F =
∂y

∂Y
= 1 +

∂u

∂Y
(12)

Using the parametric representations (11) we can compute the deformation gradient
from

∂y

∂Y

∂Y

∂ξ
= F

∂Y

∂ξ
=

∂y

∂ξ
(13)

If we define the arrays J and j as

J =
∂Y

∂ξ
and j =

∂y

∂ξ
(14)

then the deformation gradient is given by

F = j J−1 (15)

In the above J is the Jacobian transformation for the reference frame and j that
for the current frame. Expanding the relations for each Jacobian we obtain

J =

⎡⎣(∆X̃
21
)T

V 1

(
∆X̃

31
)T

V 1(
∆X̃

21
)T

V 2

(
∆X̃

31
)T

V 2

⎤⎦ (16)

and

j =

[ (
∆x̃21

)T
v1

(
∆x̃31

)T
v1(

∆x̃21
)T

v2

(
∆x̃31

)T
v2

]
(17)

By noting that X̃
2 − X̃

1
is orthogonal to V 2 and similarly for the current configu-

ration that x̃2 − x̃1 is orthogonal to v2 and in addition using the definition for V i
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and vi the above simplify to

J =

⎡⎣ ‖∆X̃
21‖ ,

[(
∆X̃

21
)T (

∆X̃
31
)]

/‖∆X̃
21‖

0 , ‖V 3‖/‖∆X̃
21‖

⎤⎦ (18)

and

j =

[
‖∆x̃21‖ ,

[(
∆x̃21

)T (
∆x̃31

)]
/‖∆x̃21‖

0 , ‖v3‖/‖∆x̃21‖

]
(19)

Using these definitions, the right Cauchy-Green deformation tensor may be ex-
panded as

C = F T F = J−T jT jJ−1 = GT gG (20)

where G is used to denote the inverse of J . In component form we have

C =
1

J2
11J

2
22

[
J22 0
−J12 J11

] [
g11 g12

g12 g22

] [
J22 −J12

0 J11

]
(21)

in which the terms in the kernel array involving j may be expressed in the particu-
larly simple form

g11 = j2
11 =

(
∆x̃21

)T
∆x̃21

g12 = j12j11 =
(
∆x̃21

)T
∆x̃31

g22 = j2
12 + j2

22 =
(
∆x̃31

)T
∆x̃31

(22)

2.2 Material Constitution - Elastic Behavior

In the present work we assume that a simple St.Venant-Kirchhoff material model
may be used to express the stresses from the deformations. Stresses are thus given
by

S = D E (23)

where D are constant elastic moduli. and the Green-Lagrange strains E are given
in terms of the deformation tensor as

E =
1

2
(C − I) . (24)

In each triangular element the deformation may be computed from (19) to (22),
thus giving directly the stress.

3 Weak Form for Equations of Motion

A weak form for the membrane may be written using a virtual work expression given
by

δΠ =

∫
Ω

δxi ρ0 h ẍi hdΩ +

∫
Ω

δxi c0 ẋi dΩ +

∫
Ω

δEIJSIJ h dΩ

−
∫

Ω

δxibi dω −
∫

γt

δxi t̄i dγ = 0

(25)
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in which ρ0 is mass density in the reference configuration, c0 is a linear damping coef-
ficient in the reference configuration, h is membrane thickness, SIJ are components
of the second Piola-Kirchhoff stress, bi are components of loads in global coordi-
nate directions (e.g., gravity), and t̄i are components of specified membrane force
per unit length. Upper case letters refer to components expressed on the reference
configuration, whereas, lower case letters refer to current configuration quantities.
Likewise, Ω and ω are surface area for the reference and current configurations,
respectively. Finally, γt is a part of the current surface contour on which traction
values are specified.

The linear damping term is included only for purposes in getting initially stable
solutions. That is, by ignoring the inertial loading based on ẍ only first derivatives
of time will occur. This results in a transient form which is critically damped - thus
permitting the reaching of a static loading state in a more monotonic manner.

We note that components for a normal pressure loading may be expressed as

bi = p ni (26)

where p is a specified pressure and ni are components of the normal to the surface.
Writing Eq. (20) in component form we have

CIJ = GiI gij GjJ for i, j = 1, 2 I, J = 1, 2 (27)

where

G11 =
1

J11
; G22 =

1

J22
; G12 =

−J12

J11 J22
; G21 = 0 (28)

The integrand of the first term in (25) may be written as

δCIJ SIJ = GiI δgij GjJ SIJ = δgij sij (29)

where the stress like variable sij is defined by

sij = GiI GjJ SIJ (30)

The transformation of stress given by (30) may be written in matrix form as

s = QT S (31)

in which

Qab ← GiI GjJ

where the index map is performed according to Table 1, yielding the result

Q =

⎡⎣ G2
11 0 0

G2
12 G2

22 G12 G22

2 G11 G12 0 G11 G22

⎤⎦ (32)

Since the deformation tensor is constant over each element, the results for the
stresses are constant when h is taken constant over each element and, thus, the
surface integral for the first term leads to the simple expression∫

Ω

h δEIJ SIJ dΩ =

∫
Ω

h

2
δCIJ SIJ dΩ =

∫
Ω

h

2
δgij sij dΩ =

h

2
δgij sij A (33)
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Table 1. Index map for Q array

Indices Values

a 1 2 3
I,J 1,1 2,2 1,2 & 2,1

b 1 2 3
i,j 1,1 2,2 1,2 & 2,1

where A is the reference area for the triangular element.
The variation of gij results in the values

δg11 = 2
(
δx̃2 − δx̃1

)T
∆x̃21

δg12 =
(
δx̃2 − δx̃1

)T
∆x̃31 +

(
δx̃3 − δx̃1

)T
∆x̃21

δg22 = 2
(
δx̃3 − δx̃1

)T
∆x̃31

(34)

At this stage it is convenient to transform the second order tensors to matrix
form and write

1

2
δCIJSIJ = δEIJSIJ =

[
δE11 δE22 2 δE12

] ⎡⎣S11

S22

S12

⎤⎦ = δET S (35)

or for the alternative form

1

2
δgijsij =

1

2

[
δg11 δg22 2 δg12

] ⎡⎣ s11

s22

s12

⎤⎦ =
1

2
δgT s (36)

Using (34) we obtain the result directly in terms of global cartesian components
as

1

2
δgT s =

[
δ(x̃1)T δ(x̃2)T δ(x̃3)T

]
[b]T s

=
[
δ(x̃1)T δ(x̃2)T δ(x̃3)T

]
[b]T QT S = δET S (37)

where the strain-displacement matrix b is given by

b =

⎡⎣ −(∆x̃21)T (∆x̃21)T 0
−(∆x̃31)T 0 (∆x̃31)T

−(∆x̃21 + ∆x̃31)T (∆x̃31)T (∆x̃21)T

⎤⎦
︸ ︷︷ ︸

3×9

(38)

Thus, directly we have in each element

δE = Q b δx̃ =
1

2
δC (39)

where x̃ denotes the three nodal values on the element. It is immediately obvious
that we can describe a strain-displacement matrix for the variation of E as

B = Q b (40)
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A residual form for each element may be written as⎧⎨⎩
R1

R2

R3

⎫⎬⎭ =

⎧⎨⎩
f 1

f 2

f 3

⎫⎬⎭ − [M e]

⎧⎪⎨⎪⎩
¨̃x

1

¨̃x
2

¨̃x
3

⎫⎪⎬⎪⎭− [Ce]

⎧⎪⎨⎪⎩
˙̃x
1

˙̃x
2

˙̃x
3

⎫⎪⎬⎪⎭ − hA [B]T

⎧⎨⎩
S11

S22

S12

⎫⎬⎭ (41)

where [M e] and where [Ce] are the element mass and damping matrices given by

[M e] =

⎡⎣M 11 M 12 M 13

M 21 M 22 M 23

M 31 M 32 M 33

⎤⎦ and [Ce] =

⎡⎣C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤⎦ (42)

with

M αβ =

∫
Ω

ρ0 h ξα ξβ dΩ I and Cαβ =

∫
Ω

c0 h ξα ξβ dΩ I (43)

3.1 Pressure Follower Loading

For membranes subjected to internal pressure loading, the finite element nodal forces
must be computed based on the deformed current configuration. Thus, for each
triangle we need to compute the nodal forces from the relation

δx̃α,T fα = δx̃α,T

∫
ω

ξα (p n) dω (44)

For the constant triangular element and constant pressure over the element, denoted
by pe, the normal vector n is also constant and thus the integral yields the nodal
forces

fα =
1

3
pe n Ae (45)

We noted previously from Eq. (6) that the cross product of the incremental vectors
∆x̃21 with ∆x̃31 resulted in a vector normal to the triangle with magnitude of twice
the area. Thus, the nodal forces for the pressure are given by the simple relation

f α =
1

6
pe ∆x̃21 ×∆x̃31 (46)

Instead of the cross products it is convenient to introduce a matrix form denoted
by

∆x̃21 ×∆x̃31 =
[
∆̂x̃

21
]

∆x̃31 (47)

where

[
∆̂x̃

ij
]

=

⎡⎣ 0 −∆x̃ij
3 ∆x̃ij

2

∆x̃ij
3 0 −∆x̃ij

1

−∆x̃ij
2 ∆x̃ij

1 0

⎤⎦ . (48)
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Fig. 2. Cable reinforced membrane element at(i-j)

4 Reinforcement Cables

It is common to place reinforcing cables in membranes to provide added strength or
shape control. The cables are generally very strong in axial load capacity (generally
tension) and weak in bending. Accordingly, they may be modeled by a truss type
member. In the form admitted here it is not necessary for the reinforcement to be
placed at the edges of membrane elements - they may pass through an element as
shown in Fig 2.

The ends of a typical reinforcement are denoted as i and j in the figure and have
reference coordinates X i and Xj ,respectively. These points may be referred to the
nodal values of the membrane by computing the values of the natural coordinates
so that

Xk = ξk
α Xα for k = i, j (49)

The solution for the two points may be trivially constructed from linear interpolation
on the edges. The results are (for the points intersecting the edges shown in the
figure)

ξi
2 =

‖X i −X1‖
‖X2 −X1‖ ; ξi

1 = 1− ξi
2 ; ξi

3 = 0

ξj
3 =

‖Xj −X1‖
‖X3 −X1‖ ; ξi

1 = 1− ξi
3 ; ξi

2 = 0 (50)

Using these values the deformed position of the reinforcement cable may be
written as {

xi

xj

}
=

{
ξi

α I
ξj

α I

}
x̃α (51)
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4.1 Deformation of Cable

The deformation of the reinforcement cable may be expressed in terms of the Green-
Lagrange strain given by

Eij =
1

2

[
(xj − xi)T (xj − xi)

(Xj −X i)T (X j −X i)
− 1

]
=

1

2

[ ‖∆xji‖2
‖∆X ji‖2 − 1

]
(52)

where ∆Xji = Xj −X i. The variation of the strain is then expressed as

δEij =
(δxj − δxi)T (∆xji)

‖∆Xji‖2 (53)

4.2 Material Constitution

For simplicity we again assume that the material is elastic and may be represented
by a one-dimensional form of a St.Venant-Kirchhoff model expressed as

Sij = E Eij (54)

where Sij is the constant second Piola-Kirchhoff stress in the cable and E is an
elastic modulus.

4.3 Weak Form for Reinforcement

A weak form for an individual reinforcement cable in an element may be written as

δΠr = δxk
(
M klẍ

l + Cklẋ
l
)
− δEij Sij Aij Lij ; k, l = i, j (55)

where Aij is the cross sectional area of the reinforcement; Lij the length of the cable
(i.e., ‖∆X ji‖); Mkl is the mass matrix; and Ckl is the damping matrix.

The variation of the strain is rewritten from Eq. (53) as

δEij =
[
δxi,T δxj,T

] ⎧⎪⎪⎨⎪⎪⎩
−∆xji

L2
ij

∆xji

L2
ij

⎫⎪⎪⎬⎪⎪⎭ (56)

Equation (55) is appended to the other terms from the membrane by replacing
variations of end displacements and the rate terms by their representation in terms
of the membrane nodal parameters as given by Eq. (51). The result is:

δΠr = δx̃α,T

{
M αβ

r
¨̃x

β
+ Cαβ

r
˙̃x

β − P α
r

}
(57)

where

P α
r = ∆ξji

α ∆ξji
β x̃β Sij Aij

Lij
; (58)
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M αβ
r = ξi

αM iiξ
i
β + ξi

αM ijξ
j
β + ξj

αM jiξ
i
β + ξj

αM jjξ
j
β (59)

and

Cαβ
r = ξi

αC iiξ
i
β + ξi

αC ijξ
j
β + ξj

αCjiξ
i
β + ξj

αCjjξ
j
β (60)

In the definition of P α
r the incremental ξ denote

∆ξji
α = ξj

α − ξi
α (61)

Multiple reinforcement strands within any element may be simply considered by
summing over all the ij-pairs of intersection points.

5 Solution Methods

5.1 Explicit Solution

In an explicit time integration the lumped mass is commonly used. Furthermore, we
shall assume that the damping is negligible and thus may be ignored. A diagonal
(lumped) mass is usually also constructed where

M αβ =

{
1
3

∫
Ω

ρ0 hdΩ I ; for α = β
0 ; for α �= β

(62)

Diagonalization of the mass matrix in the presence of reinforcement is more difficult
and, if performed, must be based on purely physical lumping arguments as no clear
mathematical justification is available.[17]

A solution is then computed for each discrete time tn from

ẍn = M−1

[
fn −

∑
e

(
BT

n,eSn,eAehe + P r,e

)]
(63)

where subscripts e refer to individual element quantities and subscript n to the time
step. The inverse of the mass is trivial due to its diagonal form, hence the method
is directly proportional to the number of nodes in the mesh.

The solution state may now be advanced in time using any time integration
procedure. For example using a Newmark method

ẋn = ẋn−1 +
1

2
∆tn−1 (ẍn−1 + ẍn)

xn+1 = xn + ∆tn ẋn +
1

2
∆t2n ẍn (64)

in which ∆tn = tn − tn−1.
An explicit solution is conditionally stable and requires

∆tn ≤ ∆tcr (65)

for all time steps. The critical time step depends on element size and the maximum
wave speed for the element material. The resulting time increment is often much too
small for practical considerations in computer effort and for the response necessary
to model slowly varying loads. In these situations it is more expedient to use in
implicit time integration procedure in which inertial, stress, and loading matrices
also depend on position and velocity at the current time.
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5.2 Implicit Solution

In an implicit solution case it is necessary to use an iterative solution scheme at
each time step which solves a sequence of linear, coupled algebraic problems. Here
we only present results for the St.Venant-Kirchhoff material model and the normal
follower pressure loading. We assume that the transient problem will be integrated
using the Newmark method, however, other schemes may also be utilized with minor
modifications.

The Newmark method may be written for implicit solutions as

xn = xn−1 + ∆tn ẋn−1 +

(
1

2
− β

)
∆t2n ẍn−1 + β ∆t2n ẍn

ẋn = ẋn−1 + (1− γ) ∆tn ẍn−1 + γ ∆tn ẍn (66)

The equations to be solved at each time step may be expressed as

Rα
n = f α

n −
∑

e

(
M αβ

e + Mαβ
r

)
ẍβ

n −
∑

e

(
Cαβ

e + Cαβ
r

)
ẋβ

n

−
∑

e

(
he Ae Bα,T

e Se + P α
r,e

)
n

(67)

In an implicit method Eq. (67) may be solved iteratively using a Newton method.
In this process the nonlinear residual equations are linearized about a given set of
nodal positions x̃k

n corresponding to known values at some iteration stage k. The
result is written as

Rk+1
n ≈ Rk

n +
∂Rn

∂x̃

∣∣∣k dx̃k
n = 0 (68)

If we define the tangent (jacobian) matrix A as

A = −∂R

∂x̃
(69)

the set of linear algebraic equations to be solved at each iteration may be expressed
as

Ak
n dx̃k

n = Rk
n (70)

The solution may then be updated using

xk+1
n = xk

n + dxk
n (71)

and iteration continued until convergence is achieved.
The Newton scheme will have a quadratic asymptotic rate of convergence pro-

vided a careful derivation of the tangent matrix A is constructed. Typically such
jacobians are referred to as the consistent tangent matrix. For transient applications
the use of the specified time stepping algorithm is required to compute the tangent
matrix. The computation for the transient term is performed as

A = −∂R

∂x̃
− ∂R

∂ ˙̃x

∂ ˙̃x

∂x̃
− ∂R

∂ ¨̃x

∂ ¨̃x

∂x̃
(72)

The result may be written as

A = c1 K + c2 C + c3 M (73)
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where the ci result from any differentiation of the nodal vectors with respect to the
solution vector. For the Newmark method the result from (67) gives c1 = 1 and from
(66) we obtain

∂x̃

∂ ¨̃xn

= β ∆t2nI and
∂ ˙̃x

∂ ¨̃xn

= γ ∆tnI

thus giving

c2 =
γ

β ∆tn
and c3 =

1

β ∆t2n

From (67) we find that

M n =
∑

e

(M e + M r)

Cn =
∑

e

(Ce + Cr) (74)

Kn =
∑

e

(Ke + Kr + Kf )

where subscripts e, r and f denote quantities computed from the membrane element,
reinforcement cable and pressure follower loading terms, respectively.

Membrane tangent matrix

To compute the element stiffness matrix it is necessary to determine the change in
stress due to an incremental change in the motion. Accordingly, for the St.Venant-
Kirchhoff model we obtain

dSe = D dEe (75)

where

dEe = Qe be dx̃e = Be dx̃e (76)

The element stiffness matrix is given by

Ke =
(
hA BT

n Dn Bn + Kg

)
e

(77)

where Kg is a geometric stiffness computed from the term

he

2
Ae d (δCIJ) SIJ =

he

2
Ae d (δgij) sij (78)

From (34) we obtain

d(δg11) = 2
(
δx̃2 − δx̃1

)T (
dx̃2 − dx̃1

)
d(δg12) =

(
δx̃2 − δx̃1

)T (
dx̃3 − dx̃1

)
+
(
δx̃3 − δx̃1

)T (
dx̃2 − dx̃1

)
d(δg22) = 2

(
δx̃3 − δx̃1

)T (
dx̃3 − dx̃1

) (79)

Using these expressions the geometric matrix may be written as

Kg = he Ae

⎡⎣ (s11 + 2s12 + s22)I −(s11 + s12)I −(s22 + s12)I
−(s11 + s12)I s11I s12I
−(s22 + s12)I s12I s22I

⎤⎦ (80)
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Reinforcement tangent matrix

In a similar manner to that for the membrane, the tangent matrix for the reinforce-
ment may be computed from

Kαβ
r =

∂P α
r

∂x̃β

= ∆ξji
α

[
EAij

Lij

(
∆ξji

γ x̃γ x̃δ,T ∆ξji
δ

)
+

SijAij

Lij
I

]
∆ξji

β (81)

Pressure follower loading tangent matrix

The pressure follower loading tangent matrix is obtained directly from (46) as

dfα =
1

6
pe

[
d(∆x̃21)×∆x̃31 + ∆x̃21 × d(∆x̃31)

]
(82)

Using (47) this may be written as

dfα =
1

6
pe

(
[∆̂x̃

21
] d(∆x̃31)− [∆̂x̃

31
] d(∆x̃21)

)
(83)

and gives the tangent matrix form

δx̃α,T Kαβ
f dx̃β = δx̃α,T

[
∆̂x

32 −∆̂x
31

∆̂x
21
] ⎡⎣dx̃1

dx̃2

dx̃3

⎤⎦ (84)

In general the tangent is unsymmetric and requires a solution scheme to solve equa-
tions which can include such effects.

5.3 Quasi-Static Solutions

Membrane structures typically have no stiffness during the initial phase of loading.
Thus, it is necessary to perform some form of a transient analysis until an equilibrium
position is neared, at which time it is possible to switch to a static loading in which
no rate terms are included. To avoid oscillations during the solution process the
equations of motion are treated here in a first order form as

R = f −C ˜̇x−
∑

e

(
heAeB

T S + P e,r

)
= 0 (85)

and solved using an implicit backward Euler solution process in which discrete rates
are approximated by

˜̇xn =
1

∆tn
(x̃n − x̃n−1) (86)

A solution is computed until the rate terms are small at which time they are dropped
and the solution is computed from the static form

R = f −
∑

e

(
heAeB

T S + P e,r

)
= 0 (87)

In results reported in numerical examples, a diagonal (lumped) form of C is used.
The diagonalization is performed identically to that for the lumped mass form.
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6 Numerical Examples

6.1 Sphere Subjected to Internal Follower Pressure

The first problem presented is a sphere of initial (unstressed) radius of 10 units which
is subjected to an internal follower pressure loading of 5. The material properties
are

E = 1000 ; ν = 0.25 ; ρ0 = 10 ; he = 0.1

A mesh for one quadrant of the sphere (1/8 of the total) is constructed as shown
in Fig. 3

Both the undeformed and deformed configurations are included to indicate the
amount of deformation occurring.

The problem is solved using a backward Euler time integrator for the case where
M is zero and a diagonal damping matrix C with c0 = ρ0 is used. The full internal
pressure is applied during the first time step and held constant during subsequent
steps. The problem is solved using 100 steps with a constant ∆t of 0.001. Subse-
quently, the rate terms are ignored and a final static state determined during one
additional step. Convergence to full machine precision is achieved in three iterations
for all steps - indicating a correct implementation for the Newton strategy described
in this study. A plot of the contours for the u3 displacement is shown in Fig. 4 .

Fig. 3. Mesh for sphere problem symmetrically supported at edges
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Fig. 4. Contours for u3. Full sphere shown by reflections.

6.2 Corner Supported Sphere Quadrant Subjected to Internal
Follower Pressure

The boundary conditions for the first problem are changed to ones in which the ver-
tices of the quadrant are fully restrained (fixed in all directions). Loading is again
by a follower loading with magnitude 5. The contours for the absolute displace-
ment (‖u‖) are shown on the deformed mesh in Fig. 5 . Solution is obtained in the
same way as for the previous example. Convergence was achieved in all steps to full
machine accuracy in 3-4 iterations each step.

Figure 6 presents a comparison for the different solution strategies used for this
example. The same problem has been analyzed three (3) times including differ-
ent terms in the backward Euler time integration. The first solution includes the
damping term only, the second solution includes all the dynamic terms (mass and
damping), and the third solution includes only the mass term of the equation. For
each time step the figure shows the evolution of the displacement of the mesh’s cen-
tral point. Finally, each solution scheme is compared to the actual final static result.

6.3 Square Supported at 4-Corners

The third problem is presented to test the performance of the triangular membrane
formulation described above under gravity loading. Here a square region of 20 units
on a side is supported only at its four corners. Due to symmetry only one quadrant
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is analyzed with the origin of coordinates at the lower left corner and a uniform
mesh of 20× 20 spaces as shown in Fig. 7. The flat configuration lies in the x1 − x2

coordinate plane at x3 = 0. A uniform body loading is applied in the x3 direction.
To permit a sag to occur the upper right corner node (which is fully restrained in
all three directions) is displaced equally in the x1 and x2 by a negative 2 units (that
is the deformed position of the node at this point has final coordinates (8, 8, 0).

For the membrane problem considered here, the properties are taken as

E = 10000 ; ν = 0.25 ; ρ0 = 10 ; he = 0.1 ; b3 = 1

The solution is computed using a backward Euler solution process with M = 0 and
a diagonal C matrix with c0 = ρ0. The time behavior is constructed using 1000
time steps of ∆t = 0.0001 followed by an additional 1000 steps at ∆t = 0.001 and
a final 1000 steps at ∆t = 0.002. The corner displacements are moved 2 units at
a uniform rate until t = 1 after which they are held constant. At the final time of
3.1 the solution strategy is switched to a static algorithm and a converged solution
achieved in 4 iterations. In general each time step converges at the quadratic rate
in 3 to 4 iterations per step. Use of larger step sizes, however, resulted in divergence
of the solution after a few steps. The final shape of the membrane is shown in Fig.
8 where the full problem is shown by reflecting results about the symmetry axes.

Fig. 5. Contours for ‖u‖. Corner supported sphere shown in deformed configuration
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Fig. 6. Comparison of the evolution of the result for 3 different sets of dynamic
terms. Representation of the absolute displacement ‖u‖ of the mesh’s central point
in the corner supported sphere

1

2

3

Fig. 7. Mesh for membrane problem supported at corners
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Fig. 8. Deformed configuration of membrane

6.4 Inflation of a Balloon

The fourth problem represents the inflation of a balloon and is presented to test the
performance of the triangular membrane element and solution strategy on a very
non-linear problem. The mesh geometry consists on two flat, horizontal surfaces
connected to a vertical conical open end. Figure 9 shows the geometry of a balloon
in its uninflated state. An internal pressure (follower) loading of 5 units is applied
to bring the balloon to a final vertical configuration. The circular end of the cone
has all its degrees of freedom fixed. The parameters for the material are

E = 1000 ; ν = 0.25 ; ρ0 = 10 ; he = 0.1

Fig. 9. Reference configuration of the balloon
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Fig. 10. Current configuration of the balloon after 120 time steps, displaying vertical
displacement (u3) contour

Fig. 11. Final configuration of the balloon, displaying absolute displacement ‖u‖

The solution is computed using a backward Euler strategy neglecting the inertia
terms. The C matrix used is diagonal with c0 = ρ0. The transient solution is con-
tinued for 120 time steps using a ∆t = 0.01. A final static step is then computed in
which all the dynamic terms are dropped. Convergence for all the transient steps is
achieved in 4-6 iterations, while the final static step takes 33 iterations. The solution
state at the end of the transient steps is shown in Fig. 10 and the final state achieved
after the static step in Fig. 11.
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7 Closure

This paper has summarized the steps required to develop and implement a 3-node
triangular membrane finite element which can undergo arbitrarily large finite mo-
tions. The material behavior included here is restricted to a St.Venant-Kirchhoff
material, however, extension to other types of constitutive models for isotropic be-
havior is straight forward.

The formulation presented includes both inertia and damping effects leading to
a general second-order semi-discrete form. Solution to these ordinary differential
equations may be achieved using explicit or implicit transient forms or using a
quasi-static form in which all rate effects are omitted. Use of a solution algorithm
employing only first-order form is shown to lead to a simple means of solving the
final static membrane state starting from an unstressed reference configuration.
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