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Laplace formulations are weak formulations of the Navier–Stokes equations commonly used in compu-
tational fluid dynamics. In these schemes, the viscous terms are given as a function of the Laplace diffu-
sion operator only. Despite their popularity, recently, it has been proven that they violate a fundamental
principle of continuum mechanics, the principle of objectivity. It is remarkable that such flaw has not
being noticed before, neither detected in numerical experiments. In this work, a series of objectivity tests
have been designed with the purpose of revealing such problem in real numerical experiments. Through
the tests it is shown how, for slip boundaries or free-surfaces, Laplace formulations generate non-physical
solutions which widely depart from the real fluid dynamics. These tests can be easily reproduced, not
requiring complex simulation tools. Furthermore, they can be used as benchmarks to check consistency
of developed or commercial software. The article is closed with a discussion of the mathematical aspects
involved, including the issues of boundary conditions and objectivity.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The Navier–Stokes (NS) equations are extensively used in fluid
mechanics. They are typically presented, as partial differential
equations (PDE), in the following format:

q
ov
ot
þ qrv � v þrp� lr2v ¼ 0; ð1Þ

r � v ¼ 0; ð2Þ

where q is the density, p the static pressure, v the velocity vector
and l the fluid viscosity. Such traditional PDE format is called the
Laplace format because the viscous terms appear simply in the form
of the Laplace diffusion operator r2 applied to the velocity vector v.

One important aspect of the Laplace diffusion operator is that it
does not couple velocity components, as can be seen from its math-
ematical expression:

r2v ¼
r2u

r2v

r2w

2
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che).
On the other hand, it is clear from Eq. (1) that the pressure and the
convective terms do produce a coupling between velocity compo-
nents. One naturally expects these features to be also present when
solving numerically the Navier–Stokes equations.

In the case of modern numerical schemes based on integral
forms (also called weak forms), there are two common approaches:
either to use Laplace formulations, or to use Divergence formulations
(see for example, [3,8,9,19,22,23,30,34,44–46,48]). Laplace formu-
lations have been traditionally derived from the Laplace format gi-
ven in Eqs. (1) and (2). In them, like in such PDE counterpart, the
viscous terms depend only on the Laplace diffusion operator:

lLv ¼ weak form ½lr2v�: ð4Þ

On the other hand, Divergence formulations are derived from the
Divergence format of the Navier–Stokes equations (see Eqs. (6)
and (7) below).

Despite the common use of both formulations, recently, Lim-
ache and Idelsohn [20] have shown that Laplace formulations vio-
late a main axiom of continuum mechanics: the principle of
objectivity (see [27,15]). In a following article [21], the proof was
extended to cover also two-phase flows (i.e. discontinuities and
the so called level set methods [22,48]). They also presented the
first numerical examples showing the spurious effects of this vio-
lation. The examples required the use of the particle finite element
method PFEM [16,17].

As it will be shown, the failure of Laplace formulations is caused
by an over simplification of the boundary conditions. Simplificative
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considerations are standard practice in physics. However, in this
case, such unaccurate (but historically accepted) boundary treat-
ment leads to an unforeseen consequence: the violation of a funda-
mental principle of continuum mechanics. Indeed, the detection of
the failure and the understanding of the nature of the error did not
come from noticing any problem on boundary conditions but came
from noticing Objectivity issues. Objectivity played a key role in the
discovery of the problem. First, when some numerical simulations
showed a strange incapacity of pseudo-fluids (hypo-elastic) materi-
als to achieve rotational motions. Second, when comparisons with
the Divergence formulation, which is clearly objective, showed
not a boundary condition problem but a volumetric term missed.
This eventually lead to the demonstration that the error, made in
Laplace formulations, was not simply another boundary condition
approximation but, also, an error equivalent to the simulation of a
non-objective fluid material. Furthermore, in order to emphasize
the importance of objectivity, it should be mentioned that the tests
presented in this article have been devised not by looking at bound-
ary conditions but by trying to detect objectivity failures.

It is remarkable indeed that such objectivity flaw has not being
noticed before, neither detected in numerical experiments, espe-
cially considering that Laplace formulations have been in use for
several decades. The reason for this situation is probably because
in many practical problems those formulations just give the correct
physical response. The point made in this paper is that, surpris-
ingly, in other circumstances they just do not. In the present work,
it will be shown how a series of carefully devised numerical exper-
iments, have the ability to reveal such problem showing the non-
physical solutions that can be produced by the use of Laplace
formulations. Note that these objectivity tests can be easily repro-
duced, so any researcher working in flow simulation, or any user of
CFD programs, can employ them as benchmarks to control consis-
tency of any developed or commercial software.

A formal and careful derivation, applying strictly accurate phys-
ical boundary conditions, shows that the source of the problem lies
in that Laplace formulations have a missing integral boundary
term. The point made in the previous articles [20,21], and extended
here to the case of slip boundary conditions, is that this missing
term cannot be neglected and actually is extremely important. If
one does take it into account, one arrives to a corrected Laplace for-
mulation which is objective and, as a consequence, consistent.
Unfortunately, the correction links velocity components and cou-
ples more strongly the momentum equations. Furthermore, the
viscous terms cannot longer be written as a function of the Laplace
diffusion operator only.

The article is structured in the following way. First, the Diver-
gence format and the Laplace format, i.e., the two most common
PDE formats of the Navier–Stokes equations are introduced. Then
from these two formats, the two most commonly used weak for-
mulations, the Divergence formulation and the Laplace formula-
tion, are derived. Next, a series of simple flow experiments will
be presented and simulated using the finite element method
(FEM). The purpose of these tests is to evaluate if there are any dif-
ferences between solutions obtained using either Divergence for-
mulations or Laplace formulations. It will be seen that in many
classical tests both approaches give the same results, as most peo-
ple would expect. However, it will also be seen that, for the flow
examples named objectivity tests, while the Divergence approach
still produces correct physical answers, the Laplace scheme widely
departs from the correct solution, producing non-physical results.
The article is closed with a theoretical discussion explaining, from
a mathematical point of view, many aspects observed in the
numerical experiments, including the role of objectivity. In that
section, the corrected Laplace formulation will be also presented,
showing how existing code based on Laplace schemes can be fixed
by adding an appropriate boundary correction term.
2. Navier–Stokes equations

The Navier–Stokes equations describe the dynamics of incom-
pressible newtonian fluids. Such fluids are defined through their
constitutive equation:

r ¼ �pI þ lrv þ lðrvÞT; ð5Þ

where r is the Cauchy stress tensor and I the second order identity
tensor. The so called Divergence format of the Navier–Stokes equa-
tions is obtained by inserting (5) into the equations of conservation
of mass and momentum of continuum mechanics:

q
ov
ot
þ qðrvÞ � v �r � ð�pI þ lrv þ lðrvÞTÞ ¼ 0; ð6Þ

r � v ¼ 0; ð7Þ

One can recover the Navier–Stokes equations in the Laplace format,
defined in Eqs. (1) and (2), by expanding the terms containing the
Divergence operator in Eq. (6):

r � r ¼ r � ð�pI þ lrv þ lðrvÞTÞ ¼ �rpþ lr2v: ð8Þ

Note that the term ðrvÞT produces no contribution because:

r � ðrvÞT ¼ rðr � vÞ ¼ 0 ð9Þ

for incompressible flows. The Laplace format and the Divergence
format are of course equivalent, they are just different ways of writ-
ing the same PDE (under the assumption of constant viscosity).

As the fluid moves in a domain X, the NS equations (written
either in Divergence or Laplace formats) have to be solved subject
to appropriate physical boundary conditions, prescribing either the
velocity or external surface forces (tractions) at the boundary sur-
faces C of X. Then, one can account for three possible types of
boundary conditions: no-slip, slip, and free-surface conditions.
For simplicity and clarity, it will be assumed here that the traction
conditions are homogeneous, i.e. the fluid suffers no external
tractions.

2.1. No-slip boundary conditions

At no-slip boundaries Cno-slip, all the flow velocity components
are imposed:

v ¼ �v on Cno-slip: ð10Þ
2.2. Slip boundary conditions

At slip boundaries Cslip, the normal velocity component vn van-
ishes and there are not tangential stresses. This means:

vn ¼ v � n ¼ 0
ðr � nÞ � t ¼ 0 8t 2 fn?g

�
on Cslip; ð11Þ

where n is the unit vector normal to the boundary surface C and t is
any of the unit vectors tangent to the surface.

2.3. Free-surface boundary conditions

At free-surfaces Cfs, the velocity components are let free and
zero tractions are imposed:

r � n ¼ 0 on Cfs: ð12Þ

or equivalently:

ðr � nÞ � n ¼ 0
ðr � nÞ � t ¼ 0 8t 2 fn?g

�
on Cfs: ð13Þ
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Remark 1. A normal traction condition must exist in order to fix
the pressure, then for the cases of domains with no free-surfaces,
the internal pressure p must be fixed at some point x0 on the
surface, i.e., for such cases the condition p ¼ 0 for x0 2 C will be used.

Next, the two most commonly used weak/variational formula-
tions will be derived using a FEM-like approach. The first one will
be obtained (using classical arguments) from the Laplace format
(1) and (2) and will lead to the Laplace formulation. The second
will be derived starting from the Divergence format (6) and (7)
leading to the Divergence formulation. After presenting them in
Sections 3–5, their behavior will be compared via a series of simple
flow tests in Section 6.
3. Laplace formulations for fully-imposed domains

Laplace formulations are weak formulations of the NS equations
initially derived for applications dealing with flows in fully-im-
posed domains, i.e., when C ¼ Cno-slip. They can be obtained in a
straightforward manner from the Laplace format Eqs. (1) and (2),
as shown below. Integration of the scalar product of Eq. (1) with
a vector w of admissible weighting functions over the fluid domain
X yields:

Z
X

w � q ov
ot
þrv � v

� �
dXþ

Z
X

w � rpdX�
Z

X
w � lr2v dX ¼ 0:

ð14Þ

Integrating by parts, both, the pressure and the Laplace terms in Eq.
(14), leads to:Z

X
w � q ov

ot
þrv � v

� �
dX�

Z
X

pr �wdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
pressure grad: term

þ
Z

X
rw : lrv dX|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Laplace term

þ

�
Z

C
w � ð�pI þ lrvÞ � ndC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Laplace natural boundary term

¼ 0: ð15Þ

Since C ¼ Cno-slip, the boundary integral in Eq. (15) is zero because,
in such a case, w vanishes everywhere on the boundary. Using this
property and performing a similar variational procedure on the con-
tinuity Eq. (2) with an admissible weighting function q, one gets the
general expression defining Laplace formulations:Z

X
w � q ov

ot
þrv � v

� �
dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mdv
dtþCðvÞ

�
Z

X
pr �wdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�Gp

þ
Z

X
rw : lrv dX|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�lLv

¼ 0;

ð16ÞZ
X

qr � v dX|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Dv

¼ 0: ð17Þ

Using the symbolic operators defined below the underbraces in Eqs.
(16) and (17), one can write the Laplace formulation simply as:

M
dv
dt

� �
þ CðvÞ þGðpÞ � lLðvÞ ¼ 0;

DðvÞ ¼ 0:
ð18Þ

Note that the Laplace diffusion operator term has been denoted
with the symbol lL.

4. Divergence formulation for fully-imposed domains

To get the Divergence formulation for the case of fully-imposed
domains (C ¼ Cno-slip) we start from the Divergence format (6) and
(7) instead of the Laplace format. Integrating the scalar product of
Eq. (6) with a vector w of admissible weighting functions over the
fluid domain X one gets:Z

X
w �q ov

ot
þrv � v

� �
dX�

Z
X

w � r � ð�pI þlrvþlðrvÞTÞdX ¼ 0:

ð19Þ

Integration by parts (Green’s Theorem) of the stress terms leads to:Z
X

w �q ov
ot
þrv � v

� �
dX�

Z
X

pr �wdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
pressure grad: term

þ
Z

X
rw : lrvdX|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Laplace term

þ
Z

X
rw : lðrvÞT dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

vel: grad: symmetrization term

�
Z

C
w � ð�pI þlrvþlðrvÞTÞ �ndC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Divergence natural boundary term

¼ 0:

ð20Þ

As in the case of the Laplace formulation, the boundary term in Eq.
(20) is zero because, for C ¼ Cno-slip, w vanishes everywhere on the
boundary. Using this property and the variational form of the con-
tinuity Eq. (7), one gets the general expression defining Divergence
formulations:Z

X
w � q ov

ot
þrv � v

� �
dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mdv
dtþCðvÞ

�
Z

X
pr �wdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
�Gp

þ
Z

X
rw : lrv dX|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�lLv

þ
Z

X
rw : lðrvÞT dX|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�lTv

¼ 0; ð21Þ

Z
X

qr � v dX|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
Dv

¼ 0: ð22Þ

Using the same symbolic operators defined in Eqs. (16) and (17)
(and repeated below the underbraces in Eqs. (21) and (22), one
can write the Divergence formulation simply as:

M
dv
dt

� �
þ CðvÞ þGðpÞ � lLðvÞ � lTðvÞ ¼ 0;

DðvÞ ¼ 0:
ð23Þ

Note however that a new operator T:

lTðvÞ ¼ �
Z

X
rw : lðrvÞT dX ð24Þ

coming from the symmetrization term ðrvÞT had to be defined.
5. Laplace and Divergence formulations on more general
boundary conditions

Until now, we have presented two weak formulations of the NS
equations the so called Laplace and Divergence formulations, both
were restricted to the particular case of no-slip boundary condition
(C ¼ Cno-slip). In that context, they are completely equivalent (ex-
cept by the assumed condition of local incompressibility of the La-
place format). In this section, extensions to consider boundaries of
any type: no-slip, slip and free-surfaces or any combination of
them are discussed. Related issues about the boundary conditions
associated with the Divergence and Laplace forms were addressed
in [40,41].

In order to explain the underlying concepts as simple as possi-
ble, we introduce the following mathematical property:

Weak form property: Due to the admissibility properties of w (com-
ponents of w vanish where corresponding components of v are



Fig. 1. The lid-driven square-cavity problem.
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imposed) and the homogenous physical boundary conditions given
in Eqs. (11) and (12), the following boundary term always vanishes:

Z
C

w � ð�pI þ lrv þ lðrvÞTÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{r

�ndC ¼ 0 ð25Þ

for

no-slip
slip

free-surface

8><
>:

9>=
>;boundaries

or for any boundary formed by any combination of them.
The weak form property just introduced permits us to affirm

that the Divergence formulation, shown in symbolic form in Eq.
(23) and repeated here:

M
dv
dt

� �
þ CðvÞ þGðpÞ � lLðvÞ � lTðvÞ ¼ 0;

DðvÞ ¼ 0:
ð26Þ

is valid not only for the case of no-slip boundaries, but also for any
type of physical boundary condition. This affirmation can be proved
in a straightforward way using that, when the general boundary
conditions are imposed through Eq. (25), the contribution of the
boundary term of Eq. (20) is still null. Thus, neither a special mod-
ification of Eqs. (21) and (22) nor particular considerations about
the physics of the problem are required.

In the Laplace formulation the previous statement is not true. A
careful examination shows that (to the authors’ surprise), in the
Laplace approach, the natural boundary term (that emerged from
integration by parts) in Eq. (15) is not strictly equal to the general
boundary condition expressed in (25). Furthermore, there is no a
rigorous mathematical foundation assuring that the boundary
term of Eq. (15) vanishes identically for the other (i.e. slip and
free-surfaces) boundary conditions considered in the paper. De-
spite what has just been said, either by an oversight or by some
type of empirical assumption, it is still a standard practice to not
consider such natural surface contribution. In words, this means
that the Laplace formulation, shown in symbolic form in Eq. (18),
and repeated here:

M
dv
dt

� �
þ CðvÞ þGðpÞ � lLðvÞ ¼ 0;

DðvÞ ¼ 0:
ð27Þ

is commonly used in general boundary conditions.
Furthermore, such unchanged form has gained popularity in the

computational scientific community for general applications and
also has been used as the underlying formulation for subsequent
developments (projection methods, fractional-steps algorithms).
With respect to this last point, we should mention that, although
a number of stabilized fractional-step formulations for different
velocity–pressure interpolations have been proposed based on
Divergence formulations (see, for example, [38,39,42]), Laplace for-
mulations are what we see most of the time in fractional-step algo-
rithms. Similarly, Laplace formulations are what we see most often
in pressure-projection methods.

As a conclusion of the Section we say that both formulations,
the Divergence and the Laplace ones, have been widely adopted.
It is not rare to see research articles where both forms are pre-
sented and discussed in parallel (see for example [14]). Besides,
from the point of view of the numerical implementation, most
commercial codes and open-source codes [7,11,28,29,37] are based
on one or the other.
6. Numerical tests: the revealing of non-physical solutions
generated by Laplace formulations

Recently in [20] and [21], a theoretical evidence demonstrating
that Laplace formulations have a potentially severe inconsistency,
has emerged. Based on that evidence, in this section a series of
carefully designed simple flow tests are presented. The idea behind
these tests is to see if we can capture, in real numerical experi-
ments, the failure of the Laplace approach. For this purpose, such
formulation is compared in parallel with the Divergence one. It is
shown that in some of these experiments, the Laplace scheme
coincides with the Divergence approach giving both correct phys-
ical answers. However in other tests, named objectivity tests, non-
physical solutions are indeed detected. We will delay to Section 7
any theoretical discussion, where we will also explain how the
numerical failures can be attributable to the non-objectivity of
the formulation.

The first two tests presented in this section are based on the
classical square cavity problem. The two following ones are based
on the study of annular cavity flows. Both of these tests have
proved to be extremely useful for the purpose of this work. After
these examples, other three valuable numerical tests will be
shown. The simulations that are presented here have been ob-
tained using the open-source PETSc-FEM library [29]. Its mono-
lithic Navier–Stokes module was modified to solve the FEM
equations corresponding either to Laplace formulations or to
Divergence formulations. In all the examples, mixed ðv; pÞ linear
elements equipped with standard SUPG-PSPG [5,43] stabilization
terms were used. The solutions obtained using the Laplace formu-
lation and the Divergence one are denoted by SLap ¼ fvLap; pLapg and
by SDiv ¼ fvDiv; pDivg, respectively.

6.1. Test 1: the lid-driven square-cavity

The lid-driven square-cavity is a classical test of computational
fluid dynamics to assess the performance of numerical codes (see
for example: [49,10,47,33,6,1]). It consists of a two-dimensional
square domain filled with an incompressible fluid. The left, right
and bottom boundaries are formed by no-slip fixed walls, while
the upper boundary is formed by a no-slip moving wall which
has an imposed horizontal velocity U ¼ 1. The length of the walls
is chosen to be L ¼ 1. The two upper corners are maintained fixed.
The case is shown in Fig. 1.

The purpose is to check if the same steady solution is obtained
using either the Laplace or the Divergence approach. The mesh is
formed by 100 � 100 quadrangular elements. The Reynolds num-
ber is set to Re ¼ 1, so as to test the case where viscous terms
and convective (inertial) terms are equally important. The pressure
is set to zero at the bottom right corner. The numerical results are
shown in Figs. 1 and 2. The resulting streamlines using the Laplace
formulation are displayed in Fig. 1 (a similar plot is recovered if the



Fig. 2. The lid-driven square-cavity problem: horizontal velocity and pressure profiles (u; p) along line AB of Fig. 1.
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Divergence formulation is used). The left plot of Fig. 2 shows the
horizontal velocity u profile along the line AB of Fig. 1. From the
plot it can be seen that the same velocity profile is obtained in both
approaches. Observe that the horizontal velocity becomes
u ¼ U ¼ 1 at the upper wall and zero at the lower wall. The vortex
center is located at about y � 0:75. This position approximately
corresponds to the intersection of the velocity profile with the ver-
tical line u ¼ 0. The maximum absolute error in velocities,
emax ¼maxðkvDiv � vLapkÞ, is about 0.02 and occurs near the upper
corners. Such value corresponds to a relative error of less than
2% with respect to the reference velocity U. The difference de-
creases several orders of magnitude away from the corners. For
example along the line AB, the velocity’s maximum relative error
is of only 0.004%. Note from the plot on the right of Fig. 2 that
the pressure values also match well; along the line AB the pres-
sure’s maximum absolute error is 0.001.

6.2. Test 2: the slippery square-cavity

A good idea to check both formulations under slip boundary
conditions is to modify the standard lid-driven square-cavity, de-
fined in test 1, by changing the no-slip condition to a slip condition
in the three non-driven walls (i.e. the left, right and bottom walls).
In Figs. 3 and 4, the obtained numerical results are shown. The
streamlines corresponding to the solution obtained using the
Divergence formulation are displayed in Fig. 3 (a similar plot can
be recovered for the Laplace one).

Fig. 4 shows plots of the horizontal velocity u and the pressure,
along the line AB of Fig. 3. It can be seen that the same velocity and
pressure profiles are obtained for both formulations. Note from the
left plot that, because of the slip condition, the velocities on the
non-driven walls are non-zero now (see velocity u at point B).
Fig. 3. The slippery square-cavity problem.
The vortex center moves down to about y � 0:68, corresponding
to the intersection of the velocity profile with the vertical line
u ¼ 0. Again, the maximum relative error in velocities,
emax ¼maxðkvDiv � vLapkÞ, in all the domain is less than 2% with re-
spect to the reference velocity U and occurs near the upper corners.
As in the test 1, these differences can be attributed to the flow sin-
gularity occurring near these two areas. In the other regions of the
domain, vDiv and vLap coincide quite well, as the left plot of Fig. 4
shows. Note, from the right plot of the same figure, that the pres-
sure values also match well. Along the observation line AB, the
velocity’s absolute error is of only 0.00001 and the pressure’s abso-
lute error is of only 0.0003. Nothing wrong is found in this test with
the Laplace formulation, it matches the Divergence solution.

6.3. The annular-cavity: A general analytical solution

In Sections 6.1 and 6.2 it has been shown that the two first at-
tempts to detect the non-objectivity of Laplace formulations failed:
running the well-known and commonly used square-cavity test
does not show any really appreciable discrepancy between Laplace
and Divergence solutions. Is the error in Laplace formulations so
small and negligible to just really be appreciable in extreme cases
with free-surfaces as the ones shown in [21]? Are there no simpler
tests that could clearly show the effects of the violation of objectiv-
ity and that be simple enough so that any researcher working in
numerical simulations of fluids could replicate? This topic is ad-
dressed in what follows.

Flows between cylinders are commonly used for studies of vis-
cometry, hydrodynamic stability, lubrication and bifurcation the-
ory, etc. (see for example: [4,35,24,25]). Among these different
types of flows, here, the case of flows in the annular cavity is con-
sidered. The annular-cavity problem consists of the study of 2D
flows (fluid motion in the axial direction is assumed zero) be-
tween two coaxial cylindrical walls, as shown in Fig. 5. The inter-
nal cylinder has a radius rA and the external cylinder a radius rB,
both can be arbitrary. These series of tests have two fundamental
properties. First, one can easily set up different boundary condi-
tions to the walls, such as imposing different angular velocities
together with slip or no-slip conditions. Second, analytical solu-
tions can be derived for all these different types of boundary
conditions.

Let us obtain the general analytical solution of the Navier–
Stokes Equations for the case of two-dimensional steady laminar
flows around two coaxial cylinders of arbitrary radius, rA and rB,
respectively. In polar coordinates ðr; hÞ the 2D steady Navier–
Stokes Eqs. (1) and (2) can be written as:



Fig. 4. The slippery square-cavity problem: horizontal velocity and pressure profiles (u;p) along line AB of Fig. 3.
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qar ¼ �
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or
þ 2l 1

r
oðrGrrÞ
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� 1
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Ghh

� �
; ð28Þ
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� �
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r � v ¼ 1
r

oðrvrÞ
or
þ 1

r
ovh

oh
¼ 0; ð30Þ

where the velocity, the acceleration a and the tensor gradient are
given by:

v ¼
vr

vh

� �
¼ vrer þ vheh; ð31Þ
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ar
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� �
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vr
ovr
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Grr Grh

Ghr Ghh

� �
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oh �
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oh þ
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" #
: ð33Þ

By symmetry, it can be assumed that the flow fields do not depend
on h, i.e.:

vr ¼ vrðrÞ; vh ¼ vhðrÞ; p ¼ pðrÞ: ð34Þ

Inserting Eq. (34) into the continuity Eq. (30) and using the condi-
tion of non-permeable cylinder walls, we get that:

vr ¼ 0 in all the domain: ð35Þ

Taking into account (34) and (35), the tensor gradient reduces to:

rv ¼
Grr Grh

Ghr Ghh

� �
¼

0 � vh
r

ovh
or 0

" #
ð36Þ

and the momentum equations simplify to:
Fig. 5. The annular-cavity problem.
� q
r

v2
h ¼ �
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or
; ð37Þ

0 ¼ 2l o2vh

or2 þ
1
r

ovh

or
� vh

r2

" #
: ð38Þ

Solving Eq. (38) for vh and Eq. (37) for p, the general solution for the
flow is obtained:

vr ¼ 0; vh ¼
a
r
þ br; ð39Þ

p ¼ q � a2

2r2 þ 2ab lnðrÞ þ 1
2

b2r2
� �

þ p0; ð40Þ

where a; b and p0 are constants to be determined by boundary con-
ditions. Observe that the general solution is independent of the vis-
cosity l, i.e. all steady flow solutions are independent of the
Reynolds number.

6.4. Test 3: the fully-driven annular-cavity

Now let us obtain the particular solutions corresponding to
fully-driven flows in the annular cavity. These solutions corre-
spond to the case when both cylinders are rotating with arbitrary
angular velocities xA and xB, and their walls are no-slip walls, as
shown in Fig. 6. Then, the following boundary conditions apply:

vhðrAÞ ¼ VA ¼ xArA; vhðrBÞ ¼ VB ¼ xBrB; pðrAÞ ¼ 0: ð41Þ

Remark 2. The fully-driven annular-cavity problem presented in
this section can be seen as the 2D case of the renowned Taylor-
Couette flow [36,26].
Fig. 6. The fully-driven annular-cavity problem.



Fig. 7. The fully-driven annular-cavity problem: tangential velocity and pressure profiles (vh; p) along the radial coordinate r.
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Inserting Eq. (41) into Eqs. (39) and (40), it can be shown that
the general solution for the fully-driven cavity is given by:

a ¼ � r2
Br2

A

ðr2
B � r2

AÞ
ðxB �xAÞ; b ¼ xBr2

B �xAr2
A

ðr2
B � r2

AÞ
: ð42Þ

When both cylinders rotate with the same angular velocity
x ¼ xB ¼ xA, a becomes zero, and the flow solution is given by:

vr ¼ 0; vh ¼ xr; p ¼ q
1
2
x2r2 � 1

2
x2r2

A

� �
: ð43Þ

Then in the case of two co-rotating cylinders, the velocity field cor-
responds to a rigid motion and vh varies linearly with r. In this case,
the pressure is zero on the surface of the internal cylinder A and in-
creases quadratically with r. The increase in pressure is an effect of
the centrifugal force acting on the fluid.

With the analytical solution (43) at hand, numerical simulations
were done to see if differences between Divergence and Laplace
formulations can be detected. Figs. 6 and 7 show the numerical re-
sults obtained for the case where rA ¼ 1, rB ¼ 4 and x ¼ xB ¼
xA ¼ 1. In Fig. 6, the obtained streamlines for the Divergence case
are displayed. A similar plot can be recovered for the Laplace case.
From Fig. 7, one can see that both solutions behave equally well
matching the analytical solution.

6.5. Objectivity test 1: the slippery annular-cavity

In this section, the results corresponding to slippery annular-
cavity flow problems are presented. These particular flows are ob-
tained when the internal cylinder is formed by a no-slip wall that is
rotating with an arbitrary angular velocity xA, while the external
Fig. 8. The slippery annular-cavity problem.
cylinder is formed by a slip wall. The case is shown in Fig. 8 and
corresponds to the following boundary conditions:

vhðrAÞ ¼ VA ¼ xArA; eh � ðr � erÞ½ �r¼rB
¼ 0; pðrAÞ ¼ 0; ð44Þ

where the second equation corresponds to the slip condition on the
external cylinder B. The analytical solution for this type of flows can
be obtained using Eqs. (5) and (36). The slip condition becomes:

ovh

or
� vh

r

� �
r¼rB

¼ 0; ð45Þ

which in terms of the general solution (39) means:

� a
r2 þ b� a

r2 � b ¼ 0) a ¼ 0: ð46Þ

Then, the closed-form expression for the case of slippery annular-
cavity flows is:

vr ¼ 0; vh ¼ xAr; p ¼ q
1
2
x2

Ar2 � 1
2
x2

Ar2
A

� �
; ð47Þ

Comparison of Eqs. (43) and (47) tell us that the slippery annular-
cavity and the fully-driven annular-cavity with co-rotating cylin-
ders (x ¼ xB ¼ xA) gives the same steady flow solution: a rigid
motion of the fluid. Observe again that this behavior is independent
of the Reynolds number.

Next, the numerical results obtained for the case rA ¼ 1, rB ¼ 4
and xA ¼ 1 are shown in Fig. 9. According to Eq. (47) a linearly
increasing tangential velocity and a quadratic variation of pressure
should be obtained. In particular for the velocity we expect to get
the value vhðrBÞ ¼ 4:0 on the external cylinder. From the results
shown in Fig. 9 one can clearly see that, while the Divergence
scheme still matches the analytical solution, the Laplace formula-
tion gives a completely wrong answer. Note the loss of physical
meaning of the Laplace solution: the tangential velocity starts at
the imposed velocity on the inner cylinder VA ¼ 1, but instead of
increasing linearly with the distance from the origin r, it continu-
ally decreases to a value vhðrBÞ � 0:47. A similar phenomenon can
be observed for the pressure: the expected quadratic increase
due to the centrifugal force is not recovered. This simple objectivity
test shows the severe consequences of the violation of objectivity.
Some more tests are presented next.

6.6. Objectivity test 2: the slippery semicircular-cavity

The lid-driven semicircular-cavity is another test of computa-
tional fluid dynamics used as benchmark of numerical schemes



Fig. 9. The slippery annular-cavity problem: tangential velocity and pressure profiles (vh ;p) along the radial coordinate r.
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and in the context of studies of bifurcation theory [12,18]. It con-
sists of a 2D semicircular domain filled with an incompressible
fluid. In the standard test the semicircular boundary is formed by
a fixed no-slip wall, while the upper rectilinear boundary, i.e the
lid, is formed by a moving wall which has an imposed horizontal
velocity U ¼ 1. The radius of the semicircular wall is chosen to be
rB ¼ 1. The two upper corners are maintained fixed. When this
classical test is numerically solved, SLap and SDiv agree in the same
way as the previously discussed fully-driven cases (square-cavity
and annular-cavity).

For the purpose of detecting the failure of Laplace formulations,
the standard test is modified by changing the no-slip condition, on
the semicircular wall, to a slip condition, as depicted in Fig. 10. The
Fig. 10. The slippery semicircular-cavity problem.

Fig. 11. The slippery semicircular-cavity problem: horizontal v
numerical values of the horizontal velocity u along the line AB are
shown in the left plot of Fig. 11. Observe that, although both solu-
tions match the prescribed condition uLap ¼ uDiv ¼ 1 on the upper
boundary, the velocity profile along the line is different. One
remarkable property of the Laplace scheme is that the gradient
of the velocity field tends to zero near the slip wall. Note that dif-
ferent pressure profiles are obtained too (see right plot of Fig. 11).

6.7. Objectivity test 3: flow around a slippery cylinder

The case of steady uniform flow around a no-slip cylinder is a
classical problem used as benchmark for numerical simulations.
We modify the original test by configuring the cylinder with slip
walls instead of no-slip walls. The numerical results, for a Reynolds
number Re ¼ 1 and an incident horizontal velocity V ¼ 1, are
shown in Figs. 12 and 13. In Fig. 12, the resulting streamlines for
both formulations are presented, giving similar results. However,
when the velocity V and pressure profiles along the upper semicir-
cular arc ABC are plotted, severe discrepancies are observed (see
Fig. 13). The most notable difference is that the flow accelerates
more in the Laplace solution, reaching a maximum speed of about
1 instead of the value close to 0.6 obtained when the Divergence
formulation is employed. Note that for this case the effect of
non-objectivity is similar as if an external force would be helping
the flow to move along the cylinder.
elocity and pressure profiles (u; p) along line AB of Fig. 10.



Fig. 12. Flow around a slippery cylinder.

Fig. 13. Flow around a slippery cylinder: velocity profiles and pressure profiles (kvk; p) along the semicircular arc ABC shown in Fig. 12.
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6.8. Objectivity test 4: a free-surface sloshing test

The last test presented is the sloshing problem, i.e., a problem
with free-surfaces, depicted in Fig. 14. It consists of a tank filled
with liquid at rest such that, at time t ¼ 0, its free-surface is config-
ured so as to have a sinusoidal shape perturbation. As a conse-
quence of the perturbation, the free-surface of the liquid moves
in an oscillatory motion [2,32]. For small amplitudes an analytical
solution can be obtained [31].
Fig. 14. Sloshing tank problem.
Following the same configuration set-up defined in [2], the
problem is run using both formulations. The obtained results, for
the motion of the fluid particle A on the free-surface, are displayed
in Fig. 15. Note that the Divergence scheme agrees quite well with
Fig. 15. Sloshing tank problem: time evolution of the fluid particle located at point
A on the free surface, as depicted in Fig. 14.
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the analytical solution while the Laplace approach notably differs
from it, having a slightly higher frequency and a much smaller
damping.

7. Discussion of results

In the previous section a number of tests were presented.
Among them, the named objectivity tests reveal a series of non-
physical solutions obtained when Laplace formulations are used.

7.1. A correct approach: the corrected Laplace formulation

After seen the numerical solutions obtained by Laplace formula-
tions, we do not want the reader to fall into the conclusion that
starting from the Laplace format (1) and (2) of the NS equations
is definitely wrong. Although we recommend the Divergence ap-
proach because is more general, a correct formulation can indeed
be obtained from the Laplace approach. This is shown in this sec-
tion. We have named the correct approach: corrected Laplace for-
mulation, to make it clear that it is the counterpart of the Laplace
formulation and to emphasize that it is not the standard or classical
approach.

The correct formulation valid for the three types of boundary
conditions (no-slip, slip or free-surfaces or for any boundary that
is a combination of them) can be obtained by taking into account
the natural boundary integral of Eq. (15) (which was neglected in
the derivation of the Laplace formulation in Section 5). Such
boundary integral can be rewritten as:Z

C
w � ð�pI þ lrvÞ � ndC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

natural boundary term

¼
Z

C
w � ð�pI þ lrv þ lðrvÞTÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

r

�ndC

�
Z

C
w � lðrvÞT

� 	
� ndC: ð48Þ

Then, after imposing the physical boundary conditions through the
weak form property given in Eq. (25), we get that the corrected La-
place formulation is given by:Z

X
w � q ov

ot
þrv � v

� �
dX�

Z
X

pr �wdX|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
pressure grad: term

þ
Z

X
rw : lrv dX|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Laplace term

þ
Z

C
w � ðlðrvÞTÞ � ndC|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

additional boundary term

¼ 0: ð49Þ
Fig. 16. The slippery annular-cavity problem. Solutions obtained with t
If we define the symbolic operator V:

lVðvÞ ¼ �
Z

C
w � ðlðrvÞTÞ � ndC ¼ 0 ð50Þ

and use the operators defined in Section 3, we can write the cor-
rected Laplace formulation in symbolic form as:

M
dv
dt

� �
þ CðvÞ þGðpÞ � lLðvÞ � lVðvÞ ¼ 0;

DðvÞ ¼ 0:
ð51Þ

Note that the corrected Laplace formulation does not longer have
the property that the viscous terms are given as function of the La-
place diffusion operator only.

To see the numerical behavior of the corrected formulation, we
implemented the scheme into PETSc-FEM (by adding the addi-
tional boundary term to the existent Laplace module) and re-run
the tests of Section 6. In Figs. 16 and 17, we show as an example,
the results corresponding to the cases of the slippery annular-cav-
ity and of the flow around a slippery cylinder (Sections 6.5 and 6.7,
respectively). As can be seen from these figures, now, the corrected
Laplace scheme gives right physical responses. Note that such solu-
tions also match the ones of the Divergence approach.

The agreement between the corrected Laplace and the Diver-
gence formulations can, indeed, be proved mathematically in the
continuum from the following operator equality (derived using
integration by parts and the incompressibility equation):

lVðvÞ ¼ �
Z

C
w � ðlðrvÞTÞ � ndC ¼ �

Z
X
rw : lðrvÞT dX ¼ lTðvÞ:

ð52Þ
7.2. The failure of Laplace formulations from the point of view of
objectivity

Comparison of the Laplace formulation given in Eq. (27) with
the corrected formulation given in Eq. (51), clearly reflects the
point of view that the failure of the standard approach lies in an
inappropriate management of boundary conditions. Not imposing
the real physical conditions caused the absence of a integral
boundary term. As shown in the numerical tests, the missing of
such term produces severely distorted non-physical solutions.

However, we want to emphasize that the failure of the Laplace
formulation was not detected by realizing that there was a prob-
lem with the imposed boundary conditions. After all, the use of
he three formulations: Divergence, Laplace and corrected Laplace.



Fig. 17. Flow around a slippery cylinder. Solutions obtained with the three formulations: Divergence, Laplace and corrected Laplace.
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approximate boundary conditions is very common in physics and
computational fluid mechanics. Actually, the discovery of the fail-
ure came by noticing that the Divergence formulation was able to
give correct physical responses where the Laplace one did not. This
provided an alternative point of view which shows that the non-
physical responses of the Laplace formulation can be explained
as caused by its lack of objectivity.

As mentioned above, such objective point of view surges from
the comparison of the Laplace formulation (27) with the Diver-
gence formulation (26). Since the Divergence gives corrects physi-
cal answers, the comparison leads to the conclusion that the failure
of the Laplace formulation can be seen as caused by a missing vol-
ume integral:

lTðvÞ ¼ �
Z

X
rw : lðrvÞT dX: ð53Þ

The observation that this volume integral comes from the symme-
trization of the velocity gradient in the constitutive Eq. (5), was the
key factor for the demonstration that Laplace formulations are non-
objective [20,21]. In particular, it can be rigorously proved that such
type of formulation does not model anymore the correct fluid mate-
rial given by Eq. (5), but instead it models a non-objective material
whose constitutive equation is given by:

~r ¼ �pI þ lrv: ð54Þ
Fig. 18. The slippery annular-cavity problem. The non-physical analytical solution c
If this equivalent point of view is adopted, then the non-physical
solutions obtained with Laplace formulations can be seen as a nat-
ural manifestation of the non-objectivity of the simulated material
defined in Eq. (54). We want to remark, again, that the numerical
tests were designed to get such manifestation in the whole fluid do-
main and not by paying particular attention to boundary effects.

In Section 6.5, it was observed that Laplace formulations give a
severely incorrect answer for the case of slippery annular-cavity
tests. As pointed out in the previous paragraph, using such type
of formulations is equivalent to simulate a non-objective fluid
material which does not have the symmetrization of the stress ten-
sor. It is possible, indeed, to get the analytical solution that de-
scribe the behavior of this non-physical fluid.

From the definition of the non-objective stress tensor in Eq. (54)
and the equations of conservation of mass and momentum, it can
be seen that such non-objective fluid still satisfies the incompress-
ible NS Eqs. (1) and (2). As a consequence, for the slippery annular-
cavity, its response can be obtained by solving the NS equations
but with an erroneous traction boundary condition:

vhðrAÞ ¼ xArA; eh � ð�pI þ lrvÞ|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
~r

�erÞ

2
64

3
75

r¼rB

¼ 0; pðrAÞ ¼ 0:

ð55Þ
orresponding to the non-objective fluid material defined in Eq. (54) is included.
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Using Eq. (36), the erroneous traction condition becomes:

ovh

or

� �
r¼rB

¼ 0: ð56Þ

Then, inserting Eqs. (55) and (56) into Eqs. (39) and (40), one can get
the analytical solutions that corresponds to the non-physical fluid
material defined by the Laplace approach:

a ¼ xAr2
Br2

A

ðr2
B þ r2

AÞ
; b ¼ xAr2

A

ðr2
B þ r2

AÞ
; ð57Þ

so:

vr ¼ 0; vh ¼
xAr2

Br2
A

ðr2
B þ r2

AÞ
1
r
þ xAr2

A

ðr2
B þ r2

AÞ
r: ð58Þ

In Fig. 18, Fig. 16 has been plotted again but adding the curve for the
analytical solutions given by (57) and (58). From the new plot it is
clear that the numerical solutions obtained by Laplace formulations
match the analytical solutions of the non-objective fluid material.

The proof that the material being simulated is given by (54) is
general and applies to the three types of boundary conditions
(no-slip, slip and free-surfaces). Now, when the fluid is fully
bounded by non-slip walls, i.e. C ¼ Cno-slip, such a non-objective
material cannot be distinguished from the correct one. Mathemat-
ically, this can be seen by noting that, under the no-slip condition,
the corrective term vanishes:

½lVðvÞ�Cno-slip
¼ 0: ð59Þ

Numerically, this phenomenon can be observed in tests 1 and 3 of
Section 6 where both, the Laplace and the Divergence, formulations
match. In other flow situations, with boundaries having slip walls or
free-surfaces, one should expect to detect a difference. This is what
happens in the objectivity tests.

However, the reader may ask why, in the slippery square-cavity,
where a slip condition was used, both approaches gave the same re-
sult. The answer to this requires to put more attention to the inte-
grand of the missing boundary term (50). Splitting the admissible
test functions, into surface’s normal and tangential coordinates

w ¼ wtt þwnn ð60Þ

and making use that the normal component of the test function is
zero, because normal velocities are set to zero (v � n ¼ 0), one gets
that:

½lVðvÞ�Cslip
¼ �

Z
Cslip

lw � ðrvÞT � ndC

¼ �
Z

Cslip

lwt
ovj

oxt
nj dC: ð61Þ

Using the chain rule in the last two terms of the integrand, we get
that:

½lVðvÞ�Cslip
¼ �

Z
Cslip

lwt
oðvjnjÞ

oxt
� vj

onj

oxt

� �
dC: ð62Þ

Now, the first term inside the parenthesis is zero, because v � n ¼ 0
along the surface’s tangential direction:

oðvjnjÞ
oxt

¼ oðv � nÞ
oxt

¼ 0:

So we get that:

½lVðvÞ�Cslip
¼
Z

Cslip

lwt vj
onj

oxt

� �
dC: ð63Þ

Now by definition the onj

oxt
term is inversely proportional to the radius

of curvature Rslip of the slip wall, then we have:
½missing term�Cslip
/ 1

Rslip
: ð64Þ

Then for straight walls, Rslip !1 and the missing term vanishes
again. This explains why in the case of the slippery square-cavity
both formulations give quite similar results.

Eqs. (59) and (64) explain also why the phenomenon of viola-
tion of objectivity has been undetected in many standard flow
problems.

Finally, it is worth to mention that the results obtained for the
sloshing tank problem prove that Laplace formulations cannot
even be used in problems dealing with small perturbations.

8. Conclusions

In this article, a number of easily reproducible numerical tests
has been presented. Running them with numerical schemes based
on Laplace formulations reveal that such formulations produce se-
verely distorted non-physical solutions. Stated in different words,
these tests can make visible the non-objectivity of such formula-
tions. Here, it is shown that although Laplace formulations give
correct results in the case of fully-imposed (no-slip) domains, they
yield non-physical behavior in problems dealing with flows around
slip walls and flows with free surfaces.

The results obtained here are a useful reminder that boundary
terms and boundary conditions should always be treated with spe-
cial care.

Note, that there might be several numerical programs based on
Laplace forms available to researchers and engineers, who might
be unaware of the flaw of these formulations. Special attention
should be given to schemes based on fractional-step or projection
methods (see the reviews by Guermond et al. [13,14] for a descrip-
tion of such techniques).

It should be emphasized that Laplace formulations can be cor-
rected so as to recover objectivity by adding the missing integral
boundary term discussed in Section 7. However, this corrected La-
place formulation is not longer strictly diffusive because, due to the
corrective term, the viscous forces do not come exclusively from
the Laplace’s diffusion operator. Note also that the additional term
produces a coupling between velocity components, with this, a
computational advantage of Laplace formulations is lost.

The proposed objectivity tests can be used as benchmark tools
to check if CFD programs are formulated properly. The numerical
experiments presented in Sections 6 and 7, based on annular-cav-
ity flow problems, are equipped with analytical solutions which
can be useful to assess correctness and consistency of numerical
schemes implemented in open-source codes and commercial soft-
ware with a minimum of effort.
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