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Abstract—This paper deals with the solution of the title problem in the case where the outer
boundary is subjected to uniform, hydrostatic pressure while the inner edge of the plate is free. It
is assumed that the plate thickness varies (a) in a discontinuous fashion and (b) linearly.

An approximate approach is proposed using polynomial coordinate functions which identically
satisfy the boundary conditions at the outer edge, only. The eigenvalues are determined using the
optimized Rayleigh—Ritz method and good engineering agreement is shown to exist with buckling
parameters obtained by means of a finite element code. Copyright © 1996 Elsevier Science Ltd

1. INTRODUCTION

The technical literature contains very limited information on critical, buckling loads of
the structural systems shown in Fig. 1 (Timoshenko and Gere, 1961). Even in the case
of the annular plate of uniform thickness the buckling parameter available in the open
literature, has been determined for Poisson’s ratio {(») equal to 1/3.

The problem is of great practical significance in civil, mechanical, naval and ocean
engineering applications.

This paper presents a very simple methodology to tackle this rather complex elastic
stability problem. Numerical data is obtained for plates of uniform thickness, #,, and plates
of non-uniform thickness, Fig. 1a and Fig. 1b, for several values of Poisson’s ratio.

2. APPROXIMATE SOLUTION BY MEANS OF THE OPTIMIZED RAYLEIGH-RITZ
METHOD

Since the outer boundary of the plate is subjected to a uniformly applied pressure p,
the radial stress resultant N(7) is given by the classical Lamé solution

_ N, _
N(r) = 1= lay [1 — (#b)] (1

where Ny=ph,,.
Determination of the critical buckling load is defined by minimization of the govern-
ing functional

;

b AWA 4 1 b
J(W)=JD(?){(W” +¥) LA ]?d? - fN(;)W’Z;d; )

51



52 P. A. A. Laura et al.

N

(a) hO hl
L — o]
2¢

Fig. 1. Annular plate: elastic stability analysis.

subject to appropriate boundary conditions.
Introducing the dimensionless variable r = #/a and substituting in Equation (2) one

obtains
a2 1 W/ 2 W’W”
/W =f g(r) [ (W” + —) -2(1-v) ] 3)
o 5 r r
ar- 2 (1) w
rdr — 1~ 2 . -2 rdr
where
b Nya?
ry =, Do = D(1), D(r) = Dog(r), A =
a D,
In the case of a simply supported edge the governing boundary conditions are
w(i)=0
(4a,b)
W'+ vW(1)=0

while for a clamped edge one must comply the essencial boundary conditions
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{W(l) =(
wW(1)y=0

Consider now the case of a circular, annular plate of discontinuously varying thickness,
Fig. 1a. One has

(5a,b)

2, n=r=r.(r. = cla)
80 = {p n (6)
1 r.<r<l1
On the other hand, when the thickness varies linearly with the radial variable g(r) results
1 — 3
8 = [p,, w e = n) )
Tp

It is quite convenient to approximate the displacement amplitude W(r) by means of a
summation of simple polynomial coordinate functions (Laura et al., 1975).

W=W,= > Cir) 8

J=1

where
Pi(r) = (" + B+ Hr!

The o;s and B;s are determined substituting each coordinate function in the governing
outer boundary conditions. The exponential parameter p allows for minimization of the
calculated eigenvalue (Laura, 1995).

Substituting Equation (8) in Equation (3) and requiring that the functional be a minimum
with respect to the C;s one obtains

a a‘]_ ' re ll/_l, " d/",
z—ua—c,@{f,f(”(‘”f )+ /|

N ’
r
i=1,2,3

req? Iy . )\ _é [N 4 _— .
W "+ ' Drdr 1= 2 —rij (1 rz)d/jll/,-rdr}Cj—O, )

b

The non-triviality condition leads to a secular determinant in A and the lowest root is
the desired critical buckling parameter.

Clearly one could construct polynomial coordinate functions, each one with two
additional terms, in such a manner as to satisfy also the natural boundary conditions at
the inner edge. However this will render the procedure lengthier and as it will shown in
the next section the proposed approximate approach yields good engineering accuracy
with a minimum amount of labour.

3. FINITE ELEMENT SOLUTION

The numerical results have been obtained using SAMCEF (1994) finite element code
using hybrid elements of triangular and rectangular shape (elements type 55 and 56 of
the SAMCEF Library). The number of elements varied in accordance with the ratio b/a
(for b/a=0.1 the mesh of half of the plate contained 661 elements).
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4. NUMERICAL RESULTS

All calculations have been performed making J=3 in Equation (8).

Fig. 2a and Fig. 2b depict comparisons of values of N, a?/D,, for simply supported and
clamped annular plates at the outer boundary, with results available in the literature for
v=1/3. Good engineering agreement is shown to exist.

Table 1, Table 2, Table 3, Table 4, Table 5, Table 6, Table 7, Table 8, and Table 9
contain values of N, a>/D, for annular plates with outer edge simply supported while Table
10, Table 11, Table 12, Table 13, Table 14, Table 15, Table 16, Table 17 and Table 18
show values of the buckling coefficient for the clamped outer edge situation for the con-
figuration corresponding to Fig. la, including the uniform thickness case (Table 1 and
Table 10).

The eigenvalues have been determined for Poisson’s ratio equal to 0.2, 0.3, 0.33 and
0.40; h,/hy=1, 0.8 and 0.6; b/a=0.1, 0.2... 0.7 and c¢/a=0.2, 0.3... 0.8. They are computed
using the optimized Rayleigh—Ritz method and in the cases of Table 1, Table 3, Table 7,
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Fig. 2. Buckling Coefficients of Circular Annular Plates of Uniform Thickness; a) Outer Edge: Clamped Optim-
ized Rayleigh-Ritz (Timoshenko and Gere, 1961). O Optimized Rayleigh-Ritz. — (Timoshenko and Gere, 1961).
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Table 1. Buckling coefficient, uniform thickness. External boundary simply supported. (1): Optimized Rayleigh—
Ritz approach. (2): Finite elements method.

v Values of b/a
0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.2 (1) 3.821 3.488 3.110 2.801 2.561 2.374 2.224
0.3 ) 4.047 3.611 3.140 2.775 2.504 2.298 2.138
2) 3.997 3.102 2.497 2.134
0.33 (1) 4.111 3.639 3.137 2.755 2.475 2.265 2.103
0.4 (1) 4.254 3.685 3.105 2.685 2.387 2.168 2.002

Table 2. Buckling coefficient (discontinuously varying thickness, h,/hy=0.8). External boundary simply sup-

ported. »=0.2
b/a Values of c/a
0.2 0.3 04 0.5 0.6 0.7 0.8
0.1 3.624 3.343 3.107 2.860 2.610 2.409 2.253
0.2 3.155 2.906 2.664 2432 2.246 2.091
0.3 2.793 2.515 2.281 2.081 1.903
04 2.485 2.184 1.975 1.775
0.5 2.239 1.954 1.713
0.6 2.028 1.720
0.7 1.825

Table 3. Buckling coefficient, discontinuously varying thickness h,/h;=0.8) External boundary simply supported.
v=0.3(1): Optimized Rayleigh-Ritz approach. (2): Finite elements method.

b/a Values of ¢/a
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 1) 3.806 3.485 3224 2.964 2.706 2.505 2.351
(2) 3.750 2.963 2.345
0.2 3.220 2.946 2.696 2.465 2.284 2.136
0.3 2.786 2.493 2.258 2.064 1.896
04 (1) 2.438 2.131 1.927 1.737
(2) 2.481 1.778
0.5 2.171 1.888 1.656
0.6 1.951 1.651
0.7 ) 1.745
2) 1.807

Table 10, Table 12 and Table 16 some values have been determined using the finite
element method. Since the analytical formulation yields upper bounds it is concluded that
in the case of Table 3 they are more accurate than those obtained by means of the finite
element method for b/a=0.4 and c¢/a=0.5 and 0.8; and for b/a=0.7 and c/a=0.8. Similarly:
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Table 4. Buckling coefficient (discontinuously varying thickness, h;/h,=0.8). External boundary simply sup-

ported. »=0.33
b/a Values of c/a
0.2 0.3 04 0.5 0.6 0.7 0.8
0.1 3.856 3522 3.254 2.990 2.732 2.531 2.378
0.2 3.229 2.948 2.697 2.468 2.290 2.143
0.3 2772 2.476 2.242 2.051 1.886
0.4 2413 2.106 1.904 1.718
0.5 2.141 1.860 1.631
0.6 1.919 1.623
0.7 1.713

Table 5. Buckling coefficient (discontinuously varying thickness, h,/hs=0.8). External boundary simply sup-

ported. v=04
b/a Values of c/a
0.2 0.3 04 0.5 0.6 0.7 0.8
0.1 3.960 3.596 3312 3.042 2.783 2.585 2.437
0.2 3.228 2.934 2.682 2.460 2.290 2.150
0.3 2.717 2.416 2.187 2.004 1.850
0.4 2.333 2.030 1.835 1.659
0.5 2.053 1.779 1.561
0.6 1.829 1.544
0.7 1.625

Table 6. Buckling coefficient (discontinuously varying thickness, h;/hs=0.6). External boundary simply sup-

ported. v=0.2
b/a Values of c/a
0.2 0.3 04 0.5 0.6 0.7 0.8
0.1 3.450 2923 2.525 2.134 1.766 1.482 1.260
0.2 2922 2481 2.068 1.696 1.415 1.196
0.3 2.585 2.114 1.726 1.405 1.136
04 2.284 1.786 1.446 1.130
0.5 2.037 1.573 1.184
0.6 1.815 1.316
0.7 1.580

for b/a=0.4, c¢/a=0.5 and 0.8 (Table 7); b/a=0.3 and c¢/a=0.4 (Table 12); and b/a=0.3 and
c/a=0.4 (Table 16).

In the case of Table 16 the analytical approach yields a value of N, a’/D, which is,
apparently, extremely high for b/a=0.5 and c/a=0.8.

The agreement between both sets of values is, in general, quite good for the remain-
ing situations.
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Table 7. Buckling coefficient (discontinuously varying thickness, h,/h=0.6). External boundary simply sup-

ported. »=0.3 (1) : Optimized Rayleigh-Ritz approach. (2) : Finite elements method.

b/a Values of c/a
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 ) 3.588 2.976 2.524 2.137 1.770 1.491 1.279
(2) 3.553 2.221 1.324
0.2 2,944 2.459 2.031 1.663 1.395 1.190
0.3 2.554 2.058 1.667 1.357 1.105
04 (1) 2.224 1.717 1.384 1.083
) 2329 1.169
0.5 1.964 1.502 1.128
0.6 1.737 1.251
0.7 ) 1.505
2) 1.638

Table 8. Buckling coefficient, discontinuously varying thickness. h,/hg=0.6. External boundary simply supported.

v=0.33.

bla Values of c/a
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 3.622 2.984 2.540 2.132 1.766 1.492 1.283
0.2 2.939 2.442 2.012 1.648 1.385 1.185
0.3 2.533 2.032 1.643 1.338 1.091
0.4 2.196 1.689 1.360 1.065
0.5 1.933 1.475 1.106
0.6 1.706 1.226
0.7 1.475
Table 9. Buckling coefficient, discontinuously varying thickness. h,/h,=0.6. External boundary simply supported.
=0.4
b/a Values of c/a
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 3.685 2.983 2.520 2.111 1.752 1.487 1.289
0.2 2.906 2.384 1.953 1.601 1.353 1.167
0.3 2.463 1.954 1.573 1.282 1.052
04 2.111 1.608 1.292 1.013
0.5 1.845 1.398 1.046
0.6 1.619 1.159
0.7

1.395
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Table 10. Buckling coefficient, uniform thickness. External boundary clamped. (1): Optimized Rayleigh
approach. (2): Finite elements method.

v Values of b/a
0.1 0.2 0.3 04 0.5
0.2 14.320 14.268 15.769 19.491 26.864
0.3 (1) 14.131 13.755 15.037 18.593 25.787
2) 13.868 14.889 25.560
0.33 14.067 13.586 14.800 18.308 25.450
0.4 13.902 13.159 14.214 17.611 24.638

Table 11. Buckling coefficient, discontinuously varying thickness. h,/h,=0.8. External boundary clamped. »=0.2.

b/a Values of c/a
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 13.303 12.300 11.692 11.195 10.684 10.070 9.299
0.2 13.194 12.423 11.773 11.099 10.327 9.464
0.3 14.865 14.078 13.337 12.392 11.093
04 18.661 17.756 16.729 14.859
0.5 26.005 24.952 22.506

Table 12. Buckling coefficient, discontinuously varying thickness. h,/h,=0.8. External boundary clamped.
v=0.3.(1): Optimized Rayleigh approach. (2): Finite elements method.

b/a Values of c/a
0.2 0.3 04 0.5 0.6 0.7 0.8
0.1 (1) 12.951 11.879 11.275 10.808 10.355 9.810 9.111
2) 12.972 11.127 8.901
0.2 12.572 11.788 11.162 10.536 9819 9.042
0.3 (1) 14.084 13.304 12.598 11.712 10.525
2) 14.527 10.492
04 17.747 16.869 15.897 14.143
0.5 ) 24.934 23.921 21.593
2) 24.003 19.173

Table 19 presents buckling coefficients for an annular plate which is simply supported
at the outer boundary when the thickness varies linearly, Fig. 1b, while Table 20 deals
with the case of an outer clamped edge.

It is important to emphasize the fact that Poisson’s ratio has considerable weight upon
the values of the buckling coefficient, specially when the outer edge is simply supported,
i.e. in the case of Table 1 the buckling coefficient increases in about 10% when v varies
from 0.20 to 0.40 for b/a=0.1 while it decreases in 10% for b/a=0.7 for the same variation
of v.
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Table 13. Buckling coefficient, discontinuously varying thickness. h,/h,=0.8. External boundary clamped.

1=0.33.
b/a Values of c/a
0.2 0.3 04 0.5 0.6 0.7 0.8
0.1 12.835 11.743 11.143 10.685 10.250 9.726 9.049
0.2 12.369 11.585 10.967 10.357 9.656 8.904
0.3 13.834 13.061 12.366 11.498 10.345
0.4 17.460 16.594 15.638 13.919
0.5 24.602 23.604 21.313

Table 14. Buckling coefficient, discontinuously varying thickness. h,/h,=0.8. External boundary clamped. »=0.4.

b/a Values of c¢/a
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 12.821 11.404 10.816 10.387 9.992 9.515 8.891
0.2 11.863 11.085 10.493 9.917 9.319 8.659
03 13.224 12.470 11.805 10.980 9.902
0.4 16.769 15.934 15.019 13.380
0.5 23.864 22.851 20.644

Table 15. Buckling coefficient, discontinuously varying thickness. h;/h,=0.6. External boundary clamped. v=0.2.

b/a Values of c/a
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 12.665 10.683 9.528 8.450 7.240 6.137 5.097
0.2 12.364 11.016 9.703 8.086 6.546 5.316
0.3 14.231 12.855 11.231 9.023 6.813
0.4 18.096 16.415 14.004 10.351
0.5 25.464 23.280 17.959

The proposed approach is also applicable when the outer edge is elastically restrained
against rotation. In this case condition 4(b) is replaced by

dw
E(l) = =D W' (1) + vW(1)]

(10)

where J: edge flexibility coefficient. When (J—0 the edge is rigidly clamped and when
(J—x one has the simply supported condition.
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Table 16. Buckling coefficient, discontinuously varying thickness. h,/hy=0.6. External boundary clamped. »=0.3.
(1): Rayleigh-Ritz approach. (2): Finite elements method.

b/a Values of ¢/a
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 (1) 12.201 10.094 8.970 7.977 6.872 5.863 4,945
2) 12.325 8.527 4.536
0.2 11.664 10.303 9.048 7.545 6.111 5.005
0.3 8 13.421 12.066 10.524 8.438 6.387
2) 14.647 5.852
0.4 17.175 15.551 13.253 9.801
0.5 1) 24.398 22.300 17.234
2) 22.269 12.111

Table 17. Buckling coefficient, discontinuously varying thickness. h,/h=0.6. External boundary clamped.

1=0.33.
b/a Values of c/a
0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.1 12.047 9.908 8.798 7.832 6.759 5.777 4.894
0.2 11.439 10.081 8.847 7.379 5.977 4.905
0.3 13.166 11.823 10.309 8.259 6.253
04 16.889 15.288 13.025 9.629
0.5 24.118 22.003 17.013

Table 18. Buckling coefficient, discontinuously varying thickness. h,/h=0.6. External boundary clamped. v=0.4

b/a Values of c/a
0.2 0.3 04 0.5 0.6 0.7 0.8
0.1 11.656 9.457 8.389 7.490 6.493 5.568 4.764
0.2 10.885 9.545 8.368 6.983 5.660 4.660
0.3 12.547 11.243 9.798 7.837 5.930
04 16.205 14.665 12.488 9.216

0.5 23.339 21.304 16.491
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Values of b/a

0.1 0.2 03 0.4 0.5 0.6 0.7
h,/hg v=0.2
0.8 2737 2.542 2177 1.968 1.812 1.694 1.601
0.6 1.885 1.660 1.480 1.354 1.263 1.196 1.145
v=0.3
0.8 2.860 2.502 2.169 1.929 1.757 1.630 1.533
0.6 1.927 1.657 1.450 1.310 1.213 1.143 1.090
v=0.33
0.8 2.892 2.509 2.158 1.909 1.733 1.604 1.506
0.6 1.936 1.651 1.435 1.291 1.193 1.122 1.069
=04
08 2.962 2.512 2.116 1.847 1.662 1.529 1.429
0.6 1.950 1.626 1.388 1.236 1.135 1.064 1.012
Table 20. Buckling coefficient, continuous varying thickness. External boundary clamped.
Values of b/a
0.1 0.2 0.3 04 0.5
hy/h, v=0.2
0.8 10.710 10.842 12.308 15.662 22.159
0.6 7.524 7.744 9.184 12.150 17.680
v=0.3
0.8 10.419 10.345 11.667 14.924 21.260
0.6 7.191 7.295 8.655 11.541 16.962
v=0.33
08 10.325 10.185 11.464 14.687 20.982
0.6 7.086 7.154 8.490 11.353 16.724
1=0.4
0.8 10.091 9.787 10.967 14.115 20.318
0.6 6.829 6.812 8.095 10.907 16.223
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