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Abstract

A method is presented for the solution of an incompressible viscous fluid flow
with heat transfer and solidification using a fully Lagrangian description of the
motion. The originality of this method consists in assembling various concepts
and techniques which appear naturally due to the Lagrangian formulation.

First of all, the Navier-Stokes equations of motion coupled with the Boussi-
nesq approximation must be reformulated in the Lagrangian framework, whereas
they have been mostly derived in an Eulerian context. Secondly, the Lagrangian
formulation implies to follow the material particles during their motion, which
means to convect the mesh in the case of the Finite Element Method (FEM), the
spatial discretisation method chosen in this work. This provokes various difficul-
ties for the mesh generation, mainly in three dimensions, whereas it eliminates
the classical numerical difficulty to deal with the convective term, as much in
the Navier-Stokes equations as in the energy equation. Even without the dis-
cretization of the convective term, an efficient iterative solver, which constitutes
the only viable alternative for three dimensional problems, must be designed for
the class of Generalized Stokes Problems (GSP), which could be able to behave
well independently of the mesh Reynolds number, as it can vary greatly for
coupled fluid-thermal analysis.

Moreover, it offers a natural framework to treat free-surface problems like
wave breaking and rough fluid-structure contact. On one hand, the convection
of the mesh during one time step after the resolution of the non-linear system
provides explicitly the locus of the domain to be considered. On the other hand,
fluid-to-fluid and fluid-to-wall contact, as well as the update of the domain due
to the remeshing, must be accurately and efficiently performed. Finally, the
solidification of the fluid coupled with its motion through a variable viscosity is
considered

An efficient overall algorithm must be designed to bring the method effec-
tive, particularly in a three dimensional context, which is the ambition of this
monograph. Various numerical examples are included to validate and highlight
the potential of the method.

Keywords: Updated Lagrangian Formulation, Coupled Fluid-Thermal prob-
lems, Thermal Convection, Rayleigh-Bénard Instability, Incompressible Fluid
Flow, Delaunay Triangulation with size constraint, solidification.
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Chapter 1

Introduction

The present work will describe an extension of a recent numerical method,
the Particle Finite Element Method (PFEM) first presented in [63], applied
to fluid problems with thermal coupling. This work is the continuation of a
precedent thesis by F. Del Pin [37]. Various different elements will be necessary
to explain and prove the efficiency and robustness of the method. Each element
will be presented in details, reflecting the work done during this doctorate. The
Lagrangian formulation in fluid mechanics gives rise naturally to new problems,
as much in a theoretical manner as in an implementation point of view. The
necessity to join all these areas of research constitutes the difficulty of this work,
and evidently its most interesting aspect.

1.1 State of the art

In this section, the actual state of the art is reviewed in the main domains
that constitute this work, namely the Lagrangian formulation applied to the
Navier-Stokes equations, the mesh generation, the iterative solvers applied to the
Generalized Stokes Problem (GSP), the classical methods to treat free surface
flows and the coupled thermal flows with solidification.

1.1.1 Lagrangian formulation

The classical Navier-Stokes equations have been studied for a long time, both
from the theoretical [52, 106], and numerical [59, 72, 33, 91, 40] points of view.
These equations were mostly associated with an Eulerian description of motion
which led to the impressive results in computational fluid dynamics (CFD) dur-
ing the last 20 years. At the opposite, the Lagrangian formulation happens to be
the standard formulation in structural mechanics [12, 11], because of its natural
ability to follow the media during the motion, and the ease of applying boundary
conditions. Basically, the two main streams in the Lagrangian formulation ap-
plied to computational mechanics are the Total Lagrangian formulation, when

15



16 Chapter 1. Introduction

one keeps the reference configuration fixed during the motion, and the Updated
Lagrangian formulation, where the reference configuration changes during the
motion. Both are strictly equivalent at the continuum level, corresponding to
different points of view and different implementations.

In fluid mechanics, the Lagrangian formulation has been applied much more
punctually. Two early references are Hirt et al. [60], and Fritts and Boris
[47], where an unstructured mesh of triangles is used with a finite difference-
like method, and a rezoning technique. Muttin et al. [83] develop the La-
grangian formulation to metal casting flow using P2 isoparametrical elements
and a penalty technique for incompressibility. Surface tension is taken into ac-
count and a special remeshing is presented to adapt the boundaries as the fluid
fills the mould. Bach et al. [9] consider a free surface problem with squared ele-
ments, discontinuous pressure and surface tension, and Ramaswamy [95] studies
the sloshing problem with a coupled Lagrangian-ALE approach. In [66], Kawa-
hara et al. compare the numerical results obtained by their method to the an-
alytical solution of a solitary wave propagation, and in [56] Hayashi et al. take
advantage of the fractional step formulation to simulate free surface problems.
However, all these papers do not introduce the material description, and iterate
on the spatial description [9, 95, 66, 56|, or even do not iterate [83], assuming
small perturbations of the fluid movement during the time step. Radovitzky
et al. [92] and Malcevic et al. [75] present a fully non linear model, using the
Picard linearization in [75], and the Newton-Raphson linearization in [92]. Nev-
ertheless, [92] stops the simulation when the wave breaks upon itself and [75] do
not consider free surfaces. A different approach is proposed by Hansbo by using
a space-time finite element method [53, 55, 54], where the space-time ’slabs’ may
or may not be aligned along the characterictics, providing a continuous bridge
from the Eulerian to the Lagrangian formulation. However, all computations
are also performed without merging and splashing. These authors use in one
way or another a remeshing or ’rezoning’ technique when the mesh becomes
too distorded, and then interpolate the results through a certain interpolant
operator. Moreover, they only present results in two dimensions, with simple
geometry, and without breaking waves, the free-surface being smooth. It is also
remarkable that, except the paper of Malcevic et al. [75], the Lagrangian formu-
lation is only associated with free surface problems. Recently, [63] proposed a
new method where free surfaces, breaking waves and fluid-structures interaction
are fully considered. This model was adapted in Aubry et al. [6, 7] to thermal
problems with a different reference configuration, which constitutes the basis
of this work, and presented in [5, 4]. In [84, 85], a global presentation of this
method is presented. In [88], various applications of the method are reported.

1.1.2 Mesh generation

Concerning the automatic mesh generation field, which will constitute an im-
portant part of the method, this area of research began only twenty years ago.
If the mesh generation was the bottleneck of the computation in the past, this
is definitively not true nowadays, producing good quality meshes of a few mil-

16



1.1. State of the art 17

ions elements on a PC in a few minutes [46, 72, 49, 108]. This field can be
divided into three main parts: the Delaunay-based mesh generation with the
pioneering work of Hermeline [58], Bowyer [18], and Watson [113], the advanc-
ing front method with George [48] and more recently Lohner et al. [73, 71],
and the octree-based methods with Yerry et al. [116]. For the Delaunay-based
mesh generation in the finite element context, Weatherill et al. [115, 114] pro-
pose alternatives to the George method of boundary recovery. Joe develops a
completely different approach trying to extend the results of Lawson [69] in two
dimensions to the three-dimensional case. In [64], he conjectures that his algo-
rithm constructs always a Delaunay triangulation, and he proves it in [65]. For
the frontal method, apart from the work of Lohner, George et al. also propose
their vision of a frontal method in [50]. Moller et al. [81] present an advancing
front method to generate particularly strechted elements in specified directions.
Finally, Frey et al. [45] couple both approaches to use the accurate placement
of the points of the frontal method in the classical Delaunay triangulation in a
Delaunay-advancing front fashion, by defining as a front all the elements that
are considered as bad with respect to a given criterion, and Mavriplis [77], and
more recently Radovitzky and Ortiz [93] use the connectivity efficiency of the
Delaunay triangulation in a coupled frontal-Delaunay approach.

1.1.3 Generalized Stokes flow and fractional step

Iterative solvers are at the heart of the resolution of flow solvers. Iterative
solvers are characterized by a low amount of storage requirement and good con-
vergence properties for well conditioned systems [100, 8, 80]. Iterative solvers
applied to the generalized Stokes flow where time discretization is taken into
account is an active domain of research [43], mainly due to the saddle-point
nature of the Generalized Stokes Problem (GSP). In order to solve a Stokes-
like problem with iterative methods, two main approaches can be distinguished,
whether the problem is solved as a whole, or ‘coupled’, or if it is solved in a
segregated way, for the pressure and then for the velocity [14]. In the first
category, two possibilities for a Krylov-based iterative solver which take into ac-
count the symmetry of the problem are the clever MINRES and SYMMLQ [89].
The Conjugate Gradient can break down in case of an indefinite matrix as a
division by zero can occur. Page and Saunders noticed that the Conjugate Gra-
dient was a Lanczos method where the coefficients of the Conjugate Gradient
are obtained by a Choleski factorization of the coefficients created by the Lanc-
zos process. For indefinite systems, the Choleski factorization may fail, so that
SYMMLQ is based on an LQ factorization of matrix of the Lanczos coefficients,
and MINRES minimizes the Euclidian norm of the residual of the equation us-
ing the least-square solution instead of minimising the A-norm of the error as
in the Conjugate Gradient. In the second category, the Uzawa method [1], or
Preconditioned Conjugate Gradient Uzawa (PCGU) variant, allows to replace
a minimisation constrained problem due to incompressibility with a sequence
of minimization problems without constrains, in fact the dual problem on the
pressure [41, 44]. Nonetheless, it appears that in both approaches, the bulk

17



18 Chapter 1. Introduction

of the computation is concentrated on a good approximation of the Pressure
Schur Complement (PSC) [109], which mimics the Uzawa operator at the dis-
crete level. One of the main differences between both methods is due to the fact
that the first only requires a spectrally equivalent operator of the velocity oper-
ator, whereas the second requires its accurate action. For example, as noted in
[111], the PCGU does not converge for a fixed number of inner iterations for one
multigrid V-cycle whereas the MINRES converges at a rate independent of h for
a Stokes problem. In fact, four iterations are necessary to obtain convergence
of the PCGU.

The first category gave rise to a vast literature on block preconditioning of
the Stokes and generalized Stokes problems. The block preconditioning allows
to taken advantage of the knowledge of the Partial Differential Equations (PDE)
properties at hand. The first paper applying the MINRES solver to the saddle
point problem with block preconditioners is from Rusten and Winther [99],
which solves a mixed method for second-order elliptic problems and the Stokes
problem. It also gives some results on the relationship between the eigenvalue
distribution of each block, and the one of the whole system. In two papers by
Wathen and Sylvester [112, 102], block diagonal and block preconditioners are
considered and a solid theoretical basis is settled to show the importance of the
preconditioning on the MINRES method. If preconditioning is important to
decrease the condition number in the Conjugate Gradient method, it is more
important to cluster the eigenvalues in case of the MINRES method, as the
eigenvalues are distributed in both positive and negative part of the real axis,
and it is easier to find a polynomial which cancels at the eigenvalues, and whose
norm will give the rate of convergence of the method [111]. Then Ramage
and Wathen [94] compare a two-level Uzawa-like iteration with the MINRES
approach, implemented as a hybrid ORTHOMIN-ORTHODIR solver [2] with
block diagonal preconditioners, reporting a comparable asymptotic rate for both
methods but with a slightly lower constant for the MINRES method. Finally
Bramble and Pasciak [19], and particularly Mardal and Winther [76] proved that
using appropriate approximations of the PSC, a uniform preconditioner, namely
a preconditioner whose rate of convergence is independent of the parameters, is
obtained for the MINRES method.

The second category mainly consists in slight modifications of the basic
Uzawa method with appropriate preconditioners. The Uzawa method relies on
an inner loop where the velocity system is solved, and an outer loop where the
pressure residual is decreased. The velocity system must be solved accurately
as it is responsible of the orthogonality of the search directions, and then on the
convergence of the whole system. Atanga and Sylvester [3] compare the per-
formances of an iterated penalty method, a Conjugate Gradient Uzawa method
and a PCG applied to the monolithic system, even if it is not positive definite,
giving preference to the Uzawa approach. Bank et al. [10] reformulate the saddle
point problem in order to approximate both the action of the inner system and
of the outer system. Elman and Golub [42] consider the basic Uzawa method
with a fixed parameter and propose to approximate the action of the inverse of
the velocity system ..y using a tolerance on the inner system depending of the
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1.1. State of the art 19

residual of the outer system. In the paper from Bramble et al. [20], distinction
is made if the approximation of the inner system is performed by a precondi-
tioner or by a non linear approximation, varying the tolerance of the linear inner
solver. It provides more general results on the convergence, supposing that the
preconditioners for the inner and the outer iteration are uniforms. However,
the second category really began to be considered as a serious option with the
breakthrough article of Cahouet and Chabard [21], giving rise to all the next
applications [15, 36, 68, 22, 117, 74].

Finally, another common way to solve the GSP in an approximate way is
through the use of fractional step methods. Initially, the method was developped
for time dependent problems by Témam [105] and Chorin [26], providing a
formal first order in time fractional error. This error was latter improved by
Van Kan [110], introducing the pressure of the last time step in the first equation,
also known as the incremental pressure correction scheme. The fractional step
has always given rise to polemic discussions on pressure boundary conditions
[96, 107] and velocity boundary conditions for the intermediate velocity [67]. In
order to bypass this delicate question, Blair Perot reinterpreted the fractional
step as an incomplete block LU factorization, so that spatial discretization and
boundary conditions are already discretized in the algebraic system. This point
of view opened the way to recent publications like Quarteroni et al. [90], where
the discrete and the continuous fractional step are compared, Codina [27], where
a study of the pressure stability is performed for the first and second order
algebraic splitting, and the stability properties of the classical fractional step are
highlighted, Henriksen and Holmes [57], where high-order algebraic splittings are
discussed, and Saleri and al. [101], where different approximations are tested,
relying on the block LU decomposition. The book of Turek [109] was the first
to really highlight the parallelism between the PCGU and the fractional step,
which allows to understand boundary condition problems, and the real range of
application of the classical fractional step. This is the point of view adopted in
this work.

1.1.4 Free surface flow

The first problem dealing with a Lagrangian formulation for fluids is the need for
a constant remeshing due to the severe distortion of the mesh as the nodes move
in time. Particle type methods offer an appealing alternative to this remeshing
and have been used extensively. A precursor in this field was Monoghan [51] for
the treatment of astrophysical hydrodynamic problem with the so called Smooth
Particle Hydrodynamics Method (SPH). Kernel approximations are used in the
SPH method to interpolate the unknowns.

In order to avoid the frequent remeshing burden, other methods using finite
elements have also been developped. The volume of fluid (VOF) method and its
variants are commonly used for the analysis of free surfaces problems [61]. The
idea is to introduce a scalar function that is transported by the velocity field.
This function is defined on all the volume, and a certain isocontour determines
the free-surface. It has been extensively used in mould filling by Ravindran et al.
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[97]. The free surface tracking can also be performed by a Lagrangian interface
technique as proposed in Cruchaga et al. [32] and [31]. Here, the idea consists
in updating in a Lagrangian manner the interface position with the end-of-step
velocity. The elements affected by the interface change are refined to describe
accurately the free-surface, and a balance of mass is computed to guarantee the
global mass conservation. Finally, the Arbitrary Lagrangian-Eulerian (ALE)
method is another alternative to track the free-surface boundary, which aim is to
take advantage of both the Lagrangian and Eulerian formulation, as presented in
[39] and [62]. In the ALE approach, the domain changes its shape to accomodate
the dynamic interfaces. The mesh follows the interface motion near the moving
boundary, but is fixed on far-field boundaries. In between, the mesh movement is
computed solving an elastic problem to minimise the deformation of the mesh.
However, if the boundary motion is very large, frequent remeshings are also
needed. Furthermore, as the mesh does not follow the particules, the convective
term still exists, driven by the mesh velocity. Reference [38] presents the PFEM
method coupled with an ALE approach to solve free surface and fluid-object
interactions problems.

1.1.5 Coupled thermal flow with solidification

For the solidification problem or Stefan problem, basically two main streams of
work appear, as is the case in free-surface problems, whether the mesh follows
the solidification front, namely the front tracking methods, or the front goes
through the mesh, namely front capturing methods. An early reference of a
finite element method applied to front tracking is the one of Bonnerot et al.
[16] extended later in [17], where a space-time finite element method is pro-
posed. The velocity of the front is computed from the last known temperature
and the front updated. Recently, Mc Daniel et al. [79] propose a Least-Square
formulation including convection effects, moving the mesh with transfinite in-
terpolation technique. The classical drawbacks of the moving mesh methods
are the same as the Lagrangian formulation in a flow problem, namely intense
remeshing, possible difficulties to deal with appearing and desappearing phases,
and non-smooth interfaces.

In the front capturing context, which offers the largest literature, various
attempts were first made to extend the thermal problem to latent heat effects
so that only few modifications would have to be done in a nonlinear heat transfer
code. The main difficulty is created by the fact that, in the case of an isothermal
phase change, the enthalpy function presents a strong discontinuity near the
phase change interface. In [82], Morgan et al. extend a previous work [28], and
apply the enthapy method to incorporate the latent heat effect in the thermal
capacity coefficient by applying a smoothing on the enthapy function. The main
drawback is due to the fact that small time steps must be performed in order
to capture the phase change. In [98], the latent heat effects are included in the
residual of the linearized heat equation as an additional source term forcing the
analysis to follow the H-T curve. From the point of view of the linearization,
the Newton-Raphson 2"? order is lost and it can be seen that the method is
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not weakly conservative. In a serie of papers Crivelli, Storti and Idelsohn [29,
103, 104] advocate to direcly integrate numerically the discontinuous enthalpy
function on the elements where the phase change occurs. The method is firstly
applied to interface with straight sides in [29], and extended to curved interfaces
in [103]. In [104] they derive a Jacobian matrix expression which reaches the 27%
order convergence of the Newton method for materials with constant properties
in each phase. Finally, in [25] and [23], Celentano et al. present a different
way of taking into account the latent heat transfer by mainly approximating
the tangent latent heat matrix by its secant version. It is the approach followed
in the present work.

In the thermally coupled fluid simulation with phase change area of research
with front capturing method, different approaches were presented, but the dif-
ficulty is more related to the tracking of the free-surface than to the phase
change. Cruchaga et al. [30] and Celentano [24] couple the velocity field to
the temperature field with solidification through the Boussinesq approximation.
They solve a staggered system with a Newton-Raphson-type algorithm. How-
ever, the effect of the free surface is not taken into account. Lewis et al. [70] use
the pseudo-concentration method to track the free-surface, and consider solid-
ification effects during mould filling. In Mcbride et al. [78], the free-surface is
neither considered but a porous medium law is introduced to model the dentric
zone and the fluid satisfies the Boussinesq approximation. Dantzig [34] presents
an enthalpy method, which provides a very good pattern of convection cells on
the Gallion melting example. Once more, all these paper only present results in
a two dimensional context.

1.2 Objectives

In this work, we aim at developing a robust, stable and efficient method in three
dimensions which can be able to deal with actual industrial problems such as
breaking waves and mould filling. The last problem involves the computation
of the free surface with an intense heat transfer between the mould and the
casting, and rough contact during the filling. Real problems all involve three
dimensional computations now affordable with PC’s. Nevertheless, the algo-
rithms used should be taylored with special care and velocity and low storage
are evidently the two main contradictorial goals.

The first ingredient to achieve this goal relies on a correct theoretical deriva-
tion of the classical equations of motion used in fluid mechanics, the Navier-
Stokes equations, in a Lagrangian framework. In view of the application, the
heat equation should also be recast in this context and the coupling between
both sets of equation be highlighted. In a numerical point of view, we aim
at treating in an original way the classical problem of convection, due to the
non linear term in the Eulerian formulation of the Navier-Stokes equations, but
equally present in the heat equation with transport, which has produced so
many literature the last four decades. Moreover, we are especially interested in
solving free-surface problems, which may present some difficulties when solved
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in an Eulerian formulation.

Respect to the mesh generation, we will develop the Delaunay-based mesh
generation, and we will also explain why this is the best choice regarding to the
application in fluid mechanics. Moreover, we will present in three dimensions
an isotropic controled mesh generation, with a given size distribution in space.
Indeed, the resources needed by three dimensional computations can be very
effectively reduced by an adequate distribution of the size of elements. However,
we do not use in this work any a priori or a posteriori error estimate to construct
this size map but we suppose that the user has an idea of the problem to be
solved, and more practically of the location of the possible quick variations of
quantities of interest.

1.3 Contents

The three main ingredients of this work are the numerical algorithm to solve
the Navier-Stokes and the heat equations in a Lagrangian formulation, the mesh
generation, and the free-surface treatment. All are closely related; the mesh
should evidently have good properties for the numerical resolution, but the
velocity solution will be responsible of the placement of the nodes for the mesh
generation and the locus of the free surface.

After this introduction, the basis of the Lagrangian and Eulerian descriptions
are recalled and applied to the heat and Navier-Stokes equations and their weak
expressions are derived in a form suitable for the non linear coupled problem.
In Chapter 3, the mesh generation is tackled from the Delaunay triangulation,
implemented through the Delaunay kernel which constitutes the heart of the
connecting scheme, to the boundary conforming process, which is the critical
point of the method, the node creation on a given size distribution, and the
optimization algorithm. Chapter 4 presents the discretization of the consid-
ered equations in space and time, with particular emphasis in the numerical
resolution of the Generalized Stokes Problem obtained, as no convective term
appears in the discretization. Compatible spaces, mass conservation and dis-
cretization with different mixed elements are considered. The relationship and
implementation of fractional steps, algebraic splitting and the preconditioned
Uzawa method are discussed in details. Then, the description of the free surface
is considered in Chapter 5. Various classical discretizations are discussed and
a proposition is made which blends efficiency and accuracy. Chapter 6 deals
with thermally coupled flows and the introduction of the solidification problem
coupled with the fluid flow. The numerical method to treat the solidification
discretization is not new but is applied in a new context. Finally, a conclusion
closes the present work. Possible extensions of the method are then discussed,
as new application fields are then opened.

The program used for all the proposed example is written in C++, but does
not use all the complex inheritance of the C++ and is almost a C implemen-
tation. It consists in about 80 files and about 100 000 lines of code, one third
being the mesh generator. Files are usually written for the two dimensional and
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the three dimensional case separately, mainly because of the huge difference in
the mesh generator in both cases, and are compiled independently. Three post
processors were used in this work:

e the GiD pre and post processor: www.gid.cimne.com
e the medit software: www.ann.jussieu.fr/ frey/logiciels/medit.html

e the opendx postprocessor: www.opendz.org

1.4 Improvements respect to previous work

Being the logical continuation of the work realized by F. Del Pin, we present
the various improvements performed during these three years:

e Introduction of the thermal coupled flow

e Introduction of the solidification problem

e Meshing performed with only tetrahedras

e Recovery of the wall boundaries mesh

e A complete second order in time iterative solver for the fluid flow
e Improvements of the mass conservation

e Improvement of the free surface

e Experience with mixed elements

These improvements and extensions were mainly motivated by problems
encountered during the analysis of numerous examples during these three years,
and by the extension of the method to new domains of applications.
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Chapter 2

The Lagrangian description
applied to fluid mechanics

The purpose of this chapter is to give the classical tools to write the Navier-
Stokes equations in a Lagrangian manner, both in the strong and in the varia-
tional form. The Navier-Stokes equations have been classically associated with
an Eulerian description of motion, where the velocity is known on each spatial
point of the studied domain. The Lagrangian formulation offers a different point
of view, as each particle knows its velocity. The Lagrangian formulation has been
extensively used in solid mechanics, as the movement of the whole structure is
usually confined in a rather small space, so that all the initial material under
consideration could be followed during the study. At the continuum level, both
descriptions are strictly equivalent but give rise to different implementations
and difficulties. The main difference is the inclusion of the convective term in
the temporal or total derivative. On the other hand, all other spatial operators
become highly non linear.

It must be pointed out that the discussion will stay at the classical calculus
level. Furthermore, no boundary condition is considered as we are mainly con-
cerned by the correct writing of the operators. Boundary conditions and the
functional setting will be discussed in Chapter 4. These equations will be the
foundations of the numerical method presented in this work. A similar approach
to ours can be found in [11]. However, the discretization and the resolution is
performed in a completely different way.

In the first part, a review of the basis of the Lagrangian and Eulerian for-
mulation is discussed. Thereafter, these tools are applied to the heat equation
firstly, and then to the full Navier-Stokes equations. Finally, the linearization
process is mentioned, even if it maybe belongs more to Chapter 4, in order
to compare the Navier-Stokes equations in a Lagrangian framework with a fi-
nite strain incompressible formulation, which is its nearest formulation in solid
mechanics.

33



34 Chapter 2. The Lagrangian description applied to fluid mechanics

2.1 Lagrangian versus Eulerian formulation

In this section, the main features of the Lagrangian and Eulerian approaches are
recalled, the notations are defined and the incompressibility condition is derived
in both formulations.

2.1.1 Relations between Lagrangian and Eulerian tensor

In the Lagrangian formulation, the notions of reference and current configu-
ration play a central part [9, 7, 3]. The Lagrangian formulation describes all
the measured quantities with respect to the position of a particle on a previ-
ously chosen reference configuration and to time, as M = M (X,t) where M is
whatever interesting quantity and X the reference position. On the other hand,
the FEulerian description uses the position x of a given particle on the current
configuration to define the quantity M = m(x,t). Quantities in the reference
and current configuration will be written with capital and lower case letters,
respectively. Obviously, both should describe the same property, which is noted
introducing the configuration as a mapping of the location of a particle X of a
body into R™ as x = x(X, ), writing:

M =m(x,t) = m(x(X,1),t) = M(X,1) (2.1)

All tensor fields and their derivatives will be written with respect to a particular
reference. A classical issue is to relate a derivative of a scalar tensor M in the
Eulerian and Lagrangian descriptions. There, the deformation gradient F, plays
an important role:

F = gradx (x(X,t) = gradx (x) (2.2)

Using differential calculus, one gets:

om(x,t)  OM(X,t) 0X

or 90X oz (2:3)
which leads, for a scalar quantity M, to:
grad,(m) = F~Tgradx (M) (2.4)
and, for a first order tensor V:
grad,(v) = gradx(V)F~* (2.5)

The well-known Nanson’s formula is helpful to get a similar relation for the
divergence of a second order tensor:

ndS = JF-TNdS (2.6)

where J = detF, n and N are the normals to a current and reference area
element. Multiplicating both sides to the left by a first or second order tensor,
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2.1. Lagrangian versus Eulerian formulation 35

integrating on a closed surface using Gauss theorem and finally changing the
variables in the right hand side, one gets for a vector v:

1
divg (V) = 7 divx(J-F~1V) (2.7)
and for a second order tensor o:
) 1. T
div, (o) = i divx(Jo-F~7) (2.8)
These relations are classically known as the Piola transform of a tensor [8].

Finally, differentiating V.= V(X t) = v(x(X), t) with respect to time leads to:

DV v d

Dr EJFV'QTG (V)
The first term refers to the material derivative of a vector V and the second
one to the spatial derivative. In a Lagrangian formulation the convective term
is implicitely contained in the material derivative as the velocities are function
of the material particles.

(2.9)

2.1.2 The incompressibility condition

The conservation of mass and the incompressibility condition are good exam-
ples of how to switch from the Lagrangian to the Eulerian formulation and
viceversa. Writing the conservation of mass between two instants in two differ-
ent configurations and changing the variables between both configurations, one
obtains:

po=pJ (2.10)

where p and py are the mass densities in the current and reference configura-
tion. The last equation describes the conservation of mass in the Lagrangian
formulation. Differentiating (2.10) with respect to time leads to:

pJ = —pJ (2.11)
Using the fact that: _
J = Jdivg(v) (2.12)
one gets: )
p_T divg (v) (2.13)
p J '

which is the classical mass conservation in the Eulerian formulation. The in-
compressibility condition in a Lagrangian frame is thus derived:

P =po or J=1 (2.14)
whereas, from an Eulerian standpoint, it is classically written:

divg(v)=0  J=0 (2.15)
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36 Chapter 2. The Lagrangian description applied to fluid mechanics

From the expression of the divergence of a vector, it can also be written:
Tr(gradx(V)F1) =0 (2.16)

where T'r is the trace operator of a second order tensor. This expression will be
used later on.

2.2 The heat equation

In this section, the strong form of the heat equation in a Lagrangian formulation
will be obtained from the well known Eulerian formulation. Then, the varia-
tional form will be derived and the relationships between both formulations will
be emphasized.

2.2.1 Strong form of the heat equation

There are several ways to introduce the Lagrangian formulation, either directly
from the conservation principles or from the classical Eulerian equations. The
second way will be chosen as these equations are very well-known. Writing the
classical heat equation with convection in an Eulerian form, neglecting mechan-
ical effects and volume changing, and using Fourier’s law, one obtains [1]:

pCOHT + pC(v - grad,(T)) = divy(k grad,(T)) (2.17)

where T is the temperature, x the thermal conductivity, p the density, C the heat
capacity and v represents the convective velocity. As seen before, the term in
the left hand side represents the spatial derivative. Using the material derivative
and the Piola transform, the heat equation in the Lagrangian description reads:

DT
poC——

Dr = divx(k JETYF Tgradx(T)) (2.18)

Here, the same notation has been used for the representation of the temperature
in an Eulerian and in a Lagrangian descriptions for the sake of simplicity.

Remark 2.2.1 No convective term appears in the last equation which has a
linear appearance. However, the non linearity of this equation comes from the
fact that F', the deformation gradient, depends on the displacement U. As noted
n [12], the Lagrangian equations are highly non linear in the space coordinates.

2.2.2 Variational form of the heat equation

Multiplying equation (2.18) by a test function W and integrating on the whole
domain §2¢, the equation reads:

DT
/poCﬁWdVO:/ divx (k JEYF T gradx (T)) W dVy (2.19)
Qo Q0
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2.3. The Navier-Stokes equations 37

Integrating by parts the right term of the equation (2.19) leads to:

DT
/ poC—— W dVy = —/ kJEYF T gradx (T) - gradx (W)dVy  (2.20)
Q0 Dt Q0

Remark 2.2.2 The first F~1 of the right hand side of equation (2.20) could
be transposed and be written just after the dot, before the spatial gradient of
the weight function. Using equation (2.4), the expression of the gradient in
the current configuration then appears. If the volume of integration is changed
from the reference to the current configuration, J disappears and the classical
variational formulation is obtained.

2.3 The Navier-Stokes equations

The same structure as the preceeding part is followed to derive the Lagrangian
form of the Navier-Stokes equations. First, the strong formulation is presented
through the introduction of the first Piola-Kirchhoff stress tensor. Then, the
variational formulation is derived and the link between Eulerian and Lagrangian
formulation is also highlighted.

2.3.1 Strong form of the Navier-Stokes equations

In the Eulerian framework, the classical equation of momentum conservation
reads [6]:

POV + pv - grad, (v) = divg (o) + pf (2.21)
where v is the velocity, f an external force per unit of mass, and the stresses o
are related to the pressure and the velocities by:

o=-pl+2uD (2.22)

for a Newtonian fluid where, in equation (2.22), u is the fluid viscosity and D is
the symmetric part of the gradient velocity, refered to the deformed configura-
tion. Furthermore, considering the incompressibility condition, and supposing
a constant viscosity, the classical Navier-Stokes equations read:

p(Ov + v - grad, (v)) = —grad,(p) + pAv + pf (2.23)

divy(v) =0 (2.24)

In the reference configuration, using the Piola transform for the second order
stress tensor o leads to:

DV 1 T
Por =7 divx(JoF ™) + pf (2.25)
or: DV
poﬁ = dZ"UX (H) + pof (2.26)
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38 Chapter 2. The Lagrangian description applied to fluid mechanics

where IT is the first Piola-Kirchhoff stress tensor defined as:
Im=JoF T (2.27)

Using the constitutive equation (2.22), the Lagrangian equations of motion for
an incompressible fluid read:

DV

POy = —divx (JpF~T) + pdivy (Jgradx (V)FTF-T) 4 pof (2.28)

J=1 —or Tr(gradx(V)F 1) =0 (2.29)

Remark 2.3.1 Asin the heat equation, the non linearity of these equations ap-
pears through the deformation gradient. Both the velocity and the displacement
appear in these equations, coupled with the pressure.

Remark 2.3.2 In equation (2.28), we have used the property that as the flow
is incompressible and the viscosity constant, to derive:

divg (—pI + 2pD) = —grad, (p) + pAv (2.30)

However, we will see later that, in order to include various boundary conditions
in the variational form in a natural way [10] and to possibly take into account
a variable viscosity considered in the coupled thermal flow, the precedent sim-
plification is not performed so that the momentum conservation reads:

DV
POy = pof — divx (JpF~T) +

divx (pJ(gradx (V)F~! + F~Tgrad’ (V))F~T) (2.31)

2.3.2 Variational form of the Navier-Stokes equations

Equations (2.28) and (2.29) are multiplied by test functions W and q respec-
tively. The variational form of the Lagrangian Navier-Stokes equations reads,
after integration by parts of these equations:

DV
/ po— WdVo= [ JpF T :gradx(W)dVy —
o, Dt 2%
fQo wd gradx(V)FF-T : gradx (W) dVy (2.32)
/ JTr(gradx(V)F 1)qdVy =0 (2.33)
Qo

Remark 2.3.3 As in the variational form of the heat equation, it is worth
noting that the terms F~T in equation (2.32) can be transposed and written
just after the gradient terms of the shape function, so that, using equation
(2.5), the gradients in the deformed configuration can be recovered. Changing
the variables in the integral and integrating on €2 leads to the classical Eulerian
weak form, as expected.
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2.3. The Navier-Stokes equations 39

Remark 2.3.4 To take into account different boundary conditions and a vari-
able viscosity, the variational form of equation (2.31) reads:

DV
/po—-vvdvoz JpF~ T gradx (W) dVy —
0, Dt %

Jo, 117 (gradx (V)F~t + F~Tgradi (V))F~T : gradx(W)dVy (2.34)

In all previous equations appears the volume of the reference configuration
Qo. This reference configuration can vary during the analysis if appropriate
changes are performed. The non-linearity of the spatial operators are due to
the fact that the final spatial configuration is not known and must be found by
the analysis.

2.3.3 Linearization of the equations

The Picard method has been chosen to linearize equations (2.32)-(2.33), as
the Newton-Raphson implies too many extra storage for a Newtonian fluid.
As a matter of fact, the Picard algorithm allows to perform the calculation
in the deformed configuration taking into account the fully non linear model
with large rotations and finite strains. Linearizing with a Newton-Raphson
method, as described in [11], produces many extra terms due to the fact that
the constitutive equation is given in the deformed configuration as we will try
to show.

For hyperelastic incompressible materials [5, 4] used in finite strains, prob-
lems are usually solved by the Newton or a Newton-like method, which involves
the linearized form of balance equations. Considering an hyperelastic material,
where the fundamental assumption is:

v

S=E

(2.35)

where S is the second Piola-Kirchhoff stress tensor, E the Green-Lagrange strain
tensor and W the stored strain energy function, the linearization of the Principle
of Virtual Work with respect to the displacement will give [2], p 338:

fint :/ P : gradx(N)dQ (2.36)
Qo

with S the first Piola-Kirchhoff stress tensor and N a test function. Using the
relationship between the first and the second Piola-Kirchhoff stress tensor, the
last equation reads:

J&int — / (SFT + SFT) : gTadx(N) dQO (237>
Qo

Introducing the elastic tensor C:

oS 0%V
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40 Chapter 2. The Lagrangian description applied to fluid mechanics

equation (2.37) becomes:
fint = / (CEFT + S¥T) : gradx(N)dQo (2.39)
Qo

It finally appears that the first term of the last equation, the material non
linearity, has been simplified thanks to the fundamental asumption of equation
(2.35), for which the elastic tangent tensor puts in relation two quantities in
the reference configuration. However, in the case of a fluid, the second Piola-
Kirchhoff tensor is only known through its spatial counterpart o, the Cauchy
stress tensor. As:

S=JF 1gF T (2.40)

the linearization of S will involve the linearization of J, F~1, o, and F~T whereas
the geometric non linearity and all the other terms involving the pressure lin-
earization will present the same form. This difference is the reason why the
linearization of the Navier-Stokes equations in a Lagrangian formulation implies
so many extra terms compared with the Picard linearization and an hyperelastic
law formulation linearized with the Newton method.

2.4 Conclusion

In this chapter, the main tools to derive the Navier-Stokes and the heat trans-
port equations have been presented. One possibility to obtain these equations
consists in deriving directly these equations from the physics, the second is to
use the Eulerian versions of these equations and then to switch to the reference
configuration. Their weak form has also been highlighted. The convective term
has been eliminated at the expense of the spatial operators expressed in the
reference configuration. At the continuous level, the elimination of the convec-
tive term is the most significant difference. However, at the numerical level,
various other differences arise, mainly due to the convection of the mesh, such
as the superposition of particles due to the crossing of the characteristics of
these particles, and the remeshing procedure, which will be detailed in the next
chapter. It is also interesting to note that the mass conservation equation is
expressed through the Jacobian of the transformation, whereas it involves the
divergence of the velocity in the Eulerian formulation. The strict equivalence
between both equations appears at the continuous level, but not at the discrete
level, as the time derivative is only approximately performed, and will give rise
to the difficult problem of mass conservation at the discrete level. The varia-
tional form of the heat equation and the Navier-Stokes equations are the basis
of the numerical scheme presented in Chapter 4.
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Chapter 3

Mesh generation

In this chapter, we will describe in details the whole mesh generation process in
its now classical form, and the particularities due to the convection of the nodes
in the present method. The approach developped in this work follows closely all
the articles from the INRIA Projet Gamma team, which is exclusively dedicated
since twenty years to the mesh generation area.

The mesh generation research is closely related to the computational geom-
etry, a word which comes from the work of Shamos and Preparata [89]. This
relatively new science mixes the theoretical results of abstract geometry with
the algorithmic and the difficulty of the numerical approximation to implement
these results on computers as described in O’Rourke [84]. First of all, we will
present the Delaunay triangulation and its properties, and we will quickly re-
view the different implementations of this special triangulation. Then, we will
describe the incremental algorithm, which is the method used in this work,
and which is the basis of the mesh generator. In a third part, we will present a
method to develop a complete mesh generator. Finally, some numerical example
illustrating the depicted method conclude this chapter.

3.1 The Delaunay triangulation

In this section, we introduce a few geometrical definition and a particular tri-
angulation, the Delaunay triangulation. We consider an ensemble of points S
of R% in general position, which means that in two dimensions there are no
three points in the same line or four points on the same circle, and in three
dimensions, there are no four points on the same plane or five points on the
same sphere.

3.1.1 Statement of the problem

In order to define a triangulation we need to introduce the concept of simplicial
covering and simplex. Following George et al. [46]:
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44 Chapter 3. Mesh generation

Definition 3.1.1 In R%, a d-simplex is the convex hull of d + 1 points not in
the same hyperplane.

For example, a 2-simplex is a triangle, a 3-simplex is a tetrahedron.

Definition 3.1.2 A simplicial covering 7, is a space covering made of simplices
which verify:

o The set of the vertices of T, is exactly S

o ()= UKE’J} K.

e Fvery element K in T, has a non empty interior.

e The intersection of the interior of two elements is an empty set.

Definition 3.1.3 7,. is a triangulation if 7T, is a simplicial covering and:
e The intersection of two elements of T, is :

— the empty set,
— a vertez,
— an edge,

— a face (if d=3).

Definition 3.1.2 prevents any non overlapping of the simplices, as oposed to
the kernel functions of the meshless methods. Definition 3.1.3 is added to Defi-
nition 3.1.2 in order to deal with the notion of conformity of the triangulation
necessary to derive error estimates for the Finite Element Method in conforming
approaches [23].

After having defined what is a triangulation, we will focus on a particu-
lar triangulation, namely the Delaunay triangulation. Once more, we need to
introduce another concept, the Voronoi diagram:

Definition 3.1.4 Given a cloud of points S of P;,i = 1,--- ,n the Voronoi
diagram is the ensemble of cells V; defined by:

V; = {P such that d(P,P;) < d(P,P;) Vj# i} (3.1)

The Delaunay triangulation is the dual of the Voronoi diagram in the sense
that the Delaunay triangulation is obtained by joining the vertices belonging
to two adjacent cells from the Voronoi diagram. An example of the Delaunay
triangulation and its Voronoi diagram with a degenerated case is given in Figure
3.1. If the points are in general position, the Delaunay triangulation is unique,
whereas it is not the case if d+2 points are cocyclic. This will not represent
any problem as the construction method does not rely on the Voronoi Diagram.
The fundamental property of this triangulation is the following:

44



3.1. The Delaunay triangulation 45

Figure 3.1: A Delaunay triangulation in plain lines and its dual, the Voronoi
diagram in dotted lines

Lemma 3.1.1 Given 7T any triangulation of the convex hull of a cloud of points,
if T verifies the empty circle property for every two adjacent elements of T , then
T is the Delaunay triangulation.

This very important lemma was demonstrated by B. Delaunay in 1934 [30].
This will be the fundamentals of the method. It is also remarkable that a local
property implies a global property. Various extensions of the Voronoi diagram
are high order Voronoi diagrams [98], diagrams for other objects than points [67],
and particularly the extension due to the introduction of a metric, isotropic in
[4], and anisotropic in [69, 72, 9].

3.1.2 Properties of the Delaunay triangulation

The Delaunay triangulation verifies some nice properties which contribute to its
popularity as a basis for the mesh generator. We mention the main ones in two
dimensions:

Theorem 3.1.1 The Delaunay triangulation maximizes lexicographically the
minimum angle between two edges.

Theorem 3.1.2 The Delaunay triangulation minimizes lexicographically the
mazximum incircle radio of an element.
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46 Chapter 3. Mesh generation

Unfortunately, these results are not true in three dimensions and let guess the
problems that we will have to face. However, some other properties are met for
any dimensions [90]:

e The maximum min-containment radius of the Delaunay triangulation of a
point set in R¢ is less than the maximum min-containment radius of any
other triangulation of the point set.

e The union of the circumballs of the triangles incident on an interior point
in the Delaunay triangulation of a point set lies inside the union of the
circumballs of triangles incident on the same point in anyother triangu-
lation of the point set. For a point on the convex hull of the point set,
this result is true provided only the portion of the union which lies in the
interior cone of the convex hull at the point is considered.

e The weighted sum of squares of the edge lengths is the smallest for the
Delaunay triangulations, where the weight is proportional to the sum of
the volumes of the triangles incident on the edges. The sum of these
weights is independent of the triangulation, therefore the weights can be
normalized.

e If the triangulation is non-obtuse then it is the Delaunay triangulation.

To sum up, the Delaunay triangulation is well appreciated in the computa-
tional geometry area as it possesses a sound mathematic basis and nice prop-
erties in two dimensions. However, these properties are rarely met and enjoyed
in a practical implementation and others goals have to be reached.

3.1.3 Algorithm for the Delaunay triangulation

There exists a lot of different methods to implement the Delaunay triangulation.
All rely on the empty sphere property, but important differences are met during
the numerical treatment of the algorithm as round-off errors are not propagated
in the same way.

The incremental algorithm

A first method consists in the incremental algorithm, which we will detail there-
after. The idea is to introduce the points one by one, and by supposing that the
triangulation which contains the already inserted points is Delaunay, do what is
necessary so that, by the introduction of the new point, the resulting triangula-
tion remains Delaunay. Therefore, the elements that contain the new points are
eliminated and a new local triangulation is then performed. The main feature of
this algorithm is its extension theoretically to any dimension and was proposed
independently in the same journal volume by Bowyer [13] and Watson [103].
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The flip algorithm

Another important algorithm due to Lawson [70] lays on the following theorem:

Theorem 3.1.3 Given a triangulation 7,. of the convex hull of a cloud of points
S, it is possible in two dimensions to obtain the Delaunay triangulation by ap-
plying edges sweeping for two adjacent element which do not verify the incircle
property.

Therefore these sweeping can be performed incrementally or not, considering an
initial triangulation obtained by one or another method. This theorem has been
later extended partially to the three dimensional case by Joe [61], relying on
another work of Lawson [71]. An important difference between the incremental
and the flip algorithm is due to the fact that the flip algorithm only relies on
predefined patterns as basic transformations. In three dimensions, these are
the 2 — 3 and 3 — 2 flips that will be seen in the optimization stage. So
that, at every moment, the algorithm deals with a valid triangulation. At the
oposite, the incremental algorithm deletes elements and must triangulate an
empty space, so that it may give rise to a topologycaly invalid triangulation
with overlapping tetrahedrons and gasps, as reported in [62].

Divide and conquer

An important algorithm comes from the divide and conquer methodology. The
idea is to divide the problem in two other simpler problems and to apply it
recursively until having elementary problems, and then to assembly the results.
The difficulty relies on the assembly procedure but the whole algorithm is of
order O(nlog(n)) in the worst case [55].

The lifting transformation

There exist also a stretch relationship between the convex hull algorithms and
the Delaunay triangulation. This link has been discovered by Edelsbrunner
and Seidel [35]. Indeed, the Delaunay triangulation can be obtained by the
convex hull in a space of one dimension higher that the one of the points under
studies, by assigning as additional component for each point the sum of the
square of the other components, indeed the value of the paraboloid associated
to the other components. After having performed the convex hull in the d + 1
dimension space, this hull is projected through the hyperplane orthogonal to
the last component, and this projection is the Delaunay triangulation. All the
different algorithms in O(nlog(n)) in the worst case to compute the convex hull
are then directly usefull for the Delaunay triangulation.

The sweeping algorithm

A sweeping algorithm in O(nlog(n)) has been also proposed by Fortune in the
two dimensional case [37]. A sweepline algorithm will construct the Voronoi
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diagram in the upper part of the line dividing the plane. The difficulty is due
to the fact that the Voronoi edges will be encountered by this sweep line before
the Voronoi edges responsible of these regions. The idea of Fortune relies on
applying an appropriate mapping to these sites so that they are encountered
first.

3.2 The incremental algorithm

As mentionned before, the idea of the incremental algorithm consists in intro-
ducing the points one at a time in an existing Delaunay triangulation. Various
stages are performed to construct a Delaunay triangulation due to the insertion
of the new point, as described in this section.

3.2.1 Description of the method

In order to simplify the problem, the algorithm begins with a bounding box
which contains all the points to be inserted and which is triangulated by two
triangles in two dimensions and by 5 or 6 tetrahedra in three dimensions. This
initial triangulation is a Delaunay triangulation. The points are then inserted
one by one in this first mesh. The algorithm consists in the following:

e Find all the elements whose circumsphere contains the newly inserted
point and delete these elements

e Find the faces of the polygon (polyhedron) formed by the deleted elements
e Join these faces to the new point to create the new triangulation

This is sumed up in George et al. [46] by:
Tiv1 =T, —Cp+ Bp (3.2)

where 7; is the triangulation before the insertion of the new point, Cp is the
cavity of the new point constituted by the old elements whose sphere contains
the new point, and Bp is the ball of the new point, which represents all the new
elements that contain the new point. Furthermore the cavity possesses the im-
portant theoretical property to be star-shaped with respect to the newly added
point if the points are in general position, property that will be checked explic-
itly in the numerical algorithm. Figures 3.2 and 3.3 illustrate the algorithm for
the newly inserted point P. It must be noted that the aforementioned algorithm
is the theoretical basis of the method. It represents however only a crude version
of the numerical implementation, fully described in two dimensions in [45] and
in three dimensions in [43].

3.2.2 Asymptotical complexity

Each of these operations could be costly. For example, finding which element
whose sphere contains the new point could be trivially done by examining all
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Figure 3.3: The triangulation after the insertion of point P
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the elements in the list of elements each time a point is inserted. For n elements
and m points, this represents n*m tests where m = O(n) usually, so that the
final number is of order O(n?). This is evidently not acceptable. Therefore,
special algorithms are designed to reduce all these operations, relying on an
appropriate use of data structures, as described in [26, 77, 95, 2, 1, 25].

Globally, the Delaunay triangulation with the incremental algorithm is of
order O(n?) in the worst case, as in the worst case, we can destroy O(n) elements
at the introduction of each new point (see [89] and [20] for such examples). To
avoid in average the worst case, a randomized version is usually used, where
the points are introduced in random order to achieve a O(nlog(n)) in average.
However, for usual real geometries and with appropriated data structures, the
incremental algorithm is of order O(n), including the corrections applied in
case of a wrong numerical decisions, as will be proved experimentally later on.
This transforms the Delaunay-based mesh generator as the quickest one of the
different methods, particularly for huge meshes thanks to its asymptotical linear
rate.

3.2.3 Implementation

The three main tasks of section 3.2.1 require different tools. For the first task,
an adjacent search is performed from the element(s) containing the newly in-
serted point, called the base elements. Firstly, supposing that each point knows
one element to which it belongs, an additional spatial data structure provides
an efficient localisation of a point near the newly inserted point to find this
basis. Then a walk through the mesh [80] is performed to find one or various
elements where the point falls. Classical structures are octrees, binary trees,
k-d tree [95] or the Alternate Digital Tree (ADT) [10], which are well adapted
for large variations of point distribution but could not impeed a O(nlog(n))
complexity due to the tree depth for each point. Bins, which are another alter-
native, are the equivalent of hashing in multidimensions [2], providing a linear
complexity in average, but which can behave badly for very large variations on
point distributions. The latter has been used in this work. The second task is
straightforward knowing which are the elements in the cavity. The third task
requires the update of the neighbours of each tetrahedron, which is not a ne-
cessity in the database but represents a valuable knowledge for many search
operations. It could be done by hashing [43], but advantage can be taken of the
inheritance of the volumic configuration from the cavity surface, as described in
[45] for the two-dimensional case and in [12] in three dimensions.

In Watson’s paper, the Delaunay criterion is tested for each newly inserted
point against all the elements in the mesh. At the oposite, the adjacent search
is already present in the Bowyer’s paper, with the acceleration procedure to
find the first element(s) which contains the newly inserted point. In both pre-
vious work, the Delaunay criterion, is checked on the circumcircle of the actual
element of the mesh against the distance between the new point and the cir-
cumcenter of theses elements. As the Delaunay criterion is symmetric, it is
the same, apart from round-off errors, as checking the Delaunay criterion of the
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Figure 3.4: Numerical errors in the triangulations

new elements against the old points. As the radii and the circumcenter could be
stored, the second choice is however more expensive. Nevertheless, Shenton and
Cendes [100], and Wright and Jack [106] proceed from the base by expanding
the insertion polyhedron by testing with the new spheres against the old points.

The last implementation accelerates the whole process but other solutions
have to be found to avoid difficulties of the method itself. Indeed, the imple-
mentation could not be straightforward as the Incircle test requires to calculate
distances to the power d 4+ 1. The use of floating numbers could produces bad
decisions during the construction of the cavity. Using integer numbers guaran-
tees an exact computation of volumes in the range specified by the machine.
As this range is fixed, the resolution of the method is of one order lower in
three dimensions than in two dimensions. Two cases are possibles, which are
illustrated in Figure 3.4.

e Either the cavity contains a point of the old mesh which has been discon-
nected of the old mesh because of the proximity with the recently inserted
mesh. In this example, B is very close from the point P so that during
the new triangulation of the cavity, B could stay without elements.

e Or the cavity is not connex, due to a problem of cosphericity, as men-
tionned in [53], which is shown for the triangle CEF which does not belong
to the cavity.

A correction algorithm has been presented in [43], where the idea is to build a
possibly wrong cavity in a first step, and then to check explicitly the star-shaped
property of the cavity and to correct it if this property is not verified. This
algorithm is the fundamental part of the mesh generator. We will come back
to another well-known degeneracy due to the method itself in the optimization
part. It must be noted that other approaches have been proposed to extend the
accuracy of the floating point operations [101, 24, 38].
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3.3 Mesh generation

Until then, only triangulation algorithms were described, but the mesh genera-
tion problem is slightly different as we have a domain with boundaries to mesh,
and we do not have a cloud of points already available, so that we have to de-
cide where to locate the points and how much points do we need. Furthermore,
the mesh must verify some quality requirements depending on the application,
in our case the Finite Element Method. These three points will be presented
thereafter, but we firstly give the definition of a mesh following [41]:

Definition 3.3.1 Given a closed bounded domain 2, T, is a mesh of Q if:
e O=Uger K.
o Fuvery element K in T, has a non empty interior.
e The intersection of two inside of two elements is empty.
e The intersection of two elements of T, is :

— the empty set,

a vertez,

an edge,

— a face (if d=3).

It is equivalent to construct a conforming triangulation of 2, as we will see
next with the difference that the cloud of points is not given, and the boundaries
belong to the triangulation.

3.3.1 Boundary regeneration

In a Delaunay mesh-based generator, the aim is to produce a mesh of a spatial
domain described by its boundary in the form of a list of its edges in two
dimensions, and faces and edges in three dimensions. The input of the algorithm
is therefore such a list plus a few possible imposed points, with a possible size
map describing the desired distribution of points. The ensemble of the boundary
points is then inserted and triangulated with the Delaunay kernel. However, at
this moment, the boundary elements could be only partially present in the
resulting mesh, depending of the Delaunay conformity of the boundary [87], so
that special operators should be applied to recover these boundary elements.
We define thereafter two usefull notions for the boundary recovery:

Definition 3.3.2 7, is a constrained triangulation of € if all the elements of
Const are present in T, where Const is the set of possible imposed edges and
faces.
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e

Figure 3.5: Exact and weak satisfability of the constraints

The definition does not take into acount the points as they are trivially included
in the mesh. We need also to make a difference between a constrained and a
conforming mesh ([74, 49] and references therein), or what George calls strong
or weak equivalency between two meshes:

Definition 3.3.3 A given triangulation 7T, satisfies exactly a given set of con-
straints if any member of Const is an entity of T,..

Definition 3.3.4 A given triangulation 7T, satisfies weakly a given set of con-
straints if any member of Const is an entity of T, exactly or as a partition.

The two first meshes of Figure 3.5 satisfy strongly the set of constraints whereas
the third mesh satisfies it only weakly. The two first meshes are equivalents
whereas the third is weakly equivalent to the two others.

To sum up, we have to apply modifications on the mesh to recover the lost
boundaries. Here there is a huge difference between the two dimensional case
and the three dimensional. Indeed, in two dimensions, we have:

Theorem 3.3.1 There exists a triangulation without internal vertex covering
any domain with a non self-intersecting polygonal boundary [46].

Moreover, we add a very interesting result from Chazelle [21], which concludes
years of research:

Theorem 3.3.2 [t is possible to construct a triangulation of a polygon with n
vertices in O(n).

Unfortunately, no one of these results is extendible to the three dimensional
case. For example, the Schonhardt polyhedron on Figure 3.6 is the smallest
polyhedron in terms of number of faces which could not be triangulated without
adding an interior point. This type of points is called a Steiner point. However
in this case, this point could be added everywhere inside the polyhedron as all
the faces are visible from this point. In general, the situation is much worse, as
proved by two results from Ruppert et al. [94]:

Theorem 3.3.3 It is NP-complete to decide whether a given three dimensional
polyhedron can be triangulated without adding Steiner points.

53



54 Chapter 3. Mesh generation

4
6
4
5
6 5 1 6
1 _—m
1' 6
2 h 1‘
2
5 3
4
4
5 6 . X
Introduction of N5 6
\b\\“"P - o
point P LA
2 ~3 ! TNy
2 3

Figure 3.6: The Schénhardt polyhedron

Theorem 3.3.4 For any fized integer k > 0, it is a NP-hard problem to de-
termine whether a given polyhedron can be triangulated with at most k Steiner
points.

We recall that a NP problem (Non-deterministic Polynomial problem) is a
problem for which, given a possible answer, this solution can be checked to be
correct in polynomial time respect to the size of the input. A NP-hard problem
is a problem for which every other problem in NP is reducible to it. A NP-
complete problem is a NP problem and a NP-hard problem, which means that
it is at least as hard as a NP problem [42]. Evidently, these results announce
the difficulty that we will have to face in the three dimensional case.

Various methods have been proposed in the literature, mainly depending if
the boundary recovery process is allowed to modify the boundary surface repre-
sentation by inserting points and swapping the triangles defining the surface or
not, or by trying to extract the surface as faces of the tetrahedra of the Delaunay
triangulation of the boundary points. In the latter category, an early method
is proposed by Baker [6], where specific points are added inside the volume to
be meshed, and tetrahedras are considered as inside the domain if they have
at least one such node in their connectivity. The approach is simple but very
restrictive as it depends on the placement of the specified nodes, and on the
complexity of the surface boundary. Later, Baker [7] improves the method by a
better placement of the inserted point but no guarantee on the recovery exists
and faces are rather extracted as a byproduct of the Delaunay triangulation.
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In the conforming approach, three subcategories arise. In the first case,
intersection points between missing edges and missing faces, and the tetrahedras
of the actual triangulation are computed and inserted directly. Weatherill and
Hassan [104] modify the boundary representation to have a partition of the
triangle faces into subfaces by firstly subdividing edges, faces and elements cuts
by the boundary faces and edges. Once performed, they try to take out the
introduced points from the mesh. However, there is no guarantee that these
points could be taken out from the mesh. These points are introduced in the
triangular faces, so that the geometry can not be improved by these insertions,
contrarily to [73]. The same method is used in Karamete et al. [66], but
considering also the case of the remeshing of a small part of the mesh, which
they call cavity. This is a difficult task in the incremental algorithm as points
are inserted in an already triangulated volume, but no empty space is created.
It leads them to study complex splits to merge this cavity with the original
volume mesh. Recently, Du and Wang [32] modify slightly the method by
considering the recovery of the faces directly, and by using the constrained
Delaunay kernel to insert the Steiner points, a strategy shared also by George
et al. [49] for the constrained case as seen below. In the second case, Delaunay
conforming boundaries are created a priori, or a posteriori so that they will
undoubtely appear in the Delaunay mesh, by an appropriate presubdivision of
the boundary. In this group, Cavalcanti and Mello [17] perform an edge then a
surface recovery by inserting points on midedges until the edge appears in the
triangulation. A similar idea is used in [104] in the two dimensional case. This
process could not converge but solutions exist to remedy to this problem, by
using the notion of Delaunay admissibility of the edges and faces. This notion is
extensively used in the work of Pébay [87] to recover the constrains a priori and
to keep a Delaunay triangulation during all the process. For the faces, no proof
of convergence exists and heuristics must be employed. The same technique is
used in [83]. In the third case, swapping on the triangle surfaces is performed
to try to give rise to a more or less equivalent geometrical surface triangulation
which includes the surfaces already created in the tetrahedrization. Liu and
Baida [74] try to reduce the inserted points on the surface as much as possible by
testing combinaisons of flips on the surfaces that are intersected by the missing
edges, but also on neighboring faces, by hopping that blocked situations will
be unlocked by neighboring flippings. Flip are allowed on the planar surface
triangles. Sharov and Nakahashi [99] propose two original algorithms to recover
the boundary. In the first algorithm, triangle swapping are allowed for small
dihedral angles. Then, flipping in the volume mesh are performed if the previous
procedure failed to recover all the constrain. Finally, points are directly inserted
if the second procedure also partially failed. It is interesting to note that the
insertion procedure has been greatly simplified respect to the work of Hassan and
Weatherill [104], by recursively using only two operators. The same operators
are used in the recent work of George et al. [49], and were already present in the
work of Borouchaki [11]. In the second algorithm, boundary points are inserted
in an advancing front manner, so that a maximum part of the constrain will be
recovered during the insertion, mainly by flippings and constrained Delaunay
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insertion. If this insertion fails to recover all the constrain, a similar approach
as before is used.

Finally, in the constrained approach, which does not modify the input bound-
ary data, Joe [59] gives an interesting but expensive solution, extending the
method he proposed in the two dimensional case in [65] by first dividing the vol-
ume to be meshed in convex polyhedras. It is a simple thing then to introduce
one Steiner point or not to triangulate the interior of the convex polyhedras.
The work of George et al. [52, 51, 50] is based on local modifications also to
strictly verify the constrains. The reason of using a constrained approach could
be, for example, that the surface discretization is common to different parts,
and the possible solver behind the process may not be aware of the changes in
the surface. It must be noted that it is the unique constrained approach which is
proved to converge, at least apart from round-off errors and for the edge recov-
ery. The key point is that local operators may fail because of a non convex local
configuration as simplices are used. Points will be inserted to recover a local
convex subdomain and obtain the solution. As already mentioned, George et al.
[49] improved recently their method by also considering intersection cases, but
taking out the introduced points by others special tools. The same idea is also
proposed independently by Qu and Wang [33], by considering first a conforming
approach of the already cited reference [32], and then taking the intersection
points out of the recovered but partitioned face with different operators than
George et al. [49]. The method implemented in this work follows the work of
George with the slight difference that face swapping could be allowed for planar
boundary faces as an option. This can greatly reduce the amount of work as
noted in [104]. As a remark, this kind of problem is not only special to the
Delaunay methodology, but happens also in the advancing front method, when
various fronts concur in a cavity, creating an arbitrary polyhedron which must
also be triangulated.

From the algorithmic point of view, the method consists in the following:

e identify the missing faces and edges in the present mesh

for each edge:

— form the set of elements intersected by this edge or pipe
— apply local operators to regenerate the missing edge

— if local operators fail, introduce point to unlock the situation

for each face (if d = 3):

— form the set of elements whose edges intersect the missing face
— apply local operators to regenerate the missing face

— if local operators fail, introduce point to unlock the situation

e try to collapse the Steiner points

optimize the position of Steiner points by relocation
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Figure 3.7: A pipe : the set of elements intersected by an edge. Here 115
elements are intersected by the edge.

An example of a pipe is given in figure 3.7. In the three dimensional case it
must be noted that a given face could be missing in the mesh whereas its three
edges are present, because it is intersected by edges of other elements. The op-
erators used consist in various type of face and edge swappings as described in
[52], [51], and [50]. Figure 3.8 illustrates one of this operators, the transforma-
tion Tro_s3. Once more, the last algorithm is oversimplified due to numerous
subcases, and this algorithm was by far the most difficult encountered during
this work.

3.3.2 Node creation

At this point, we hopefully dispose of a mesh which contains the imposed faces
and edges, composed only of the boundary points plus few other Steiner points.
This mesh does not have good quality properties as the domain is not discretized
finely enough. As mentionned before, the Delaunay triangulation does not give
any indication on the number of points to be used and where to locate them.
Three main cases are possible:

e There is no information available on a mesh distribution map.

e The mesh distribution map possesses information on size specifications
depending on each point but not on any direction, i.e. a scalar value.

e The mesh distribution map possesses information on size specifications
depending on each point and on a direction at this point i.e. a tensorial
value.
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A A
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B B

Figure 3.8: The transformation Tro_~3

The first case correponds to the classical mesh generation scheme where the
map distribution should be constructed from one method or another. The sec-
ond case corresponds to the isotropic case with size specification, and the third
to the anisotropic case. Each case is a particular case of the following case. In
this work, results are presented for the three cases. For a finite element compu-
tation, the mesh should comply some fundamental requisites from which depend
the convergence properties and the quality of the final result. Particularly, the
interpolant error estimates [91] rely on the hypothesis of regular mesh which
corresponds to the fact that there exists a constant o such that:

he o vheT (3.3)
Pk
where hy is the diameter of the element, the largest side, and p the diameter
of the sphere inscribed in the element. We will discuss the quality properties in
the next section, but we already see that the quality notion is undoubtly related
to the notion of distance. This notion and its evaluation at the implementation
level will be the basis of the node creation.

In this node creation process, the literature is also rich of proposals. Weath-
erill et al. [104] use the barycenter of the element as prospective point. Chew [22]
and Ruppert [93] uses the circumcenter of the element instead of the barycen-
ter. Frey et al. [40] and Mavriplis [82] use the advancing front methodology
to create points from boundary faces, where boundary face are boundaries of
a volume defined on specific criterias. The points are almost optimaly placed
but this construction is expensive. After having performed the convex polyhe-
dra descomposition, and further subdivided each polyhedron to respect a given
variation of the mesh size distribution, Joe [63] generates the points on a quasi-
uniform grid oriented on the diameter of the polyhedron. To specify the size
of the element desired in a region to be meshed, distribution of sources in the
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domain can also be used as well as background grids [105, 79]. Recently, Du
and Wang [31] introduced the centroidal Voronoi tesselation, where the inserted
nodes are furthermore the center of mass of their Voronoi cell. They extend this
approach to anisotropic metrics in [34].

As already said, the quality of a mesh is related to the distance between their
nodes, among others things. That is why in this work, the method of George et
al. [47] has been chosen, as it relies on the edges of the mesh, which implicitely
contains the notion of distance. Furthermore, the method extends directly to
anisotropic meshes. We consider the general case, i.e. a Riemanian space where
we know in each point a d x d symmetric definite positive tensor M (X) called
the metric. Given two points A and B and 7 a parametrisation of the geodesic
I at least of class C! joining A and B, we have:

An(AB) = 1T) = [ a7 M o (34

in the FEuclidian case, where the goedesic are straight lines, we recover:

dam(A, B) =\ ABT MAB (3.5)

The geometric locus of the points which are to a given distance to a given point
is an ellipsoid £ whose equation verifies:

ABT M(X)AB = 1 (3.6)

so that given a metric M(X), the mesh is conform to this metric if the edges
have an average unit mesh in the Riemanian structure. Knowing the size map,
it is possible to construct a metric in which the edges will have an average unit,
so that they will respect the specifications. A mesh with this property is called
a unit mesh by George et al. [47].

At the implementation level, the fundamental property is to evaluate cor-
rectly the length of each edge of the mesh. The process is iterative:

e Given a mesh, we examine all the internal edges of this mesh.

e For each edge, we have to approach the integral computation. Therefore,
we use a quadrature formula as:

. VABT M(A)AE + \/ABT M(B)AB

Im(AB 5

(3.7)

— if the length of the edge is greater than a given tolerance, we introduce
the middle of the edge in the real space and compute its metric with
respect to the size map.

— we dispose then of a number of points which divide the edge, each
part having a length smaller than a given tolerance in the Riemanian
space, but which are used only to accurately measure the length
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of the edge. Begining from one extremity of the edge, we search
for the interval so that the distance between the new point and its
predecessor is equal to one respect to the given metric.

e The new points are well-distributed along the edge but not globally. We
filter this cloud of points so that no points could be closer than the given
distance in the Riemanian context and we insert them randomly through
the constrained Delaunay kernel, as the boundaries must be protected
when constructing the insertion polyhedron [106].

The iteration stops when all the edges have been refined. The domain is
then saturated by points. The node insertion is different in the isotropic and
anisotropic case as the Delaunay criterion must be accounted for, as described
in [44].

3.3.3 Optimization process

As already mentioned, the quality of the mesh will influence the properties of
the numerical solution. A well-known condition is the minimum angle condition
of Bramble and Zlamal in two dimensions [14], generalized by Ciarlet in higher
dimensions [23], which states that the angles of a triangle in two dimensions must
be bounded away from zero, or that the ratio of the diameter of the element by
the incircle radius must be bounded away from zero. It is a sufficient but not
necessary condition, as stated by Babuska and Aziz [5] and Jamet [60], where the
maximal angle condition appears to be more essential than the minimum angle
condition. More recently, Rippa [92], and D’Azevedo and Simpson [29] insist on
the fact that, for linear interpolation, the stretching should be aligned with the
direction where the magnitude of the second directional derivative is small, so
that it could be thin in directions where the magnitude of the second directional
derivative is large, as the norm of second order derivative also appears in the
error bound. These results are particularly important in the anisotropic case.
Various quality factors have been proposed. The paper from Parthasarathy
et al. [86] compares different classical values used in mesh generation. An
extensive discussion on the quality criterion can be found in [68] and references
therein. In this work, we have chosen one of the quality measure proposed by
the Gamma project [15]:
Qk Ozpk (3.8)
for the isotropic case in two and three dimensions and the anisotropic two di-
mensional case, and:
Z?ZO I i
Qi = ﬁ0<igl<%)r{n+1 Vm, (39)
for the three dimensional anisotropic case, where o and ( are parameters such
that the quality of a regular simplex be equal to 1. Criterion (3.8) is much
cheaper than criterion (3.9). As in the anisotropic case the criterion must be
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evaluated respect to the metric defined at each point, it represents a non neg-
ligeable saving. The isotropic version of the quality measure (3.9) is proposed
in [75]. Both criteria characterize the quality of an element by a value in the
range [1,+oo], where a higher value means a worse quality. The quality of the
whole mesh is given by:

Qum = 11?3§Qk (3.10)

It is also possible to take the inverse of the proposed quality criterias to have
quality values in the range [0,1]. A very interesting representation of various
quality measures is proposed in [97].

Once more, the difference between the two and the three dimensional case is
drastical. The Delaunay triangulation is based on the evaluation of the distance
between the center of an element and a point, and the radio of the sphere
which contains this element. In two dimensions, a flat element will have an
infinite quality as the radio of the innercircle goes to zero, so that there are
few probabilities that this element would be constructed during the process.
However, only to show that a Delaunay mesh is not necessarily synonym of a
good quality mesh, a very simple example is depicted in Figure 3.9 to show
that triangle ABP could be as degenerated as one wants by moving P in the
direction of edge AB, the mesh being always Delaunay. Nevertheless, it is a
simplified explanation of the fact that the Delaunay triangulation comply min-
max properties in two dimensions. However, the element which has four points
on the same sphere, with the four coplanar or quasi-coplanar points does not
have an infinite inner ratio, so that it is completely valid respect to the Delaunay
criterion. This well-known element, called “sliver”, is the cause of artificially
high gradients of the shape functions derivatives and deteriorates dramatically
the quality of the numerical solution. It is depicted in Figure 3.10. Furthermore,
the whole implementation process is in danger as all the local operations of
location will give very poor results. The quality criterion reflects a min-max
property that the Delaunay triangulation does not meet in three dimensions. It
is the reason why controling the distance in two dimensions is a guarantee of
controling the quality, whereas it is not true in the three dimentional case. We
could have presented the sliver in the Delaunay kernel which is responsible of its
elimination but we prefer to include it here to emphasize the quality aspect and
the degeneration produced by the Delaunay triangulation, most of all in three
dimensions. The remedy for the kernel module is presented in the already cited
reference [43]. However, even if the very bad elements have been eliminated, bad
elements are still presents in the mesh. That is why the optimization process
is stricly necessary in three dimensions, particularly for the kind of application
that we have in mind as we will see later on.

Once more, local operators or sequences of local operators [73, 64] are ap-
plied, but this time the process is driven by the quality function; the mesh
modification is simulated, and if the quality measure is increased, the operation
is applied on the mesh. Here, two general types of operators are applied:

e The topological operators which change the connections of the mesh with-
out changing the position of the nodes. In two dimensions, the unique
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Figure 3.9: A Delaunay mesh with a degenerated triangle
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Figure 3.10: A sliver element. The four points are cospherical and coplanar.
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topological operator is the edge swapping which consists for two adjacent
elements in deleting the common edge and creating the other diagonal of
this quadrangle. In three dimensions, this operator is much more complex
and terribly effective. In three dimensions, a shell is the set of element
sharing a same edge. The shell transformation operator is the generaliza-
tion of the edge swapping in two dimensions. The points of this set which
do not belong to this edge form a polygon in the three dimensional space.
The target is to find a triangulation of this polygon, even if the shell is
not convex, that increases the quality of the shell, choosing as quality the
quality of its worst element. As the number of possible triangulations
corresponds to the Catalan number

Cat(n) = 7(1'2(2_—21))" (3.11)

which has an exponential asymptotic behaviour, an efficient coding must
be designed [48, 85, 39, 80]. Classical optimizations consists in coding at
hand all the possibilities, applying this operator in an ordered way on the
elements with the worst quality, rejecting as quick as possible the config-
urations with negative volume or with worst quality in function of their
frequency, marking at each pass only the modified edges, and storing the
quality and volume for the already met tetrahedras. This is the opera-
tor implemented in the present work and illustrated in Figure 3.11. The
possible triangulations for the case of five element sharing the edge are
illustrated in Figure 3.12. The same operator could be applied to relax
the valence of a node, defined as the number of edges emanating from
this point, where 6 is an ideal number in two dimensions and 12 in three
dimensions [8].

e The geometric operators which change the position of the nodes without
changing the connectivity. Various Laplacian smoothing have been inves-
tigated in the literature [36, 41, 57, 27, 76] but are used only for Steiner
points in this work, as already seen.

By modifying the quality criterion from isotropic to anisotropic, the same
operators can be used to extend the optimization process to anisotropic consid-
erations [15, 28, 73]. A completely different approach is proposed in [16, 107].
As the mesh quality function for the whole triangulation is not differentiable,
the optimization process is considered as a whole, and minimization methods of
classical optimization are applied to the mesh.

As a final remark of this section, all that was said on quality optimization
is correct if the volume of each simplex of the triangulation is positive. If this
is not the case, as for example the collapsing operator for two points that can
be deleted, and for which an initial point in the union of both balls must be
tried as first candidate for the collapse, it is the minimization of the volume
that plays the role of the quality measurement. A first possibility is to find the
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P1

Figure 3.11: Shell AB consisting of 5 elements

minimal volume of the absolute volume of all the tetrahedras [54]:

in |V; 3.12
min [Vk| (3.12)
A second strategy is to minimize the absolute volume of the elements of negative
volume only, as proposed in [49]:

min  |Vk]| (3.13)
KeT|Vk<0
Once all the elements have positive volume, the optimization criterion becomes
again the classical one.

3.3.4 Interpolation

When frequent remeshings are performed, the solution must be transfered from
the old mesh to the new mesh. If new points are inserted in the mesh, their
unknown values must be deduced from the old mesh. If no new point is inserted
but the topology of the old mesh is changed, variation in the unknowns, and
particularly in the unknown spatial derivatives are changed. The interpolation
process must at least guarantee the same order of interpolation as the one used in
the spatial discretization. Various methods have been proposed in the literature,
mainly depending on the desired accuracy.

The most simple process is to interpolate a C? field defined on the domain by
the nodal values. If the values are elemental or discontinuous, a L? projection is
required to obtain the least-square solution. This is the case for discontinuous
pressures, as will be seen in the next chapter. It appears also for elemental
and historical values, as met in plasticity problems as in [88]. It could also be
the case for fluid-structure interaction, for an accurate transfer of the pressure
on the solid structure [18, 19]. The interpolation can also take restrictions and
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Figure 3.12: The five triangulations of a planar pentagon

constrains into account [58, 56], or must verify given criterias [102]. An alterna-
tive is proposed in [56], where only local remeshing techniques are performed,
so that the interpolation process can also take advantage of the local aspect in
order to avoid the appearently more costly described below. Finally the error
in time due to the interpolation is studied in [96, 3].

However, whatever scheme used, the implementation consists in finding the
host element of some points, which means the element where each point falls.
These points could be nodal or integration points. This search could be as
costly as a O(n?) process, by scanning for each point all the list of elements,
the brute force option. In this work, remeshings are performed every time
step. The interpolation procedure must therefore be accurate and very fast.
However, few points are introduced from one time step to another, usually less
than five percent, so that the interpolation error is somehow minimized. The
whole algorithm must nevertheless update the few introduced points. In this
work, the algorithm proposed in [78] has been implemented. It mainly relies on
a greedy approach to begin the search, coupled with an efficient walk-through
search, as seen in the Delaunay kernel section, and a spatial data structure,
coupled with brute force for difficult cases. The algorithm is amazingly fast and
robust. As a remark, the walk-through search is a potentially O(n?) process. It
is however the fastest process to walk through a mesh [80], so that care must
be taken with the asymptotical complexities.

3.3.5 Special features

Until then, we have presented the classical approach of a Delaunay-based mesh
generator. However, the whole mesh generation will be affected by the particu-
larities of the Lagrangian formulation. We briefly review each presented point
emphasizing the particularities encountered in our application.
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The Delaunay kernel

During the construction of the Delaunay triangulation, we already mentioned
a way of avoiding flat elements in three dimensions. This process is based
on the computation of the degeneracy of the volume of the new elements. If
this degeneracy is too high, the new element is not formed. However, the first
elements that contain the new inserted points can not be discarded, so that a
high value of tolerance will produce a mesh where the new elements are only
formed by joining the new points with the faces of the element containing the
new point. This mesh is evidently not Delaunay, and has poor properties. At
this opposite, a low tolerance will allow the formation of slivers, but the mesh
will be much closer to a Delaunay mesh. As will be seen in Chapter 5, a method
used to determine the fluid locus is the alpha-shape method which relies on the
properties of a Delaunay mesh. A high tolerance will provoke a bad surface
description by the alpha shape algorithm. An appropriate tolerance must be
used to balance these two contradictory phenomenons if the alpha-shape method
is chosen.

Boundary regeneration

The boundary regeneration is very important for a particularity of the La-
grangian flow. Even if we suppose that we verify exactly the incompressibility
condition, which is not the case, this condition can not avoid that two particles
get closer and closer, but much worst, this can not avoid a particle to get closer
and closer from the wall boundaries, so that a degenerated element is formed or
the particle goes through the wall. Such a particle has to be eliminated when
the normal distance of the wall is less than a given tolerance. This can only be
achieved by knowing explicitly the boundaries of the solid part.

Node creation

A very interesting feature of the Delaunay-based mesh appears in the fact that
the node creation and insertion are performed separately so that the nodes of the
old iteration in time can be used to compute the new mesh. Furthermore, the
interpolation error is greatly reduced. The interpolation search is also greatly
facilited by taking advantage of the convex context of the incremental algorithm.

Quality optimization

This is the most important special feature of the Lagrangian formulation. Neg-
ative Jacobian are evidently not acceptable, reflecting the fact that elements
reverse. To avoid this phenomenon, the time step is limited by the distance of
the normal projection of a node to the opposite face of an element, weighted
by the respective velocities. If a first order fractional step method is chosen as
fluid solver, only well-shaped elements will produce a larger time step, which
is fundamental as much for the whole computation process as for the pressure
stability, whose stabilization term is of order O(dt) . However, as the velocity of
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Figure 3.13: Linear relationship between nodes and time

the next step could only be predicted, a special procedure has been implemented
to come back at the precedent instant with a shorter time step, in a backtrace
manner. Evidently, this mechanism only should be for emergency use as the
whole non linear time step computation must be reinitialized.

3.4 Numerical examples

The goal of this section is to illustrate numericaly all the themes and implemen-
tations discussed in this section.

3.4.1 Complexity of the Delaunay kernel

As a first result, we are interested in demonstrating the linear behaviour of the
Delaunay incremental algorithm. In Figure 3.13, we have reported the number
of nodes in abscisse versus the time to generate the triangulation process. The
exemple is a cube discretized by a different number of points. Here, the time
refers only to the triangulation algorithm. The points were previously created,
the boundary was not regenerated, and no optimization procedure was applied.
We clearly see the linear behaviour of the algorithm for a number of nodes until
22 - 104, and 1 million of elements.
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3.4.2 An industrial part

Figure 3.14 presents two industrial parts to reach one milion elements. A detail
of the surface mesh is also presented. This particular surface defintion has been
obtained by the alpha shape method as the main goal was to study the Delaunay
kernel efficiency.

3.4.3 An isotropic case with size specification

Figure 3.15 illustrates the complete capability of the mesh in three dimensions.
This exemple is a cube centered on zero with 1 as side length. Here, a size map
of the form:

Wz, ):{ 0.995d + 0.5 ifd<0.5 (3.14)

0.005 elsewhere

where d = /22 + y2 + 22 as the cube is centered on 0. The mesh consists in
4-10° nodes and 2 millions elements. The variation is rather important between
the smallest and largest edge. However a quality of 9.38 is obtained after the
optimization process, which corresponds to an excellent mesh as this is the
quality of the worst element. It was not so obvious to achieve such a quality as
a quick change of size will degrade the quality of the mesh.

3.4.4 Anisotropic examples

Figure 3.16 illustrates a two dimensional unit cavity meshed with an anisotropic
metric. The metric is radial, with 0.1 and 1 as principal values in the radial and
tangential direction outside a circle of radio 0.4, and the tangential component
changes linearly until being equal to the radial component the center of the
cercle. The colors represent the temperature distribution a time ¢ = 0 and
allows to see that the colour goes further in the domain in the most anisotropic
triangles.

Figure 3.17 illustrates a simple three dimensional anisotropic example. The
domain is paralelepipedic, and one dimension is ten times smaller than the
two others. The first picture represents the surface mesh, the second a cut
through the volume. Three iterations of optimization without moving the points
increase the quality from 33 to 11 to 5 to 3. The mesh is particularly simple
but the filter, the node creation and the optimization part work well. The point
placement is obtained by the edge cutting process, and cycles of adaptation will
surely improve their placement, but here only the original placement is shown
to emphasize the acceptable distribution of points.

3.5 Conclusion
In this chapter, the mesh generation part of this work by a Delaunay based

mesh generator has been presented. Various Delaunay triangulations algorithms
have been reviewed before highlighting the incremental version, which is at
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Figure 3.14: Industrial part
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(b) Detail of the corner

Figure 3.15: Cube with h varying from 0.005 to 0.5
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Figure 3.16: A two dimensional anisotropic cavity

the heart of the mesh generator. Various aspects of mesh generation such as
boundary recovery, node creation and optimization process have been described.
Anisotropy have been slightly studied, but is one of the most promising aspects
of the method. Some numerical examples have also been given to show the
efficiency and the robustness of the method in 2D and particularly in 3D. The
linear behavior of the Delaunay triangulation has been clearly shown in 3D and
meshes up to one million elements have been used for computation as seen in the
next chapters. The efficiency of the method is mainly due to the global nature
of the Delaunay triangulation. However, if this global nature offers an appealing
context to find, interpolate and generate, it also creates its weak point. The
maximum dimension of the object to be meshed being given, it is a simple matter
to decrease the local size of the mesh so that the ratio between the shortest and
the longest length tends to something as small as desired, producing numerical
difficulties. Thinking to large meshes, this could become surely a limitation for
the boundary regeneration part and for the Delaunay kernel insertion, which as
noted in [49], gives the numerical resolution of the whole method. A coupling
between the Delaunay triangulation and another technique such as [81] could
be an interesting option to force the local context to be favorable. This point
will constitute the basis of future works.

It must also be noted that only the volumic meshing problem has been con-
sidered, so that, even if the domain is remeshed, the boundaries of the domain
stay the same. The boundary meshing constitues a topic by itself, which has not
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(a) Surface mesh

(b) Volume mesh

Figure 3.17: A three dimensional anisotropic example
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been tackled here. The limitation due to the fact of not adapting the boundary
of the volume will constitute the next step of research.

In the Lagrangian formulation in particular, and in the Finite Element
Method in general, mesh generation plays a fundamental part on the quality
of the numerical results. In this work, the mesh generation is fully coupled to
the numerical scheme: the solver provides the position of most of the nodes
and even defines its boundaries, whereas the mesh gives the necessary spatial
discretization to the numerical scheme. Black boxes for both of them is a rather
limited approach, which tends to underestimate the potential of their coupling.
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Chapter 4

The Generalized Stokes
problem

This chapter deals with the numerical procedure used to solve the Navier-Stokes
equations in the Lagrangian description. Due to the absence of the convective
term, and after the linearization, a generalized Stokes problem has to be solved
at each non linear iteration. It differs from a standard Stokes problem by the
presence of the inertial term in the equation. The main difficulty of these equa-
tions is the incompressibility constrain, which makes the system indefinite. An
efficient procedure is mandatory as it represents the heart of the numerical
solver. The notations in this chapter are the ones used for standard Eulerian
notations as they are clearer than the Lagrangian formalism of Chapter 2.

The Generalized Stokes system and its weak form is firstly presented without
taking into account the Lagrangian formulation. The discretization of the weak
equations is then performed with a Finite Element Method (FEM) in space and a
Finite Difference Method (FDM) in time. Various exact and approximate solvers
of the algebraic system are then commented, mainly based on the Uzawa and
fractional step like schemes. The mass lumping procedure is highlighted, mainly
at high mesh Reynolds number, because of the wiggles due to the inversion of
the consistent mass matrix. Finally, numerical results illustrate the theoretical
considerations and efficiency of the various proposed schemes, and validate them
on the cylinder example.

4.1 The Generalized Stokes equations

In this section, the model of the Stokes system for a transient flow is presented.
Its weak form and functional properties such as existence and uniqueness are
highlighted. They will be of utmost importance for the spatial discretization
presented in the next section.
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4.1.1 The incompressible Newtonian fluid

For an incompressible transient Newtonian fluid flow where the convective term
has been neglected due to high viscosities or low velocities, the so called creeping
flow model, the Generalized Stokes system reads:

d
pd% = —Vp+V-(2uD) +fy (4.1)

V-v=0 (4.2)

where D is the symmetric part of the gradient velocity. Boundary conditions
must be added to the system. Consider €2 a domain of R™ and I' its boundary.
Various boundary conditions are:

FD = {89 | 1)|1—\ = ’UF} (43)
'y = {09]o(n) = 0,n exterior normal to I'y} (4.4)

where classically I'p is the Dirichlet part of the boundary and I'y is the Neu-
mann part of the boundary. More boundary conditions can be found in [50].
Also, an initial condition which fulfills the mass conservation equation must be
provided.

4.1.2 Weak form and functional setting

Multiplying equations (4.1) and (4.2) by test functions N and 1, summing over
the whole domain €2, and integrating by parts some terms, the system reads:

/pdl.NdQ—s-/2u(D:D)dQ—/pVNdQ:/fv-NdQ (4.5)
q dt Q Q Q

—/wv-de:O (4.6)
Q

It must be noted that, with the weak form of the viscous term used here,
the Neumann boundary condition becomes a natural boundary condition. An-
other form of the viscous term using the Laplacian velocity operator for each
component gives rise to the classical scalar product of the gradient of the ve-
locity in the weak form, but the boundary condition is modified. Furthermore,
a minus sign has been added in the second equation to ensure the symmetry of
the system.

At this point the classical functional setting can be introduced:

Problem 4.1.1 Given vy with V - vy € L2(Q)¢ and V - vy = 0, and fy €
L2(0, T; H-Y(Q)?), find (v,p) belonging to L?(0, T; HL(Q)?) x L1(0,T; L3(9))
solution of equations (4.5) and (4.6) for all (N,) belonging to (H()? x
L?(Q)), and v satisfying the initial condition.
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where, classically:

D) = {:2-R| [ [updn <o) (47)
POT@) = wer@ | C 9l dt < oo} (48)
Q) = (welX@) [ via=0itTy =0} (@)

HNO! = (ve 220) |5 € IO v, = iy} (410)
POTHNO)Y — (ver@!] | ClelBde<oo} (a1

It is also classical to introduce the following bilinear forms :
du
a(u,v)= | p— -vdQ+ [ 2u(D:D)dQ (4.12)
o di Q
b(,u) = [ YV -ud (4.13)
Q

so that the final system reads, with (-) the scalar product on V:

(fy,v) Vv eH' Q) (4.14)
0 Yy e L*(Q) (4.15)

a(u,v) —b(p,v)
_b(wv 11)

4.1.3 Existence and uniqueness

The problem considered here is linear. For the transient Stokes problem, a way
to show existence and uniqueness for the underlying parabolic problem is first
to consider the stationary Stokes problem, and then to use a development in
series in time by a Faedo-Galerkin method [53, 61]. In this way, existence and
uniqueness of the transient Stokes problem rely on existence and uniqueness of
the stationary Stokes problem.

In the stationary case, there are various ways to prove them. One possibility
is to find the velocity solution in a divergence free space, as done in [61]. The
coupling with the pressure disappears and the coercivity in this space guarantees
the existence and unicity of the velocity thanks to the Lax-Milgram theorem.
The pressure is then recovered afterwards due to a classical theorem of De Rham
[23]. Another possibility is to introduce the inf-sup condition at the continuous
level and show that this condition and the coercivity of the bilinear form af(-,-)
are necessary and sufficient conditions to show the existence of the pair (u,p) as
done in [34]. Here the inf-sup mainly guarantees the injectivity of the transposed
of the linear operator associated with the bilinear form b(-, ). Also, it is possible
to see the Stokes problem as an optimization problem, where the solution is a
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saddle point of the functional considered. Finally, existence and uniqueness can
be proved by considering a regularized problem where the mass conservation
equation is relaxed by the introduction of a parameter multiplied by an elliptic
form, and then by considering the limit as the parameter tends to zero.

Another possibility is proposed in [40], where special norms are used to take
into account the inertial term arising in the non stationary case, and prove coer-
civity, continuity and the inf-sup condition in these particular norms, extending
the results of the stationary case to the non stationary case, and will be very
usefull in the preconditioner section.

4.2 Discretization

In this section, the weak form of the equations derived in the last section are
discretized in space and time. The first step of the discretization is the introduc-
tion of the discrete spatial counterpart of problem 4.1.1. Here, given V() C
L2(0, T; HE(Q)Y) and Qnt(Q) € L2(0,T; L*(Q)), and V() ¢ H}(Q)¢ and
Qn(Q) C L?(2), the discretized in space problem reads:

Problem 4.2.1 Given vy, o € Qun(Q) with Vv =0 and fy € Qui0(Q)¢, find
(v,p) belonging to V() X Qre(Q)) solution of equations (4.5) and (4.6) for
all (N, ) belonging to V() x Qn(Q), and v satisfying the initial condition.

Here, a spatial partition { K°} of finite elements has been previously constructed.
The discussion is furthermore limited to simplices, so that:

Vi(Q) = {vecl®(Q)?| vk e P(K)} (4.16)
() = {¢|vx € P(K)} (4.17)
@neo(©Q) = {v€Qn | /Qw dQ=0if Ty = 0} (4.18)
where:
P (K) = {Space of polynomials of degree k on K*°} (4.19)

Here, only the conforming approximation is considered as V;,(Q) ¢ HL(2)¢ and
Qn(Q) C L*(Q) but non conforming approaches are also used and could be of
great interest [22]. The discrete system then reads:

a(uhﬂvh) - b(ph,Vh) = (fu,havh) Vv, € Vy, (420)
—b(¢n,up) = 0 Vi, €Qn (4.21)

4.2.1 Compatible pressure/velocity spaces

As seen above at the continuous level, the uniqueness of the pressure is guaran-
teed by the inf-sup condition. At the discrete level, a discrete inf-sup condition
will also imply the invertibility of the whole system, along with the discrete co-
ercivity. But this condition is not inherited from the continuous one, and must
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be explicitly verified for the pair of velocity-pressure space under study. The
discrete LBB condition then reads:

b Vh,dh
sup DY) gy g € Qna > 0 (4.22)
vLEV), ||Vthh

Here also, various demonstrations are possible to prove the discrete inf-sup con-
dition for a pair of discrete spaces. Discontinous pressure elements offer the ease
to explicitly construct local operators which guarantee that the discrete prob-
lem inherits the properties of the continuous system [22, 29], whereas continous
pressures are slightly more difficult to tackle due to the non local construction
of divergence free basis [1, 65, 59]. We refer to [16, 54] for theoretical details
and to [30, 31, 12] for various stable spatial approximations for tetrahedras and
hexahedras.
In this work, three kinds of elements have been considered:

e a continuous P1/P1 element which does not satisfy the inf-sup but is
commonly used with a first-order fractional step, giving some stability
properties [19].

e a continuous P14+ /P1 element belonging to the bubble family [1], where
the bubble has been discretized by four tetrahedra, also called the “hat-
function”, allowing an exact integration [46, 47].

e a P1++4/P1 element with bubble and linear discontinuous pressure [12].

Only the last two elements are div-stable.

4.2.2 The algebraic system

A classical #-scheme is used to march in time. For the spatial discretization,
a standard mixed finite element method [22] is performed so that the system
reads, with U the displacement and V the velocity:

%MV(V”‘Fl _ Vn) + MKV(UTL-FQ)VTLJFG + BT(UH+9)P7L+1 — F7‘7}+9 (423)
B(U"t)vntl = (4.24)

where the previous matrices are:

M{% = dap /Q N;N; dV (4.25)
Ky :/Q (VN; + VI'N,) - VN;dV (4.26)
B, :f/sz;iv-Nj av (4.27)

85



86 Chapter 4. The Generalized Stokes problem

where the subscripts refer to the node indices and the superscripts to the space
indices, the N; and the v; are the velocity and pressure shape functions. The
non-linear dependence of the matrices to the displacement variable has been
emphasized to denote the Lagrangian description of the discretization. Writing
the system (4.23)-(4.24) as a whole system, and including all the known terms
in the right hand side, the algebraic system reads:

A BT \% Fy
(5% ) (%)% (@29
Here, (4.28) represents a classical generalized Stokes operator as there is no
convective term and A has the form:

A= %MV + 0uKy (4.29)

4.3 The Generalized Stokes solver

The previous equations are non linear in the displacement variable as the final
domain is not known. After Picard linearization, a generalized Stokes problem
needs to be solved at each non linear iteration. This section presents the solver
used in this work, by highlighting a variant of the Uzawa method, and its
relationships with the algebraic splitting methods.

4.3.1 Approximation of the Pressure Schur Complement

The main difficulty of the Stokes-like problems is the indefiniteness of the alge-
braic system due to the saddle-point nature of the mixed discretization, and is
clearly seen by applying Sylvester Law of Inertia to the congruence transform of
the Stokes discretization [27]. As seen in Chapter 1, two main approaches can
be distinguished in order to solve a Stokes-like problem with iterative methods:
whether the problem is solved as a whole, or ’coupled’, or it is solved in a seg-
regated way, for the pressure and then for the velocity [9]. In the first category,
two possibilities for a Krylov-based iterative solver which take into account the
symmetry of the problem are the MINRES and SYMMLQ solvers [44]. In the
second category, the Uzawa method [2] allows to replace a minimisation con-
strained problem with a sequence of minimization problems without constrains.
However, it appears that in both approaches, the bulk of the computation is con-
centrated on a good approximation of the Pressure Schur Complement (PSC),
which mimics the Uzawa operator at the discrete level. Applying block Gaussian
elimination to (4.28), the PSC for the generalized Stokes problem reads:

BA'BTP = BA'Fy (4.30)

Matrix BA™'B7 is SPD up to the hydrostatic pressure mode. A conjugate
gradient applied to (4.30) is the basis of the Preconditioned Conjugate Gradient
Uzawa (PCGU) preconised in [17, 64, 13] and references therein. Originaly, the
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Uzawa method is a stationary Richardson method at the continuous level [55].
The Uzawa operator reads [24]:

Un(p) = =V - (L 1y = 0udy) ' Vp = =V (L Iy —0pAy) T f - (431)
where Iy, is the identity operator and Ay the Laplace operator in the velocity
space. This is the equivalent of (4.30) at the continuous level. For a conjugate
gradient algorithm, the convergence analysis dictates that the error between

the iterate number k and the exact solution in the U-norm of the matrix, with
U = BA!'B7, reads [27, 55]:

et < 2(YET) Il (4.32)

where k is the condition number of matrix U, where the U stands for Uzawa.
The role of the preconditioner will be to lower &, or ideally to bring x indepen-
dent of the discretization size, to accelerate convergence. It could also cluster
the eigenvalues to have a small polynomial approximation error, from which
bound (4.32) is obtained [27]. This is the motivation of the following.

The idea of [17] consists in distinguishing two separate behaviours of the
Uzawa operator, whether the mesh Reynolds number defined as:

_ phic

Rem = G5t

(4.33)

is high or not, where hx is an element reference length. In the first case this
gives:

p
A~ =1 4.34
a (431

as the inertial part is preponderant over the diffusive part, so that:

ot
U.(p) ~ =V - (£ 1v) ' Vp~ —=Ap (4.35)
P
And in the second case:
A~ —0uly (4.36)
so that: )
U.(p) = =V - (—=0pAy) "' Vp ~ o (4.37)

Finally, the proposed preconditioner of the Uzawa operator at the continuous
level is: )
-1 _ -1 -1
C =6ul,” — ﬁAP (4.38)

At the discrete level, the preconditioner writes:

s

—1: M—l
C OuM,, —I-&

-1
K, (4.39)
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where M, and K, are the mass and Laplacian matrix in the pressure space. This
idea relies on a Fourier analysis to simulate the multigrid efficiency at all fre-
quencies. Later, [15] and [41] proved the uniform boundedness of the condition
number of the preconditioned system with respect to the spatial discretization
h and the time step dt. For the classical Stokes problem, the use of the inf-sup
condition and the boundedness of the operator B give the well-known bounds:

—1RT
der, o >0, < M <cy VYgeR™ (4.40)
(xM;q,9)

proving the nice behaviour of the Uzawa operator independently of the mesh
size h, and the spectral equivalence between the Uzawa operator and the finite
element pressure mass matrix. For the non stationary case, the inf-sup with the
H} norm for the velocity and L2 norm for the pressure still holds but do not
reflect the behaviour of the Uzawa operator. The idea of [41] is to use a norm
depending on the temporal discretization parameter, the other parameters such
as density and viscosity being included in this parameter, to extend equation
(4.40). Proving the inf-sup condition and the boundedness of operator B in this
particular norm extends equation (4.40) to the non stationary case and gives:

(BA™'BTq,q)
(0uM; " + £K, 1)1, q)

deg,eq >0, c3 < <cyVgeR™ (4.41)

which reflects the spectral equivalence between the above mentioned precon-
ditioner and the Uzawa operator or, what is the same, the independence of
the Uzawa operator respect to the mesh size and the physical and temporal
parameters, when used with the preconditioner.

A variant of the last preconditioner, already described in [17], is the use of
the so-called compatible or discrete Laplacian [52], which reads:

C ' = 6uM; ! + %(BM;lBT)‘l (4.42)
An appealing advantage of this discretization appears to be that, as it will
be seen later, it opens the way to a fractional step with discontinuous pressure
elements. As a direct extension, the PCGU can now be applied to discontinuous
pressure elements, as in [13]. The use of the compatible Laplacian reflects the
discretization of the Laplacian by a mixed formulation:

(% %) (¢)- () ey

where the natural boundary condition is p = 0 on the Neumann boundary of
the velocity, due to the integration by parts performed in the mixed formulation
(4.43). So that, as noted in [64], with Neuman boundaries for the velocities, ma-
trix BM,' BT is SPD as is matrix BA™!B” with the same boundary conditions,
and not semidefinite positive as is the standard Laplacian. On Dirichlet bound-
aries for the velocity, matrix BM‘_/lBT does not provide any wrong boundary
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condition. To sum up, the most important property is due to the fact that the
pressure does not need a Dirichlet condition on the free surface as it must be
with the standard Laplacian discretization. The superiority of this approach
will be proved in the last section, but was already noticed in [17], particularly
when the mesh Reynolds number tends to zero. It must be emphasized that the
examples provided in [17, 41, 15] do not take into account Neumann boundary
conditions for the velocity. In case of free surfaces, Dirichlet conditions must be
applied on the standard pressure Laplacian so that if only this preconditioner
is used, the PCGU scheme can not converge as the imposed pressure degrees
of freedom can not reach the mass conservation, which is the residual of the
PCGU. With the addition of the pressure mass matrix, the scheme converges,
but much slowly than with the compatible Laplacian. However, the bandwith
is roughly three times the bandwith of the standard Laplacian in 2D, and five
times in 3D on a structured grid, as it involves the neighbours of the neighbours
of each nodes in case of continuous pressures and the neighbouring elements for
each element in case of discontinuous pressure. A good preconditioner is then
mandatory. Furthermore, it could be possible to take advantage of the symmet-
ric form of the matrix to require only the action of B or BT which is already
needed for the Stokes solver, as will be shown later. Evidently, the mass matrix
must be lumped to have an efficient discretization.

4.3.2 Algebraic splitting and fractional step methods

As noted in [15], the PCGU requires the action of A~! whereas the global
approach only requires a spectrally equivalent preconditioner. However, both
methods will need to iterate and, in particular, to apply the action of the above
preconditioner to each iteration. On the other hand, algebraic splitting methods
offer a good compromise between accuracy and efficiency [56]. In this work,
fractional step methods are encompassed in the more general algebraic splitting
schemes, even if discretization in time is performed before spatial discretization
in the fractional step methods, as opposed to algebraic splitting, which rely
on the algebraic monolithic system. This point of view is motivated by only
considering the final algebraic system of equations. By fractional step, we mean
that a standard Laplacian is used for the pressure Poisson equation, and no
final update of the pressure is performed. In [64], the equivalence between the
continuous fractional step method and one iteration of the PSC preconditioned
by the standard Laplacian was already noticed. Due to the previous discussion
on the behaviour of the Uzawa operator and on the imposition of the pressure
degrees on the free surface, it seems natural to replace the standard Laplacian
by the compatible one and to use a pressure mass matrix to approximate the
Uzawa operator at low mesh Reynolds number.

A very interesting scheme already proposed in [64] balances the accuracy
of the PSC and the efficiency of a second order algebraic splitting. One solve
reads:
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(£My +6uKy)V = Fy —BTP" 4 (£My — (1 - O)uKy) V"(4.44)
%BM;IBTAP* = BV (4.45)
vt = V4 %M;lBTAP* (4.46)

Pt = P"+ AP* 4+ 0uM,'BV (4.47)

where AP* could be considered as the pressure increment due to the non viscous
case and the rightmost term of equation (4.47) as the pressure increment due to
the purely viscous case. Compared to a classical fractional step, the standard
Laplacian has been replaced by the compatible Laplacian and the pressure has
been updated to take into account the behaviour of the PSC in case of low mesh
Reynolds number. It mainly consists of one iteration of the PCGU scheme, as
noted in [64], except that equation (4.46) has been added to perform the pro-
jection step, which gives an exact discretely divergence free velocity due to the
compatible Laplacian. However, to go just one step further, the PCG algorithm
is recalled on Figure 4.1. The implementation is the one proposed in [55]. As
usual, z¢ is the initial guess, 7; the residual, z; the residual of the preconditioned
system and p; the search direction at iteration j. Applying the PCG on the
PSC equation (4.30) and rearranging the terms with the previously mentioned
preconditioner, one sees that the algebraic splitting corresponds exactly to the
initialisation process equations (4.48a)-(4.48¢c) only. The final pressure of the
modified algebraic splitting corresponds to the initial preconditioned residual,
or equivalently to the first search direction. Furthermore, in the PCG algorithm,
the first update of the unknown happens only at equation (4.48¢). So that, in
order for the first approximation to coincide with the final pressure value of the
modified algebraic splitting, one must have g = 1. As o represents the value
which maximizes the value of the quadratic functional associated with A in the
p; direction, or what is the same, brings the residuals orthogonals between each
other, the pressure value obtained by the modified algebraic splitting is not in
general the optimal value obtained for one iteration, except if M ~! = A trivially.
A different algebraic splitting could then be constructed by computing the value
of a to update the pressure. It requires however one more matrix multiplication,
or in the PSC context, one more inversion of the velocity system, which can not
be used if one wants to verify the mass conservation. This would be very near
to the Yosida method proposed in [52] with the complete preconditioner, as the
final velocity would be the same and a pressure update would be performed.
More important are the controversial boundary conditions on pressure. As
the fractional step does not reach the actualization step of the PCGU, the final
pressure-like result of the fractional step is not an approzimation of the pressure
but the residual of the preconditioned system, so that boundary conditions for
the pressure are the one inherited from the preconditioners. Whereas boundary
conditions can be rather freely chosen for the preconditioner, they produce the
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Given xg:
ro = b—Axg (4.48a)
20 = M7 lrg (4.48Db)
Po = 2o (4.48c¢)

while(not converged):

aj = (rj,2;)/(Apj,pj)  (4.48d)
Tisn = T+ a;p; (4.48¢)
Tiv1 = r;—ajAp; (4.48f)
ziy1 = M 'ri (4.48g)
Bi = (rj41,2j+1)/(rj,z;) (4.48h)
piv1 = Zit1+Bip; (4.481)

Figure 4.1: The Preconditioned Conjugate Gradient algorithm.

serious well-known drawback in the classical fractional step. A remedy is to
change the preconditioner used, as proposed in this section, and also considered
in [63, 51], but the main reason is constituted by the fact that the update of
the pressure in the PCG is not performed. As will be seen in the last section,
in case of a classical fractional step, it is better to impose the pressure on the
free surface to the values given by the right-hand side of (4.45).

A straightforward extension of the PCGU and the algebraic splitting is the
scheme used in this work, where the PCGU is used as a basic solver. If the
convergence rate is too slow, or the maximum number of iteration is reached,
the velocity iterate goes to the projection step (4.46), and the pressure is ulti-
mately updated by equation (4.47). A complementary possibility is to evaluate
the Reynolds mesh number and then activate or desactivate the proposed pre-
conditioners. Concerning the velocity solve, a Symmetric Gauss Seidel (SGS)
preconditioner is used to solve the velocity system implemented with Eisenstat’s
trick [26].

4.3.3 The mini element in details

Adding a bubble usually enhances stability. This enhancement can however
take various forms, as illustrated by the P1+ /P1 element and the P1++/P1
element. For the P1+ /P1 element, equivalence between the bubble element
and stabilized formulation has been proved [48, 49, 58, 5, 6]. Actually, the
bubble gives the local Schur complement BA ~'B” which, in case of the Stokes
problem with the P1+ /P1 element is equivalent to a Laplacian due to the
local property of the bubble as will be seen thereafter. However, the bubble
for the P1 + +/P1 element gives stability for the linear part of the pressure
only, the element being already stable for Py pressure. Furthermore, if the
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static condensation of the bubble in the mini element gives rise to a symmetric
positive definite (SPD) block in A (up to the hydrostatic pressure mode), it is
not the same by condensing the bubble and the linear part of the pressure of the
P14+ +/P1. The block in A is then indefinite, reflecting the coupling between
pressure and velocity. This result was verified by computing the eigenvalues of
the block in A after condensation.

From now on, concentrating on the P1+ /P1 element to highlight its prop-
erties, a monolithic discretization with the bubble element will give:

A BT A, U F
B 0 B, P |=( o (4.49)
A, BT A, Uy Fy

Here, coupling between velocity components appears though the mass matrix,
contrarily to the classical Stokes problem so that, after condensation of the
bubble degrees, the system reads:

A—AuA A, BT — AuA'BY U\ [ F-AuA'F,
( B - ByA; 'Ay, -ByA; 'B] ) ( P ) - ( ~-ByA; 'F, )
(4.50)
By assuming a “kind of 7 L2-orthogonality [7] between the bubble and the linear
part of the velocity, or by lumping the mass matrix, or by simply neglecting the
numerical values due to the coupling [58], one obtains:

A BT U F
( B -B,A, 'B/ > ( P ) B ( -ByA,'F, ) (4.51)

so that, compared to the equivalent P1/P1 discretization, matrix fBbAb_leT
has been added in the mass conservation equation to stabilize the divergence
operator, unstable in this case. Furthermore, the bubble right hand side has
also been added to the pressure right hand side. The analogue of the PSC for
the generalized Stokes problem of equation (4.30) reads:

(BA7'BT + B,A, 'B])P = BA™'F + B,A, 'F, (4.52)
where
B=B-ByA;'Ay (4.53)
A=A ApA; Ay, (4.54)
BT =B” — AA;'BY (4.55)

Once more, supposing a LZ-orthogonality between the bubble and the linear
part of the velocity, equation (4.52) reads:

(BAT'BT + ByA, 'B)P =BA'F + B,A,'F, (4.56)

Writing the complete PCGU algorithm for the condensate bubble, one obtains
the algorithm detailed on Figure 4.2. The three first equations correspond
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to a classical fractional step scheme. Equation (4.61b) computes a predictive
velocity and equation (4.61c) computes the initial residual of the pressure, the
weak divergence of the predictive velocity. Then comes equation (4.61d) which
constitutes the pressure Poisson or pressure correction equation, but stands here
as the preconditioned system. Equation (4.61e) is the initialization of the search
direction and does not appear in a classical fractional step. At this time, whether
the projection step can be performed and the procedure exited, or an additional
pressure update can be added and the procedure exited if the monolithic solver
is not chosen. If it is, the procedure does not perform neither the projection step
nor the pressure update and the PCGU follows until convergence. An additional
possibility is to fix the maximum number of PCGU iterations and if reached,
to go to the projection step with or without the pressure update, as already
mentioned.

It is also interesting to see the stabilization effect added by the bubble con-
densation [48, 6], at the global level on the Pressure Schur Complement, and
at the local level on the pressure Poisson equation. If a first order fractional
step scheme is chosen with a standard Laplacian equation, the only difference
appears due to the bubble right hand side in the velocity residual on equation
(4.61c) at the global level. It happens to be natural as the fractional step pos-
sesses a rather good stability for a first order scheme [19]. For a second order
scheme, the operator BbAngg enhances the stability of the pressure Schur
Complement but only at the right hand side of equation (4.61c), so that it is
really the divergence operator of the P1/P1 discretization which is stabilized,
and no additional term appears in the standard Laplacian operator. Finally, the
additional term Bbe_leT brings the compatible Laplacian operator stable in
equation (4.61d).

As both operators BbAngbT and BngleT enhance the stability of the
scheme, the next step is to explicitly write the behaviour of these operators.
Using the hat-function bubble, which is piecewise linear on each element and
null on the boundary of the element, the numerical integration is performed
exactly as the shape function gradient is constant on the element, so that,
denoting by Vj, the volume of element K and d the dimension:

Bbij = —/ leNbJ dVv (457&)
K
= / Ve - Ny, dV (4.57b)
K
= Viix o (4.57¢)

where an integration by parts has been performed. Supposing that no velocity
coupling appears due to boundary conditions, and after lumping the bubble
mass matrix, the velocity operator for the bubble reads:

Ay = ( n HH(VNb)z) X Vi (4.58)

__r
(d+1) xdt
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Finally, denoting by L the elementary Laplacian matrix, the bubble stabilization
operator for the Pressure Schur Complement reads:

_ Vi 1
B,A !B = X Vi,V (4.59
BT IR G onve v
1 1
(d+1)? " e T O(VING)? ( )
= ¢ L (4.59¢)

where 7 is the stabilization parameter given by the bubble. It can be seen that
the bubble parameter takes into account the inertial and the viscous operators.
Should convection have been considered, another term would have appeared
in the stabilization parameter. This kind of stabilization parameter is very
similar to other methods [43, 20], the only difference appears in the fact that
the stabilization coefficient is given by the bubble shape function. In the same
way, the bubble stabilization for the pressure Poisson equation reads:

ot

BM,'Bl = ————L
P T A+ 1) xp

(4.60)
It must be noted however that only the inertial operator appears in the stabi-
lization parameter. As seen before, the pressure Poisson equation is a precondi-
tioner for the Uzawa operator efficient only at high Reynolds mesh number. It is
then natural that only the inertial term appears in the stabilization parameter.
It must be noted also that, due to the inertial term of null order, the stabiliza-
tion introduced is only second order accurate in space, which differs from other
methods which use a fourth order damping whether directly [39], or by another
method [57].

Finally, the PCGU stabilized with the bubble element is rather close to
predictor-corrector schemes, like the one proposed in [8, 21]. However, apart
from considering only the Laplacian preconditioner, there is no guarantee of
convergence of the iterative scheme. Furthermore, this scheme does not possess
the optimal properties of the conjugate gradient algorithm. Nevertheless, this
remark is only valid for a symmetric velocity operator. If not, matrix BA—!B”
is not symmetric and the PCGU can not be applied whereas the predictor-
corrector remains valid. Extensions to the non symmetric case of the PSC are
proposed in [33].

4.3.4 A preconditioner for the preconditioner

As noted in [38], the costly part of a classical fractional step at high mesh
Reynolds number is the Laplacian solve, mainly because if a small time step
is used, the velocity system is very well conditioned whereas the time step has
no influence on the pressure Laplacian. The same happens for the discrete
Laplacian.

As already mentioned, the use of the compatible Laplacian BM‘_/lBTP =F,
reflects the discretization of the Laplacian by a mixed formulation. As noted
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Given P()Z
Ry = (BAT'F+ByA,'Fy) (4.61a)
(BAT'BT + B,A, 'B]) Py
Computed as:
AU, = F-BTpP, (4.61b)
Ry = BU;+ByA;'F, - (B,A; 'B]) Py (4.61c¢)
P _ _ _ _
Gy = (E(BleBT +B,M,; 'B{)"!' +0uM, )Ry (4.61d)
W() = GO (4616)

(1) Projection step: U113 =Ujy— %M;IBTGO. End of FS.

Update the pressure:

Main loop:
@
AZ;

\Zi

Qj

Pjn
Rj

Rji1

U
Gj1

Bj
Wi

P.y1=Po+Go+0uM,'Ry. End of MFS.

(R;,G,)/(BA™'B” + ByA; 'B]) W;, W)
Computed as:

B'W;

BZ; + ByA,; 'B{ W;

R, G;)/(V;, W;)

(4.61f)

Pj + OZjo
R; — o;(BA™'BT + B,A; 'B ) W;
Computed as:

Rj —a;V;

(4.61g)
(4.61h)

Uj —a;Z; (4.61i)
(£(BMy'BT + ByM; 'Bf) " + 0uM, )Ry 41 (4.61))
(Rj+1,Gj41)/ (R, Gj) (4.61k)
Gj +6;W; (4.611)

if (NITER>NITERMAX) GOTO (1)
Until convergence

Figure 4.2: The PCGU algorithm with condensation of the bubble.
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in [40], the function spaces of the generalized Stokes problem and the mixed
Laplacian are different, so that a stable Stokes element could be unstable for a
mixed Laplacian problem. The invertibility and the condition number of system
(4.43) relies on the weak inf-sup condition:

6 < minmax M

4.62
e o TVal (4.62)

and not on the “classical” inf-sup condition. This condition has been used in [65]
to prove the classical inf-sup under adequate assumptions for the Taylor-Hood
element. The matrix form of this condition reads:

= min BMv'B0,0)

T (K.9) (4.63)

In [41], it is shown that, in particular, this condition is met for the bubble
element and for the P2/P0 by generalizing the norm of the pressure for dis-
continuous approximations. The same arguments can be used to prove (4.62)
for the P1+ +/P1. Equation (4.62) gives the invertibility of matrix BMy,' BT
and, by using the boundedness of operator B with these “wrong” norms, proves
that matrix BM;IBT is spectrally equivalent to a Laplacian so that, in both
cases of standard or compatible discretization, the condition number behaves
like O(h=2) [4]. Tt is SPD up to a hydrostatic pressure mode, so that it is
classically solved by a preconditioned conjugate gradient (PCG).

If the matrix must be assembled, it could be created globally as a sparse
matrix product, or advantage could be taken of the grid so that the matrix is
constructed locally by moving from pressure nodes to velocity nodes to pressure
nodes in case of continuous pressure, or from element to velocity node to element
in case of discontinuous pressure. In [17], the preconditioner is solved using a
direct solver, which appears to be prohibitive for large meshes. In [13], no
comment is made on how to solve the preconditioner. In [52, 36], it seems to
be assembled at once, and solved by the BiCGStab. Finally in [56], a QR
decomposition of BM‘_,l/ % s advocated, as the compatible Laplacian pressure
is solved twice. The QR decomposition allows to performe two triangular solves
per equation. Except in [17] for 2D examples, the inverse of the velocity mass
matrix has been previously lumped in all other papers. A discussion on the
error commited by the mass lumping in this case can be found in [36].

In this work, a different approach is adopted. Three main requirements could
be formulated:

e only the action of matrix BM‘_/IBT must be needed to avoid to assembly
and store this matrix, particularly in case of a Lagrangian description
where all matrices must be assembled every non-linear iteration so that
all ILU(k)-type preconditioners are discarded.

e the preconditioner must be robust and not fear a null pivot during factor-
ization.
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e evidently the preconditioner must be efficient in reducing the condition
number of the system to be solved.

Mainly, solving (4.45) amounts to solve a least square problem. In this work,
the preconditioner chosen is the one presented in [10] and used for least-square
problems in [11]. The preconditioner is based on an incomplete BM;,'B”-
orthogonalization by a Modified Gram-Schmidt (MGS) [55] procedure, and only
requires the action of the matrix and not its factorization. Furthermore, due
to the special pivot used during the BM‘_/lBT—01"‘5hogonalization7 it can not
become null. It is proved in [10] that the Cholesky factors can be recovered from
the orthogonalization process. In order to conserve a sparse preconditioner, a
dropping rule is applied on the BM;IBT—orthogonalized vectors. A second
threshold is applied on the value of the LL” factor in order to have a sparser
triangular solve. As it will be seen, this second threshold is particularly efficient
to conserve the relevant factors, keeping the preconditioner very sparse, resulting
in a low storage and very efficient preconditioner. In the extreme case of no fill-in
allowed, the SAINV preconditioner, the predecesor of the RIF preconditioner, is
equivalent to a Jacobi preconditioner, and the RIF preconditioner to a SGS one.
The version used in this work is the right-looking variant or rank-one update.
It must be noticed that, in order for the preconditioner to be efficient, matrix-
vector products must be done in sparse-sparse mode [55]. Storing matrix B gives
automatically the possibility to perform these products with matrix B”. Due
to the bubble condensation, the version of the RIF preconditioner implemented
in this work stands between the RIF preconditioner for SPD matrix, and the
one for least square problems. The whole algorithm is presented in Figure 4.3.
Numerical results to illustrate the efficiency of the preconditioner are provided
in the last section. The main reason of its success is due to the fact that the
dropping is applied on the inverse of the incomplete factors instead of the factors
themselves, so that ||[I — L=*AL~7| is minimized instead of |A — LL”||. The
triangular LL” solve is then much more stable (see e.g. [14] and references
therein). All three requirements are then fully met. In order to have a least-
square problem, equation (4.45) is replaced by:
0t =~ ~p ~

—BB* AP =BV (4.64)
p
where:

B = BM,"/? (4.65)

L

with My, the lumped diagonal velocity mass matrix, as My, > 0 for the P14+ /P1
and the P1+ +/P1 elements. Furthermore, a scaling is applied on the matrix
to have an independent threshold value so that the system to be solved is:

Ot 5= A B —1/2R_Y
—BB AP =D BV (4.66)
p

where: )
B =D '/?BM,? (4.67)
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with D the diagonal of BM;'B” and P = D'/2P.

As a final remark, care must be taken when some connex components of
the fluid only have Dirichlet boundary conditions for the velocity, as pressure
is defined only up to a constant in each of these connex components. Matrix
BM(/lBT is singular and has as much null eigenvalues as connex components
with only Dirichlet boundary conditions for the velocity. The algorithm then
finds all the connex components, where connexity is different for continuous and
discontinuous pressures, imposes one Z; vector in the preconditioner, and the
same pressure degree of freedom in matrix BM;IBT. After the resolution, the
solution is corrected to maintain a null mean-value pressure. In [27], it is noted
that singular systems are not a problem for iterative solvers if a compatibility
condition is verified for the discrete system. However in practice, convergence
was much faster by imposing some degrees of freedom for the standard Laplacian
discretization, and even divergence was observed for matrix BM(/lBT without
imposing anything for the 3D cavity example.

4.3.5 Mass lumping

In this section, a special comment on mass lumping is emphasized. The first step
of the fractional step, or of the algebraic splitting, consists in solving a discrete
elliptic or parabolic equation with a mass and a stiffness matrix. It is well-known
that such discretization could not verify a discrete maximum principle under the
appropriate assumptions [18]. Such instabilities have not been reported with
the fractional step or the algebraic splitting in the literature, perhaps because
of the fact that a high mesh Reynolds number could be avoided in the Eulerian
formulation by a larger time step.

However, solving a classical dam break problem with water with a density of
103kg.m ™3, a characteristic mesh length of 10~!'m, a time step of 1073s and a
dynamic viscosity of 1072kg.m~!.s~! implies a mesh Reynolds number of 107 so
that the velocity Laplacian contribution to matrix A in equation (4.29) is almost
inexistent. The velocity system amounts then to solve a mass matrix scaled by
the density and the inverse of the time step. As noted in [62, 18], the finite
element mass matrix for linear elements does not possess a maximum principle
property as it is not a M-matrix. At the opposite, the sum of the lumped
mass matrix with the velocity Laplacian, scaled by the viscosity, possesses this
property assuming that no angle in the triangulation is bigger than 7/2. For
such high values of the mesh Reynolds number, instabilities were observed and
the replacement by the lumped mass matrix amounts to be an efficient and
accurate solution, as well as allowing the iterative solver to converge faster.
Here, the discretization under consideration is not exactly performed by linear
elements as the bubble shape function is added, which can produce non negative
extra diagonal terms. Indeed, it is equivalent to solve the same problem with
linear elements on a grid where each element has been decomposed in three
triangles in two dimensions and four tetrahedras in 3D, so that at the bubble
nodes, the angles are greater than 7/2. The mass matrix is still not a M-matrix
and the stiffness matrix could have lost this property.
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Main

Goal: Build a Modified Gram-Schmidt (MGS) right-looking

A-orthogonalization where A = (BM;'B? + L) of a basis of
sparse vectors {Z;}.TOL and TOL, are two given tolerances.
Initialization:

For each pressure degree of freedom, build the linked
list of the point neighbours of the neighbours NEIGH]i|
for continuous pressure, or the neighbour elements for
discontinuous pressure.

Build the linked list of LT for sparse products
Create a list ROW[i] which points on the rows of the Z;.
Initialize Z;[i].push(l), ROWIi].enqueue(s).
loop:
DOi=1,2,..,n
//Compute products in sparse-sparse mode
wy = M,,'/*B7Z,
Wy = LZ,
pi = (Wv, W) + (Wp, wp)
//Store pivot in RIF preconditioner
RIF[i]li] = pi

Create a stack TEST[i] from ROW|i] and NEIGH]i]
such that (Z;,Z;)a #0

DO k=1,2,. TEST.size
j=TESTIK]
p; = (wy, My *B7Z;) + (w,, Z;)
Lii = pi/p;
if (1;i < TOL,) RIF(i)lj) = 1,
//Apply a dropping rule to Z;:
Z; =7 —l;;Z;
if(Z;|l] <TOL) drop Z,[l]
else ROW[l].push(j)

ENDDO

ENDDO

Figure 4.3: The RIF algorithm.
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Alternatively, the introduction of the bubble in a reaction-diffusion problem
has been interpreted in [32] as a stabilization applied to the reactive term,
albeit not sufficient to eliminate the wiggles. From a different point of view, the
stabilization comes from the fact that, as the mesh is finer, the reactive term is
less strong than with the original mesh. Numerical experiments agree with the
results of [32] so that lumping the mass matrix at high mesh Reynolds number
is then still a necessity. At low mesh Reynolds number, numerical experiments
seem to indicate that the maximum principle is still verified with the stiffness
matrix without lumping the mass matrix.

This phenomenon was not observed for the P1+ +/P1 mass matrix, which
contains negative extra diagonal terms. In the same way, replacing the “hat
function” by the cubic bubble implies to use a 13 Gauss points formula to inte-
grate exactly the 6t degree mass matrix. Using reduced integration of 6 points
reduces the oscillations, and using a three points formula eliminates the wiggles.
Lumping the mass matrix is known to deteriorate the solution in some cases [60],
but as mentioned in [37] the matching of the second order Crank-Nicolson time
integration and the mass lumping constitutes an appropriate choice. Therefore,
the classical drawback of the Uzawa scheme which needs an accurate inversion
of matrix A is somehow limited to low mesh Reynolds number, as much as the
velocity mass matrix is lumped, which accelerates further the convergence of
the PCG for the velocity system. .

4.4 Mass conservation

This section is the raison d’étre of the solver part, and constitutes the main
improvement with respect to previous work [3]. Mass conservation is a difficult
problem, especially during a large numerical simulation. The non respect of it
happens equally in an Eulerian or a Lagrangian framework. However, as the
domain changes in a Lagrangian formulation, it is more easily perceptible.

Discontinuous pressure elements have the attractive property to verify locally
the conservation equation. It means that the weak divergence will be equal to
zero to the machine precision on each element. However, as already noted in
Chapter 2 , writing the equation of mass conservation in a traditional Eulerian
way implies that a time derivation has already been performed, so that only an
accurate time integration will imply that a small value of the weak divergence
will produce a Jacobian value of 1 for each element in case of discontinuous
pressure or on the patch of each node in case of continuous pressure. A reliable
measure of the compliance of the mass conservation has been proposed in [45]
by computing:

max\/ V- -vigdK| (4.68)
K Jk

where Vi is the velocity vector on element K. This measure is obtained at
no additional cost for discontinuous pressure elements by using the PCGU, as

convergence is measured by the norm of the residual BV which contains the
precedent measure for the constant part of the pressure. For continuous pressure
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elements, apart from the norm of the residual, we propose the measure:
> / iV - vdQ; = / V- vdQ (4.69)
i Patch Q

where the integration domain is the patch of node i, indeed all the elements
which contain i, and v; is the velocity vector of all the neighbouring nodes plus
i of node i. It is not a norm, but represents the global mass conservation, which
is the best that can be achieved by continuous pressure elements. Results with
both the Euclidian norm of the residual and the last measure are given in the
last section.

By using the classical fractional step, the introduction of the Laplacian pres-
sure matrix produces the controversial Neuman boundary condition for the nor-
mal pressure derivative, but above all in case of free surface problems, implies
to impose the pressure at the free surface as a Dirichlet condition. Taking the
weak divergence of the end-of-step velocity, the velocity degrees of freedom be-
longing to the free surface can not verify the null divergence as the pressure
nodes associated with the mass conservation equation have been removed from
the Laplacian equation. Furthermore, during a dam break, elements or groups
of elements can fly away and mix thereafter. Imposing a null pressure on all
the nodes of one element produces a null pressure in all the element and the
impossibility to satisfy the mass conservation, as will be seen below.

The main problem by using discontinous pressure elements appears to be
that, as in 3D the number of elements is roughly 6 times the number of points
so that the pressure dofs grow very quickly. A first idea is to define a constant
pressure nodally on a cell around a vertex defined by dividing each element by its
medians. The area of each subcell is one third of the area of the element, and for
a constant pressure, the elemental contribution of the coupled velocity-pressure
term reads:

Bbij = - % V- Nj dVv (470&)
K/3
= — [ V-.Njav (4.70b)
K/3
Vi
— —V * N] X ﬁ (4.700)

which is exactly the elemental contribution of the P!/P! known to be unstable.
It could maybe be however a good departure to construct a stabilization method.
4.5 Numerical examples

In this section, the theoretical predictions of the spatial and time discretizations

described in the previous sections for the generalized Stokes problem are illus-
trated on various numerical examples. The free-surface problem will be dealt
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with in the next chapter. Nevertheless, various tests in this section involve free
surface problems, as they are tackled from the solver point of view. Finally, the
cylinder benchmark is used to validate the Lagrangian formulation in a typical
Eulerian context.

4.5.1 Preconditioner results

The efficiency of the algebraic splitting relies mainly on the efficiency of the
RIF preconditioner. It must be noted that, for the PCGU, the preconditioner
is assembled only once during the Uzawa iteration process, so that its cost is
amortized over the iterations.

Its performances are illustrated in Table 4.1 on a 3D dam break example
presented below with a P14 /P1 element. Each result consists in the storage
requirement of the RIF normalized with the one of the BB matrix in the upper
left corner, the computational time for the RIF construction in seconds in the
lower left corner, the iteration number of the PCG applied to matrix BBT at
the upper right corner, and the computational time in seconds of the PCG in the
lower right corner. These results are reported with various thresholds applied
on the inverse factors and then on the factors themselves as a post filtration for
a tolerance of ||b]|/||r"| of 107! for the PCG.

During the factorization, for each Z; vector forming the EET—orthogonal
basis, scalar products must be done with others Z; vectors. A computation for
each vector against the others would give a complexity of the process of O(n?),
making the whole process very inefficient. As the BTZ; vectors have only few
components, advantage can be taken from the sparsity in order to compute for
each Z; only the Z;’s that will give a non vanishing scalar product. This task
is achieved by computing in a first pass the neighbours of the neighbours for
each point in the continuous pressure case, and the neighbours of each element
in the discontinuous pressure case .

As already mentioned, the BB matrix is spectrally equivalent to a Lapla-
cian, which means that it is bad conditioned but not ill-conditioned. For exam-
ple, the PCG converges without preconditioning. The results reported in Table
4.1 illustrate the nice behaviour of the RIF preconditioner. The preconditioner
behaves exactly as predicted; the bigger the tolerance, pre or post, the better
the iteration number. For the same example with the P1+ +4/P1, the RIF pre-
conditioner reaches a gain in time of 30% with optimal parameter values with
respect to the diagonal preconditioner. Finally, the low storage requirements
due to the post-filtration makes RIF a very efficient preconditioner.

4.5.2 Behaviour of the Uzawa operator

The main goal of this section is to compare the results obtained by the classical
fractional step, the modified algebraic splitting and a monolithic solution ob-
tained with the fully converged PCGU on the first step of a dam break problem
and on the no-flow problem.
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SAINV | Post Filtration Threshold
drop tol. 0 le-3 le-2 le-1 1
0.001 32 221091 23]041 291]0.04 73]0.02 101
207 3 | 207 2 | 206 2 | 207 4 | 206 5
0.01 1.2 25| 0.8 25| 04 31 |0.04 72| 0.02 101
27 3 27 2 27 3 26 5 27 7
0.1 051 39| 05 391|036 42| 0.04 73] 0.02 102
1 3 1 3 1 4 1 5 1 7

Table 4.1: RIF preconditioner with various pre and post dropping values. The
columns represent various SAINV drop tolerances and lines various post fil-
tration thresholds. For each case, the storage requirement is reported in the
upper left corner, the computational time in seconds for the RIF construction
in the lower left, the iteration number of the PCG in the upper right, and the
computational time in seconds for the PCG only in the lower right.

Onset of a 2D dam break

The example studied is the first step at ¢ = 0 of a 2D dam break, which is a typ-
ical free surface problem. Initially, the fluid occupies a rectangle of dimensions
0.3 x0.6, the tank is 1 x 1 and the mesh is unstructured of size 0.01. The spatial
discretization is performed with a P1 + /P1 element. As explained in Section
(4.3.1), the Laplacian preconditioner is expected to behave well with high mesh
Reynolds number, the pressure mass matrix on low mesh Reynolds number,
and the optimal preconditioner on the whole range of mesh Reynolds number.
Therefore, the comparison is performed at three different mesh Reynolds num-
ber regimes, a high, middle and low one. Results are displayed on Figure 4.4.
The first test is performed with Re,, = 10°, the second with Re,, = 1 and the
third with Re,, = 0.01. For each row, the pictures represent the results of the
PCGU, the Modified Algebraic splitting (MAS) and the Fractional Step (FS),
where it is reminded that a standard Laplacian is used for the pressure Poisson
equation and no final update is performed for the pressure. As expected, at
Re,, = 10° the pressure isolines are in very good agreement for the MAS and
the F'S respect to the monolithic scheme, which explains the success of the frac-
tional step. At Re,, = 1, slight differences begin to appear at the bottom of the
wave between the MAS and the FS, the MAS being closer to the PCGU than
the FS. At Re,, = 0.01, the results obtained by the Pressure Laplacian are still
driven by the gravity force, so that they are very far from the PCGU results,
making the solution inaccurate. The MAS stays rather close to the PCGU,
providing a cheap approximation of the monolithic scheme.

Remark 4.5.1 Here, emphasis is obviously put on free surface flows, due to the
Lagrangian formulation. As mentioned in Section 4.3.2, the standard Laplacian
preconditioning imposes the pressure as a Dirichlet boundary condition, and
prohibits or delates the convergence of the PCGU. For this simple 2D example
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MAS and FS at Re,, = 10°

(c) PCGU, MAS and FS at Rey,, = 1072

Figure 4.4: Pressure isolines at the beginning of a 2D dam break result for
the PCGU, the Modified Algebraic Splitting and the Fractional Step at mesh
Reynolds number {10%,1,1072} with a P1 + /P1 element. The tank sides are
at the left and at the bottom.
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at Re,, = 1, the PCGU converges with a residual norm of 10~'3 with 17 it-
erations with the compatible Laplacian and the pressure mass matrix, whereas
91 iterations were necessary for the standard Laplacian and the pressure mass
matrix. A better solution is to impose the standard Laplacian to the residual of
the PCGU. The PCGU then converges with 29 iterations. However, advantage
can not be taken for the fractional step because it equally fixes the pressure
degrees of freedom at the free surface. It is possible that this procedure reduces
the mass loss for standard fractional step. For the 3D example presented in
the next section, the results are still more significant; at high Re,,, the PCGU
with the compatible Laplacian needs only three iterations to converge with the
pressure mass matrix, but 482 iterations of standard Laplacian are necessary by
imposing the preconditioned system to zero at the free surface, and 390 itera-
tions are obtained by imposing the preconditioned system to the residual value.
Without Laplacian preconditioner, 95 iterations are necessary to reach conver-
gence. With only the standard Laplacian, the norm of the residual does not
decrease after 16 iterations, and the PCGU does not converge. These results
show the difficulty of the standard Laplacian to maintain a null divergence on
the free surface so that all the schemes with a standard Laplacian will produce
an important mass loss around the free surface.

The no-flow test

Another interesting numerical example is the no-flow test [35], in order to verify
the pressure boundary layer due to the fractional step, and to compare the end-
of-step velocity of the fractional step and the algebraic splitting to the monolithic
solution, where the exact solution is the hydrostatic pressure and a uniformly
null velocity. Here, the fluid is water so that the mesh Reynolds number is
high for a reasonable time step, namely Re,, = 10° here. The geometry is
such that one side is oblic, in order for the condition imposed on the normal
derivative of the pressure to not coincide with the exact normal derivative on
the wall side. Results are performed with the PCGU, the algebraic splitting of
first and second order, and the classical first and second order fractional step.
Second order means that the pressure of the first order has been reinjected in the
momentum equation. The tank dimension is 2 x 2 and the oblic part corresponds
to the diagonal of the 1 x 1 lower right square. The spatial discretization has
been performed with a P1+ /P1 element, and the mesh is unstructured with
size 0.05. Figure 4.5(a) shows the whole geometry whereas all other results
are centred on the oblic side. In Figure 4.5, a consistent velocity mass matrix
is used in (4.29) whereas a lumped mass matrix is used in Figure 4.6. The
maximum velocities for the five examples with consistent and lumped mass
matrix are depicted in Table 4.2. As the solution belongs to the discrete spaces,
the monolithic solution displays the exact solution without pressure boundary
layer as expected. However, it is rather surprising to see the pressure isolines of
the first order algebraic splitting bending around the oblic boundary with the
consistent velocity mass matrix, nonetheless with a curvature which does not
reflect the pressure boundary layer. Examining the maximum velocity norm for
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PCGU | 1% split | 27 split | 1% frac. | 2™? frac.
Consistent | le-14 5e-3 2e-3 6e-3 le-3
Lumped le-13 le-7 le-12 8e-3 3e-3

Table 4.2: Maximum velocity norm for the no-flow test with consistent and
lumped mass matrix with Re,, = 10° for the PCGU, the algebraic splitting and
the fractional step.

these examples, it is seen that instabilities are created by the consistent mass
matrix which generate the bending of the pressure isolines for the algebraic
splitting. In fact, the first step of the classical fractional step is a discretization
of a parabolic equation, well-known for the instabilities as stated in Chapter
6. On the other hand, the lumped mass matrix gives a velocity guess without
instabilities, as seen in Table 4.2, and no pressure boundary layer due to a
possible g—ﬁ = 0 condition appear for the algebraic splitting whereas it is clearly
present for the classical fractional step. Using a lower mesh Reynolds number
stresses the bad preconditioning of the fractional step or the algebraic splitting
to the Uzawa operator, as explained for the last example. Whereas the solution
is still the same, the maximum velocity norm is around 0.1 and does not produce
the correct velocity field. The pressure is far better with the algebraic splitting
and the scaled pressure mass matrix, but iterations to the monolithic scheme
seem to be unavoidable.

Remark 4.5.2 If the original velocity mass matrix is lumped, convergence of
the PCGU preconditioned by the compatible Laplacian was observed in two
iterations for a mesh Reynolds number of 107. It is in perfect agreement with
the theoretical behaviour as, for such a high value of mesh Reynolds number,
the Uzawa operator contains almost only the inertial part. Inverting matrix
BM; !BT is then almost equivalent to inverting the Uzawa operator. If one
accepts to lump the velocity mass matrix, the solution of the monolithic scheme
at high mesh Reynolds number is obtained very efficiently and constitutes an
appealing scheme.

4.5.3 Mass conservation

The studied problem is the same as above, namely a dam break test, except that
it is a 3D dam break and it is performed over 5 seconds of computational time.
It involves breaking waves with water, strong contact and mixing, as senn in the
next chapter, so that it is a good test to compare mass loss. The tank geometry
is 10 x 10 x 10 and initially the fluid volume is 3 x 3 x 6 at the corner. The
mesh is unstructured with size 0.3. The initial Reynolds mesh number is 107,
which varies due to the variable time step chosen so that the Courant number
be equal to 1. The results have been performed with three different elements:

e a P1/P1 backward Euler stabilized by a first order FS.
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Figure 4.5: The no-flow test with consistent velocity mass matrix for the PCGU,
first and second order splitting, and first and second order fractional step
schemes. The pictures represent the geometry and detail on the oblic side.
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Figure 4.6: The no-flow test with lumped velocity mass matrix for the PCGU,

first and second order splitting, and first and second order fractional step
schemes. The pictures represent a detail on the oblic side.

108



4.5. Numerical examples 109

Element Velocity nodes | Pressure nodes
P1++/P1 163735 195940
P1+/P1 63345 14360
P1/P1 14360 14360

Table 4.3: Number of velocity and pressure nodes for the P1++/P1, P1+/P1
and P1/P1 elements for a 3D dam break.

e a P1+ +/P1 with discontinous linear pressure MAS.
e a P1+ /P1 with MAS, FS and PCGU.

The dam break results have not been displayed as other 3D dam break re-
sults are presented in the next chapter. In Table 4.3, the number of velocity and
pressure degrees of freedom are reported. It must be noted that the bubble is
condensed for the velocity system for the second element, and for the whole sys-
tem for the third element. Values of the averaged minimal, maximum Jacobian
for each element and the averaged Jacobian for all the elements are reported in
Figures 4.7, 4.8 and 4.9. The curves were smoothed using Bezier curves in sake
of clarity. These values correspond to the values obtained for the convergence
of the non linear process. As the nodes are convected with their displacement
values, an isoparametric element is used in the non-linear iteration. The time
step is variable, but of the same order for all the examples, around 1073 s. For
the P14 +4/P1 element, the numerical integration is performed with 24 Gauss
points, so that the terms involving the inf-sup condition are integrated with suf-
ficient accuracy. It was observed that the velocity system could not be solved
with less Gauss points per elements. An isoparametric formulation is used for
the P1+ +/P1 so that the Jacobian takes into account all the shape functions,
as the geometry of the bubble must also be interpolated. A negative Jacobian
does not necessarily imply that the element screw itself but that the classical
condition on the edges :

laix — a; gl < Chx (4.71)

where a; g is the vertex of the element and a, 7 is the mid edge of the corre-
sponding straightsided element, is not fulfilled. It is remarkable that no problem
was met during the computation, mainly explained by the small time steps used.

The computation for the linear elements and the bubble involved around
two days of real time for a whole result of 20 seconds of computational time,
whereas the P14++/P1 was stoped after two weeks for less than 5 seconds of
computational time. Due to the discontinuous pressures and the second order
time integration, the Jacobian values are very near from 1 for the P1 + +/P1
element in the three cases, as the discontinuous pressure implies a local mass
conservation. However, as noted before, the elemental Jacobian value is not
even weakly constrained to be 1 but rather the divergence of the velocity is
weakly constrained to be null on each element. Here, time integration appears
to be very important and the second order time integration of the P1 + +/P1
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IBVI[ | > BijV;
P1/P1 1% order FS 10° 10°
P1++/P1 MAS 4x10710 [ 2 x 1077
P1+/P1 PCGU 1x1072 | 5x 10712
P1+/P1 2™ order FS 10° 10°
P1+/P1 MAS 4x 107 [ 2x10712

Table 4.4: Maximum value of || BV || and the value ), B;;V; for various elements
and solvers.

seems to provide accurate Jacobian values very near from 1 up to 1072 for the
averaged Jacobian value.

For the first order in time P1/P1 element, results are completely different.
Negative values of the Jacobian are even observed for the P1/P1 element with
the classical fractional step at longer time, which does not preclude the non
linear convergence. This is not surprising, as the measured Jacobian values
are always the one of the previous iteration, so that it has been checked that
all the previous Jacobian where positive and that the non linear convergence
has been reached, but not that the Jacobian of the last iteration were also all
positive. The imposition of the pressure on the free surface coupled with a first
order integration in time gives by far the worst overall result. It must be noted
that over the 7207 iterations performed in time, 348 backtrace iterations when
the Jacobian of an element becomes negative were necessary to go back at the
beginning of the time step whereas no backtrace iterations were performed for
the PCGU and the MAS whatever the element.

The P14 /P1 element gives good values of Jacobian also up to 10~° for the
averaged Jacobian value, even if mass conservation is only applied on the patch
of each node with the MAS and the monolithic. It can be seen that the results
are slightly better with the PCGU, which was expected. However, the second
order fractional step gives the worst results, better than the linear element due
to the higher order time integration, but very far from the MAS and the PCGU.

The maximum value of the norm of the divergence and the proposed value
to measure the mass loss is reported in Table 4.4 for the previous cases. The
very high values of the fractional step are due to the cases where a group of
elements have only free surfaces nodes, in which case the pressure is null on the
whole domain, and no control could be achieved on the norm of the divergence
on the whole domain. In the average, the value is around 1. For the PCGU
case, || BV is the residual of the PCGU so that it is verified up to the tolerance,
which was fixed to 107'2. The global value is slightly less as it is not imposed by
the algorithm, but really corresponds to the mass loss on the whole domain. For
the MAS case, the values of || BV|| are better as they correspond to the tolerance
of the system involved with matrix BM;,'B”, which was fixed to 10713

If until then, all the results coincide with the theoretical considerations,
Figure 4.10 gives some unexpected results. The volume loss has been reported as
the difference of the volume of the straight elements before and after moving the
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Figure 4.7: Minimal Jacobian value for various elements and solvers.

mesh divided by the initial volume. It must be noticed that, as the alpha shape
method [25] is used to find the fluid boundaries, it could be also responsible for
a mass loss. However, the volume loss reported on Figure 4.10 is exclusively
measured as the difference between the volume of the straight elements between
two time steps before remeshing. It is seen that, even if the P1++/P1 element
provides a nice divergence norm, the computed volume loss is not as good as
expected. It gives the best values but there is not an order of improvement,
whereas it needs two orders more in time. It could be due to the fact that it
does not take into account the curved surfaces of the element at the end-of step.
The geometry becomes incresingly complicated if curved faces must be taken
into account by the mesh generator at the next step so that only the volume
loss of straight elements really matters. Furthermore, it is also seen that all the
second order schemes do not give better volume conservation that the first order
whereas the divergence and Jacobian measures were far better. As a #-scheme is
used, the measured Jacobian corresponds to a domain considered between n and
n + 1 whereas the volume is moved with the final computed displacement. This
fact also explains the bad Jacobian values obtained by the first order scheme,
as in this case, the Jacobian is computed with the whole displacement and not
at an intermediate state where the displacement is less important. A second
order backward differencing scheme could be a possible remedy but it deserves
further investigation.
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Figure 4.8: Maximum Jacobian value for various elements and solvers.
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Figure 4.9: Average Jacobian value for various elements and solvers.
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Figure 4.10: Relative volume loss for various elements and solvers.

Finally, a comparison between the monolithic solution with the PCGU, the
Fractional Step and the Modified Algebraic Splitting is reported on Table 4.5 for
various criterias for this 3D dam break example. For the FS and the MAS, the
second order in time solvers are used so that the linear iteration is solved twice
due to the reintroduction of the pressure in the momentum to avoid pressure
interpolation errors. The assembly, meshing and solving times are reported
in percent respect to the total real time reported in seconds. Then the time
iteration number performed for the whole computation is reported, with the
number of backtrace iterations due to possible negative Jacobians. Finally the
average computational time step is reported in seconds. It is interesting to see
that the computational cost of the compatible Laplacian is almost seven times
the one of the standard Laplacian as the meshing time and the assembly time
are almost the same, for a global time which is twice the one of the standard
Laplacian. The condition number of both systems are of the same order. The
standard Laplacian is solved by a PCG with the Eisenstat trick, which means
that the preconditioner used is a SSOR preconditioner but the LU solve is
saved so that there is only one matrix-vector product at each iteration. For the
compatible Laplacian, each iteration involves two products of matrix B which is
exactly three times larger than the standard Laplacian in 3D, one multiplication
with a standard Laplacian to stabilize the P1/P1 operator, and the LU solve
of the preconditioner, which means seven times the standard Laplacian plus
the LU solve. The computational time measured experimentaly is thus in the

113



114 Chapter 4. The Generalized Stokes problem

PCGU FS MAS

Assembly 9 24 11
Solver 67 15 56
Meshing 18 49 25

Real time 217552 49816 101978
It. number 7086 7207 7154
Backtrace 0 348 0
Time step | 0.00282 | 0.00277 | 0.00279

Table 4.5: Computational time for the PCGU, the F'S and the MAS for various
criterias for 14360 nodes.

expected order. The meshing time percentage varies greatly in the three cases as
the solving time varies greatly. It must be noticed that the high Reynold mesh
number is favorable for the monolithic to converge quickly with the compatible
Laplacian compared to very viscous cases. Nevertheless, the solving time for
the PCGU is 18 times the one of the FS for a global time multiplied by 4,
whereas it is 3 times the one of the MAS for a global time multiplied by 2. As
expected, the backtrace iterations are numerous for the fractional step due to
the pressure imposition on the free surface and the impossibility to respect the
mass conservation. It appears clearly why the fractional step is so popular.

4.5.4 Vortex shedding behind a cylinder

The cylinder example is a classical Eulerian benchmark [28]. The flow domain
is a rectangle of dimensions [0, 0] x [16, 8], and a cylinder represented by a circle
of diameter 1 is placed at point [4,4]. The Reynolds number is given by the
diameter, the imposed velocity at the inflow and the kinematic viscosity. Two
different results are presented, namely the standard value at Re = 100 for which
the flow is laminar, and the case Re = 10%, for which the flow is turbulent. No-
slip conditions are applied on the cylinder whereas a velocity of [1,0] is imposed
on the other parts except at the outflow for both cases. The results are obtained
with the MAS. The mesh used is rather fine, containing around 6.10* nodes
and 1,2.10° elements. The mesh size is such that it is constant in a box of
dimensions [3,3] x [16, 8] centered at [8,4] with a value 0.02 and varies linearly
in each coordinate until reaching a value of 0.3 on the sides, each straight line
being delimited by one of the four arcs of parabole joining the point [8,4] with
the four corners of both boxes. The second order Crank-Nicolson scheme is used
in time.

Results of the isolines of the norm of the velocity and the pressure for various
instants are reported on Figure 4.11 for Re = 100. The period of the oscillations
of the von Karman vortex street for such Re = 1 number is around 6.0 which
is in very good agreement with the reported ones. Some pressure oscillations
seem to appear where the mesh is coarse. It seems to happen in nodes where
the connectivity is lower or higher than 6, so that the meshing process should
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certainly take into account this parameter.

Results of the isolines of the norm of the velocity and the pressure for various
instants are reported on Figure 4.12 for Re = 10°. It must be noted that no
turbulence model has been taken into account, as it should be firstly defined
what means turbulence in a Lagrangian setting. However, the aim of this ex-
ample is to illustrate that no numerical difficulties are found for such a high
value of Reynolds number. The results are very different from Figure 4.11. The
oscillations begin sooner and the period of oscillation is much faster, around
4.2s.

4.6 Conclusion

Various numerical aspects of a fully non linear incompressible Lagrangian formu-
lation have been presented. First of all, the behaviour of the classical fractional
step, the algebraic splitting and a variant with the introduction of the pres-
sure mass matrix have been compared to conclude that the fractional step-like
procedures are usefull numerical tools if they are used in the appropriate mesh
Reynolds number, as are the equivalent preconditioners for the Uzawa operator.
The first or second order approximation is obviously asymptotic and care must
be taken to the underlying constants, as they also depend on the mesh discretiza-
tion, the dynamic viscosity and the density. However, the monolithic solution
remains still a general and unavoidable issue. A new scheme has been presented
to achieve the monolithic solution in case of high mesh Reynolds number with
very few iterations if one accepts to lump the velocity mass matrix.

In order to achieve a relative mass conservation at each time step below
10~% in a free surface context with Lagrangian description, the use of various
spatial discretizations with continuous and discontinuous pressure has been im-
plemented. However, it was observed that the introduction of discontinuous
elements did not lead to much more accurate results, mainly because of the
unavoidable use of isoparametric elements which generate volumes that can not
be recovered by straight simplex elements at such a low tolerance, whereas the
global volume of the latters measures what really matters. Furthermore, it im-
plies an increase of two orders in time which, even if it provides better results
for the same mesh, is easily outperformed by slightly increasing the degrees of
freedom of C° pressure elements. In view of these results, the bubble element
still happens to constitute a correct solution, providing a very good compromise
between accuracy and efficiency. The key point in mass conservation with free
surface problems, at least from a divergence point of view, is that algebraic
splitting methods leave boundary pressure conditions as a Neumann boundary
condition. This result applies equally to an Eulerian description, but do not ap-
pear so clearly, except by computing the volume lost by moving the mesh with
the end-of-step velocity. The “ultimate” mass conservation scheme must impose
in its formulation that the Jacobian be equal to one, independently of the com-
putational cost and the description, the time integration being as important as
the norm of the divergence as the precision increases.
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Figure 4.11: Vortex shedding behind a cylinder at Re = 100. The velocity norm
is displayed at the left and the pressure at the right.
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Figure 4.12: Vortex shedding behind a cylinder at Re = 10°. The velocity norm
is displayed at the left and the pressure at the right.
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In view of the problems met in general, it is rather comfortable that no

convective term appears in the discretization, which still more strenghtens the
numerical difficulties as illustrated in [42]. Finally various numerical examples
have illustrated the robustness of the proposed approach. The full understand-
ing of the rather poor volume conservation of the second order 8-schemes tested
in this work deserves further investigation.
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Chapter 5

Free surface flows

In this chapter, the free surface problem is considered. The main difficulty
is due to the fact that the boundary of the body under study will move and
deform, due to mechanical effects given by the computed solution, so that the
location of the free surface is somehow an additional unknown of the problem.
This problem is also often called the moving boundary problem. Apart from
the convection of the body, which would be straightforward without interaction
with solid walls in a Lagrangian formulation, the topology of the body will
change with the boundary evolution due to intersection and separation between
fluid and wall, and fluid and fluid. This is by far the most difficult aspect. In
a solid mechanics context, this kind of problem was tackled from the contact
point of view, mainly because, even if there is contact, the boundaries of the
body remain with the same topology. However, fixed grid methods offer an
appealing and much cheaper way to take contact into account at the price of
the resolution up to the mesh size.

Various methods were tested in this work, mainly depending on the context
that one assumes to be known to determine the boundary. A first approach
would be to consider the problem as a classical meshing problem by following
the boundaries of the body and generate classically a body conforming mesh
[7]. A second approach consists in taking a cloud of points as sole knowledge,
and to try to prune a shape from this cloud of points [12]. A last possibility
is to enrich the knowledge of the context by not simply considering a given
cloud of points, as the problem under study is a fluid problem with given initial
boundaries and materials [33]. Other methods exist and have been commented
in Chapter 1 so that the aim of this section is to highlight specific aspects that
were used in this work. These above mentioned three aspects are detailed below.
Finally, numerical results are presented, comparing the different approaches, and
validated against a 2D dam break, and the cylinder with slot example.
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Figure 5.1: Intersection and folding between the fluid and wall boundary. The
temperature field has been displayed with an external heat flux.

5.1 The classical approach

As a classical mesh generation scheme, a solution to explicitly know the bound-
aries of the body under study is to follow this boundary during its motion.
Should the body intersect other bodies, a classical contact methodology would
find the contact area, the penetrated volume, and would repulse the other body
[3]. Apart from the high computational costs incured by a contact formula-
tion, for fluid and for example, damage and rupture mechanics, the topology
of the body changes during the analysis, and various connex components may
appear or merge due to the large deformations undergone by the body. The
mesh is then highly distorded, and a remeshing or rezoning procedure becomes
mandatory. It is then very difficult to find and numerically build the boundaries
of the body due to the possible intersections and separations. Some heuristics
must then be introduced [7]. Figure 5.1 shows a detail of a 2D dam break
performed by following the boundary edges during the motion. Furthermore, a
smoothing procedure [39] was applied on the wall and on the fluid to regular-
ize the boundary contour. Finally, the velocities of the points of the wall that
limit the fluid and gas phases were extrapolated to further smooth the bound-
ary discretization. However, it clearly appears that some of the points of the
boundary become closer and closer, and much worse, the boundary edges cross
the wall edges, so that the computation must stop. Temperatures are displayed
for convenience with an external heat flux.
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5.2 The cloud of points approach

For very different applications, objects are only known by points belonging
on the surface or to the inner volume, but no information is explicitly known
about the definition of the surface of these objects. This occurs in medical
imagery, where the datas are scanned and millions of points are collected by the
sampling machine, in computer vision, and graphics. The target is to reconstruct
a surface of a volume passing through these points to calculate geometrical
properties, such as areas, volumes, axes of inertia, surface normals, curvature
and elementary shapes [4]. The difficulty is due to the fact that there exists an
infinity of such surfaces so that the problem is ill-posed. Different criterias have
then been proposed such as the maximization of the volume, the minimization of
the surface, of the length of the edges, or angles, and so on. Various approaches
are:

e The first idea consists in considering the surface as an elastical membrane.
An initial large membrane encloses the data at the beginning. Then a
deformation process is performed to minimize the elastic energy [33, 43].
A good initial guess must be provided and only local minimals can be
reached.

e The combinatorial approach constructs a geometric data structure such
as the Delaunay triangulation of the point set and try to extract from this
structure a set of facets that approximates the surface. The first results
in this directions are the alpha-shape concept of Edelsbrunner et al. [15]
and the sculpting method of Boissonat [4]. Amenta et al. [1, 2] prove in
3D that the output of the algorithm is topologycally valid and convergent
both pointwise and in surface normals, given assumptions of the density of
the sampling point, mainly relying on an approximation of the medial axis,
which is the generalization of the Voronoi diagram of points to surfaces.

e Another idea is to see the surface as a level surface of an implicit function
and to try to find the zero of this function. Then a voxel or marching
cube algorithm is performed, the intersection with the implicit surface
computed, and a first rough surface triangulation created. [22]. Another
strategy is proposed by Boissonnat et al. [5] by interpolating the implicit
surface through the Natural Neighbours shape function [37, 38].

e A last idea is to directly generate the surface by a traditional surface
mesher [28] by applying a strategy to generate locally the best triangle
possible relying on a subset of the given cloud of points.

In this work, the alpha shape concept [15] has been extensively used to find
the surface shape inside the Delaunay triangulation. The advantage is obvious
as we already need the mesh for the computation. As the system is constantly
moving, the location of the boundaries must also be redefined accordingly. The
alpha shape method could be formulated as:
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Definition 5.2.1 Given a particle distribution depending on h(z), where h(x)
1s the minimum distance between two particles, all particles on an empty sphere
with a radius r(z) larger than ah(z) are considered as boundary particles.

In this criterion, « is a parameter close to, but greater than one. This definition
is extracted from [23] and corresponds to a possible utilisation of the alpha shape
in a finite element context. The exact definition of the alpha shape, formulated
by their authors is:

Definition 5.2.2 Given a real number o, with 0 < o < oo, let an o — ball be
an open ball with radius o, S a finite set of points in R? and T any subset of S.
A simplex is said to be a-exposed if there is an empty a-ball b with T = 0bN S,
where Ob is the plane or sphere bounding b. A fized a thus defines sets F, o of
a-exposed k-simplices for 0 > k > 2. The a-shape of S is the polytope whose
boundary consists of triangles in Fs ., the edges in Fy ., and the vertices in

Foq.

Roughly speaking, the alpha shape compares the value of the radii of the
simplices of the triangulation and the o parameter provides a cut-off value to
consider the elements with radius bigger than « as ’outside’. The first defini-
tion of the alpha-shape is equivalent to the second one thanks to the Delaunay
triangulation property of being the dual of the Voronoi Diagram. If a = oo
the convex hull of the cloud of points is obtained, if a = 0, the shape consists
in only the points of S. A straightforward extension to a cloud of points dis-
tributed respect to a size distribution map has been done in this work, as seems
also to have been done in [14]. The extension to the anisotropic case is not so
obvious as the geodesics are not straight lines anymore, and the parameter still
more sensible. However, Teichmann and al. [40] propose some extensions to the
method.

At the implementation level, the alpha shape will determine a surface for a
cloud of points representing a volume, without the assumption that this cloud
of points are only points of the initial surface, which is an important difference
with the other methods. The points of the last time step, or the initial given
cloud of points at time zero, are filtered and inserted in the triangulation. The
alpha shape is then computed, and all the inner edges of fluid are examined to
compute their length and generate new waves of points. Figure 5.2 describes
the process for the simple shape of the letter A’. The points of the letter are
inserted in a bounding box and the Delaunay triangulation is computed. Given
a parameter, the resulting shape is found, and the maximal circles of radius
alpha empty from other points are also shown.

The drawbacks of the alpha shape are various. As the surface is extracted
from the faces of the Delaunay triangulation, the surface appears to be very
rough. Some practical criterias on the surface roughness are given in [17, 18].
Furthermore, as already mentioned in Chapter 3, the mesh must be as close as
a Delaunay mesh in order for the alpha shape to produce adequate results. As
seen in the same chapter, this requirement is not the main aim at producing
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meshes for finite elements computations, and both requirements could some-
times be antinomics. Also, the necessary introduction of Steiner points in a
3D context perturbs the alpha-shape context and shows the limitation of the
method. In the same way, the boundaries can not be generally remeshed, as it
could produce new elements that will be considered as fluid, generating endless
fluid mass. It must be also be noticed that the alpha shape needs a complete
reconstruction of the mesh at each time step in a 3D context. However, only
some elements are really distorded due to the large displacements, so that a local
mesh optimization method would be much more efficient and easy to parallelize
than the whole Delaunay mesh regeneration. Finally, some holes may appear
in the fluid volume, greatly disturbing the pressure distribution as illustrated in
the numerical section.

5.3 The Level Set approach

In the Level Set approach, the surface is considered implicitely as the zero iso-
contour of some function in a usually fixed volumic domain [33]. The evolution
of the surface is then computed and updated, as it is not known implicitely.

One of the main advantages of the Level Set formulation is due to the fact
that pinching and merging are resolved naturally up to the grid discretization
level. This attractive property was already noted in [36] and [9], where a first
algorithm was devised which computed the exact intersection, giving rise to a
very rough surface discretization, whereas the Level Set approach seemed to be
much more taylored to smooth the contour. In practice, the studied domain is
fully meshed and the implicit function convected with the computed velocity.
The air domain may or may not be taken into account for efficiency reasons,
although [8] shows that at least the gas effects must be considered. If the velocity
of the air is not considered, some extrapolation of the velocity and the pressure
in the air domain around the free surface must be done to correctly advect the
implicit function [30]. Usually, slip conditions are applied to the velocity system
so that the Level Set could evolve on the walls, but it is not necessary if the
velocity and the Level Set are interpolated by different shape functions [34].

A partial drawback appears because, as the free surface usually do not coin-
cide with faces of the mesh, the discontinuity in the pressure gradient between
air and water can not be properly described. A remedy proposed in [11] consists
in modifying locally the pressure shape function to recover this discontinuity.
Another possibility would be to adaptively remesh around the free surface. The
typical example where instability can occur with a two phase flow arises in the
simplest hydrostatic pressure column. Another way to see it could be that, if
spatial integration is performed with one Gauss point, the ’effective’ free surface
will present sharp irregularities as some elements will be selected as fluid, and
some other not. This sharp front produces instability as the pressure isolines
can not be horizontal. As noted in [11], increasing the Gauss point number does
not improve the solution, as the pressure gradient still stays continuous in the
element.
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(b) The maximal empty spheres. (¢) The resulting shape.

Figure 5.2: The a-shape concept, from hitp://cgm.cs.megill.ca/ god-
fried/teaching/projects97/belair/alpha.html.
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Furthermore, a constant reinitialization procedure must be performed if a
smooth distance Level Set function is chosen. If another type of function, such
as discontinuous function is used, care must be taken on the monotonicity of
the convective operator [30].

5.4 The projection method

As already said, the main difficulty with free-surface problems is created by the
fact that the domain evolves in time, so that, as remeshing is mandatory in a
Lagrangian formulation, the domain must be redefined to allow the introduction
and suppression of nodes, which will be moved by physical reasons and not by
mesh optimization purposes. This problem is then at first view a simple mesh
spatial interpolation problem as the mesh of the old time step will be moved, so
that its topology, boundary and all geometrical properties are known. However,
there are at least three difficulties appearing due to the physical problem at
hand:

e The resolution of the no-slip velocity at the walls, which if no special
treatment is done, will provoke the endless stretching of an element which
has a face on the wall, and the endless increse of negative pressure to
maintain the mass conservation, in this element or on the whole domain.

e The resolution of the free surface merging, due to breaking waves, mould
filling and so on.

e The resolution of separation of the fluid if the velocity in an element is
such that two nodes of the element move away so that the fluid pinch
apart.

If the first problem has a strong physical nature, the two others are much more
geometrical as it concerns the topology of the free surface. Two important
physical phenomenas in free surface problems are surface tension and cavitation.
The first plays an important role in the formation of liquid drops [13], and
the second in the creation of internal free surfaces. So that both phenomena
contribute to the topological changes of the free surface, and the limit between
the wetted and the still dry wall part. However, they are not taken into account
in this work and a more ’'macroscopical’ approach must be used. There is
a 'kinematic paradox’ [25] at the moving contact line as the usual boundary
condition for viscous problem is the no-slip condition, which obviously contrasts
with the fact that the contact line will evolve in space. The usual boundary
condition used in an Eulerian implementation is the slip condition [10, 19, 20,
30], which partially resolves the problem at the expense of loosing any wall
boundary layer. Another interesting alternative is to consider a Signorini contact
condition at the wall coupled with a boundary condition [31].

The fact that implicit functions resolve these pinching and merging phenom-
enas is mainly due to the numerical diffusion introduced by the grid resolution
of the presence function. Furthermore, if a Lagrangian method is used, it is
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pleasant that the boundaries of the domain coincide with the boundary sim-
pleces, as does the alpha shape method. This is typically reminiscent of a P°
interpolation of the presence function. As some diffusion is needed, the idea is
to simply perform a P° projection from one time level to the other to determine
which element are of fluid type, and which are empty. As noted in Chapter 3,
the interpolation process is very fast and robust so that the global algorithm is
negligeably penalized compared to the alpha-shape method. In order to resolve
the kinematic problem, the last line of fluid elements is projected on the wall,
the discrete surface remeshed [27, 41, 16] and the projection performed, so that
the no-slip condition is conserved from the alpha-shape method, and the con-
tact line evolves, corresponding to a zero order extrapolation [21]. Compared to
the alpha-shape, the main advantages are that no spurious holes appear in the
mesh so that the pressure distribution does not have to satisfy rough bound-
ary conditions and the numerical results are much smoother. Furthermore, the
mesh procedure becomes independent of the method as it does not need to be
strictly Delaunay. Steiner points are neither a problem and they will be inter-
polated like other points if needed. Finally, the boundary discretization does
not perturb the method so that it is then possible to remesh it if necessary. The
proposed method, whereas designed for other reasons, could be related to the
"transport—+projection’ schemes usually used in Eulerian formulation [6, 35, 24],
and reminiscent of the Godunov scheme [21]. They provide unconditionaly
stable schemes due to the absence of the convective term but they also some-
how transfer the difficulty to the geometry by finding forwards or backwards
on the characteristic lines the old values for each considered node. However,
the difference relies once again on the fact that the Euler formulation considers
the deformed configuration instead of the initial configuration as the reference
configuration.

5.5 Numerical examples

The main aim of this section is to validate the aforementioned numerical method
on classical benchmarks, and to compare it with the other methods used. To
illustrate convection, the example of the cylinder with a slot is used. Then the
2D dam break is performed and compared with analytical and numerical results.
Finally, a 3D dam break has been runned to show the robustness of the method.

5.5.1 Rotation of a cylinder with a slot

This example is a classical benchmark for the convection equation, see [42, 29,
26, 24]. A cylinder of radius 0.3 has a slot of width 0.1, which leaves a bridge
of 0.1 at the upper part. A rigid body rotation in a nonuniform velocity field
is given by v(z,y) = (—y,z). If this example would be considered without
the P° interpolation by conserving the boundaries, the exact solution would be
trivially obtained up to time integration errors with the Lagrangian method.
It is however interesting to see the effects of the projection with this example.
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Computation was performed up to a quarter revolution in [29], and up to a whole
revolution in [26, 24]. It must be noted that the Flux Corrected Transport
(FCT) paradigm [42, 29, 26] and the Discontinuous Galerkin method (DG)
[24] are among the best Eulerian methods available for convection dominant
cases with discontinuities. Figure 5.3 shows the results up to 15 revolutions.
33333 iterations were performed with a time step of 1073. Even if the shape of
the cylindre begins to change due to the time integration, the contours of the
discontinuity are very well conserved. The Lagrangian formulation shows its
great accuracy to move here a given discontinous function, and more generally
a free surface contour. The size mesh is 0.02 as in [24], but only the inner
cylinder has been meshed. However, only the boundary points matter, and the
inner mesh could have been made only with boundary points. It must be noted
that an important and implicit issue here relates the mesh size and the cylinder
boundaries. If the boundaries are Delaunay conforming, they naturally appear
in the new mesh where the projection takes place, and the shape of the cylinder
is then perfectly reproduced up to the time integration. It is also interesting to
see how the spikes of the slot deform, particularly after 5 rotations, giving rise
to almost degenerated triangles. and how the projection improves the shape by
rejecting the too much deformed triangles

5.5.2 2D dam break

This is a classical benchmark for free surface flows, and has been used by various
authors for experimental [32] and numerical results, see [30, 19] and references
therein. The first result is given by Figure 5.4, which compares the evolution of
the horizontal location of the free surface § = x/a along the bottom wall respect
to a normalized time 7 = t1/2g/a for the experimental result and the projection
method. Even if the global shape was similar between the alpha shape method
and the projection method, the alpha shape method has not been displayed due
to the irregularity of the contour at the rightmost point. Here, a is the base
length of the wave, the height is 2a, and the length of the reservoir is 4a. It
must be noted that the boundary condition considered in this work is the no-slip
boundary condition as opposed to the previously cited references. The results
were obtained with the monolithic iterative solver and a mesh size of 0.02 as the
one used in [19]. The overall agreement is good, even if some slight discrepancies
appear at the beginning of the experiment, as appear in the numerical results
of previously cited works. In the paper of Martin and Moyce, they report some
difficulties at the begining of the experiment which could explain the different
results. As the viscosity is rather low, the influence of the boundary layer is
very limited, which explains that results are almost the same with and without
the no-slip condition.

Figures 5.5 and 5.6 compare a 2D dam break with the alpha shape method
and with the projection method for the pressure field solution with a mono-
lithic iterative solver. The creation of holes in the liquid domain due to the
alpha shape method forces the pressure to weakly verify the null stresses on
the boundary of the holes and destabilizes the pressure distribution, as seen in
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Figure 5.4: 2D dam break: comparison of the horizontal displacement with
experiment.

the second subfigure. However, it must be noted that the position of the free
surface is somehow similar in both cases, at least for the not too long time,
which illustrates the well known fact that even if pressure results are not so
good, velocity results provide an accurate solution. The surface for the alpha
shape method has not been smoothed, whereas it has been slighlty smoothed
with the projection method by one smoothing iteration per time step.

5.5.3 3D dam break

This example is the classical 3D dam break with a solid cube at the middle of
the domain, and is illustrated in Figure 5.7 at various instants. The mesh is
composed by 2 x 10° nodes and around 10% elements with a size map concen-
trated around the solid cube. The main aim of this example, as there is no
analytic solution provided, is to illustrate the robustness of the method, as 400
seconds of computed time were performed with a time step of 1072, so that
around 10° complete meshings and interpolations were performed for the whole
computation. This example was runned with the alpha shape method, as can
be seen with the rather rough free surface shape.
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Figure 5.7: 3D dam break at t={0.1,0.9,2.3,4,5,6}.
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5.6 Conclusion

In this chapter, the free surface problem has been considered, various methods
have been tested and compared, in a Lagrangian context, against analytical
and numericaly established results, and the differences with an Eulerian imple-
mentation commented. The Lagrangian formulation gives naturally an accurate
description of the free surface until merging is considered, which happens very
soon in a simple 2D dam break example. At this point, and due to the large
deformations of the fluid, the correct characteristics must be deleted in order
to maintain a good mesh quality, and to avoid a much more expensive contact
formulation. An appealing advantage of the Lagrangian formulation is consti-
tuted by the fact that the non linear character of the Navier-Stokes equations is
fully solved as no oscillations appear between elements filled of gas and water,
as appears in an Eulerian formulation, so that an explicit position of the free
surface is not required.
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Chapter 6

Coupled thermal flow with
solidification

In this chapter, the thermal effects on the body under study is also considered.
The main difficulty appears through the coupled influence of the displacement
and the heat effects. This coupling can be partial if only motion plays a role
on the heat equation through convective heat transfer. It can be made total
by considering the Boussinesq model which adds a gravitational term in the
momentum equation driven by the temperature distribution. It can still be
stronger by considering the effect of solidification during the motion, where the
viscosity will also be dependent of the temperature. The three next sections
will present each of these coupling by order of gradation, and evidently also
by difficulty. A last section provides numerical examples of the three previous
sections, and validate the approach with the classical thermaly driven cavity,
and the Rayleigh-Bénard instability. As in the precedent chapter, standard
notations are used instead of the more awkward Lagrangian nomenclature of
Chapter 2.

6.1 The thermal problem

In this section, the thermal problem is presented quickly, as it is now a well-
known problem, the functional setting is introduced, and the discretization
through the Galerkin method performed.

6.1.1 The heat equation

Neglecting mechanical effects and volume changing, the conservation of energy

reads:
ou dT
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142 Chapter 6. Coupled thermal flow with solidification

where u is the specific internal energy, q the heat flux, fr a potential thermal
source, p the density and T is the temperature. By using the Fourier law as
constitutive law:

q=—k:VT (6.2)
where & is the conductivity tensor, and defining the specific heat as:
ou
C=_—= 6.3
5T (6.3)
the heat transfer equation reads:
dT
pCE -V (k:VT) = fr (6.4)

The heat equation is rich in various boundary conditions defined as:

Ip ={09Q]|Tjr =Tr} (6.5)
I'n ={09]|q-n = -7, n exterior normal to I'y} (6.6)

where classically I'p is the Dirichlet part of the boundary and I'y is the Neu-
mann part of the boundary, and § an imposed incoming flux.

Te={09|q -n=hc(T =T} (6.7)

where I'¢ is the convection boundary condition, A the convection heat transfer
coefficient, which may be temperature dependent, and T, the environmental
temperature.

Ir={0Q|q-n=hgr(T—Tg)} (6.8)

where I'r is the radiation boundary condition, Tk the temperature of the ex-
ternal radiation source and :

hg = orer(T? + TE)(T + Tr) (6.9)
is a radiative coefficient, where op = 5.66961 is the Stefan-Boltzmann constant,
and ep the emissivity, 0 < e < 1.

6.1.2 Weak form and functional setting

Multiplying equation (6.4) by a test function N, summing over the whole domain
), and integrating by parts some terms, the system reads:

DT
/pC—NdV+/m:VT~VNdV:/fTN (6.10)
o Dt Q Q
At this point the classical functional setting can be introduced:

Problem 6.1.1 Given Ty € L*(Q) and fr € L*(Q), find T in L?(0,T; HL(Q))
solution of equation (6.10) for all N belonging to Hy(Q), and T satisfying the
initial condition.

The weak form of the heat equation is the classical parabolic problem, and
existence and uniqueness are classical results obtained in the same way as in
Chapter 4.

142



6.1. The thermal problem 143

6.1.3 Discretization

Using the Galerkin method for the spatial discretization and a 6-scheme in time,
the algebraic system reads:

M M
(TtT + 0K, (U))T" = Fr + (TtT — (1 - 6)Kp(U))T" (6.11)
where the previous matrices are:
Q
Q

One common numerical problem in mould filling appears with the thermal shock
between the cold mould and the boiling casting, so that wiggles constantly
appear with a classical discretization. A short review of possible remedies is
commented in [15]. A mixed discretization temperature/heat flux may avoid
this problem. In order to compare with the last section, it must be noted that,
contrarily to the generalized Stokes system (4.28), an inf-sup condition is not
required due to the presence of the SPD temperature mass matrix [12, 18], so
that an equal order discretization appears to be very attractive computationally.
Furthermore, applying a block-Gaussian elimination as in the previous part, the
same kind of system must be solved and the solver of all the previous section
is readily available. For example, the mixed temperature equation to be solved
reads:

(% +6BM,'B")T""! =Fr + (% —(1-6)BM,'B")T"  (6.14)
Matrix %JrGBM;lBT is SPD so that it can be solved by PCG. However, com-
pared to equation (4.45), the presence of the temperature mass matrix provides
a much better conditioned operator so that, after having lumped the flux mass
matrix, it could be interesting to solve it as in the previous section. Nonethe-
less, as mentioned in section 4.3.5, the temperature mass lumping does not only
produce an additional diffusion balanced by the Crank-Nicolson time integrator
but guarantees under reasonable mesh assumptions a monotonic scheme as the
discretization is performed only with linear elements here. This valuable prop-
erty compared with the increased storage of the mixed temperature/heat flux
discretization makes the classical scheme much more attractive. Furthermore,
at high mesh Reynolds number, the matrix becomes much more diagonally
dominant and only a few iterations are necessary to converge with the PCG.

Coupling the thermal equation with the Navier-Stokes equations in this case
is easily performed as the only non-linear problem is the mechanical part. At
the implementation level, the fluid solver is firstly solved with its own non-
linearity, and then the thermal problem is computed, as no interaction takes
place between each other, which constitutes a whole time step.
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144 Chapter 6. Coupled thermal flow with solidification

6.2 The Boussinesq approximation

In this section, the Boussinesq approximation is introduced, the dimentionless
problem presented and the discretization performed.

6.2.1 The modified equation

In order to take into account the variation with temperature of the material
properties of the fluid, Boussinesq [1] introduced a variation of the density de-
pending of the temperature in the gravitational force term only, supposing that
the acceleration of the fluid is much smaller than the gravity. This provides the
driving mechanism of the convective motions. The Boussinesq approximation
for incompressible fluids [20] is then:

p=po(l—a(T —Tp)) (6.15)

where « is the volume /thermal expansion coefficient of the fluid. Linearizing the
mass, momentum and energy conservation equations, considering the thermal
diffusivity as scalar, and writing them in dimensionless form by introducing a
characteristic length L, time L?/k, velocity /L, pressure x2p/L? and temper-
ature AT'/Ra one obtains:

Vv = 0 (6.16)

% = —Vp+PrxTe,+ PrxAv (6.17)
T

887 = AT+ Raxw (6.18)

where w is the vertical velocity, e, the unit vector in the vertical direction, Ra
is the Rayleigh number, defined as:
ATL?
Ra= 2927 (6.19)

VK

with ¢ is the gravity acceleration, and Pr is the Prandtl number, defined as:
Pr=— 6.20
=2 (6:20)

The Rayleigh number represents a nondimensional measure of the vertical tem-
perature diffusion. It reflects the destabilizing effect of buoyancy to the stabiliz-
ing effect of molecular diffusion of momentum and buoyancy [10]. The Prandtl
number characterizes the regime of convection of the flow by approximating the
ratio of momentum diffusivity and thermal diffusivity [14].

6.2.2 Discretization

At the algebraic level, the fully coupled thermo-mechanical system then reads:

Av(U) BU)" pgaMyr A4 F,
B(U) 0 0 P |=| o0 (6.21)
0 0 A1 (U) T Fr

144



6.3. Solidification 145

There is no coupling between the velocity and the temperature due to the con-
vective term but the coupling appears through the gravity force. Once more,
all matrices are dependent of the displacement U, as emphasized. The whole
matrix is not symmetric, and advantage can be taken by the fact that, freezing
the velocity and displacement in the thermal problem gives rise to a linear prob-
lem, as in the last section. Here, as the Boussinesq term couples the velocity
and the temperature, a global non linear loop must be performed. However,
it was found that it was enough to include the coupling term in the non-linear
displacement loop to achieve convergence. The system is then solved in a stag-
gered way by considering the last known temperature for the velocity system
and the last known displacement, for the computation of the temperature shape
functions, until convergence.

6.3 Solidification

In this section, the solidification of the fluid is considered. The problem is then
a phase change-problem where part of the fluid has solidified, part of the fluid
is still fluid, and part of the fluid stays in between these two states, the 'mushy’
zone. Here, the solidification problem is recalled, but it is fully presented in [3].

6.3.1 The phase-change problem
In phase-change problems, the specific internal energy is defined as:
T
uw= CdT + Lf,. (6.22)
Tref

where T...5 is a reference temperature, C' is the specific heat capacity, L is the
latent heat released in a freezing problem, and f,. is the phase change function
defined by:

0, T<T,
for the isothermal case, and:
0, T <T;
fpe(T) =4 0<g(T)<1, Ts<T<T (6.24)
1, T>1

for the non-isothermal case. Here, T, is the melting temperature, and T and T;
are the solid and liquid temperature respectively. Function g(T") corresponds to
the mushy zone and can be obtained by a microstructure model. In this work,
a simple linear interpolation is performed between T and 1} so that:

_ T*Ts
_,I‘l_Ts’

9(T) T,<T<T (6.25)
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146 Chapter 6. Coupled thermal flow with solidification

This interpolation is also performed for the viscosity dependance on the tem-

perature, where a large numerical value represents an infinite viscosity for the

solid part. Inserting equation (6.22) into equation (6.1), the final solidification
equation reads:

Ofpe(T)\ dT

CHLP) o =V (r: VT 6.26

o(C+ =5 ) G =V V) I (6.26)

Another way to write equation (6.26) is to write the appearent heat capacity

term due to phase change at the left hand side as an additional source term as:

dT .
pC% =V .- (k:VT)+ fr — Lfpe (6.27)

This problem is non-linear because the position of the front is not known. At
the front location, for an isothermal problem, the heat balance gives [9]:

mn-(k:VT))s — (n-(k:VT)); = pLv(x,t) (6.28)

so that there is a jump in the heat flux at the front location.

6.3.2 Discretization

The main difficulty is the discontinuity arising in the isothermal case in the
enthalpy at the phase-change front. Various solutions proposed in the literature
were presented in Chapter 1. In this work, the solidification method of [4] is
used, as it ingenuously avoids the difficulty through the introduction of the solid
fraction. Performing a standard Galerkin method in space, a #-scheme in time,
and a Newton-Raphson linearisation, the discrete equation of the weak form in
a non incremental form reads:

M7 + M, M
(5 K (U)T T = (—E (1 0K (U)T" +
Ln+1 L™ M‘;ol
Fr — —T,; (6.29
T 5t et (6.29)
where the previous matrices and vectors are:
Ofpe(T
M, = / o 20T gy (6.30)
Q oT
KTij = / K VNL . VN] 1% (631)
Q
L+ = / LN, f1L dV (6.32)
Q

Matrix My is the same as before and T,,; is the value of the temperature vector
at the previous non linear iteration.
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Another way of writing the phase change part of (6.30) for the isothermal
phase change [16] can be derived by writing the solid fraction as:

foe(T) = H(T = Tin) (6.33)

where H(T — T,,,) is the Heaviside function, so that (6.30) reads:

Moij = /Q pLagi;T)NiNj av (6.34)
= /pLé(T—Tm)NideV (6.35)
Q

By finding a bijection between each point of {2, and the temperature and its
normal section, we obtain:

Moiij = A /S pL3(T — T, ) N;N;J dTdS (6.36)

where S is an hyperplane normal to the isothermal curve. It can be shown [16]

that:
1

R

and that, as the hyperplane S has the same temperature for each value of the
integrated temperature:

J (6.37)

ds = |VT|ds (6.38)

were ds the curvilinear abscissa so that, finally:
M /p—L N;N;J ds (6.39)
solij = i4Vj .
o etvr

where Gamma is the locus of the interface.

The derivative of the solid fraction respect to the temperature in (6.30) is
then numericaly evaluated through its secant so that the solidification mass
matrix reads:

Foe(T7Y) = fpe(T™)
Msolij = /QP(C + L P Tin+1 — T:’Dn )NZN] av (640)

where Ti”+1 refers to the temperature array at time n + 1 during the non-linear
iteration number .

Here, the problem is much more complex as both the mechanical and thermal
problem are non linear and coupled through the Boussinesq term. A global non-
linear loop is then necessary as is a local non-linear loop for each subproblem.
The non-linear solver strategy is shown on Figure 6.1. All non-linearities are
solved with a fixed point method. Furthermore, due to the high viscosity values,
the stress-divergence form is used so that the velocity components are coupled
to take into account the correct boundary condition in case of free surface. The
whole process is then computationally very intensive.
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148 Chapter 6. Coupled thermal flow with solidification

(1) For each time step:
e Global staggered non linear loop: given T7(3+1
o Uglobal =0
e DOi=1,2,..,n
— (2) Solve the Navier-Stokes equations:
* Ulocal =0
* DOj=1,2.,n

- (2) Solve the linearized Navier-Stokes
equations considering temperature 7 ,; and

obtain a new displacement Uiﬁ
- Check convergence:

HUTJLJH — Ulocal|| g2

. < €
ot . -

- if (no converged): Ulocal = Uii} goto 2

- else goto 3
— (3) Solve the thermal problem:

* Tlocal =0
* DOk=1,2,..n

- Solve the linearized thermal problem
considering displacement Uflﬂ and obtain a

new temperature T,’fj_'ll

- Check convergence:
1Tt
1T e

— Tlocal|| 2

- if (no converged): Tlocal :T:fj_'ll goto 3
- else goto 4
— (4) Check global convergence:

|UE — Uglobal | 12

n 3
10,51z

< €U global

% if (no converged): Uglobal:[/'f;’;l1 goto 2
*x else t =1+ dt goto 1

Figure 6.1: The staggered scheme for coupled thermo-mechanical analysis.
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6.4 Numerical examples

In this section, various numerical experiments are presented to illustrate the
thermal equations presented above. The first example reproduces the cylin-
der benchmark of Chapter 4. The second example has been chosen to validate
the method by comparison with previous established numerical results obtained
for the same problem using an Eulerian formulation. The third example de-
scribes a typical free surface problem with contact on a solid. The fourth and
fifth examples involve a complete thermo-mechanical coupling with the classi-
cal Rayleigh-Bénard instability. However, the fifth example introduces a not so
classical free-rigid boundary condition. Finally, a last example illustrates the
solidification process with an isothermal phase-change.

6.4.1 Vortex shedding behind a cylinder

The same example as in Chapter 4 has been computed with the heat equation.
Here, the coupling is only partial as, as already seen, the temperature has no
influence on the displacement in this case. The initial temperature is fixed at
20°C for the fluid and at 60°C' for the cylinder. The temperature is imposed
on the cylinder surface and all other boundaries are adiabatic. Figures 6.2 and
6.3 illustrate the temperature distribution at the same instants as in Chapter
4. The thermal capacity is fixed at 2400.J.(kg°C)~!, the thermal conductivity
at 0.25W.(m°C)~t. At Re = 100, the results are in very good agreements with
the experimental results presented in [13] p. 112 and p. 150. At Re = 10° the
fluid is turbulent, and so is the heat transport. In both cases, the Lagrangian
formulation provides a very accurate treatment of the convective term.

6.4.2 The cavity problem

This example is a classical benchmark for Eulerian formulations. The fluid is
inside a cavity, the left wall is heated isothermally to 20.5°C, and the right wall
is heated isothermally to 19.5°C, the other sides being adiabatic. The fluid is
initially at 20°C, which is the reference temperature. The Rayleigh number,
defined as:

agATL3

VK

Ra = (6.41)
has been chosen as in [17], and is equal to 105. The Prandtl number, defined
as:

Pr = (6.42)
is equal to 1. The cavity is a square, as in [17]. The mesh is composed of 16400
nodes during the whole analysis, and 32000 elements at the beginning, 2/3 for
the fluid part. As explained in the last section, if a node is too close to another
one, it is removed and placed in another part, but the total number of nodes
remains constant. The temperature and velocity distributions are presented in
Figure 6.4 at different time values. The results are in perfect agreement with the
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(c) t=31.2's (d) t=36.3 s

Figure 6.2: Thermal distribution for the vortex shedding behind a cylinder at
Re = 100.
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Figure 6.3: Thermal distribution for the vortex shedding behind a cylinder at
Re = 10°.
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one obtained by Strada and Heinrich [17]. It should be noticed that these kind
of examples are typical Eulerian examples, the configuration being particularly
bad for the Lagrangian approach computationally. As a matter of fact, as the
cavity is closed, there is much more contact with the wall than in usual free
surface problems, and the space to fill for the element is much more reduced.
However, the results obtained here demonstrate the validity of the method, even
in this difficult case.

6.4.3 Mould filling

This example represents a mould filling by water at 60°C. The mould initially
has a temperature of 20°C. The coupling between the mechanical and thermal
parts is only partial due to the mesh movement, but the velocity is not influ-
enced by the temperature. The contact is explicitly treated by the remeshing.
The only potential problem could be to choose a time step too big so that the
nodes go through the wall without having created an element of contact with
it. However, the distortion of the mesh can not imply such non acceptable time
steps. Numerical results are shown on Figure 6.5 at various instants during the
filling and on Figure 6.6 to illustrate the thermal field through a cut of the mesh.
It can be appreciated how the fluid fills the mould for a complicated geometry
and produces a mixing by convection which diffuses quickly the temperature.

6.4.4 The Rayleigh-Bénard instability

This example is a classical problem of hydrodynamic instabilities, see [10] and
[13] for a good description of it. The problem considered is a fluid initially
at rest, which is heated from below. Assuming an infinitesimal perturbation
of temperature, the Boussinesq approximation will induce a vertical movement
towards the cooler region for the hotter lower part and viceversa, which will
reinforce the initial perturbation. Given a critical Rayleigh number, the state
of the flow will depend on the fact that its Rayleigh number is lesser or greater
than the critical value. For Ra < Ra., no convection will occur and the flow is
subcritical. If Ra > Ra. , the instability will begin and produce the convection.
The flow is then supercritical. For a slightly supercritical Rayleigh number, after
passing through successive bifurcations, a steady state is reached as illustrated
in [19], p 82. By increasing the Rayleigh number, other bifurcations occur
after the primary bifurcations, according to the Prandtl Number, as depicted
experimentally in [10], until reaching a turbulent flow.

By linearizing the mass conservation equation and the Navier-Stokes equa-
tions coupled with the heat equation in an Eulerian formulation, and by intro-
ducing a decomposition in normal modes, as performed in [11], a stability study
leads to a solution of the form:

w=WE)f(wy)e, T=TE) (e (6.43)

where s is a complex number representing the eigenvalue of the mode, w is the
vertical component of the velocity, and f an unknown function. The solution
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(c) t=58s (d) t=98s

(e) t=138's (f) t=398 s

Figure 6.4: Temperature distribution in a closed cavity for 6 € {19.5;20.5}.
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(a) t=0.1's (b) t=5s

(d) t=30s (e) t=60s (f) t=80's

Figure 6.5: Temperature distribution at different instants during the mould
filling.
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Figure 6.6: Temperature distribution through a mesh cut at t=>50 s.

of the linearized equation with non physical free-free boundaries has the form:
W, = Asin(nrz) (n=1,2...) (6.44)

The sign of the real part of s will decide of the stability of the flow. By solving the
last equations with s = 0, and minimizing the Rayleigh number with respect to
the wave number, it is possible to find the critical Rayleigh number, analytically
for the free-free boundary condition, and numerically for the rigid-rigid and free-
rigid boundary condition, as explained in [11] and [5]. For the rigid-rigid case,
Ra. =1708.

In this numerical example, the bottom is heated isothermally at 21°C, the
top at 19°C, and the reference and initial temperature of the fluid is 20°C.
The sides are adiabatic and Ra = 10° and Pr = 10~!. The flow is then
supercritical. The numerical results of Figure 6.8, which represent the norm
of the velocity clearly depict the typical cell pattern observed experimentally
when one horizontal side is much shorter than the other. These cells form
rolls rotating in opposite direction for neighboring rolls, along the shortest side.
However, what can not be well appreciated on the picture and is particulary
remarkable, is that a quasi-steady state is reached, with a periodic oscillation of
the temperature and the cells. This phenomenon is described in details in [14]
by considering moderately nonlinear convection, and it is has to be noticed that
the numerical results coincide with experimental ones for low Prandtl number,
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Figure 6.7: Temperature distribution for the rigid-rigid Rayleigh-Bénard insta-
bility for t={0.1, 38, 78, 108, 158, 400} and 6 € {19;21}.

which is exactly the situation here. The rolls oscillate as depicted in [6]. It is
interesting to notice the interaction between the different cells before the quasi-
steady state. The supercritical state could be observed through the approximate
regularity of the cells at the last time step. The results are in agreement with
[2] in the sense that the solution is time dependant for such a high Rayleigh
number value. Figure 6.7 represents the temperature distribution at different
moments and corresponds to the theoretical expected result of a supercritical
flow.

6.4.5 The Rayleigh-Bénard instability with free surface

This example is rarely treated as it combines the difficulty of the thermal con-
vection with the detection of free surfaces. The problem considered here does
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Figure 6.8: Velocity norm for the rigid-rigid Rayleigh-Bénard instability for
t={0.1, 38, 78, 108, 158, 400}.
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not take into account any surface tension, a phenomenon associated to the
hydrodynamical instability of Bénard-Marangoni. Here, the coupling between
temperature and displacement produces the instability, and circular cells are
expected, compared to the appearance of hexagonal cells in the case of the
Bénard-Marangoni instability [20].

The same conditions as in the previous example are chosen. A temperature
of 19°C is imposed on the free surface of the fluid. The same instants as above
are reported to compare with the rigid-rigid boundary case. To follow the
discussion on the critical Rayleigh number, the boundary conditions considered
here imply Ra. = 1101 theoretically so that the numerical experiment has a
Rayleigh number far beyond Ra.. As seen in Figure 6.10, the quasi-steady state
has not been reached, due to the high Rayleigh number value. Some parts of
the domain present a quasi static behaviour, but some cells are unstable. The
rolls oscillate as in the preceeding example but some of the cells appear and
disappear which is well observed at the last time step for the cells in the middle
of the left part of the experiment. If the calculation of the critical Rayleigh
number for the free-rigid case is well-known, it has not been possible to find in
the literature theoretical results about the pattern of the cells for this kind of
boundary conditions. Figure 6.9 represents the temperature distribution which
contains the same unstable behaviour as the velocity. Figure 6.11 represents
a detail of two cells with their temperature, norm of the velocity and velocity
field.

6.4.6 Solidification with convection validation

The example chosen is the one proposed in [7] and references therein, as it offers
numerical and experimental results. It considers the melting of a pure metal
gallium cavity of aspect ratio of 2. Initially, the temperature is fixed to 28.3°C'
and the left wall has an imposed temperature of 36°C. The no-slip condition is
imposed on all the wall sides. Physical values are reported in [7]. The viscosity
of the solid part has been fixed to 106.

First of all, at the solver level, it is a difficult problem, as the viscosity will
vary greatly in all the domain. As the phase-change is considered as isother-
mical, the viscosity has only two values, namely the one of the fluid and the
one of the solid part. The first non linear iteration of the first time step is
considered here. As the temperature is imposed at the left wall, all elements
with one side will be considered as fluid elements, whereas the remaining part
is solid. With the three preconditioners considered in Chapter 4, namely the
standard Laplacian, the compatible Laplacian, and the pressure mass matrix,
no one converge separately for this solid viscosity value, as does the conjugate
gradient Uzawa without preconditioning. The iteration number of the associ-
ation of the compatible Laplacian and the pressure mass matrix on one side,
and of standard Laplacian with the pressure mass matrix on the other side is
reported for various values of the solid viscosity in Table 6.1 and a tolerance of
10712, First of all, both converge always, which shows the importance of the
association of both behaviours of the Uzawa operator, as commented in Chapter
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Figure 6.9: Temperature distribution for the free-rigid Rayleigh-Bénard insta-
bility for t={4, 38, 78, 108, 158, 400} and 6 € {19;21}.
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Figure 6.10: Velocity norm for the free-rigid Rayleigh-Bénard instability for
t={4, 38, 78, 108, 158, 400}.
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(a) Temperature isolines

(b) Velocity

Figure 6.11: Detail of two cells for the free-rigid Rayleigh-Bénard instability.
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Solid viscosity | Compatible Lapl. Iter. | Standard Lapl. Iter.

0.00181 8 23
0.0181 20 36
0.181 36 48
1.81 42 48

18.1 46 45

181 47 44

1810 50 46

leb 49 45

1e6 49 44

Table 6.1: Iteration number of the PCGU preconditioned by either the compat-
ible Laplacian and the pressure mass matrix, or the standard Laplacian and the

pressure mass matrix for various values of the solid viscosity, a tolerance of the
PCGU of 1012,

4. The compatible Laplacian is much better than the standard Laplacian for
low solid viscosities, which corresponds to the almost uniform viscosity case.
However, as the solid viscosity grows, the iteration number of the compatible
Laplacian grows faster than the standard Laplacian, for which each iteration is
cheaper. For high values of the solid viscosity, the pressure mass matrix gives
the behaviour of the solid part so that both Laplacian seem to reach a plateau.
However the compatible Laplacian requires more iterations than the standard
Laplacian. It is a surprising fact, as the compatible Laplacian is much nearer
from the inertial part of the Uzawa operator than the standard Laplacian. The
variable viscosity mixes both inertial and diffusive part in a complicated way so
that further investigations must be done to fully understand this behaviour.

The pressure and the velocity distribution are reported on Figure 6.12 for
the PCGU, the Modified Algebraic Splitting (MAS) and the Fractional Step
(FS). Figure 6.12 illustrates the difficulty of the problem. As a matter of fact,
around 50 iterations were necessary for the PCGU to converge, which means
that, as the MAS is mostly equivalent to one iteration of the PCGU, the MAS
results are far from the PCGU as seen in Figure 6.12. The results obtained by
changing the compatible Laplacian for the standard Laplacian are very similar
to the results presented for the MAS, as are the results obtained only with the
pressure mass matrix in the MAS scheme. It evidently suggests that the Uzawa
operator is much closer to the identity operator than to the pressure Laplacian.
This is illustrated with the results of the F'S, where only the pressure Laplacian is
taken into account. It is a clear example that, in the general case, the monolithic
resolution remains unavoidable.

Figure 6.13 displays the velocity norm at various instants. At the beginning
of the simulation, a stream of melted fluid takes place in the whole height. As
time goes on, the natural convection is more intense, and various cells appear.
As the convection brings warmer fluid at the top of the cavity, the melting occurs
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) Pressure PCGU b) Velocity PCGU
( ) Pressure MAS ) Velocity MAS

(e) Pressure FS (f) Velocity FS

Figure 6.12: Pressure and velocity distribution for the gallium solidification
problem for the monolithic PCGU, the Modified Algebraic Splitting (MAS) and
the Fractional Step (FS).
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Figure 6.13: Velocity distribution for gallium melting at various instants

faster in the upper part. If the qualitative results and the front evolution agree
rather well with the references [8] and [7], the solidification time does not match,
which means that not all the latent heat was absorbed during the solidification
process. The convection is rather well resolved but the solidification process
is responsible of the fact that the front moves too fast with a factor around
3. In this example, only the contribution of the tangent matrix was taken into
account in a Picard iteration, neglecting the latent heat balance, as is done in
the enthalpy method. The latent heat balance is not verified, and the latent
heat not fully absorbed which explains the discrepancy with the time scale.
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6.5 Conclusion

In this chapter, the thermal effect has been taken into account in the Lagrangian
formulation of an incompressible Newtonian fluid. The semi-coupling due to the
convective heat transfer in an Eulerian formulation is implicitely considered in
the Lagrangian description, and once again no additional stabilisation has to be
added in convection dominant flow cases. The fully coupled mechanical thermal
flow is obtained by adding the Boussinesq approximation. Numerical results
have shown that the non linearity is well resolved and a strong convergence has
been obtained through the fixed point method. Finally, the solidification prob-
lem has been considered by modifying the temperature mass matrix, and the
temperature dependance of the viscosity has been highlighted to simulate the
mushy zone and an almost perfect solid zone. The temperature mass lumping
and the second order Crank-Nicolson time integration provide an accurate and
very efficient solver. Finally, the method has been validated with the cavity
benchmark, and the classical Rayleigh-Bénard instability, where numerical re-
sults are in perfect agreement with the theoretical considerations. A 3D mould
filling has also been presented to illustrate the robustness of the method.
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Chapter 7

Conclusion and new
perspectives

In this work, an incompressible Lagrangian fluid flow description applied to ther-
mal convection was discussed. The Navier-Stokes equations in a Lagrangian
formulation were derived. The non-linearities induced by the unknown final
position were taken into account and solved by the Picard iteration method.
The fluid solver applied to this problem was presented in details, and the mass
conservation of various schemes and elements was deeply highlighted. The com-
plete coupled thermal-fluid problem was also introduced. Numerical examples
have illustrated the proposed methods in two and particularly three dimensions,
which was the ambition of the present thesis.

The mesh generation part was fully described, as it has to support the con-
vection of the nodes inherent to the method. In this work, the Delaunay based
method was chosen, mainly due to its independance with a geometrical model,
its ability to produce a few milion elements in a few minutes in a standard PC,
and the possibility to reuse the points at each iteration to minimize the interpo-
lation process. Details of particular features of the Lagrangian description were
described in the implementation of the mesh generation context. Anisotropy
in three dimensions was slightly considered to show the straightforward exten-
sions of the method. Nevertheless, numerical problems for very large meshes
may appear, and must be further investigated. Boundary meshing has not
been tackled and constitutes also a natural extension of this work. Finally, the
Delaunay based mesh generator would be easily extended to generate various
hierarchical meshes for a multigrid application.

An iterative solver has been implemented based on the Preconditioned Con-
jugate Gradient Uzawa, and its tight relationships with the class of Fractional
Step and Algebraic Splitting methods have been presented in details. The way
to solve the monolithic system and to switch to the algebraic splitting is orig-
inal, even if it resumes and unifies various results of the literature. The mass
conservation has been greatly improved, and the role of the Fractional Step,
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which is mainly responsible for the mass loss, has been discussed and illustrated
through various examples.

At the numerical level, as the Lagrangian formulation does not include the
convective term, no stabilisation method has been used. Furthermore, the ab-
sence of convective term brings the matrices symmetric, allowing a low storage
requirement and iterative solvers with short term recurrences, minimization
properties and uniform preconditioners. Finally, even if the Lagrangian descrip-
tion has been mainly used in free surface problems, it provides a very accurate
convection and almost no diffusion in various other problems, as illustrated by
the good agreement with various typical numerical Eulerian examples.

Free surface problems offer nevertheless a very appealing context for the La-
grangian description, as it provides an explicit description of the locus of the
free surface, and no additional equation needs to be solved. Furthermore, the
solution of the nonlinear mechanical problem is not perturbed by possible oscil-
lations with elements that are fluid and then gaz. If the gaz effect is neglected, it
allows to mesh only the domain filled by the fluid. Finally, boundary conditions
are straightforward to impose on the free surface. Nevertheless, pinching and
merging must be explicitely resolved.

The coupling of the mechanical solver with the thermal field was also pre-
sented. The Boussinesq approximation was considered to model natural flows,
which produces a coupling with the velocity field. Solidification was introduced
and partially validated with a reference example. The solidification process ob-
viously deserves further investigation. Extension to the preconditioners used for
the pressure Schur complement in this case must also be pursued, as the temper-
ature dependant viscosity strenghtens the difficulty of approximating the Uzawa
operator.

It must be noted that all this work was done in a strong numerical context,
so that the physical models considered are the simplest one. The physics of
jets and drops when waves break involves complicated phenomena as well as
the dynamic of weting when the fluid slides on dry walls [2]. Surface tension
was neither considered, nor turbulence effects which could be a very interest-
ing theme in a Lagrangian formulation, as the Reynolds tensor comes mainly
from the convective term, which is not present in a Lagrangian formulation. In
the same way, the solidification process was simplified by interpolating linearly
the mushy zone whereas very complicated anisotropic phenomena can occur
during the solidification front advance [1]. The introduction of these physical
phenomenas constitutes a possible future work.

Finally, the difficulties met during this work were of very different scales.
The 3D meshing is mostly limited by the boundary recovery, which was one of
the difficulties of the implementation part. The iterative monolithic solver with
mass conservation was another difficulty. At the opposite, the introduction of
the temperature, the Boussinesq approximation, and the convergence of the non
linearity were a rather straightforward task. Obviously, the main difficulty is
created by the convection of the mesh due to the large deformations.
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