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Summary

Introduction

The main objective of this monograph is to develop a stabilized finite element
method (FEM) for solving the incompressible Navier-Stokes equations. Using Finite
Calculus (FIC), which is a methodology developed by E. Oñate and co-workers at
CIMNE (International Center for Numerical Methods in Engineering), flows with
a wide range of Reynolds numbers can be modeled. The secondary objective is to
test the applicability of the FIC/FEM model to fluid-structure interaction (FSI)
emphasizing aero-elasticity. The implementation of the model is carried out within
KRATOS, a finite element code for solving multi-physics problems developed at
CIMNE.

Convection-Diffusion problem

As the convection-diffusion equation can be regarded as a linear and scalar version
of the Navier-Stokes equations governing conservation of momentum and shares the
problem of oscillating solutions due to a dominant convection term a whole chapter
is dedicated to this equation.

The FIC/FEM model is introduced and its ability to solve the convection-
diffusion equation is tested and compared with other standard stabilized meth-
ods such like Galerkin/Least-Squares (GLS), Streamline Upwind Petrov-Galerkin
(SUPG) etc.

Satisfying results are obtained using linearly as well as quadratically interpolated
elements although, besides from being computationally cheaper, the linear results
are typically better.

Navier-Stokes equations

Apart from the problems occurring in the presence of a dominant convection term
the incompressible Navier-Stokes equations suffer from another source of instability
which comes from the fact that the incompressibility condition for some combina-
tions of velocity-pressure interpolation gives rise to incompatibility between these
with oscillations in the pressure field as a consequence. One example of this is
equal order interpolation which is used in this monograph and obliges the design of
stabilized methods in order to obtain physically meaningful results.
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The equations are first implemented with a GLS/FEM method which provides
the necessary stabilizing effect for the convection term as well as for the incom-
pressibility constraint. Quadratically and linearly interpolated elements are used.
The time discretization is carried out with a backward Euler scheme and the global
assembled system of equations is solved monolithically. The method is tested and
validated by performing simulations of ”driven cavity flow” and ”flow around cylin-
der”.

The FIC/FEM model for incompressible flow is next derived. The FIC equations
are written in the principle curvature directions of the velocity components of the
solution and by this manner the desired stabilizing effect is obtained. Moreover, the
induced dissipation replaces the need for any additional turbulence model for flows
with high Reynolds number. The model is tested for laminar and turbulent flow by
simulating ”driven cavity flow”, ”flow around cylinder” and ”backward-facing step
flow”.

An aerodynamic study of a telescope and its enclosing structure is carried out
for different positions with respect to the wind inflow.

Fluid-structure interaction

The FIC/FEM model is next extended to an FSI model using a sequential staggered
coupling scheme. Flow-induced vibration of a flexible beam is simulated using con-
forming meshes. The structural domain is constituted of geometrically nonlinear
solid elements.

As an aero-elastic FSI application the 750 m tall skyscraper Burj Dubai is mod-
eled assuming that it behaves like a vertical beam with varying cross-section. The
wind-induced swaying is simulated.

Using the FSI coupling scheme the airflow around a thin-walled elastic cylinder
is simulated. The cylinder is modeled in CARAT which is a code for nonlinear
structural dynamics developed by K.-U. Bletzinger and co-workers at the Chair
of Structural Analysis, Technical University of Munich. The coupling with the FSI
model in KRATOS is done using the software MpCCI. In the flow-induced vibrations
of the cylinder the ovalling phenomena can be observed.



Chapter 1

Introduction

1.1 Background

Many challenging areas within multidisciplinary analysis lie in dealing with fluid-
structure interaction (FSI) types of problem. FSI indeed has a wide range of appli-
cations within very different fields. In bioengineering such as interaction between
blood flow and blood vessels, in marine engineering or aeronautics different kinds
of shape optimization problems or in civil engineering such as simulation of the
dynamic behavior of flexible structures subjected to wind load.

The latter is of certain interest as the wind effect becomes a more dominant
factor when the design process goes towards building lighter and taller structures.
One example is the air control tower at Sturup airport in Malmö, Sweden, which
sways when the wind lies on to such extent that the staff becomes seasick and have
to go home.

A suspension bridge is a structure which can be brought to fluttering at a certain
wind speed. This might cause damage or in the worst case lead to collapse, as for
the Tacoma bridge, USA [47]. It had only been open for traffic for a few months.
Another suspension bridge, the Great Belt bridge in Denmark, has been subjected
to an aerodynamic analysis using a fluid-rigid body model in [43].

A different kind of project under development which constitutes an interesting
and challenging application to FSI is the design and construction of an extremely
large telescope (ELT) on the island of La Palma, the Canary Islands.

It is by far the world´s largest optics telescope. The consortium in charge of
performing a design study of this project consists of partners from Finland, Ireland,
Spain, Sweden and UK [45]. According to this study the diameter of the primary
mirror is 50 meters wide and built up by 618 hexagonal segments, each held in
position by three actuators on the back side. The advanced adaptive optics system
responsible for keeping the mirror segments in position has to take into account the
gravity load, temperature changes and wind effects.

The wind is probably the most difficult part to predict. One preliminary aero-
dynamic analysis of the telescope structure is done in [46]. It provides some data
about the quality of ventilation and temperature distribution inside the enclosure

7



8 CHAPTER 1. INTRODUCTION

of the telescope. The study also gives an idea of the actions by the wind on the
telescope.

Besides from static wind load, which creates significant forces on the mirror
segments and on the tripod structure bearing the secondary mirror, dynamic wind
effects must be considered as they may excite eigenmodes on the structure. Another
effect is turbulence close to the mirror segments, which is to be held at its minimum
as it disturbs the optics quality.

In recent years the numerical modeling of FSI has become a focus of major
research activity, see e.g. [35] for a review of the field. One main categorization
of solution strategies for FSI problems can be based on whether the fluid and the
structure are strongly or weakly coupled.

The former is used in [36] where the set of nonlinear equations are solved based
on the Newton-Raphson methodology and incorporates the full linearization of the
problem. In [37] shape optimization with respect to drag force of a flexible body in
a surrounding fluid is carried out using strong coupling and an approximate Newton
method.

Weak coupling is characterized by the presence of different solvers for the fluid
and the structure and the data at the interface being transferred between the do-
mains using so-called staggered solution algorithms, see e.g. [38].

An iterative staggered scheme with substructured computation of a relaxation
parameter is presented in [39], where interaction of thin-walled structures with in-
compressible viscous fluid is solved.

In [40] code coupling is used for FSI problems involving membranes as well as
thin-walled shell structures. These highly specialized models for nonlinear structural
dynamics are parts of CARAT (Computer Aided Research Analysis Tool), the in-
house code developed at the Chair of Structural Analysis at the Technical University
of Munich, Germany. In [41] a strategy for numerical form finding of membranes is
outlined.

The advantage of using different solvers is the freedom of combining highly spe-
cialized codes for each physical domain. However the coupling issues become more
complex.

1.1.1 New features in stabilization techniques

When comes to modeling air flow a fluid model governed by the incompressible
Navier-Stokes equations is suitable. Finding a numerical solution to this problem is
a task where special considerations have to be taken. It is well known that standard
numerical methods such as the Galerkin finite element method lead to unstable
solutions when applied to problems involving different scales, multiple constraints
and/or high gradients. These situations typically appear when dealing with the
Navier-Stokes equations or the related convection-diffusion equation.

One of the sources of instability is due to the diffusion term being underesti-
mated in relation to the convection term in the numerical approximation. There
exist numerous of stabilization techniques in order to deal with this problem, the
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most classical one being the SUPG method as described in Codina [1] where also
optimal upwind functions are derived for linear as well as for quadratic elements.
Comparison with other stabilization approaches is carried out in [2] ranging from
the Galerkin/least-squares (GLS) and the subgrid scales (SGS) method, first intro-
duced by Hughes [3], to the Characteristic Galerkin (CG) and the Taylor-Galerkin
method.

Essentially, the effect of applying any of these methods is that a stabilizing
term is added to the original Galerkin formulation of the problem. These methods
are also compared in [5], together with the Finite Calculus (FIC) approach. The
FIC method, developed by Oñate and co-workers [6], is a consistent procedure to re-
formulate the differential equations governing a multiphysics problem by introducing
new terms involving characteristic space and/or time dimensions. In the case of the
convection-diffusion equation this is achieved by invoking the balance of flux in a
finite domain and the terms induced when bringing the balance equation back to
the continuous level contain the necessary stabilizing effect.

A recent development within FIC is presented in [7] and consists in writing the
governing equations in the principle curvature axes of the solution. This introduces
an orthotropic diffusion which stabilizes the numerical solution both in smooth re-
gions and in the presence of sharp gradients.

The possibilities of FIC are further outlined in [8] which apart from the convection-
diffusion problem include treatment of incompressible fluids and solids.

The second source of numerical instabilities when obtaining a numerical solu-
tion to the incompressible Navier-Stokes equations using the Galerkin method is the
incompressibility constraint which causes spurious pressure oscillations if the finite
element spaces interpolating the velocity and the pressure fields do not satisfy the
so-called Babuska-Brezzi (LBB) stability condition, see [10]. Equal order interpo-
lation does not accomplish the LBB condition and therefore has to be treated by
means of stabilizing methods. In [11] a finite element formulation for solving the
Stokes problem using equal order velocity-pressure interpolation is presented. More
stability issues regarding the incompressible Navier-Stokes equations, also including
Coriolis forces and permeability of the medium, are discussed in [12] where a method
stabilized by means of SGS is set up and solved using a monolithic time integration
scheme. In [13] pressure stability of fractional step methods is analyzed with and
without pressure gradient projection.

The development of arbitrary Lagrangian-Eulerian (ALE) methods in order to
solve fluids in moving domains was an attempt to combine the advantages of the
Lagrangian approach and the Eulerian one. Lagrangian algorithms, in which each
individual node of the computational mesh follows the associate material particle
during motion, are mainly used in structural mechanics but also in computational
fluid dynamics (CFD), for example in the recently developed particle finite element
method (PFEM) [14]. In the Eulerian algorithms, being the more commonly used in
CFD, the computational mesh is fixed and the continuum moves freely with respect
to the grid. This freedom allows large distortions to be handled but at the expense
of precise interface definition. In the ALE approach the grid is moved arbitrary,
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independently of the continuum, and thus it applies very well to FSI problems with
a time changing fluid domain. An in-depth survey of ALE methods is found in [15]
where also various mesh displacement prescription algorithms are reviewed. In [16]
an ALE method is used for a wind engineering application for controlling bridge
profiles and tested comparing first order and second order time accuracy.

In [18] a finite element method for solving a fluid with surface waves interacting
with a completely or partly submerged body is presented. The fluid problem is
formulated in an ALE framework with the FIC method, which provides the necessary
stabilization for the pressure and the convection term, and solved using a semi-
implicit fractional step scheme. A mesh updating technique based on solving a
fictitious elastic problem in the fluid domain is set up.

In this monograph, in particular the modeling of air flows is addresses, which
typically have high Reynolds numbers, and hence one has to deal with turbulence
phenomena. Turbulence is characterized by the presence of large differences between
the scales in the flow pattern. These differences increase with the Reynolds number.
The typical treatment of this effect is to average the large scale entities in time or
space. The smaller scales are left unresolved but the effect of them on the large
scale has to be modeled, often in terms of the so-called Reynolds stress tensor,
scaled by the turbulent viscosity. In [20] an overview of existing turbulence models
is given. Within the Reynolds-Averaged-Navier-Stokes (RANS) family of methods,
the k − ε method is perhaps the most popular one, where the turbulent viscosity
is calculated from an estimation of the turbulent kinematic energy level and its
dissipation rate. The other big family of methods is Large-Eddy-Simulation (LES)
where the turbulent viscosity depends on the grid-size. It is computationally more
expensive than RANS methods as it requires a finer grid but provides more accurate
results.

In [22] an LES formulation is developed from the variational multiscale method.
In [23], also using the variational multiscale method and separation in three scales,
the close relationship between stabilized numerical methods and turbulence mod-
eling is discussed and the possibilities of this approach to serve these two, at first
sight different, goals: stabilization and accounting for the physical effects from the
numerically unresolved scales.

This duality is also present in the FIC method. In [25], following the ideas of
writing the FIC equations in the direction of the principle curvature axes of the
solution, a matrix form of the stabilization parameters is obtained. Apart from
providing the necessary numerical stabilization this allows to model a wide range of
flow problems for low and high Reynolds numbers, without introducing a turbulence
model. This will be the approach to be followed in the monograph.



1.2. FORMULATION OF THE PROBLEM 11

1.2 Formulation of the problem

A finite element method for solving the incompressible Navier-Stokes equations us-
ing the Finite Calculus approach is presented and its adaptivity for fluid-structure
interaction problems is investigated. The model is suited to aero-elastic problems
where flexible structures are subjected to moderate deformations under the influence
of wind load. The dynamic response of large scale ground structures is analyzed.

1.3 Procedure of solving the problem

All programming is done in C++ within the framework of KRATOS, a finite ele-
ment code for solving multi-physics problems [42]. For pre- and postprocessing is
used GiD, www.gidhome.com/. The procedure of solving the presented task can be
summarized in the following order.

• Trying out methods of stabilization for the convection-diffusion equation with
emphasis laid on the Finite Calculus (FIC) technique

• Defining a fluid model governed by the incompressible Navier-Stokes equations
stabilized by means of the GLS method

• Writing the equations in an arbitrary Lagrangian Eulerian (ALE) form and
setting up a mesh moving strategy

• Setting up the incompressible fluid model using FIC in the principle curvature
direction

• Validation of the fluid model by comparing numerical results to other works
and to experimental results

• Aerodynamic analysis of an extremely large telescope

• Establishing an FSI algorithm in Kratos

• Aero-elastic analysis of a swaying tower in 3D

• Code coupling between the fluid solver in KRATOS and a structure solver in
the structural code CARAT for FSI analysis

1.4 Layout

In Chapter 2 the convection diffusion equation is implemented. Starting with linear
finite elements and using a one-dimensional formulation in Section 2.1 numerical
results using the FIC method are compared to those obtained by other standard
stabilization methods. In Section 2.2 the formulation is extended to two dimensions
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and the FIC equations are written in the principle curvature directions, here approxi-
mated to the gradient. The formulation is next extended to quadratic finite elements
where the actual principle curvature directions are used. The one-dimensional case
is presented in Section 2.3 using 3-noded line elements and the two-dimensional case
in Section 2.4 where 6-noded triangles are used. The outcome of this chapter is a
completely stable method to solve the convection-diffusion equation by means of the
FIC technique using linear and quadratic elements. However, besides from being
computationally cheaper, the linear results are typically better.

In Capter 3 the incompressible Navier-Stokes equations are dealt with and in
the first Section 3.1 they are stabilized using the GLS method. Linear as well as
quadratic approximation of equal order is employed and the equations are solved
monolithically. In Section 3.2 the formulation is extended to an ALE framework
in order to account for a moving mesh. In Section 3.3 the FIC/FEM model for
an incompressible flow is set up and solved using a fractional step scheme. Linear
elements of equal order approximation are used. An algorithm for computation of
the characteristic length tensor hij is explained. Numerical examples are presented
for flows with low and high Reynolds numbers. These are ”driven cavity flow”, ”flow
around cylinder” and ”backward-facing step flow”. Last, an aerodynamic simulation
of a telescope is carried out.

In Chapter 4 the ability of the FIC/FEM model to simulate fluid-structure inter-
action (FSI) problems with emphasis on aero-elasticity is investigated. The dynamic
behavior of ground structures subjected to wind load is of interest. In Section 4.1
the fluid solver is outlined. This includes the FIC/FEM model and the mesh mov-
ing strategy, which are repeated here. Next in Section 4.2 the FSI interface via
KRATOS is explained. The coupling scheme is defined and an application to the
skyscraper Burj Dubai is performed. Finally, in Section 4.3, the structural code
CARAT is coupled to KRATOS and airflow around an elastic cylinder is simulated.



Chapter 2

Convection-Diffusion problem

When solving a multiscale problem the solution may vary in different orders of mag-
nitude. Solving the convection-diffusion problem is an example when such effects
have to be dealt with. If the convection term is dominant, sharp gradients at the
boundary or at internal layers may occur and if the approximation is of ”central
difference-type”(dT

dx
≈ Ti+1−Ti−1

2l
), as in the case of standard Galerkin finite element

procedure, numerical instabilities will follow. Therefore it is necessary that the
mathematical model provides some sort of stabilization. For the finite element for-
mulation of a simple convection-diffusion problem different methods of stabilization
are tried out using linear and quadratic elements [1],[5],[2].

Special consideration is given the Finite Calculus (FIC) method, developed by
E. Oñate and co-workers [8],[6]. A Lagrangian finite element formulation is tested
on the FIC-equation expressed in the principle curvature directions of the solution
as proposed in [7]. The numerical results are compared to other standard stabilized
methods, such like the Petrov-Galerkin, the Streamline Upwind Petrov-Galerkin
(SUPG) and the Galerkin-Least squares (GLS).

Using first finite elements with linear approximation, in Section 2.1 the equations
are implemented in one dimension and in Section 2.2 the two-dimensional case is
presented. Thereafter, in Sections 2.3 and 2.4, the same is done using quadratic
approximation.

2.1 One-dimensional linear formulation

By introducing the heat equation in steady state in a one-dimensional (1D) domain
Ω, the simplest possible form of the convection-diffusion equation is achieved.

u
dT

dx
− k

d2T

dx2
−Q = 0 in Ω

T = T on ∂Ω (2.1)

The convection term is governed by the constant velocity u, the diffusion term
by the heat conductivity k. T is the temperature and Q the distributed heat source.

13



14 CHAPTER 2. CONVECTION-DIFFUSION PROBLEM

The boundary conditions are here assumed to be of Dirichlet type. No Neumann
boundary condition is considered.

Introducing the weighted residual method and the following functional spaces

S = [vεH1(Ω)|v = T on ∂Ω]

V = [vεH1
0 (Ω)] (2.2)

and integrating by parts the weak form is constituted in finding TεS such that

∫

Ω

(
wu

dT

dx
+ k

dw

dx

dT

dx

)
dΩ =

∫

Ω
wQ dΩ in Ω

T = T on ∂Ω (2.3)

for all wεV

2.1.1 Unstabilized scheme

To solve the problem the standard Galerkin FEM is used. The temperature field is
approximated by linear finite elements and the element length is denoted with le.
Introducing the following finite element spaces

Sh = [vεH1(Ω)|vεP 1(Ωe)|v = T on ∂Ω]

Vh = [vεH1
0 (Ω)|vεP 1(Ωe)] (2.4)

the discretized weak form of the differential equation (2.1) is written as
Find ThεSh such that

∫

Ω

(
whu

dTh

dx
+ k

dwh

dx

dTh

dx

)
dΩ =

∫

Ω
whQ dΩ in Ω

Th = T on ∂Ω (2.5)

for all whεVh.
In Figure 2.2 the solution of the unstabilized scheme is plotted. The solution is

oscillating and this is because the diffusion is too small compared to the convection
for a given element size. This critical relationship is quantified in the so-called Peclet
number, γ = ule

2k
which quantifies the need for stabilization.

The reason for the oscillation induced by the Galerkin method can be explained
using a central difference scheme, which coincides with the Galerkin FEM using
linear elements. The discretized equations can therefore be written as

u
dT

dx
− k

d2T

dx2
' u

Ti+1 − Ti−1

2le
− k

Ti+1 − 2Ti + Ti−1

(le)2
= 0

where Ti are the nodal unknowns. For the sake of simplicity the source term Q is
left out.
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Ti can be expressed in terms of Ti+1 and Ti−1

2k

(le)2
Ti = Ti+1

(
k

(le)2
− u

2le

)
+ Ti−1

(
k

(le)2
+

u

2le

)

Clearly if the term multiplying Ti+1 is less than zero, or equivalently the Peclet
number is greater than one,

(
k

(le)2
− u

2le

)
< 0 ⇔ k

(le)2
<

u

2le
⇔ γ > 1

and furthermore assuming Ti+1 > Ti−1 and all other parameters positive, a non-
physical result will yield, namely Ti < Ti−1. Ti is expected to be between Ti−1 and
Ti+1 or at least coincide with Ti−1.

2.1.2 Upwinding methods

The trick to avoid Ti taking spurious non-physical values leading to oscillations in
the solution is pushing the central difference (Ti+1 − Ti−1) of the convection term
towards (Ti−Ti−1). The approximation of dT

dx
is in this case said to be ”upwinded”.

The approximated equation for the node i is now

u
dT

dx
− k

d2T

dx2
' u

θTi+1 + (1− θ)Ti − Ti−1

le(1 + θ)
− k

Ti+1 − 2Ti + Ti−1

(le)2
= 0

where θ is introduced, (0 ≤ θ ≤ 1). θ = 0 means full upwinding whereas for θ = 1
the central difference scheme is recovered. Now the following expression for Ti is
obtained

(
2k

(le)2
+

u(1− θ)

le(1 + θ)

)
Ti = Ti+1

(
k

(le)2
− θu

le(1 + θ)

)
+ Ti−1

(
k

(le)2
+

u

le(1 + θ)

)

Solving the critical value of θ in order not to obtain non-physical value of Ti

gives the following result.

θ = 1 for γ ≤ 1

θ =
1

ule

k
− 1

for γ > 1 (2.6)

2.1.3 Artificial diffusion scheme

A popular stabilizing method is the so-called artificial diffusion scheme [5] where the
upwinding effect is achieved by simply increasing the heat conductivity parameter
k with an artificial term according to

k := k + α
ule

2
(2.7)
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where the parameter α is given as

α = 1− 1

γ
critical value, ensuring a physical stable solution

α = coth γ − 1

γ
optimal value, providing exact solution at nodes

Using the optimal value of α the result of this scheme is well stabilized as shown in
Figure 2.2. However, the idea of having to change the physical properties to achieve
it is somewhat unsatisfactory.

2.1.4 Petrov-Galerkin method

In this approach the upwinding effect is achieved by modifying the test function w
according to (2.8)

w = w +
αle

2

dw

dx
(2.8)

where the optimal value of α is adapted.
Integrating by parts, approximating T and choosing w in the piece-wise linear

finite element spaces Sh and Vh following scheme arises.
Find ThεSh such that

∫

Ω

(
whu

dTh

dx
+

dwh

dx
k
dTh

dx

)
dΩ +

∑
e

∫

Ωe

αle

2

dwh

dx
u
dTh

dx
dΩ =

∫

Ω
whQ dΩ +

∫

Ωe

αle

2

dwh

dx
Q dΩ in Ω

Th = T on ∂Ω (2.9)

for all whεVh. It should be pointed out that in case of Q = 0 this is equivalent to
the artificial diffusion scheme.

2.1.5 Finite Calculus

By means of the Finite Calculus method (FIC) [6] the original differential equation

u
dT

dx
− k

d2T

dx2
−Q = 0 (2.10)

is first written in terms of heat flux q

dq

dx
−Q = 0 where q(x) = u · T (x)− dT

dx
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If linear distribution of the heat source is assumed the balance of fluxes in a
finite domain of length l, see figure 2.1, is expressed according to

qA − qB + l
QA + QB

2
= 0 (2.11)

q
A q

C
q

B
q(x)

Q(x)

A C B

x

x

l
l
1

l
2

Figure 2.1: Balance of flux in a finite domain.

An arbitrary point C is defined around which the above quantities can be ap-
proximated using Taylor expansion

qA = qC − l1
dq

dx
|C +

l21
2

d2q

dx2
|C +O(l3)

qB = qC + l2
dq

dx
|C +

l22
2

d2q

dx2
|C +O(l3)

QA = QC − l1
dQ

dx
|C +O(l2)

QB = QC + l2
dQ

dx
|C +O(l2)

and substituting in (2.11) leads to the following expression

−l
dq

dx
|C +

l21 − l22
2

d2q

dx2
|C + l ·

(
QC +

l1 − l2
2

dQ

dx
|C

)
= 0

Division by (−l), introducing the characteristic length h = l1 − l2 and making the
definition that the quantities at point C now yield at the continuous level the finite
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calculus equation is obtained which together with the Dirichlet boundary conditions
is written as

u
dT

dx
− k

d2T

dx2
−Q− h

2

d

dx

(
u
dT

dx
− k

d2T

dx2
−Q

)
= 0 in Ω

T = T on ∂Ω (2.12)

Applying the Galerkin FEM to this equation, using the piece-wise linear finite
element spaces defined above, leads to the following discretized weak form.

For all whεVh find ThεSh such that

∫

Ω

(
whu

dTh

dx
+ k

dwh

dx

dTh

dx

)
dΩ +

∫

Ωe

dwh

dx

h

2
u
dTh

dx
dΩ =

∫

Ω
whQ dΩ +

∫

Ωe

dwh

dx

h

2
Q dΩ in Ω

Th = T on ∂Ω (2.13)

Taking the value of the characteristic length as h = α · le using the same optimal
value of α = coth γ − 1

γ
makes the FIC scheme equivalent to the Petrov-Galerkin

scheme as well as to the artificial diffusion scheme. Figure 2.2 shows an example
with velocity pointing towards the right and Dirichlet conditions creating a sharp
gradient at the right boundary.

0 2 4 6 8 10
−4

−2

0

2

4

6

8

10

analytical solution
unstabilized solution
stabilized solution,artificial diffusion
stabilized solution,Petrov−Galerkin
stabilized solution,Finite Calculus

Figure 2.2: 1D element mesh with 10 element of length le = 1, Peclet number
γ = 1.5, no heat source
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2.2 Two-dimensional linear formulation

The heat equation with only Dirichlet conditions in steady state is introduced in 2D

uj
∂T

∂xj

− k
∂2T

∂x2
j

−Q = 0 in Ω

T = T on ∂Ω (2.14)

where j = 1, 2
Introducing the following functional spaces

S = [vεH1(Ω)|v = T on ∂Ω]

V = [vεH1
0 (Ω)] (2.15)

the weighted residual method is adapted and the weak form of the unstabilized 2D
problem after integrating by parts takes the following shape. Find TεS such that

∫

Ω

(
wuj

∂T

∂xj

+ k
∂w

∂xj

∂T

∂xj

)
dΩ =

∫

Ω
wQ dΩ in Ω

Th = T on ∂Ω (2.16)

for all wεV

2.2.1 Unstabilized scheme

Using piecewise linear finite element spaces

Sh = [vεH1(Ω)|vεP 1(Ωe)|v = T on ∂Ω]

Vh = [vεH1
0 (Ω)|vεP 1(Ωe)] (2.17)

the discretized weak form of the unstabilized 2D problem is set up as follows.
Find ThεSh such that

∫

Ω

(
whuj

∂Th

∂xj

+ k
∂wh

∂xj

∂Th

∂xj

)
dΩ =

∫

Ω
whQ dΩ in Ω

Th = T on ∂Ω (2.18)

for all whεVh

Below the 1D-problem is represented in a 2D domain by extending the y-axis so
that a unit square is obtained. The domain is meshed with 200 triangular elements
and the following result is obtained using the above unstabilized scheme.
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Figure 2.3: Structured mesh with linear triangles of meshsize le = 0.1, Peclet number
γ = 1.5, no heat source

2.2.2 Streamline Upwind Petrov Galerkin method

The stabilization method in the multidimensional case that corresponds to the
Petrov-Galerkin scheme is the so-called Streamline Upwind Petrov Galerkin scheme
(SUPG). The ”modification” of the test function w is expressed as a perturbation
function P acting on w multiplied by a stabilization parameter τ with dimensions
of time. Perturbed Galerkin forms can be written in a general form as

∫

Ω

(
wuj

∂T

∂xj

+ k
∂w

∂xj

∂T

∂xj

− wQ

)
dΩ + Σe

∫

Ωe
τ e · P(w) · r dΩ = 0 (2.19)

where r expresses the residual of the original differential equation and τ e is element-
wise evaluated. If P := uj

∂
∂xj

and τ e = α·le
2|u| the stabilization term emerging from

this scheme has the properties of the one described in the Petrov-Galerkin 1D-case.
Furthermore, it is in the ”streamline” direction, the direction of the velocity. More-
over, element-wise integration and summation of the perturbation term is required
because ∂wh

∂xj
is discontinuous across the element boundaries.

Excluding terms that are zero due to the linear interpolation the discretized weak
form is set up as following. Find ThεSh such that

∫

Ω

(
whuj

∂Th

∂xj

+ k
∂wh

∂xj

∂Th

∂xj

)
dΩ + Σe

∫

Ωe
τ e · uk

∂wh

∂xk

· uj
∂Th

∂xj

dΩ =

∫

Ω
whQ dΩ + Σe

∫

Ωe
τ e · uk

∂wh

∂xk

·Q dΩ in Ω

Th = T on ∂Ω (2.20)

for all whεVh. As the stabilization parameter τ e tends to zero when the approxi-
mation is fine enough the SUPG, as well as other Galerkin forms will approach the
exact solution and are said to be consistent. This is also the case for the Finite
Calculus approach.

Here are the perturbation functions for some other Galerkin forms [5]
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Galerkin/Least-Squares (GLS) P := uj
∂

∂xj
− k ∂2

∂x2
j

Subgrid Scales (SGS) P := uj
∂

∂xj
+ k ∂2

∂x2
j

However, since the finite element approximation is linear, the second derivative
term vanishes and these methods reduce to the SUPG method.

Figure 2.4: Mesh with linear triangles le = 0.1, γ = 1.5, no heat source. SUPG.

Figure 2.4 shows an SUPG stabilized solution of a problem where the velocity
vector has the same direction as the temperature gradient. If the velocity vector
is not aligned with the gradient of the solution, oscillation may occur in the trans-
verse direction and the SUPG method which only adds diffusion in the velocity, or
streamline, direction will fail. Extra diffusion has to be added in the transverse
direction in order to stabilize the solution. This is traditionally taken care of by the
so-called ”shock capturing” or ”discontinuity-capturing” schemes [9], which become
non-linear due to the dependence of the gradient of the solution.

Figure 2.5 shows the inability of the SUPG method to capture sharp gradients
not aligned with the velocity direction.

Figure 2.5: The diagonal velocity u = 3√
2
[1, 1] is not aligned with the sharp gradient

at the upper and right boundary, le = 0.1, γ = 15. SUPG results. Left: temperature
distribution. Right: horisontal cut
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2.2.3 Finite Calculus

Writing the Finite Calculus (FIC) formulation of the problem in 2D

uj
∂T

∂xj

− k
∂2T

∂x2
j

−Q− hi

2

∂

∂xi

(
uj

∂T

∂xj

− k
∂2T

∂x2
j

−Q

)
= 0 in Ω

T = T on ∂Ω (2.21)

Once again excluding terms that are zero due to the linear interpolation the
discretized weak form is set up as following. Find ThεSh such that

∫

Ω

(
whuj

∂Th

∂xj

+ k
∂wh

∂xj

∂Th

∂xj

)
dΩ + Σe

∫

Ωe

hk

2

∂wh

∂xk

· uj
∂Th

∂xj

dΩ =

∫

Ω
whQ dΩ + Σe

∫

Ωe

hk

2

∂wh

∂xk

·Q dΩ in Ω

Th = T on ∂Ω (2.22)

for all whεVh

If hi is taken in the velocity direction as

hi = α · le ui

|u| where α = coth γ − 1

γ

the SUPG scheme is recovered. It is however convenient to split hi into a streamline
and a transverse characteristic length vector. In [8] these are derived via a non-linear
iterative scheme.

In [7] a slightly different and more consistent method is proposed. Instead of
splitting the characteristic length vector in a streamline and transverse part the FIC
balance equation is expressed in the principle curvature directions of the solution.
For linear elements the principle curvature is approximated as the gradient. Based
on these directions, a transformed coordinate system is defined with ξi as basis.
Denoting vector quantities with a prime the FIC formulation of the problem in the
ξi-system is written as

u′j
∂T

∂ξj

− k
∂2T

∂ξ2
j

−Q− h′i
2

∂

∂ξi

(
u′j

∂T

∂ξj

− k
∂2T

∂ξ2
j

−Q

)
= 0 in Ω

T = T in Ω (2.23)

This equation contains the necessary additional diffusion to stabilize the solution
in all situations. The next step is to transform the equation to the original basis.
A piece-wise linear finite element approximation is carried out and the discretized
weak form of the problem is expressed as follows.
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For all whεVh find ThεSh such that

∫

Ω

(
whuj

∂Th

∂xj

+ k
∂wh

∂xj

∂Th

∂xj

)
dΩ + Σe

∫

Ωe

∂wh

∂xj

RijD̄
′
ilRlk

∂Th

∂xk

dΩ =

∫

Ω
whQ dΩ + Σe

∫

Ωe
Rij

h′i
2

∂wh

∂xj

·Q dΩ in Ω

Th = T on ∂Ω (2.24)

The additional diffusion matrix is defined as

D̄′
ij =




uξhξ

2
0

0 uηhη

2


 (2.25)

where the subindices ξ and η refer to the respective component of the ξi-system in
2D. The characteristic length distances hξ and hη are evaluated according to

hξ = αξ · lξ
hη = αη · lη

where the values of the stabilization parameters αξ and αη are computed by consid-
ering the solution of two uncoupled 1D problems along the ξ and the η directions.

If (uξ 6= 0) αξ = cothγξ − 1

γξ

, γξ =
uξlξ
2k

Else αξ = 0

If (uη 6= 0) αη = cothγη − 1

γη

, γη =
uηlη
2k

Else αη = 0

Note that the Peclet numbers γξ and γη can take negative values as they depend
on the respective velocity component and not, as in the SUPG method, the absolute
value of the velocity. The lengths lξ and lη are the maximum projections of uξ and
uη along the element sides.
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The (ξ, η) coordinate system forms the angle θ to the original basis, see Figure
2.6. The transformation matrix Rij is defined according to

Rij =

[
cos θ sin θ

− sin θ cos θ

]

x 

y

η

ξ 

u 

θ

Figure 2.6: Transformed coordinate system

The solution to (2.24) is obtained by setting up a fictitious transient problem
using a forward Euler scheme with small time steps and bringing it to steady state.
This allows to treat easily the nonlinearity arising from the dependence of the tem-
perature gradient. Furthermore, using a lumped mass matrix, a diagonal solver can
be adapted which reduces the computational cost.

In Figure 2.7 it is shown that the FIC method provides a well-stabilized result
for the example with diagonal velocity in contrast with the SUPG method.
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Diagonal velocity

u=[2.12, 2.12]

T=0

T=1

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

Time

lo
g(

R
es

id
ua

l)

Convergence

Figure 2.7: Diagonal velocity u = 3√
2
[1, 1], le = 0.1, γ = 15 FIC solution using a

forward euler scheme (θ = 0) with ∆t = 0.01. Above to the right the residual is
plotted versus time. In the middle temperature distribution is plotted and horizontal
cut. Below SUPG solution.
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In Figure 2.8 an example with non-uniform conditions causing a sharp internal
temperature gradient perpendicular to the velocity direction is shown.

Non−uniform conditions

u=[3.5, −7.0]

T=1

T=0

T=1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Time

lo
g(

R
es

id
ua

l)

Convergence

Figure 2.8: u = [3.5,−7.0], le = 0.05, γ = 20, FIC solution (θ = 0), ∆t = 0.001.
Below SUPG solution.
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In Figure 2.9 the velocity is rotational varying from 0 to
√

2, Dirichlet conditions
are set on the left and upper edge so that a sharp internal gradient occurs perpen-
dicular to the velocity. Whereas the SUPG-method fails to capture the oscillations
the FIC-method provides a well stabilized result.

Rotating velocity field

u=[y,−x]

T=0

T=1

0 1 2 3 4 5
−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

Time
lo

g(
R

es
id

ua
l)

Convergence

Figure 2.9: Rotational velocity u = [−y, x], le = 0.05, γ = 125. FIC results (θ = 0),
∆t = 0.01. Below SUPG results.
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2.3 One-dimensional quadratic formulation

Introducing Lagrangian quadratic elements in 1D, the shape functions in local co-
ordinates ξ are written as

N1 =
1

2
ξ (ξ − 1)

N2 = 1− ξ2

N3 =
1

2
ξ (ξ + 1) (2.26)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

−0.2

0

0.2

0.4

0.6

0.8

1
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ξ

N
2
 

N
1
 N

3
 

Figure 2.10: Lagrangian quadratic shape functions

2.3.1 Unstabilized scheme

Starting from the weak form of the convection-diffusion equation as formulated in
Section 2.1, see Equation (2.3), the finite element approximation is carried out now
using the quadratic shape functions (2.26). The discretized weak form is stated as
follows.

Find ThεSh such that

∫

Ω

(
whu

dTh

dx
+ k

dwh

dx

dTh

dx

)
dΩ =

∫

Ω
whQ dΩ in Ω

Th = T on ∂Ω (2.27)

for all whεVh where

Sh = [vεH1(Ω)|vεP 2(Ωe)|v = T on ∂Ω]

Vh = [vεH1
0 (Ω)|vεP 2(Ωe)] (2.28)
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2.3.2 Petrov-Galerkin method

The perturbation of the test functions w that stands for the upwinding effect is
formulated as

w = w +
αle

2

dw

dx

for the two end nodes and

w = w +
βle

2

dw

dx

for the midnode. The expressions for the optimal upwind functions α and β provid-
ing nodally exact solution yield [1]

β =
1

2

(
coth

γ

2
− 2

γ

)

α =
(3 + 3γβ + γ2) tanh γ − (3γ + γ2β)

(2− 3β tanh γ)γ2

(2.29)

Abandoning the requirement of nodally exact values there is a possibility to substi-
tute α and β by a unique upwind function α1 according to

α1 =
1

2

(
coth γ − 1

γ

)

(2.30)

Using α1 the discretized weak form of the Petrov-Galerkin scheme for solving the
convection-diffusion equation using quadratic elements is set as finding ThεSh such
that

∫

Ω

(
whu

dTh

dx
+ k

dwh

dx

dTh

dx

)
dΩ +

∑
e

∫

Ωe

α1le

2

dwh

dx

(
u
dTh

dx
− k

d2Th

dx2

)
dΩ =

∫

Ω
whQ dΩ +

∑
e

∫

Ωe

α1le

2

dwh

dx
Q dΩ in Ω

Th = T on ∂Ω

(2.31)

for all whεVh
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0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
analytical solution
unstabilized solution
Petrov−Galerkin, optimal upwind functions
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Figure 2.11: 1D quadratic elements, le = 0.1, Peclet number γ= 3. Petrov-Galerkin
solution

2.3.3 Galerkin/Least-Squares method

The perturbation of the test functions w that stands for the upwinding effect is
formulated as

w = w +
αle

2

dw

dx
− αlek

2u

d2w

dx2

for the end nodes and

w = w +
βle

2

dw

dx
− βlek

2u

d2w

dx2

for the midnode. The upwind functions are

β =
γ2

(
coth γ

2
− 2

γ

)

6− 3γ coth γ
2

+ 2γ2

α =
(3 + γ2 + 6γβ + 9β

γ
) tanh γ − (3γ + 9β + γ2β)

(2γ2 − 3βγ2 tanh γ)

(2.32)

The optimal choice for the corresponding unique upwind function is

α1 =

(
3

2γ2
+

1

2

) (
coth γ − 1

γ

)
− 1

2γ
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(2.33)

and with this choice the discretized weak form of the GLS-stabilized scheme is
written as follows.

Find ThεSh such that

∫

Ω

(
whu

dTh

dx
+ k

dwh

dx

dTh

dx

)
dΩ +

∑
e

∫

Ωe

(
α1le

2

dwh

dx
− α1lek

2u

d2wh

dx2

) (
u
dTh

dx
− k

d2Th

dx2

)
dΩ =

∫

Ω
whQ dΩ +

∑
e

∫

Ωe

(
α1le

2

dwh

dx
− α1lek

2u

d2wh

dx2

)
Q dΩ in Ω

Th = T on ∂Ω (2.34)

for all whεVh
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Figure 2.12: 1D quadratic elements, le = 0.1, γ = 3. GLS method
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2.4 Two-dimensional quadratic formulation

The Lagrangian quadratic approximation is now introduced in 2D. The geometry is
an iso-parametric triangle as shown in figure 2.13. The shape functions are specified
according to

N1 = (1− 2ξ − 2η)(1− ξ − η)

N2 = ξ(2ξ − 1)

N3 = η(2η − 1)

N4 = 4ξ(1− ξ − η)

N5 = 4ξη

N6 = 4η(1− ξ − η)
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Figure 2.13: Iso-parametric triangular element with quadratic shape functions

2.4.1 Unstabilized scheme

The weak form from Equation (2.16) is approximated in the piece-wise quadratic
finite element spaces

Sh = [vεH1(Ω)|vεP 2(Ωe)|v = T on ∂Ω]

Vh = [vεH1
0 (Ω)|vεP 2(Ωe)] (2.35)

and the unstabilized discretized weak form is stated as follows.
For all whεVh find ThεSh such that

∫

Ω

(
whuj

∂Th

∂xj

+ k
∂wh

∂xj

∂Th

∂xj

)
dΩ =

∫

Ω
whQ dΩ in Ω

Th = T on ∂Ω (2.36)
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In the following example a quadratic analytic solution is used to check the im-
plementation of the quadratic scheme. A unit square with constant velocity towards
the right and Dirichlet condition T = 0 to the left and T = 1 to the right.
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Figure 2.14: u = [100, 0], le = 0.1, k = 1, Q = 200 · x− 2

2.4.2 Galerkin/Least-Squares method

The modified test function w for the GLS method is written in 2D as

w = w + τue
j

∂w

∂xj

− τ ek
∂2w

∂x2
j

The time parameter τ e is taken as

τ e =
α1le

2|u|

where the optimal unique upwind function α1 from the 1D case, see (2.33), is used.
The discretized weak form of the problem in 2D is now set up. Find ThεSh such
that

∫

Ω

(
whuj

∂Th

∂xj

+ k
∂wh

∂xj

∂Th

∂xj

)
dΩ +

∑
e

∫

Ωe
τ e

(
uj

∂wh

∂xj

− k
∂2wh

∂x2
j

) (
uk

∂Th

∂xk

− k
∂2wh

∂x2
k

)
dΩ =

∫

Ω
whQ dΩ +

∑
e

∫

Ωe
τ e

(
uj

∂wh

∂xj

− k
∂2wh

∂x2
j

)
Q dΩ in Ω

Th = T on ∂Ω (2.37)

for all whεVh

Figure 2.15 shows the example with a diagonal velocity creating a sharp boundary
layer at the upper and the right edge.
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Figure 2.15: Diagonal velocity u = 3√
2
[1, 1], le = 0.1, γ = 15. GLS results. Temper-

ature distribution and horizontal cut

2.4.3 Streamline Upwind Petrov Galerkin method

The modified test function w for the SUPG method is written as

w = w + τ euj
∂w

∂xj

Using the optimal unique upwind function α1 from the 1D case, see (2.30), the
discretized weak form consists in, for all whεVh, finding ThεSh such that

∫

Ω

(
whuj

∂Th

∂xj

+ k
∂wh

∂xj

∂Th

∂xj

)
dΩ +

∑
e

∫

Ωe
τ euj

∂wh

∂xj

(
uk

∂Th

∂xk

− k
∂2wh

∂x2
k

)
dΩ =

∫

Ω
whQ dΩ +

∑
e

∫

Ωe
τ euj

∂wh

∂xj

Q dΩ in Ω

Th = T on ∂Ω

(2.38)
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Figure 2.16: Diagonal velocity u = 3√
2
[1, 1], le = 0.1, γ = 15. SUPG results.

Temperature distribution and horizontal cut
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2.4.4 Finite Calculus

In this section the FIC equation is introduced in the principle curvature directions
[7]. Using a quadratic interpolation a new term appears in the finite element for-
mulation as the second derivative of the discretized variable has to be taken into
account. The FIC equation is written as

u′j
∂T

∂ξj

− k
∂2T

∂ξ2
j

−Q− h′i
2

∂

∂ξi

(
u′j

∂T

∂ξj

− k
∂2T

∂ξ2
j

−Q

)
= 0 in Ω (2.39)

or in matrix format

u′ ·∇′T T−k∇′ ·∇′T T−∇′D′
add ·∇′T T +∇′E′ ·(∇2)′T T = Q−∇′F′ ·Q in Ω (2.40)

the prime denoting that the principle curvature ξ is taken as basis. The velocity
u′ = [uξ uη], the operators ∇′ =

[
∂
∂ξ

∂
∂η

]
and (∇2)′ =

[
∂2

∂ξ2
∂2

∂η2

]
and the following

matrices

D′
add =




uξhξ

2
0

0 uηhη

2




E′ =




hξ

2
k 0

0 hη

2
k




F′ =




hξ

2
hη

2




are defined in the (ξ, η)-system. The definition of the characteristic length vector
h′ = [hξ hη] is

hξ = α1
ξ · lξ

hη = α1
η · lη

where α1 = 1
2

(
coth γ − 1

γ

)
is the optimal unique upwind function for quadratic

elements using the SUPG method [1]. Note that the Peclét number in this case is
component-wise evaluated taking into account each of uξ and uη.

The matrices D′
add, E′ and F′ are now brought back to the original basis (x, y)

by the following operations

Dadd = RTD′
addR

E = RTE′R

F = RTF′

using the transformation matrix R defined as

R =

[
cos θ sin θ

− sin θ cos θ

]

where θ is the angle of the transformed system (ξ, η) in the original basis (x, y)
according to figure 2.17.



36 CHAPTER 2. CONVECTION-DIFFUSION PROBLEM
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Figure 2.17: Transformed coordinate system

In order to determine ξ the second order derivatives of the temperature are
evaluated and the eigenvalue problem is solved for the curvature matrix.

C =




∂2T
∂x2

∂2T
∂x∂y

∂2T
∂x∂y

∂2T
∂y2


 (2.41)

As the principle curvature direction ξ is chosen the eigenvector that has the corre-
sponding eigenvalue of largest magnitude. η is then orthogonal to ξ in an anticlock-
wise sense.

The FIC equation is now written in the (x, y)-coordinates as

u · ∇T T − k∇ ·∇T T −∇Dadd · ∇T T +∇E · (∇2)T T = Q−∇F ·Q in Ω (2.42)

and the usual galerkin procedure is carried out. The weak form is constituted as
follows. For all wεV find TεS such that∫

Ω

(
wu · ∇T T + k∇w · ∇T T +∇wDadd · ∇T T −∇wE · (∇2)T T

)
dΩ =

∫

Ω
(w +∇wF) ·Q dΩ in Ω

T = T on ∂Ω (2.43)

for all wεV . Using piece-wise quadratic finite elements the discretized weak form
consists in, for all whεVh, finding ThεSh such that
∫

Ωe

(
whu · ∇T Th + k∇wh · ∇T Th +∇whDadd · ∇T Th −∇whE · (∇2)T Th

)
dΩ =

∫

Ωe
(wh +∇whF) ·Q dΩ in Ω

T = T on ∂Ω

(2.44)
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The nonlinearity arising from the dependence of the second order derivative of
the temperature is dealt with by solving a fictitious transient problem using an
explicit forward Euler scheme which is brought to steady-state using small time
steps.

In figure 2.18 the results using FIC for the example with diagonal velocity is
shown. Using the cubic term ∇′E′ · (∇2)′T T and the principle curvature direction
the solution does not converge. However, excluding the cubic term and using the
gradient direction, convergence is obtained.
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Figure 2.18: Diagonal velocity u = 3/
√

2[1, 1], quadratically interpolated elements
le = 0.1, γ = 15, ∆t = 0.005, θ = 0. Above: FIC in principle curvature direction.
Below: without the cubic term and FIC in gradient direction
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2.4.5 Concluding remarks

Below the result from simulations using the quadratic FIC formulation are compared
with the GLS and SUPG methods for the two examples with non-uniform conditions
and rotational velocity. In both cases the FIC equations are implemented in the
principle curvature direction and the cubic term is taken into account. In Figure
2.19 the temperature distribution is visualized for the example with non-uniform
conditions. The spurious oscillations that occur when the GLS and SUPG schemes
are used are absent, but the scheme is more diffusive than the linear results in Figure
2.8. Moreover the sharp boundary layer at the right boundary can not be captured
so well by quadratic elements.

In Figure 2.20 the internal boundary layer that appears due to the rotating
velocity field is well captured by the quadratic elements, which also is the case for
the linear elements in Figure 2.9.

From the above results it can be concluded that the FIC formulation expressed
in the principle curvature directions of the solution can be used to solve convection-
diffusion problems using linear as well as quadratic elements. In general terms, how-
ever, linear elements are more suitable, besides from being computationally cheaper.
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Non−uniform conditions
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Figure 2.19: u = [3.5,−7.0], quadratically interpolated elements le = 0.1, γ = 39,
∆t = 0.001, θ = 0. Above: FIC. In the middle: GLS results. Below: SUPG results.
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Rotating velocity field
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Figure 2.20: Rotational velocity u = [y,−x], quadratically interpolated elements
le = 0.1, γ = 250, ∆t = 0.01, θ = 0. Above: FIC. In the middle: GLS results.
Below: SUPG results.



Chapter 3

Navier-Stokes equations

In this chapter the incompressible Navier-Stokes equations and numerical methods
for solving them using linear as well as quadratic finite elements are presented. Equal
order velocity-pressure interpolation is employed.

First the Galerkin/Least-Squares (GLS) method is implemented and solved using
a monolithic strategy. The transient Navier-Stokes equations are then written in
an arbitrary Lagrangian-Eulerian (ALE) form and a mesh moving strategy is set
up. Then the Finite Calculus (FIC) approach in the principle curvature direction
is implemented in 2D and 3D and solved using a fractional step method. The
formulation is first tested by performing standard flow simulations at low and high
Reynolds numbers. Next a simulation is carried out in a control volume surrounding
a large telescope building. The so-called EURO50 [45] is a joint European project in
charge of planning for the construction of the world´s so far largest optics telescope.
Its size combined with the precise optics needed for astronomic observations sets high
requirements on the mechanical design and analysis tools such as a fluid-structure
interaction (FSI) model of the telescope might be feasible. This is not done in this
monograph, however critical issues that come from the wind effect are discussed and
the results from the aerodynamic simulation reproduce the flow pattern inside and
outside the telescope building.

3.1 Stabilized Incompressible flow

The incompressible Navier-Stokes equations are governed by instability problems of
different character. One is the underestimation of the diffusion term, as introduced
in Chapter 2. Another source of instability lies within the fact that, even though the
pressure is a dependent variable in the whole system of equations, it is uncoupled
from the incompressibility condition, as expressed in Equation (3.1b) which governs
the conservation of mass. The consequence of this is that the final system to be
solved might be not positive definite, leading to oscillations in the pressure field. The
requirements for the velocity and pressure spaces in order to avoid this instability is
that they accomplish the so-called Ladyzhenskaya/Babuska/Brezzi (LBB) condition.

Equal order velocity and pressure interpolations, which are used here, do not

41
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accomplish the LBB condition. However stabilizing methods like the GLS method,
the related method of subgrid-scales (SGS) [12] as well as the Finite Calculus (FIC)
method [19],[25] are able to circumvent the LBB condition and thus allow the use
of equal order interpolation. Additionally all these methods induce the necessary
additional diffusion to compensate for the instabilities due to a dominant convection
term.

In this first section the incompressible Navier-Stokes equations are solved using
a monolithic scheme and they are stabilized by means of the GLS method. After
establishing the strong form of the equations with boundary conditions the weak
form is derived. The GLS method is applied to the weak form and the arising terms
provide stabilization for the convection term as well as for the incompressibility
constraint. This allows to use an equal order interpolation for the velocity and the
pressure fields. The formulation is tested using linear as well as quadratic elements
by setting up divergence free velocity fields for which analytic solutions exist. Also
the stationary solution for a cavity flow is presented.

The GLS-formulation is then extended to the transient case and tried out for a
problem of flow around a cylinder.

3.1.1 Strong form

The incompressible Navier-Stokes equations consist in a) the equations governing
the conservation of momentum and b) the equation for conservation of mass, which
because of the incompressibility constraint reduces to conservation of volume. Some-
times b) is called the divergence or incompressibility equation. The equations to-
gether with the c) Neumann and d) Dirichlet boundary conditions are

ρuj
∂ui

∂xj

− ∂sij

∂xj

+
∂p

∂xi

− fi = 0 in Ω a)

∂uj

∂xj

= 0 in Ω b)

nj (sij − pδij)− ti = 0 on ΓN c)

ui = ui on ΓD d) (3.1)

The deviatoric stress tensor is written as sij = 2µeij where µ is the viscostiy and

the deviatoric strain tensor eij = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
− 1

3
∂uk

∂xk
δij.

Using the fact that for a divergence free velocity field the following relation holds

∂sij

∂xj

=
∂

∂xj

(2µeij) = µ

(
∂2ui

∂x2
j

+
∂

∂xi

(
∂uj

∂xj

− 2

3

∂uk

∂xk

))
= µ

∂2ui

∂x2
j

(3.2)

the momentum equation (3.1a) can be rewritten in a Laplacian form according to

ρuj
∂ui

∂xj

− µ
∂2ui

∂x2
j

+
∂p

∂xi

− fi = 0 in Ω (3.3)
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The Neumann boundary conditions (3.1c) are now

nj

(
µ

∂ui

∂xj

− pδij

)
− ti = 0 on ΓN (3.4)

which are consistent with the approximation (3.3) for internal flows, excluding free
surface effects.

3.1.2 Weak form

Test functions wi for the momentum equations and q for the incompressibility equa-
tion are introduced, integration by parts is performed and using the Green-Gauss
theorem the Neumann boundary condition is introduced. Together with the Dirich-
let boundary condition the weak form of the problem is stated as follows.

Find (ui, p) ε (S, Q) such that

∫

Ω

(
wiρuj

∂ui

∂xj

+
∂wi

∂xj

µ
∂ui

∂xj

− ∂wi

∂xi

p− wifi

)
dΩ−

∮

ΓN

witi dΓ +
∫

Ω
q
∂uj

∂xj

dΩ = 0 in Ω

ui = ui on ΓD

(3.5)

for all (wi, q) ε (V, Q) where

V = {v ε H1
0 (Ω) | v = 0 on ΓD}

S = {u ε H1(Ω) | u = u on ΓD}
Q = L2(Ω)

3.1.3 GLS formulation

In the GLS method the differential operators of the original equation act on the
test functions and are multiplied by a stabilization parameter and to the residual of
the differential equation. As already pointed out in Chapter 2 the GLS method is
consistent in the sense that if the exact solution of the original differential equation
(3.1) is inserted in the GLS formulation a zero residual is obtained. Furthermore
the amount of stabilization induced also depends on the meshsize and vanishes as
the meshsize goes to zero.

First of all a division of the domain Ω into triangular subdomains Ωe is made.
The finite element functional spaces for the variables are introduced in (3.6) using
piecewise polynomial functions of order n (n = 1 or 2 as linear and quadratic
interpolation are used in this section). Furthermore, the non-linear convection term
is linearized introducing the advective velocity ah

j = uh
j evaluated at the previous
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iteration according to the Picard´s method.

V h = {v ε H1
0 (Ω) |v ε P n(Ωe)| v = 0 on ΓD} ⊂ V

Sh = {u ε H1(Ω) |u ε P n(Ωe)| u = u on ΓD} ⊂ S

Qh = {q ε L2(Ω) |q ε P n(Ωe)} ⊂ Q (3.6)

With the following definitions:

L(uh
i ) = ρah

j

∂uh
i

∂xj

− µ
∂2uh

i

∂x2
j

+
∂ph

∂xi

L(wh
i ) = ρah

j

∂wh
i

∂xj

− µ
∂2wh

i

∂x2
j

+
∂qh

∂xi

L(ph) =
∂uh

j

∂xj

L(qh) =
∂wh

j

∂xj

(3.7)

the GLS-stabilized discretized weak form of the problem has the following form.
Find (uh

i , ph) ε (Sh, Qh) such that

∫

Ω

(
wh

i ρah
j

∂uh
i

∂xj

+
∂wh

i

∂xj

µ
∂uh

i

∂xj

− ∂wh
i

∂xi

ph − wh
i fi

)
dΩ−

∮

ΓN

wh
i ti dΓ +

∫

Ω
qh ∂uh

j

∂xj

dΩ +
∑
e

∫

Ωe
L(wh

i )τ e
u

(
L(uh

i )− fi

)
dΩ +

∑
e

∫

Ωe
L(qh)τ e

pL(ph) dΩ = 0 in Ω

uh
i = ui on ΓD

(3.8)

for all (wh
i , qh) ε (Vh, Qh) where τ e

u and τ e
p are stabilization parameters defined for

each element according to

τ e
u =

(
4µ

ρ(le)2
+

2‖ak‖
le

)−1

τ e
p =

4µ

ρ
+ 2‖ak‖le (3.9)

To test the formulation in figure 3.1 are illustrated the results of an example
with Dirichlet condition ui = (−x2, x1) at the boundaries and p = 0 at the bottom
left corner. Above linear elements are used and a body force fi = (−x1,−x2) is
imposed. The analytical solution p = 0, ui = (−x2, x1) is obtained in the whole
domain. Below, using quadratic elements, the body force is set to zero in order
to test the pressure term. The analytical solution p = 1

2
(x2

1, x
2
2), ui = (−x2, x1) is

obtained.
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Figure 3.1: Above linear interpolation (n = 1). Below quadratic interpolation
(n = 2)

Below in Figure 3.2 is the cavity example with only Dirichlet conditions, pre-
scribed velocity u = (1, 0) at the upper edge and velocity no-slip condition at the rest
of the boundary. Pressure is set to zero at the bottom left corner and the Reynolds
number is 1000. Comparison between linear and quadratic elements is made. The
total number of nodes is the same for the two cases. In the colorplots are visualized
the norm of the velocity and the pressure field. Apart from the main vortex two
secondary vortices appear, one located to the bottom right (BR) corner and one to
the bottom left (BL) corner. The coordinates of the center of each vortex as well as
the horizontal H and vertical V distance to the flow separation points are indicated
in table 3.1.
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Figure 3.2: Cavity. Norm of the velocity and pressure field. GLS solution. Above
linear interpolation (n = 1), meshsize le = 0.028. Below quadratic interpolation
(n = 2), meshsize le = 0.04

Table 3.1: Cavity Re =1000, vortex characteristics

Linear Quadratic Donea, Huerta [10]

xc 0.530 0.531 0.540
yc 0.568 0.566 0.573

xBR 0.862 0.869
yBR 0.115 0.109
xBL 0.081 0.085
yBL 0.076 0.077
HBR 0.305 0.296
VBR 0.332 0.325
HBL 0.193 0.200
VBL 0.164 0.162
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Figure 3.3: Cavity. Definition of the vortex characteristics

Transient formulation

Introducing the time derivative of the velocity in the momentum equations and
using a backward Euler scheme the transient GLS-stabilized discretized weak form
is written as follows.

For all time steps n = {1, 2, ...,number of time steps} find (uh,n
i , ph,n) ε (Sh, Qh)

such that

∫

Ω

(
wh

i ρ
∂uh,n

i

∂t
+ wh

i ρah,n
j

∂uh,n
i

∂xj

+
∂wh

i

∂xj

µ
∂uh,n

i

∂xj

− ∂wh
i

∂xi

ph,n − wh
i fn

i

)
dΩ−

∮

ΓN

wh
i t

n
i dΓ +

∫

Ω
qh ∂uh,n

j

∂xj

dΩ +
∑
e

∫

Ωe
L(wh

i )τ e
u

(
L(uh,n

i ) + ρ
∂uh,n

i

∂t
− fn

i

)
dΩ +

∑
e

∫

Ωe
L(qh)τ e

pL(ph,n) dΩ = 0 in Ω

uh,n
i = ui on ΓD

(3.10)

for all (wh
i , qh) ε (Vh, Qh) with initial conditions

uh,0
i = u0

i in Ω

The time derivative is approximated by first order according to

∂uh,n
i

∂t
=

uh,n
i − uh,n−1

i

∆t
(3.11)

Below is the transient solution of a flow around a cylinder with Reynolds number
2000. The above described backward Euler scheme is employed and the time step
used in the simulations is ∆t = 0.5. First linear triangular elements are used. The
geometry with boundary conditions and the different meshes A, B and C are shown
in Figure 3.4. The element size in the coarse mesh A is le = 0.5, in mesh B le = 0.25
and in mesh C le = 0.16667. The elements at the cylinder wall are 10 times smaller.
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Figure 3.4: Flow around cylinder. GLS solution. Above to the right mesh A with
2920 elements. Below to the left mesh B with 10323 elements. Below to the right
mesh C with 22129 elements
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Quasi-stationary solutions are obtained in which periodic vortex shedding occur.
In Figure 3.5 the pressure and the velocity fields at the beginning of one vortex
shedding period are shown.

Figure 3.5: Flow around cylinder, linear elements. GLS solution. From above mesh
A(le = 0.5), mesh B(le = 0.25) and mesh C(le = 0.16667). Pressure and velocity
field

In Figure 3.6 the pressure at point P1 on the cylinder wall, the velocity com-
ponents at point P2 2.85 units downstream of the cylinder as well as drag and lift
forces are plotted versus time. The points P1 and P2 are defined in Figure 3.4.

It can be seen that mesh A is too coarse for representing the flow correctly.
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Figure 3.6: Flow around cylinder, linear elements. Time development of GLS solu-
tion. Left: pressure in P1. Right: velocity components in P2. From above mesh A,
B and C. Below drag and lift forces.
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Below quadratic elements are employed using the same problem setup as for
linear elements. Two meshes are used. The coarser mesh to the left consists of 907
6-noded triangular elements whereas the finer mesh to the right has 2920 elements.

Figure 3.7: Flow around cylinder, quadratic elements. GLS solution. Coarse mesh
with le = 1.0 and fine mesh with le = 0.5

The plots of the pressure and velocity field are shown above in figure 3.7. Figure
3.8 shows the time evolution of the pressure and velocity components as well as the
drag and lift forces are illustrated.

The quadratic results from the two meshes coincide reasonably well between
themselves and with the linear results using meshes B and C. The computed Strouhal
numbers are listed in table 3.2.
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Table 3.2: Flow around cylinder. Strouhal number for the different meshes

Linear elements Quadratic elements
Mesh A 0.202 Coarse mesh 0.217
Mesh B 0.218 Fine mesh 0.220
Mesh C 0.219

Experimental value [33]
0.21
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Figure 3.8: Flow around cylinder, quadratic elements. GLS solution. From above:
evolution of pressure at point P1, velocity components at point P2, drag and lift
forces
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3.2 ALE formulation

The transient Navier-Stokes equations are written in an arbitrary Lagrangian-Eulerian
(ALE) form. To motivate this choice first the advantages and disadvantages of the
two classical approaches, the Lagrangian and the Eulerian approach, should be
pointed out.

The basic idea in the Eulerian approach is that the physical quantities evaluated
in the fluid are associated to a fixed region of space. The equations are formulated
in terms of the spatial coordinates xi and the time t. The mesh is fixed in time and
complex fluid patterns like vortices etc can be simulated as might occur in flows
with high Reynolds number. However, since this does not allow the fluid domain
to move, it does not apply to fluid-structure interaction problems with a moving
interface. The transient momentum equation with the Eulerian approach takes the
following form.

ρ
∂ui

∂t
+ ρuj

∂ui

∂xj

− µ
∂2ui

∂x2
j

+
∂p

∂xi

− fi = 0

On the other hand, in the Lagrangian approach, the physical quantities are
attached to the material, that is the equations are formed for the moving fluid
keeping track of the fluid particles. This makes it easy to take into account history-
dependence of the motion of the material. The freedom of following a changing
geometry makes the Lagrangian approach suitable for modeling problems including
free surfaces and flow separation which may occur in for example marine applica-
tions. The drawback is that a loss of accuracy is expected if the flow pattern is
complex or in the case of large deformations. Remeshing at several or at each time
step may be needed which is costly.

For these reasons from now on the ALE-approach is used as it combines the
advantages of the Eulerian and the Lagrangian formulation making it suitable for
fluid-structure interaction applications. In the ALE-formulation the mesh is allowed
to move with an arbitrary mesh velocity vh

i different from the velocity uh
i . vh

i is
chosen so that it follows moving boundaries, such as those at the interface of a
deformable structural domain.

The fluid domain is now free to change in time which has essential advantages
in fluid-structure interaction problems. In the numerical formulation of the Navier-
Stokes equations the ALE-formulation introduces a new transport term. This can
be seen as a modification of the convection term and, using GLS-stabilization, the
problem to solve, expressed in its discretized weak form, is now the following.
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For all time steps n = {1, 2, ...,number of time steps} find (uh,n
i , ph,n) ε (Sh, Qh)

such that

∫

Ω

(
ρwh

i

∂uh,n
i

∂t
+ ρwh

i (uh,n
j − vh,n

j )
∂uh,n

i

∂xj

+
∂wh

i

∂xj

µ
∂uh,n

i

∂xj

− ∂wh
i

∂xi

ph,n − wh
i fn

i

)
dΩ−

∮

ΓN

wh
i t

n
i dΓ +

∑
e

∫

Ωe
L(wh

i )τ e
u

(
L(uh,n

i ) + ρ
∂uh,n

i

∂t
− fn

i

)
dΩ +

∫

Ω
qh ∂uh,n

j

∂xj

dΩ +
∑
e

∫

Ωe
L(qh)τ e

pL(ph,n) dΩ = 0 in Ω

uh
i = ui on ΓD

(3.12)

for all (wh
i , qh) ε (Vh, Qh) with initial conditions

uh,0
i = u0

i in Ω

3.2.1 Mesh moving strategy

Moving the nodes at each time step so they fit to the time dependent computa-
tional domain requires a strategy so that the elements do not become distorted. As
the positions of the nodes at the boundaries are predetermined, fixed at the ex-
ternal boundaries or following the movement of the structure at the fluid-structure
interface, the positions of the internal nodes have to be calculated.

Different approaches to determine the positions in an optimal way exist, defining
master-slave nodes and moving them using some kinematic assumptions, with the
objective of obtaining good quality of the mesh and avoid distorsion.

Most common is perhaps solving a fictitious elastic problem in the fluid domain
and using the displacements as the new node positions. Here a particular and very
simple case of this family of methods is adapted: the Laplacian method, originally
introduced as a mesh smoothing technique [17]. This consists of solving a Laplacian
form in each dimension separately for computing the new positions of the nodes.
The method works fine if the mesh movements are not too large and if the stiffness
is increased for smaller elements.

In order to illustrate how this mesh moving strategy works below is an example
with a horizontal flow around a square solid. The solid is considered as a rigid
body but it has not any degree of freedom fixed. The pressure from the fluid sets
the square in movement towards the right only resisted by inertial forces due to its
mass. As the solid changes position the ALE-formulation allows the fluid mesh to
move. This is done with the Laplacian method and when the mesh displacement gets
too large the smaller elements close to the solid interface become distorted as shown
in Figure 3.10. The ALE-scheme breaks down at t ' 80 and the mesh displacement
for a critical node is plotted in figure 3.11.
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Figure 3.9: Velocity field at time t = 50

Figure 3.10: ALE meshes at time t = 0, 30, 60 & 90
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Figure 3.11: Absolute value of mesh displacement at node 577.
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3.3 Finite Calculus

In this section the Finite Calculus (FIC) equations for an incompressible flow are
implemented. The equations are written in the principle curvature direction of the
solution. As pointed out in previous Chapter 2, dealing with the convection-diffusion
problem, the basis of the FIC method is invoking the balance of fluxes in a domain
of finite size. This introduces at the continuous level new terms in the equations
which after discretizing the problem with finite elements have stabilizing properties.

In order to illustrate how this works first the stationary Navier-Stokes momentum
equation in a 1D domain Ω is considered

ρu
du

dx
− dσ

dx
− f = 0 in Ω (3.13)

It can be expressed in terms of the ”flux” q according to

dq

dx
= f in Ω

where

q =
1

2
ρu2 − σ

A finite subdomain Ωl ⊂ Ω with length l is now considered, see Figure 3.12. The
balance of fluxes in Ωl is expressed as

qA − qB +
∫

Ωl
f(x)dx = 0 (3.14)

The integral of the body force term f is computed as

∫

Ωl
f(x)dx = l

fA + fB

2
+O(l2) (3.15)

where the force at point A and B is expressed using a first order Taylor expansion
around point C according to

fA = fC − l1
df

dx
|C +O(l2)

fB = fC + l2
df

dx
|C +O(l2)

Furthermore the fluxes are expressed with second order Taylor expansion

qA = qC − l1
dq

dx
|C +

l21
2

d2q

dx2
|C +O(l3)

qB = qC + l2
dq

dx
|C +

l22
2

d2q

dx2
|C +O(l3) (3.16)
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Figure 3.12: Balance of flux in a finite domain.

Inserting Equation (3.16) and (3.15) into (3.14) and defining the characteristic
length h = l1 − l2 the balance of fluxes becomes

qA − qB +
∫

Ωl
f(x)dx =

−l
dq

dx
|C +

hl

2

d2q

dx2
|C +

l

2

(
2fC − h

df

dx
|C

)
+O(l2) = 0

Division by (−l) gives

dq

dx
|C − h

2

d2q

dx2
|C − fC +

h

2

df

dx
|C +O(l) = 0 (3.17)

Equation (3.17) is now brought back to the continuous level by stating
dq
dx
|C ≈ dq

dx
= udu

dx
− dσ

dx
and QC ≈ Q and hereby the FIC equation is obtained as

u
du

dx
− dσ

dx
− f − h

2

d

dx

(
u
du

dx
− dσ

dx
− f

)
= 0 in Ω (3.18)

or expressed in terms of the residual of the original differential equation

r − h

2

dr

dx
= 0 in Ω (3.19)

where r = udu
dx
− dσ

dx
− f
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In the multidimensional case the corresponding system of equations, also includ-
ing the divergence equation is written as

rmi
− hij

2

∂rmi

∂xj

= 0 a)

rd − hk

2

∂rd

∂xk

= 0 b) (3.20)

where the residuals of the momentum equation and the divergence equations are
expressed as

rmi
= ρ

∂ui

∂t
+ ρ(uj − vj)

∂ui

∂xj

− ∂σij

∂xj

− fi (3.21)

rd =
∂uk

∂xk

(3.22)

with the stress tensor σij, consisting of a viscous part and the pressure, explicitly
written as

σij = 2µ

(
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
− 1

3

∂uk

∂xk

δij

)
− pδij

The following definitions are introduced

rmi
= rmi

− 2µ

3

∂rd

∂xi

(3.23)

Rmi
= rmi

+ ρui · rd (3.24)

The FIC equation for this modified residual of the momentum equation Rmi
is

expressed as

Rmi
− hik

2

∂Rmi

∂xk

= rmi
+ ρui · rd − hik

2

∂Rmi

∂xk

= 0

Substituting rmi
from Equation (3.23) and rd from Equation (3.20b) leads to

rmi
+

2µ

3

∂rd

∂xi

+ ρui
hk

2

∂rd

∂xk

=
hik

2

∂Rmi

∂xk

By making the approximations rmi
≈ 0 and Rmi

≈ rmi
the following expression is

obtained

∂rd

∂xk

=

(
hkk

ρuk · hk + 4
3
µ

)
∂rmk

∂xk



60 CHAPTER 3. NAVIER-STOKES EQUATIONS

which is substituted in (3.20b). This results in a FIC divergence equation expressed
in terms of the residual of the momentum equation, according to

rd − τk

ρ

∂rmk

∂xk

= 0 where τk =
hk · hkk

2uk · hk + 8µ
3ρ

(3.25)

The stabilization parameter τk is sometimes called the time intrinsic parameter.
There exists the possibility of calculating a scalar τ which yield for all directions
within one element. The characteristic lengths are simply taken as a typical element
size le and the expression for τ then becomes

τ e =

(
8µ

3ρ(le)2
+

2‖uk‖
le

)−1

(3.26)

Regarding the momentum equations, since the flow is incompressible, the vis-
cous part of the gradient of the stress tensor can be written in Laplacian form and
Equation (3.20a) is simplified according to

rmi
− hij

2

∂rmi

∂xj

= 0 (3.27)

where rmi
= ρ∂ui

∂t
+ ρ(uj − vj)

∂ui

∂xj
− µ∂2ui

∂x2
j

+ ∂p
∂xi
− fi

The last concern before stating the strong form of the FIC equations for an
incompressible flow is expressing the momentum equations in the direction of the
principle curvatures of the solution. This was done in previous Chapter 2 for the
scalar convection-diffusion equation. The only difference now is that it is done for
each velocity component separately. The basis of this new coordinate system is de-
noted by ξj and quantities that are expressed in it with a prime. Using this notation
the strong form of the FIC formulated incompressible Navier-Stokes equations are

ρ
∂u′i
∂t

+ ρ(u′j − v′j)
∂u′i
∂ξj

− µ
∂2u′i
∂ξ2

j

+
∂p

∂ξi

− f ′i −
h′ij
2

∂r′mi

∂ξj

= 0 in Ω a)

∂uk

∂xk

− τ

ρ

∂rmk

∂xk

= 0 in Ω b)

nj ·
(
µ

∂u′i
∂ξj

− pδij

)
− t

′
i + nj ·

h′ij
2

r′mi
= 0 on ΓN c)

u′i = u′i on ΓD d)

(3.28)

where r′mi
= ρ

∂u′i
∂t

+ ρ(u′j − v′j)
∂u′i
∂ξj
− µ

∂2u′i
∂ξ2

j
+ ∂p

∂ξi
− f ′i

The characteristic length tensor h′ij(ξi) is now transformed to hij(xi) in the origi-
nal basis and other quantities are also expressed in the original xi coordinate system.
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Furthermore, introducing projections of the convection term (ci) and of the pres-
sure gradient (πi), it is possible to express rmi

as follows

rmi
= ρ(uj − vj)

∂ui

∂xj

− ρci

rmi
=

∂p

∂xi

− πi

The vanishing of the momentum residuals introduces two new equations, one for
each projection.

ρ(uj − vj)
∂ui

∂xj

− ρci = 0 a)

∂p

∂xi

− πi = 0 b) (3.29)

The Galerkin procedure is now carried out for Equation (3.28) and (3.29) leading
to the following weak form of the problem.

Find uiεS and (p, ci, πi)εQ such that
∫

Ω

(
ρwi

(
∂ui

∂t
+ (uj − vj)

∂ui

∂xj

)
+

∂wi

∂xj

(
µ

∂ui

∂xj

− pδij

)
− fi

)
dΩ−

∫

ΓN

witi dΓ +

∫

Ω
ρ
hij

2

∂wi

∂xj

(
(uj − vj)

∂ui

∂xj

− ci

)
dΩ +

∫

Ω
q
∂uk

∂xk

dΩ +
∫

Ω

τ

ρ

∂q

∂xk

(
∂p

∂xk

− πk

)
+

∫

Ω
ρζi

(
(uj − vj)

∂ui

∂xj

− ci

)
dΩ +

∫

Ω
χi

(
∂p

∂xi

− πi

)
dΩ = 0 in Ω

ui = ui onΓD

(3.30)

for all wiεV and (q, ζi, χi)εQ

3.3.1 Spatial discretization

The domain is subdivided into finite elements with an equal order approximation of
all the variables using linear shape functions Na according to

uh
i =

number of nodes∑

a=1

Na
i · ûa

i

ph =
number of nodes∑

a=1

Na · p̂a

ch
i =

number of nodes∑

a=1

Na
i · ĉa

i

πh
i =

number of nodes∑

a=1

Na
i · π̂a

i
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where (̂·) denote nodal variables.
The piecewise constant stabilization parameters hij and τi are evaluated in the

center of each element. In matrix form the system of discrete variables to be solved
is expressed as follows.

M · ∂ûi

∂t
+ (A(uj) + K + H) · ûi −G · p̂− C · ĉi − F = 0 a)

GT · ûj +
τ

ρ
L · p̂− τ

ρ
Q · π̂j = 0 b)

A(ûj) · ûi −M · ĉi = 0 c)

QT · p̂− 1

ρ
M · π̂i = 0 d) (3.31)

where

M =
∫

Ωe
ρNaN bdΩ A(uj) =

∫

Ωe
Naρ(uh

j − vh
j )

∂N b

∂xj

dΩ

K =
∫

Ωe

∂Na

∂xj

µ
∂N b

∂xj

dΩ H =
∫

Ωe
ρ
hij

2

∂Na

∂xj

(uh
k − vh

k )
∂N b

∂xk

dΩ

G =
∫

Ωe

∂Na

∂xi

N bdΩ C =
∫

Ωe
ρ
hij

2

∂Na

∂xj

N bdΩ

F =
∫

Ωe
NafidΩ L =

∫

Ωe

∂Na

∂xj

∂N b

∂xj

dΩ Q =
∫

Ωe

∂Na

∂xj

N bdΩ

Upper index a refer to the nodal test functions and b to the interpolating functions
of the nodal unknowns.

3.3.2 Time integration

The time integration is carried out using a second order fractional step scheme. The
fractional velocity u∗i is introduced and Equation (3.31a) is split in two equations.
Together with Equation (3.31b), for each time step n, following system of equations
is obtained.

M · û∗i − ûn
i

∆t
+ (A(u∗j) + K + H) · û∗i −G · p̂n − C · ĉn

i − F = 0 a)

M · ûn+1
i − û∗i

∆t
−G · (p̂n+1 − p̂n) = 0 b)

GT · ûn+1
j +

τ

ρ
L · p̂n+1 − τ

ρ
Q · π̂n

j = 0 c) (3.32)

As the first step, which is non-linear, u∗i is solved from Equation (3.32a) for each
dimension i and iterated until convergence is achieved. Then substituting ûn+1

i from
Equation (3.32b) into (3.32c) the following expression is formed.

GT · û∗j +
∆t

ρ
L ·

(
p̂n+1 − p̂n

)
+

τ

ρ
L · p̂n+1 − τ

ρ
Q · π̂n

j = 0 (3.33)
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In (3.33) we have introduced the approximation GT M−1G ' 1
ρ
L. In the third and

fourth steps the projection variables ĉn+1
i and π̂n+1

i are solved from

A(u∗j) · û∗i −Md · ĉn+1
i = 0 (3.34)

QT · p̂n+1 − 1

ρ
Md · π̂n+1

i = 0 (3.35)

where Md is the lumped mass matrix.
Finally ûn+1

i is solved from (3.32b), also using the lumped mass matrix.

3.3.3 Characteristic length

The calculation of the characteristic length tensor hij is presented in the algorithm
below.

Algorithm for computing hij

The tensor hij is taken constant within each element and the i−th row of hij is
to be evaluated in each nonlinear iterative step solving the i−th component of the
fractional velocity û∗i . The steps in this computing procedure are summarized as:

• Defining the advective velocity aj = (u∗j − vj) at the centre of the element

If aj 6= 0

• Evaluate ∂ui
∂xj

For i = 1, 2, 3

If | ∂ui
∂xj
| · l < 0.001

• ξj = aj

|aj |

Else

• ξj = ∂ui
∂xj

/| ∂ui
∂xj
|

• Evaluate aj
⊗

ξj

If |aj
⊗

ξj | 6= 0

• ηj = aj

⊗
ξj

|aj

⊗
ξj |

Else If ξ2
1 + ξ2

2 6= 0

• ηj = [ξ2, −ξ1, 0]/(ξ2
1 + ξ2

2)
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Else

• ηj = [−ξ3, 0, ξ1]/(ξ2
1 + ξ2

3)

• Evaluate ζj = ξj
⊗

ηj

• Tkj =




ξj

ηj

ζj




• u′k = Tkj · aj

• l′k =
max

n
(Tkj ·dnj) where dnj describe the n edges of the triangle or tetrahedra

• h′k =
(
coth(γ′k)− 1

γ′
k

)
· l′k where the Peclet number γ′k = ρu′kl′k

2µ , no sum over k

• hij = Tkj · h′k
Else

• hij = 0

3.3.4 Numerical examples

The numerical solutions of three classical problems are now obtained in order to test the
method. These are the cavity flow, flow around a cylinder and the backward facing step.
The above presented fractional step scheme is used and the solution is brought to steady-
state in the case of the cavity and backward facing step flows. The flow around a cylinder
reaches an oscillating quasi-stationary behavior. The results are compared to experimental
and numerical results from other works.

Cavity flow

The domain consists of a unit square with prescribed velocity ui = (1, 0) at the upper
boundary, fixed at the other boundaries and prescribed pressure p = 0 at the bottom left
corner. Comparison is made to works by Cruchaga and Oñate [26], Ghia [28], Tanaheshi
[29] and to the monolithic solution obtained in Section 3.1.3. Here the mesh is composed
by 11664 three-noded triangular elements with size le = 0.0075 − 0.05. In Figure 3.14
the vortices are visualized by plotting the direction of the velocity field and in Table 3.3
their exact positions. In Figure 3.15 horizontal and vertical cuts through the center of the
domain are plotted and line variation of the velocity and pressure is visualized.

Apart from the central main vortex and two secondary vortices at the bottom corners
(BR and BL), which are present in all the three examples, the flow with Re = 5000 has
one vortex at the top left corner (TL). The flow with Re = 10000 also has two additional
vortices at the bottom corners. However, these are not indicated in Table 3.3.
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Figure 3.13: Cavity. Definition of the vortex characteristics

Figure 3.14: Cavity. Velociy field. Above to the left: Re =1000, above to the right:
Re =5000, below: Re =10000
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Figure 3.15: Cavity with Re = 1000, 5000 & 10000 (from above). Line variation of
pressure and velocity component ux at x = 0.5 (red curve) and uy at y = 0.5 (green
curve)



3.3. FINITE CALCULUS 67

Table 3.3: Cavity. Vortex characteristics
Tanahashi Ghia Cruchaga FIC FIC 3D GLS(linear)

Re=1000
xc 0.5335 0.5313 0.5409 0.531 0.530 0.530
yc 0.5653 0.5625 0.5855 0.565 0.565 0.568

xBR 0.8672 0.8594 0.8684 0.867 0.870 0.862
yBR 0.1119 0.1094 0.1072 0.114 0.110 0.115
xBL 0.0822 0.0859 0.0760 0.085 0.087 0.081
yBL 0.0731 0.0781 0.0754 0.078 0.079 0.076
HBR 0.3091 0.3034 0.3099 0.300 0.260 0.305
VBR 0.3410 0.3536 0.3710 0.350 0.300 0.332
HBL 0.2045 0.2188 0.2076 0.220 0.195 0.193
VBL 0.1523 0.1680 0.1826 0.167 0.155 0.164

Re=5000
xc 0.5120 0.5117 0.5029 0.517
yc 0.5337 0.5352 0.5420 0.536

xBR 0.8134 0.8086 0.8012 0.822
yBR 0.0753 0.0742 0.0638 0.078
xBL 0.0750 0.0703 0.0754 0.067
yBL 0.1318 0.1367 0.1345 0.155
xTL 0.0658 0.0625 0.0585 0.060
yTL 0.9045 0.9102 0.9130 0.909
HBR 0.3496 0.3565 0.3623 0.347
VBR 0.4350 0.4180 0.4145 0.401
HBL 0.3159 0.3184 0.2923 0.321
VBL 0.2693 0.2643 0.2840 0.264
HTL 0.1208 0.1211 0.1101 0.112
VTL 0.2555 0.2693 0.2923 0.298

Re=10000
xc 0.5125 0.5117 0.5000 0.515
yc 0.5274 0.5333 0.5420 0.532

xBR 0.7944 0.7656 0.7573 0.829
yBR 0.0640 0.0586 0.0551 0.080
xBL 0.0790 0.0586 0.0676 0.061
yBL 0.1400 0.1641 0.1536 0.165
xTL 0.0758 0.0703 0.0676 0.065
yTL 0.9120 0.9141 0.9130 0.911
HBR 0.3773 0.3906 0.3655 0.346
VBR 0.4529 0.4492 0.4522 0.445
HBL 0.3515 0.3438 0.3216 0.348
VBL 0.2834 0.2891 0.2899 0.298
HTL 0.1683 0.1589 0.1491 0.145
VTL 0.3463 0.3203 0.3333 0.341
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In 3D the cavity is modeled with 192000 four-noded tetrahedral elements with size
le = 0.05 in a unit cube with velocity slip condition at the walls parallel with the xy-
plane. In the results using Reynolds number 100 and 1000, see figure 3.16 and 3.17, no 3D
effects can be seen, the solution reaches a steady-state and the velocity profiles coincide
with those obtained by 2D simulation. For Re = 100 the position of the main vortex is
(x, y) = (0.61, 0.74) which coincides well with the value obtained by Donea and Huerta in
[10]. For Re = 1000, just as in the 2D case a main vortex and two secondary vortices in
the bottom right and left corners are present, see Table 3.3.

Figure 3.16: Cavity with Re = 100, to the left: Velocity field, to the right: cut at
z=0.5

Figure 3.17: Cavity with Re = 1000, to the left: Velocity field, to the right: cut at
z=0.5
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Using Reynolds number 5000 and 10000 steady-state is not reached as fully transient
flows are developed and the vortex characteristics can not be compared with the 2D results.
The flow pattern at a certain time step is shown in Figures 3.18 and 3.19.

Figure 3.18: Cavity with Re = 5000, to the left: Velocity field, to the right: cut at
z=0.5

Figure 3.19: Cavity with Re = 10000, to the left: Velocity field, to the right: cut at
z=0.5
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Flow around a cylinder

Flow around a cylinder is an example which is widely used for testing and validation within
computational fluid dynamics. The flow, even with relatively small Reynolds number,
does not reach steady state but has a quasi-static solution. This comes from the fact that
the flow separation point behind a cylinder is unsteady and changes in time causing un
oscillating flow pattern downstream the cylinder with shedding vortices, often called a
von Karman street. The periodic behavior of the von Karman street is quantified by the
Strouhal number, named after the Czech physicist Vincenc Strouhal (1850-1922) who first
investigated the steady humming or singing of telegraph wires in 1878 [32]. The Strouhal
number is defined according to S = f ·D

|u| where f is the shedding frequency of the vortices,
D the diameter of the cylinder and |u| the magnitude of the upstream velocity.

The problem setup is as follows. The geometry and the three different meshes used
are shown in Figure 3.20. A unit horizontal inflow velocity is prescribed at the the left
boundary, whereas at the upper and lower boundaries the velocity is free to slip. At the
right boundary pressure is set to zero. Velocity is zero at the cylinder wall.

r
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y
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25
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P
1
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22.85

Figure 3.20: Flow around cylinder. Above to the right mesh A with 2920 elements.
Below to the left mesh B with 10323 elements. Below to the right mesh C with
22129 elements
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First a simulation for a flow with Reynolds number 300 is carried out. The time step
is ∆t = 0.1 s and in figure 3.21 the results using the three different meshes A, B and C
(from above) are compared. The flow pattern is visualized at a certain time instant at the
beginning of one vortex shedding period.

Figure 3.21: Flow around cylinder. Re =300, Mesh size 0.05-0.5, 0.025-0.25 and
0.01667-0.16667, pressure and velocity field



72 CHAPTER 3. NAVIER-STOKES EQUATIONS

Below in figure 3.22 the time evolution of the pressure in the point P1 at the cylinder
wall and of the velocity in the point P2 downstream of the cylinder are plotted. It can
be seen that the mesh A is too coarse and does not capture well the flow pattern of the
shedding vortices. The Strouhal number obtained for the finer grid is 0.181, see Table 3.4.

Figure 3.22: Flow around cylinder. Re =300, Mesh size 0.05-0.5, 0.025-0.25 and
0.01667-0.16667, pressure and velocity time development
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Figure 3.23 shows the flow pattern of simulations using Reynolds number 2000. The
same time step ∆t = 0.1 s is used.

Figure 3.23: Re =2000, Mesh size 0.05-0.5, 0.025-0.25 and 0.01667-0.16667, pressure
and velocity field
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In figure 3.24 the pressure in P1 and velocity in P2 are plotted versus time. As before,
comparing the outcome of the three different meshes used, it can be concluded that mesh
A is too coarse. The Strouhal number is 0.192.

Figure 3.24: Flow around cylinder. Re =2000, Mesh size 0.05-0.5, 0.025-0.25 and
0.01667-0.16667, pressure and velocity evolution with time
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For the above simulations of flow around cylinder using Re = 300 and Re = 2000 the
drag and the lift forces are integrated and shown in figure 3.25.
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Figure 3.25: Flow around cylinder. Left: Drag force. Right: Lift force. Comparison
using different mesh sizes and Reynolds number

Comparison of the computed Strouhal number is made in Table 3.4. Experimental
values are taken from [33] and the monolithic values are obtained with the GLS formulation
using linear elements in Section 3.1.3.

Table 3.4: Strouhal number
Re = 300 Re = 2000

S (computed, 2D) 0.181 0.192
S (experimental) 0.202 0.208

S (monolithic, 2D) 0.19 0.20

S (computed, 3D) 0.176 0.192
S (Kalro Tezduyar [30]) 0.203 -
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The flow is also modeled in 3D by extending the z-axis 8 units, and the domain
Ω : (25x10x8) is meshed with 300000 tetrahedral elements, see Figure 3.26. At the bound-
aries parallel to the xy-plane velocity slip conditions are imposed. For Re = 300 a von
Karma vortex street is developed just as in the 2D case, but with slightly smaller Strouhal
number. For Re = 2000 the von Karman vortex street is also present and here a certain
3D-effect is noted.

In Figure 3.27 the variation in time of the velocity components (ux, uy, uz) is plotted
in the point 2.85 units downstream of the cylinder, corresponding with P2 in the 2D case.

Figure 3.26: 3-dimensional flow over cylinder

Figure 3.27: Time evolution of velocity components. left: Re =300 right: Re = 2000
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Laminar backward-facing step flow problem

A backward-facing step flow simulation is carried out with the intention to reproduce
experimental results obtained by Armaly [27]. Comparison is also made to the numerical
results in Cruchaga [26]. In this case the flow is laminar and simulations with Reynolds
numbers ranging from 100 to 1600 are carried out.

A fine mesh using 40000 triangular elements with size le = 0.0002−0.001 and a coarse
mesh with 14000 elements with size le = 0.0003333− 0.001667 are used.

Color plots of the x-component of the velocity are shown in Figure 3.29 and the
reattachment length x1/s and the position of the secondary recirculation area x2/s and
x3/s are listed in Table 3.5. The sudden decrease in the reattachment length for Re = 1600
is because the flow is no longer laminar but in the transitional regime, as explained in [27].
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Figure 3.28: Geometry of the backward-facing step flow using the fine mesh of 40000
triangles.

Table 3.5: Backward-facing step

Re Armaly Cruchaga fine mesh coarse mesh

100 x1/s 3.0 3.0 2.80 2.65
500 x1/s 10.0 8.5 9.24 7.96

x2/s 8.0 8.0 8.59 9.24
x3/s 13.5 12.8 12.06 9.24

1000 x1/s 16.25 12.93 13.04 10.49
x2/s 13.5 11.22 10.76 9.92
x3/s 21.8 22.79 22.65 16.69

1600 x1/s 13.9 17.0 16.55 11.80
x2/s 9.5 14.6 13.94 11.14
x3/s 22.0 34.0 32.45 20.61
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Figure 3.29: Backward-facing step flow simulations. Re =100, 500, 1000, 1600. The
x-component of the velocity is plotted and streamlines indicating the vortices.

3.3.5 Turbulence

As this work partly addresses simulation of aero-elastic problems within a fluid-structure
interaction framework with air flows at very high Reynolds number, turbulence will occur
and needs to be properly dealt with. So far we have dealt with stabilized incompress-
ible flows in the laminar regime at relatively low Reynolds numbers. The simulations for
validating the GLS-model using linear and quadratic elements and the FIC-model using
linear elements have been carried out using direct numerical simulation (DNS). It is ac-
cepted that the Navier-Stokes equations describe incompressible flows correctly also in
the turbulent regime so that using DNS for turbulent flows is theoretically possible. The
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drawback with DNS is however that the number of degrees of freedom needed to resolve
the full-scale problem grows fast with an increasing Reynolds number according to the so-
called Kolmogorov estimator, stating O(Re

9
4 ). In practice this lies beyond the potential

of today´s computational power and instead one has to rely on modeling of the turbulence
phenomena in some way, that is regarding the effect of the the small scale on the large
scale without having to calculate it exactly.

The first family of methods are the Reynolds Average Navier-Stokes (RANS) equations.
The basic tool required for the derivation of the RANS equations from the instantaneous
Navier-Stokes equations is the Reynolds decomposition. Reynolds decomposition refers
to separation of the variables velocity ui and pressure p into mean (time-averaged) values
ui, p and fluctuating components u′i, p′.

ui = ui + u′i
p = p + p′

By taking the average of the equations expressed with the decomposed variables and
some further manipulation the time-average part of the solution ui, p can be solved. Here
the fluctuating part u′i is not solved but exists in the RANS equations in terms of so-called
Reynolds stresses which account for the effect of the smaller scales on the larger ones.

Then we have the family of Large Eddy Simulations (LES). Here a filtering technique
is used to separate the larger scales from the smaller scales, which remain unresolved
compensating this by adding an eddy viscosity. LES is more computationally expensive
than RANS simulations but can deliver more precise results and details about the turbulent
flow at the desired level. Among these methods can be mentioned the Smagorinsky model,
the Ladyzenskaja model and the variational multi-scale method first proposed by Hughes
[22]. Using the variational multi-scale method the large scales are modeled separately
from the small scales, which in turn can be split in resolved and unresolved scales. Besides
treating the problem of turbulence it results in a completely stable method. Hence, there
is no need to include any additional stabilizing term.

Inversely, a stabilizing method can be designed to replace the need to include an
additional turbulence model. A conceptual frame for this ”duality” principle between, on
the one hand, stabilized numerical methods and, on the other hand, turbulence models is
outlined by Valls [24] and Oñate et al. [25] using just a FIC stabilized formulation without
introducing any additional turbulent viscosity terms. It is quite remarkable that the FIC
formulation by itself allows the solution of a wide range of Reynolds numbers from low to
high values while capturing all the features of turbulence effects.

Below are two examples where flow in the turbulent regime is simulated using the FIC
formulation described in this section. The first is flow around a cylinder as already tried
out for lower Reynolds numbers and secondly a backward-facing step flow simulation is
carried out.
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Turbulent flow around cylinder

Two simulations are carried out for the flow around a cylinder with a high Reynolds
number. The geometry and boundary conditions are the same as before, see Figure 3.20.
Mesh C is used in the simulations and the time step is ∆t = 0.05 s. The results from the
first simulation using Reynolds number 80000 is shown in Figure 3.30. The pressure and
velocity is plotted as well as the drag and lift forces.

The computed Strouhal number is S = 0.26. This compares well with the experimental
value represented in [33].
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Figure 3.30: Flow around cylinder, Re =80000. From above pressure and velocity
field, point evolution of pressure in point P1 and velocity in point P1, drag and lift
forces.
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In Figure 3.31 the results from the second simulation are shown. The Reynolds number
is 106. It can be observed that they are similar to those obtained in the previous simulation
using Re = 80000. The Strouhal number is 0.266.
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Figure 3.31: Flow around cylinder, Re =1000000. From above pressure and velocity
field, point evolution of pressure in point P1 and velocity in point P2, drag and lift
forces.
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Turbulent backward-facing step flow problem

Below the backward-facing step flow simulation with Reynolds number 95000 is carried
out with the following setup.

The inlet velocity is u = [1, 0] and at the outlet boundary the pressure p = 0. Velocity
slip conditions are assumed at the rest of the boundaries. After reaching steady-state,
Figure 3.32, the length of the circulation area is L = 5.67. In table 3.6 comparison is
made to other works where turbulence models are used.

Table 3.6: Backward-facing step, Re=95000

Model Length(L) Model Length(L)

K-ε(Mansour) 5.2 Experimental(Kim) 6.0-7.0
K-ε(Pollard) 5.88 K-τ(Ilinca) 6.82
K-ε(Spalding) 6.0 FIC(Valls) 6.79

K-ε(Ilinca) 6.2 FIC(This work) 5.67

Figure 3.32: Backward-facing step using a mesh with 30262 elements. Re =95000.
To the left the x-component of the velocity is plotted and to the right velocity arrays
indicate the circulation area.
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3.3.6 Wind simulation on telescope structure

The mechanical structure of the EURO 50 telescope not only has to support the optical
elements but also, through a control system, keep the elements in exact position. This
under the influence of wind, gravity and thermal effects and it must be able to rotate
around two axes. The structure must be stiff enough for the displacement not to exceed the
limits for the adapted control system under maximum mean wind speed during operation
which is 12 m/s and to keep the lower eigenfrequencies as high as possible. Another
important issue is to keep the flow pattern above the primary mirror as smooth and
regular as possible, avoiding turbulence which decreases the visibility.

The main body of the telescope structure, the tube, has a parabolic shaped surface
which represents the segmented primary mirror with a radius of 50 m. It can rotate around
its elevation axis ranging from λ = 20 degrees to 90 where λ = 90 means the telescope
tube is pointing towards zenith. A tripod structure bears the 4 m secondary mirror 46 m
above the primary mirror surface. The tube is supported by the yoke structure with two
bearings on which the elevation axis lies. The yoke structure in turn has 4 hydrostatic
”shoes”, each with 6 support points which lie on 2 circular rails where the whole structure
can rotate ϕ = ±270 degrees around the azimuth axis. The telescope is protected by
a concrete enclosure which also is supported on circular rails and thus rotatable. The
enclosure has sliding doors in the front and on its roof which are open during observation.

In the aerodynamic simulations below a control volume of dimensions (300x450x176)
m3 surrounds the telescope and the enclosure. The inflow wind speed is 10 m/s pointing
from ϕ = 0. The tripod structure is not regarded in these flow simulations. Velocity
vertical cuts are plotted, one in wind direction and three cross wind direction at 0, 30 and
60 m from the center point, visualizing the flow pattern for different observation angles ϕ
and λ

Among prior studies of the EURO 50 telescope in can be mentioned an eigenvalue
analysis of only the structure using a finite element model with beam and shell elements
which is performed in [45] where the first eigenmode refers to locked rotation around the
elevation axis with f1 = 2.67 Hz, the 2:nd to 6:th mode motion of the tripod structure
with eigenfrequencies from f = 4.12 Hz until f = 5.39 Hz. An aerodynamic analysis
carried out in [46], whose main objective was to examine the amount of wind-induced
natural ventilation in the telescope building, also provides some data of the temperature
distribution and the total force acting on the optical devices.
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Figure 3.33: azimut angle ϕ = 0, elevation angle λ = 90
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Figure 3.34: azimut angle ϕ = 0, elevation angle λ = 60
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Figure 3.35: azimut angle ϕ = 0, elevation angle λ = 20
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Figure 3.36: azimut angle ϕ = 30, elevation angle λ = 60
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3.4 Concluding remarks

In this chapter, a stabilized finite element method for solving the incompressible Navier-
Stokes equations have been developed. First the GLS-method is used allowing for equal
order approximation of the pressure and the velocity. Linear as well as quadratic approxi-
mation is used. The GLS/FEM model allows flows in the laminar regime to be simulated
which are of relatively low Reynolds numbers. Then, the equations are formulated using
the FIC approach in the principle curvature directions, here approximated as the gradient.
This is done in 2D and in 3D. Linear interpolation is used at the discretization. Apart
from providing the necessary stabilizing effect the FIC/FEM model replaces the need for
any additional turbulence model. In other words, the model can be used for simulating
flows with a wide range of Reynolds numbers, for example airflows around large scale
structures which typically are of high Reynolds numbers.

As the equations are written in an ALE framework and a mesh moving strategy is
provided, the model applies to fluid-structure interaction problems involving aero-elasticity
which is the issue in next chapter.



Chapter 4

Fluid-structure interaction

This chapter is an extension of the previous chapter where finite element methods for
solving the incompressible Navier-Stokes equations were developed. The aim now is ex-
amining the ability of the FIC/FEM model to simulate fluid-structure interaction (FSI)
problems with emphasis on aero-elasticity where the dynamic behavior of ground struc-
tures subjected to wind load is of interest.

FSI is a framework within computational mechanics where multi-physics problems are
handled consisting of at least one fluid and one structural domain. The solution of each
domain both depend on and affect the other. They are said to be coupled.

FSI has many different applications within engineering and natural sciences ranging
from bioengineering such as interaction between blood flow and blood vessels, in marine
engineering or aeronautics different kinds of shape optimization problems or in civil en-
gineering. See [35] for a review of the field. These applications are often highly complex
when comes to modeling point of view and therefore a wide range of rather different sim-
ulation approaches for FSI exist. A main categorization of solution strategies for FSI can
be based on whether the fluid and the structure are strongly or weakly coupled.

The former is used in [36] where the complete set of nonlinear equations governing the
fluid, the structure and the coupling is solved based on the Newton-Raphson methodology
and incorporates the full linearization of the problem. In [37] shape optimization with
respect to drag force of a flexible body in a surrounding fluid is carried out also using the
strong coupling and an approximate Newton method.

Weak coupling is characterized by the presence of different solvers for the fluid and
the structure and the data at the interface being transferred between the domains using
so-called staggered algorithms, see e.g. [38].

Staggered algorithms in turn can be subdivided in sequential and iterative algorithms.
The former, violating the kinematic condition, can lead to accuracy reduction and have
the risk of numerical instabilities.

For many scientists being experts in one field and working with a single code adapted
to either the fluid or the structure weak coupling is the preferable choice as it increases the
flexibility in dealing with the other domain. This can be treated using a simplified model
or, using code coupling, it can be modeled in another code specialized in this domain.

In [39] and in [40] iterative staggered algorithms are employed for FSI problems in-
volving highly specialized models for nonlinear structural dynamics for thin-walled shell
structures and membranes. These structural models are parts of CARAT (Computer

89
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Aided Research Analysis Tool), the in-house code at the Chair of Structural Analysis
at the Technical University of Munich. In [41] a strategy for numerical form finding of
membranes is outlined.

Regarding the fluid model the governing equations, as previously mentioned, are the
incompressible Navier-Stokes equations. They are formulated using the Finite Calculus
(FIC) method [24]. The actual implementation is carried out within KRATOS [42], a finite
element software environment for solving multi-physics problems developed at CIMNE. In
Section 4.1 of this chapter the fluid solver is outlined.

Thereafter in Section 4.2 a weak and explicit coupling scheme for FSI is presented
and the interface is defined where the exchange of variables in an FSI problem takes place
using conforming meshes. As a first FSI application the flow induced vibration of a flexible
beam is analyzed.

FSI is then applied on the Burj Dubai tower which ought to be the world´s tallest
skyscraper, at the moment under construction in Dubai in the United Arab Emirates.
Even though the tower has a complex shape a rather simple beam model is set up and
some assumptions are made to take into account its mass and lateral stiffness and the
aero-elastic behavior during wind load is simulated.

Dealing with more challenging FSI problems in the sense that sophisticated modeling
within every single part of the coupled solver is required, might not be feasible within only
one code. Increased computing power and tools for code coupling open up the doors for
using solvers from two, or more, different codes for one problem.

For this reason an FSI application is tried out where code coupling is used. Airflow
around an elastic cylinder is chosen and this is explained in Section 4.3. The cylinder is
modeled in the code CARAT using shell elements. The fluid model in the code KRATOS
and the structure model in CARAT are interfaced via MpCCI (Mesh-based parallel Code
Coupling Interface) developed at the Fraunhofer Institute SCAI which is a program for
coupling of different simulation codes. This interface work was carried out by the author
of this monograph during a stay at the Technical University of Munich in collaboration
with the Chair of Structural Analysis.

The results are also compared to a previous simulation with same problem set up in
[40].

4.1 Fluid

The incompressible Navier-Stokes equations, which are written in an arbitrary Lagrangian-
Eularian (ALE) form to account for a moving mesh, are

ρ
∂ui

∂t
+ ρ(uj − vj)

∂ui

∂xj
− µ

∂2ui

∂x2
j

+
∂p

∂xi
− fi = 0 in Ω a)

∂2uj

∂x2
j

= 0 in Ω b)

nj · (µ∂ui

∂xj
− pδij)− ti = 0 on ΓN c)

ui = ui on ΓD d) (4.1)
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4.1.1 Finite Calculus

Adapting the Finite Calculus method the equations are expressed in the principle curvature
directions of the solution, according to

r′mi
− 1

2
h′ij

∂r′mi

∂ξj
= 0 in Ω a)

∂uj

∂xj
− τ

∂rmj

∂xj
= 0 in Ω b)

nj ·
(

µ
∂u′i
∂ξj

− pδij

)
− t

′
i +

1
2
h′ijnj · r′mi

= 0 on ΓN c)

u′i = u′i on ΓD d) (4.2)

The prime denotes that the principle curvature direction is taken as basis and r′mi
is

the residual of the momentum equation expressed in this basis.

r′mi
= ρ

∂u′i
∂t

+ ρ(u′j − v′j)
∂u′i
∂ξj

− µ
∂2u′i
∂ξ2

j

+
∂p

∂ξi
− f ′i

Evaluating the principle curvature direction of the solution and computing the character-
istic length vector h′ij constitute the central part of the FIC method as already dealt with
in previous chapters. It introduces the necessary additional diffusion in order to stabilize
for the dominant convection term and circumvents the LBB condition allowing equal-order
interpolation of velocity and pressure. Furthermore it provides the numerical scheme with
intrinsic features to model flows also with high Reynolds number without any additional
turbulence modeling, as already shown in [25].

After calculating h′ij it is transformed back to the original coordinate system, as ex-
plained in Section 3.3.3. Projection terms are introduced, πi for the pressure gradient and
ci for the convection term. The Galerkin procedure is carried out leading to the following
weak form of the problem.

Find uiεS and (p, ci, πi)εQ such that

∫

Ω

(
ρwi

(
∂ui

∂t
+ (uj − vj)

∂ui

∂xj

)
+

∂wi

∂xj

(
µ

∂ui

∂xj
− pδij

)
− fi

)
dΩ−

∫

ΓN

witi dΓ +

∫

Ω
ρ
hij

2
∂wi

∂xj

(
(uj − vj)

∂ui

∂xj
− ci

)
dΩ +

∫

Ω
q
∂uj

∂xj
dΩ +

∫

Ω

τ

ρ

∂q

∂xj

(
∂p

∂xj
− πj

)
+

∫

Ω
ρζi

(
(uj − vj)

∂ui

∂xj
− ci

)
dΩ +

∫

Ω
χi

(
∂p

∂xi
− πi

)
dΩ = 0

(4.3)

for all wiεV and (q, ζi, χi)εQ
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Finite element discretization in space, using linear shape functions Na for both the
velocity and the pressure as well as for the projection variables, is performed according to

uh
i =

number of nodes∑

a=1

Na
i · ûa

i

ph =
number of nodes∑

a=1

Na · p̂a

ch
i =

number of nodes∑

a=1

Na
i · ĉa

i

πh
i =

number of nodes∑

a=1

Na
i · π̂a

i

The finite element formulation of the problem then becomes

M · ∂ûi

∂t
+ (A(uj) + K + H) · ûi −G · p̂− C · ĉi − F = 0

GT · ûj +
τ

ρ
L · p̂− τ

ρ
Q · π̂j = 0

A(uj) · ûi −M · ĉi = 0

QT · p̂− 1
ρ
M · π̂i = 0

as already derived in Section 3.3.1, see Equation (3.31) where also the matrices are defined.
For the solution a second-order fractional step method is used. The following scheme

arises.

STEP 1
For each time step n = 0.. number of time steps
. Iterate it = 1.. max number of iterations or until convergence
. . For dimension i = 1.. number of dimensions
. . . • solve û∗,iti from

M · û∗,iti − ûn
i

∆t
+ (A(u∗,it−1

j ) + K + H) · û∗,iti −G · p̂n − C · ĉn
i − F = 0

. . End For i

. End Iterate it
End For n

STEP 2
. • solve p̂n+1 from

GT · û∗j +
∆t

ρ
L ·

(
p̂n+1 − p̂n

)
+

τ

ρ
L · p̂n+1 − τ

ρ
Q · π̂n

j = 0

STEP 3
. • solve ĉn+1

i from

A(u∗j ) · û∗i −Md · ĉn+1
i = 0
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STEP 4
. • solve π̂n+1 from

QT · p̂n+1 −Md · π̂n+1
i = 0

STEP 5
. • solve ûn+1

i from

Md · ûn+1
i − û∗i

∆t
−G · (p̂n+1 − p̂n) = 0

where Md is the lumped mass matrix.
In the fluid simulations below in which airflow is considered velocity slip boundary

conditions are assumed neglecting the viscous resistance at the walls. This is implemented
by projecting the fractional velocity û∗,iti in step 1 and the velocity ûn+1

i in step 5 on the
surface were the slip boundary condition is desired.

4.1.2 Mesh Moving strategy

For the evaluation of the mesh velocity vn
i a mesh moving strategy is adapted where the

displacement dn
i in each dimension i has to fulfil the laplacian equation.

∂2dn
i

∂x2
j

= 0 in ΩF (4.4)

In the finite element space following equations are solved

L̂ · d̂n
i = 0 in ΩF (4.5)

where

L̂ =
∫

Ω

1
Λa

∂Na

∂xj

∂N b

∂xj
dΩ (4.6)

Here Λa stands for the nodal influence area (or volume in case of 3D). Division by Λa

makes smaller elements stiffer than larger which results in the mesh being less likely of
becoming inverted while moving the nodes.

When the nodal displacement d̂n
i is obtained and the mesh is moved the mesh velocity

at each time step n
is calculated as

v̂n
i =

d̂n
i − d̂n−1

i

∆t
(4.7)
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4.2 FSI Interface via KRATOS

The objective in this section is to describe how the FSI interface works. Its implemen-
tation and the computing of an FSI problem is carried out in KRATOS. For pre- and
postprocessing is used GiD to which KRATOS has an interface that reads the generated
input files and writes the calculated data for the fluid model part and the structure model
part, respectively.

The input files contain the mesh information with the original node coordinates, its
connectivity as well as material properties and boundary conditions for the fluid and the
structural domain, respectively. They also contain the coupling conditions at the FSI
interface.

The meshes of the fluid respectively the structure model part are made of 4-node
tetrahedra (in 3D) or 3-node triangles (in 2D). The meshes are conforming with matching
nodes. The coupling at the interface on the one hand consists in pairs of nodes, one from
the fluid and one from the structure model part, defining where the mapping of variables
from one physical domain to the other is to take place. On the other hand a boundary
mesh made of triangles (in 3D) or lines (in 2D) is generated in order to calculate a weighted
normal which is needed for the pressure to be applied on the structure in terms of nodal
forces.

First the different steps are outlined for the computation of an FSI problem using an
explicit scheme.

4.2.1 Computing scheme for fluid-structure interaction

The actual computing algorithm looks as follows:
• Set fluid model part ΩF

• Read fluid model argument
• Get fluid mesh

read nodes in ΩF

read properties in ΩF

read elements NavierStokesElement in ΩF

read face elements CalculateNormal at slip velocity boundary condition Γ‖ and at FSI
interface ΓFS

read conditions ui, p, di at prescribed boundary ΓD

• Read independent parameters
FracStep, FSI, DomainSize, StepsBetweenPrinting, DeltaTime, EndTime

• Initialize variables in ΩF

Velocity, Pressure, Normal, FractVel (ui, p, Ani, u
∗
i )

0

ConvProj, PressProj, NodalArea, MeshVelocity,Displacement (ci, πi, Λ, vi, di)0

• Set fluid solving strategy ResidualBasedFluidStrategy in ΩF

• Set mesh movement solving strategy LaplacianMeshMovingStrategy in ΩF

• Set structure model part ΩS

• Read structure model argument
• Get structure mesh

read nodes in ΩS

read properties in ΩS

read elements TotalLagrangianElement in ΩS
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read conditions di at prescribed boundary ΓD

• Initialize variables in ΩS

Displacement, Velocity, Acceleration, Normal, Pressure (di, ui, ai, Ani, p)0

• Set structure strategy ResidualBasedNewtonRaphsonStrategy in ΩS

• Read coupled nodes at ΓFS

• Define structure to fluid mapper at ΓFS

• Define fluid to structure mapper at ΓFS

• Initialize current process info (Time, DeltaTime)
While(Time<EndTime)

• Time += DeltaTime
• Set Ann

i = 0 in ΩF

Loop over fluid model part boundary elements
• Calculate Ann

i

• Distribute Ann
i to nodes

• Solve fluid (ui, p, ci, πi)n+1, auxiliary var u∗i ,Λ, input var (vi, Ani)n

• Map fluid to structure (pn+1, Ann
i )

• Solve structure dn+1
i , input var (pn+1, Ann

i )
• Move nodes in ΩS

• Map structure to fluid dn+1
i

• Solve mesh movement (di, vi)n+1

• Move nodes in ΩF

• Write (ui, p, ci, πi, di, vi)n+1 in ΩF

• Write dn+1
i in ΩS

End While

To illustrate how the FSI scheme works a 2D example is shown below in figure 4.1 with
a unit square fluid domain ΩF to the left and a unit square structure domain ΩS to the
right. For a certain time step n is plotted the weighted normal Ann

i at ΓFS , the velocity
un+1

i and the pressure pn+1 in ΩF and finally the displacement dn+1
i in both ΩS and ΩF

using the deformed mesh.
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Figure 4.1: Above: conditions Top left: weighted normal, Top right: velocity field
Bottom left: pressure, Bottom right: displacement field on deformed mesh
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4.2.2 Flow-induced vibration of flexible beam

As a first application for trying out the FSI model is chosen a flow around a rigid unit
square that induces vibration of an elastic beam which is attached downstream of the
square. The geometry is taken from [36].

The problem setup is as follows. The beam is modeled by 2400 triangular total La-
grangian elements and has the following properties. Density ρs = 1 kg/m3, Young´s
modulus E = 5 · 106 N/m2, Poisson´s ratio ν = 0.35. The nonlinear structural equations
are linearized according to Newton-Raphson and solved with a Newmark scheme. The
fluid domain is meshed with 7000 triangular incompressible Navier-Stokes elements with
the properties µ = 0.000182 kg/(m·s), ρf = 0.00118 kg/m3. The inflow velocity is u = 51.3
m/s giving a Reynolds number of 333, no-slip conditions are set at the structure surface
whereas at the lower and upper boundary the velocity is free to slip. The pressure is zero
at the outflow. Employing the weak FSI coupling scheme described above a simulation is
carried out using time step ∆t = 0.01 s.

The flow invokes movement of the beam and it starts swinging with a frequency of
f = 1.12 Hz, close to the first eigenfrequency of the beam, which is f1 = 1.37 Hz. Below is
plotted the pressure field on the deformed model at time instants t = 5.51 s and t = 5.95
s. In figure 4.3 to the left is shown the velocity component uy versus time downstream of
the structure which oscillates with the shedding frequency fs = 4.65 Hz. To the right is
plotted uy at a point just upstream of the square. Here both the shedding frequency and
the frequency of the swinging beam is present. Figure 4.4 shows the vertical displacement
of the tip of the structure. The amplitude of this movement is 1.4 m which coincides with
the one obtained in [36]. However, a just comparison with this work can not be done as
the structure in [36] is lighter, ρs = 0.1 kg/m2. This value of ρs could not be used in the
current simulation as the ratio ρs

ρf
would be to small and the solution blow up. This is a

drawback of the FSI scheme being explicit and violating the kinematic conditions at the
interface.

Figure 4.2: Flow induced vibration of a flexible beam: Pressure fields on the de-
formed model
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Figure 4.3: Flow induced vibration of a flexible beam: Vertical component of velocity
versus time

Figure 4.4: Flow induced vibration of a flexible beam: Vertical displacement of the
tip of the structure versus time
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4.2.3 Application to the Burj Dubai tower

The structure chosen for performing an aero-elastic analysis using the presented FSI ap-
proach is the skyscraper Burj Dubai. This building is under construction in Dubai, the
United Arab Emirates.

The exact design and geometry of the tower is at the moment secret, including its
total height, and no blueprints are to be obtained. The information about its total height
vary between 705 and 808 m. In the FSI simulations below the height is set to 750 m
and cross-section plans which are to be found on the official website of the project are
used. The tower is placed in an air volume of dimensions (800x400x800) m3 as visualized
in Figure 4.5. The inflow velocity is set to moderate 10 m/s. This is of course is far below
the velocities for which the tower has to be designed for, but there are no intentions in
this work of penetrating design matters. Just an FSI model is tried out. Velocity slip
conditions are adapted on the walls and the pressure at the outflow is set to zero.

The tower in itself is modeled as a 750 m vertical column made out of 5 m beam ele-
ments of varying bending stiffness k[Nm2] around two axes and distributed mass m[kg/m].
The stiffness is estimated assuming the outer walls taking all bending moment like a tube
structure where the perimeter has a stiffness per unit length of 2.941̇09N/m. This corre-
sponds to steel columns with cross-section 139cm2 placed each meter round the circumfer-
ence, which was the case for the World Trade Center (WTC) towers. The distributed mass
is estimated assuming a dead load of 1 ton/m2 floor surface. This value also originates
from the WTC towers. No damping is assumed.

Torsion and vertical displacement are neglected so the structure model has 4 degrees
of freedom, 2 displacement and 2 rotations, at each node of the 150 beam elements dis-
cretizing the beam length.

As the structure nodes do not coincide with the fluid nodes at the building surface
the meshes are said to be non-conforming, in contrast to the described FSI-algorithm in
previous section 4.2.1. An interpolation procedure is usually adapted in order to exchange
the variables correctly between the domains at the interface for non-conforming meshes.
This is dealt with in next section 4.3. However, in this application, for each fluid node
at the interface a search algorithm is performed for the closest structure node which then
is taken as the coupled node. Here the exchange of variables takes place: pressure p and
weighted normal Ani in the fluid-structure direction and displacement di in the structure-
fluid direction.

A simulation is performed during 500 s with ∆t = 0.2 s. In Figure 4.7 the pressure
and the displacement are plotted at time t = 272.2 s. In Figure 4.8 the top displacement
versus time is shown. The maximal displacement of the top point during the simulation
is 0.49 m, the mean displacement 0.244 m and it sways in the first mode with a frequency
of f = 0.031 Hz.
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Figure 4.5: Model of Burj Dubai tower

Figure 4.6: Velocity profiles at heights 100, 300, 500 and 700 m at time 272.2 s
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Figure 4.7: Pressure and displacement at time 272.2 s
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Figure 4.8: Burj Dubai Tower. Top displacement versus time
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4.3 FSI analysis via coupling KRATOS, CARAT

and MpCCI

In this section a strategy is set up for coupling the fluid solver in the code KRATOS with a
structural solver in the code CARAT. The coupling is explicit using a sequential staggered
scheme and non-conforming meshes, so each time step variables on the fluid side of the
FSI interface has to be interpolated and transferred to the structure side and vice versa.
For this purpose MpCCI (Mesh-based parallel Code Coupling Interface), developed at the
Fraunhofer Institute SCAI, is used. MpCCI is a tool designed for the coupling of different
simulation codes. A coupled simulation is the carried for a flow around an elastic cylinder.

4.3.1 Flow around an elastic cylinder

The fluid domain ΩF is (1.5x1.0) m2 with a circular hole φ = 0.0762 m in the middle at
the distance 0.5 m from the inflow at the left edge. The fluid is free to slip at the lower
and upper edge but not at the circular hole, which constitutes the FSI interface ΓFS . The
inflow velocity is 16.6 m/s and at the outflow pressure is set to 0 Pa.

The thin-walled elastic cylinder is modeled in CARAT using geometrically nonlinear
shell elements. At 4 points on the cylinder surface the tangential displacement is prescribed
to zero, see Figure 4.9. In the first run the structure has the following properties: Young´s
modulus E = 11.26 · 109 N/m2, Poisson´s ratio ν = 0.4, density ρ = 913.3 kg/m3 and a
thickness of t = 0.497 mm.

The fluid has the properties of air, the flow has the Reynold´s number 75000 and the
mesh consists of 8560 triangular elements of size h = 0.001− 0.015 m, see Figure 4.10.

The pressure and the velocity for a certain time step is visualized in Figure 4.11.
The flow shows an oscillatory behavior with a vortex shedding frequency of fs = 43.1 Hz
which gives a Strouhal number of S = 0.198. The Strouhal number corresponds well to
experimental value S = 0.194 taken from [33]. The vortex shedding causes a periodic
load on the cylinder transversal to the flow direction with the same frequency. Combined
with the radial boundary conditions at 4 points this load enforces a vibrating ellipsoidal
movement. In Figure 4.12 the pressure and the x-component of the displacement versus
time is plotted at a reference point at the cylinder surface. This reference point lies 135
degrees counterclockwise from flow direction as shown in Figure 4.10. The amplitude of
the vibration is approximately 4·10−5 m. In Figure 4.13 the deformed cylinder is shown
at two extreme points. The fourier transform of the x-displacement confirms this forced
movement but also indicate presence of the higher frequency f = 148 Hz.

This frequency lies between 3 times fs and the first eigenfrequency of the so-called
ovalling effect f1 = 161 s−1. The ovalling effect of order k is the periodic oscillation of the
cylinder with k + 1 wavelengths around its circumference, see [48] and [49].

Comparison is made to a simulation in [40] using the same geometry and material
properties as above. Here the higher frequency does not occur. Instead a much cleaner
vibration in the first mode can be observed. The amplitude of the displacement in the
reference point is 3·10−4 m. The Strouhal number in this simulation is S = 0.243.
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Figure 4.9: Flow around elastic cylinder. Geometry and conditions

Figure 4.10: Fluid mesh

Figure 4.11: Pressure and velocity field at time t = 0.3665 s
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Figure 4.12: Above: Pressure and x-displacement versus time at point 5401. Below:
FFT analysis of x-displacement

Figure 4.13: Velocity field around cylinder surface at time t = 0.3555 and t = 0.367.
(Deformation amplified x 50)
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In a second run the material properties of the structure are the following: E = 15.58 ·
109 N/m2, ν = 0.4, ρ = 18000 kg/m3 and t = 0.5 mm. In this case resonance is obtained
as the eigenfrequency of the ovalling effect in the first mode coincides with the shedding
frequency, thus f1 = fs = 43.1 Hz. Figure 4.14 shows the pressure and displacement
variation with time at the reference point 5401. Due to this resonance the amplitude
is larger than in the previous run in spite the fact that that the structure is stiffer and
significantly heavier. In figure 4.15 the deformation at two extreme points is plotted.

Figure 4.14: Pressure and x-displacement versus time at point 5401.

Figure 4.15: Velocity field around cylinder surface at time t = 0.355 and t = 0.3665.
(Deformation amplified x 20)

A third simulation is carried out where the structure is modeled with total lagrangian
elements and using conforming meshes, in accordance to the described FSI model in section
4.2.1. The material properties in this run coincide with the ones used in [40]: E = 5.6 ·108

N/m2, ν = 0.3, ρ = 18000 kg/m3 and t = 0.5 mm. The first 3 eigenfrequencies are f1 = 7.9
Hz, f2 = 22.2 Hz and f3 = 42.6 Hz respectively corresponding to 2, 3 and 4 wavelengths
along the cylinder circumference.

Figure 4.16 shows the radial displacement at the reference point 5401. Figure 4.17
shows the deformed cylinder at time instants t = 3.565 s and t = 0.368 s.

It is observed that f3 = 42.6 Hz, which is very similar to the shedding frequency
fs = 43.1 Hz, is predominant in the FFT-diagram.
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Figure 4.16: Radial displacement versus time at point 5401.

Figure 4.17: Velocity field around cylinder surface at time t = 0.353 and t = 0.365.
(Deformation amplified x 5)

4.4 Concluding remarks

In this chapter, the FIC/FEM model developed in previous chapter is extended to an FSI
model designed for aeroelastic problems involving airflow around a flexible structure. The
structure is assumed to be much heavier than the air and therefore explicit coupling is
used based on a sequential staggered algorithm. Furthermore, as airflow typically is of
high Reynolds number the viscous forces at the interface are neglected. Only the pressure
forces take part in the coupling. This defines the FSI model, which is tested using a
geometrically non-linear solid as the structural part. The solid elements are of same shape
as the fluid elements, triangles in 2D and tetrahedra in 3D, and the meshes are conforming.

For the application to the skyscraper Burj Dubai a simplified beam model is used
instead of solid elements and the meshes are non-conforming. It shows that the model can
simulate the dynamic behavior of large-scale ground structures.

Finally, using the nonlinear shell model in CARAT and coupling it to the FSI model
in KRATOS, airflow around an elastic cylinder is simulated. The ovalling phenomena can
be observed in the flow-induced vibrations of the cylinder. Furthermore, the success in
coupling the FSI model with a structural model from another code indicates the possibility
of simulating more FSI problems within aeroelasticity where highly specialized modeling
of the structure is required.
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Chapter 5

Conclusions

In this monograph the main objective has been to develop a numerical method for solving
the incompressible Navier-Stokes equations by means of the finite element method (FEM).
This has been achieved by adapting the Finite Calculus (FIC) technique and the well
known problems with numerical instabilities associated with these equations have been
solved. These include oscillations in the velocity field due to a dominant convection term
and oscillations in the pressure field due to the incompressibility condition.

As the numerical solution of the convection-diffusion equation also is subject to the
first of these sources of instabilities, oscillations in the solution field due to a dominant
convection term, a whole chapter has been dedicated to this equation. Here the FIC
method in the principle curvature directions has been implemented and tried out using
elements with linear as well as quadratic interpolation. Comparison with other standard
stabilization methods has been made. Using linear elements the principle curvature direc-
tions are approximated with the gradient of the solution and excellent results have been
obtained. This is also reported from other authors in this field using the FIC approach, for
example in [7]. As for the quadratic elements and using the actual principle curvatures,
which is a new feature, in general the results are also fine. But for some examples linear
elements are more suitable, it depends on the problem type. The use of quadratic ele-
ments for the FIC model still requires some further investigation before it is safe to apply
it to more complex problems. As the FIC model for the convection diffusion problem in
this monograph first was to be extended to an incompressible fluid model and then also
involving fluid-structure interaction, this has been done using linear elements. Another
reason for this choice is that linear elements are computationally cheaper.

However, before the actual FIC/FEM fluid model was set up, the implementation of
the incompressible Navier-Stokes equations has been carried out using the GLS-method.
Like the FIC method, GLS is a stable method and equal order interpolations of the pressure
and the velocity can be employed. Here linear as well as quadratic interpolation is used.
The GLS/FEM model allows flows in the laminar regime to be simulated which are of
relatively low Reynolds numbers. The equations are written in an ALE framework and a
mesh moving strategy is provided.

As the next step the FIC/FEM fluid model has been implemented using linear ele-
ments. It has already been concluded that its features provide the necessary stabilization
for the convection term as well as for the incompressibility condition, allowing equal order
interpolations of the velocity and the pressure. Moreover, one of its intrinsic characteristics
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is that it filters turbulent flow fields without having to introduce any additional turbulence
model. This makes the model suitable also for flows with high Reynolds numbers. This is
of major importance as the modeling of air flows has been addressed in order to deal with
aeroelastic problems using a fluid-structure interaction (FSI) model. For this purpose a
sequential staggered algorithm for FSI has been introduced. This obliges the structure
to be much more dense than the fluid but this is a reasonable assumption for large-scale
structures surrounded by air. The dynamic behavior of the skyscraper Burj Dubai sub-
jected to wind load has been simulated. Finally the FSI model in KRATOS has been
coupled to a structural solver in CARAT and the ovalling phenomena is observed for an
elastic cylinder interacting with surrounding airflow. The use of code coupling is indeed a
promising task and will open up doors for new challenging FSI applications where highly
specialized solvers are required for both the fluid and the structure.
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[7] Oñate E. Zárate F. Idelsohn S.R. Finite Element Formulation for Convective-Diffusive
Problems with Sharp Gradients Using Finite Calculus. Computer Methods in Applied
Mechanics and Engineering 195 (2006) 1793-1825.
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[25] Oñate E. Valls A. Garćıa J. FIC/FEM Formulation with Matrix Stabilizing Terms for
Incompressible Flows at Low and High Reynolds Numbers. Computational Mechanics
38 (2006) 440-455.
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