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FOREWORD

Introduction and objectives

Although the numerical simulation of flow problems began in the sixties using finite
difference or panel methods, it wasn’t until the early seventies that the Finile Element
Method (FEM) entered the field of computational fluid dynamies (CFD). Since then,
a lot of progress has been made, both in the understanding of the difficulties lying on
the application of the general finite element ideas and in the development of nmimerical
strafegies to overcome them,

This work deals with FEMs to solve viscous incompressible flow problems, an
important branch of CFD whose applications are widespread in many areas of engi-
neering and science. Numerical techniques are likely to become a sarious competitor
to experimentation becanse of their reliability and their roeduced cost, and also because
in gome nreas experiments are very difficult to make, Industries are aware of this fact
and the evolution of their numerical budget reflects this interest. Nevertheless, the nu-
merical simulation of complex real-world flow problems for many practical engineering
applications lies still far in the future, not only because of the present knowledge on nu-
merical methods but also because of today’s computer facilities and capabilities, Flow
problems are extremely demanding in what concerns numerical computations and the
present computer technology cannot supply all the computational power that would be
needed to solve many real flow problems,

All the terms of the incompressible Navier-Stokes equations involve a more or less
impaortant numerical difficulty and a lot of questions are still open. Temporal deriva-
tives are usually dealt with using finite differences, in spite of the fact that the solution
may develop high and quick variations in fime and instability problems or lack of ac-
curncy may be encountered. The incompressibility constraint, ¢losely related to the
presence of pressure forces, is another of the most important problems. Doubtless, the
nonlinear convective term is the reason why the Navier-5tokes equations are so difficult
to solve numerically and to analyse mathematically. Maybe the only ‘nice’ term is the
viseous one, which gives a parabolic character to the transient equations.

The purpose of this work is twofold. First, new numerical methods are developed
to treat two of the problems mentioned abave, namely, the incompressibility constraint
and the instability prablems found when the standard Galerkin approach is applied
to convection dominated flows. The second obijective is to develop a general purpose
finite element code, implementing the new techniques presented here and incorporating
several computational features also original from this work, This general finite element
model in¢ludes the numerical solution of the incompressible Navier-Stokes equations to-
gether with the energy balance equation and the tracking of free surfaces. Applications
Lo thermally coupled flows and the flow of nonlinear materials are provided.

This work is a corrected version of the last four chapters of the author’s doctoral
thesis A finite element model for incompressible flow problems.
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Notation

The notation employed in this work is fairly standard in the mathematical literature,
although perhaps not vey common in engineering circles. As far as possible, the matrix
version of the abstract formulation of the problems studied is given, in particular for
presenting the basic flow chart of transient and iterative algorithms.

Apart from a few exceptions, matrices and vectors are denoted by boldlace charac-
ters and sealars by lightface italic characters. Cartesian notation is used when referring
to a particular coordinate system, denoting by (zy,z2,23) or (2,y, z) the Cartesian
coordinates for the three-dimensional case.

The space of square integrable functions over a domain w of the Euclidian space
has been denoted by L*(w), and the inner product in this space by (-, )., The norm
associated to this inner product has been indicated by

Il = I - z2gwy = 1 - low

The subscript w is often dropped if this is the domain where the problem is to be
solved, always denoted by (.

The Soboley space of functions whose (distributional) derivatives of order up to
m belong to L*(w) has been denoted by H™(w). The space Hj(w) consists of functions
of I1(w) with zero trace on the boundary dw. Any of the symbols

I N = I Mrmgar

has been employed to denote the norm of these spaces, although no subscript at all has
been used when no confusion is possible. In general, the norm of a space V has been
denated by || - ||y and the Fuclidian norm of a vector by |- |.

The classical gradient, divergence, curl and Laplacian operators have been denoted

by
V(), V:(), Vx() and A(),
respectively. The symbol At has been used for the time step size, not for the Lapla-

cian of ¢. For the temporal derivative and for the partial derivative with respect to a
Cartesian coordinate #; any of the symbaols

_ b _ 4
Bt:ﬁ' t)'FE::.'

has been used.,
Various integers have been employed in the text. Some of them are
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Nua: nnmber of apace dimensions

Nars number of elements of the discrelization

Nupo number of nodes per element

Nyp i number of integration points per element

Ny total number of nodes of the finite element mesh
Njp: number of free points (without Dirichlet conditions)
Noo & number of nodes per element with velocity unknowns
Ny nuinber of nodes per element with pressure unknowns

N number of velocity unknowns (= Ny, % Nog)
Npw : number of pregsure unknowns (= Ny x Ny,)
N: nuimber of time steps

A generic shape function has been denoted by N (not to be confused with the
number of time steps), perhaps with a superseript to indicate the node to which it is
asgociated,

The symbol {027}, e = 1, ..., N, has been used to denote a finite element partition
of the domain 2. It is understood that the subdomains )¢ are open, nonoverlapping
and the union of their closures is the closure of 2. A function beloging to the finite
element space is recognized by the subscript A, the diameter of {£2°}. Vactors of nodal
unknowns are denoted by the boldface capital letter corresponding to the lower case
variable,

The rest of the notation is explained in the text.
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CHAPTER 1

PENALTY FINITE ELEMENT METHODS FOR THE
STATIONARY NAVIER-STOKES EQUATIONS

1.1 Introduction

The numerical solution of the incompressible Navier-Stokes equations for many practi-
cal engineering applications is still far from being a reality. Assuming that the math-
ematical model represented by these equations is correet, several problems have to be
faced, each one represented by different terms of the full system of equations (conserva-
tion of momentum and mass balance, i.e,, incompressibility condition). Regarding the
temporal diseretization, the most common way to do it ia by far the use of finite dif-
ference schemnes, with the inconveniences of stability and/or accuracy that arise when
high and quick varintions in time occur. There is no doubt that the most difficult
problem arises because of the nonlinear convective term. Loss of unicity of solution,
hydrodynamical instabilities and turbulence are cansed by this apparently innocent
term. These physical phenomena are obviously reflected in the numerical algorithms
and in the mathematical analysis of the problem. High Reynolds number flows are a
tough problem from the physical, the mathematical and the numerical standpaints.

Another problem to be considered is the incompressibility constraint, closely re-
lated to the presence of the pressure forces. The way Lo overcome this problem will
be the subject of this chapter. The mixed velocity-pressure finite element solution of
the incompressible Navier-Stokes equations has several inconveniences due to the zero
divergence condition for the velocity field. If the standard Galerkin formulation is used,
the first problem to be faced is the use of compatible spaces for the velocity and the
pressure, in the sense that they have to satisfy the inf-sup or Babuika-Brezzi (BB) sta-
bility condition [Bal], [Ba2], [Br] (see also [BB] for a simple derivation of this condition
for the diserete problem). A remedy that is gaining popularity is the use of the Galerkin
Least Squares approach introduced by Hughes & Franca [HF], [HFB], [FH], [FHL] (see
also [BD]), especially effective when a continuous interpolation for the pressure is used
(otherwise, high order velocity interpolation or non-standard assembly algorithms have
to be employed [FS]). Recently, quasi-optimal convergenee of this method has been
proved by Hansbo & Szepessy [HS] for the time dependent Navier-Stokes equations us-
ing space-time linear elements. In any case, the formulation depends on an algorithmic
parameter whose physical meaning and optimal values are not known yet. This, and
the fact that pressures appear as nodal variables (see below) may decide the user in
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favor of the Galarkin formulation, perhaps with an upwind technique for high Reynolds
number flows,

If the Galerkin formulation is used, the matrix of the diserete algebraic system
resulting from the finite element discretization has zero diagonal terms. The use of
itarative solvers or ineflicient renumbering algorithms scems to be the only available
remedy for solving this system of equations. However, the penalty approach circum-
vents this problem and has other interesting features, If the pressure interpolation is
discontinuous, one can eliminate the element unknowns of this field in terms of the
veloeity nodal unknowns, Substitution of the obtained expression in the momentum
equation leads to a system whose only degrees of freedom are velocities. The reduction
of the number of nodal unknowns and the fact that the method is known to work well,
have made the penalty method very popular, especially in the engineering literature
(see, e.g., References [CK1], [CK2], [ESG], [HLB], [Od], [OKS]). Perhaps the only draw-
back of this approach is the ill-conditioning of the stiffness matrix when the penalty
parameter is very small, A lower bound is determined basically by the computer and
the arithmetic precision used in the calculation.

There are basicaly two ways to penalize the incompressibility constraint: to start
with the penalized differential equation or to wait until the weak form has been es-
tablished. Both approaches do coincide for the continuous problem. However, when
the finite element discretization is carried out the former automatically yields the pres-
sure space as n consequence of the choica of the veloeity interpolation. The resulting
velocity-pressure pair will be in general unstable, in the sense that the BB condition will
be violated. Hereafter, we will refer to this approach as strong penalization, whereas the
uge of the penalty method for the weak ineompressibility equation (continuous or dis-
erete) will be referred to as weak penalization. A discussion of the way a particular finite
element can be implemented using strong penalization is the subject of Section 1.3.

The objective of Section 1.4 is Lo present and analyse an iterative weak penalty
finite element method for the stationary Stokes and Navier-Stokes equations. The goal
is the convergence of the iterates to the true incompressible solution. The main advan-
tage of this approach is that larger penalty parameters can be used, thus alleviating
the ill-conditioning mentioned above. The basic idea is solving the penalized equa-
tions in each iteration but adding a right-hand-side term that is basically the residual
of the incompressibility equation of the previous iterate. For the Stokes equations,
this approach is the ounly reason for an iteralive scheme to be used and the conditions
under which convergence is achieved are only determined by the iterative penaliza-
tion. However, the Navier-Stokes equations must be solved iteratively. The question
that naturally arises is whether the iterative scheme employed can be coupled with
the iterative penalization or not. We prove that, under not very restrictive conditions,
the answer is yes. The exposition of this section is organized as follows. The Stokes
problem is considered in Section 1.4.1, where the idea of the iterative penalization is
deseribed in detail. Section 1.4.2 deals with the Navier-Stokes equations when the Pi-
eard (or successive substitution) algorithm is used for the nonlinear term and Section
1.4.3 when the Newton-Raphson scheme is employed. The uncoupling of the nonlinear
and penalization iterative loops is then studied.

In this chapter the choice of the finite clement spaces will not be the main interest
and it is postponed until Chapter 2. Only when necessary we will refer to the stability
of a certain finite element under consideration. As usual, whenever & certain element
satifies the BB stability condition for the restriction arising form the zero divergence
constraint, we will call it div-stable [BN1]. The possibility of by-passing this require-
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ment by using an exactly divergence free finite element basis for the velocity field [GP],
[RT] will not be considered in this work. The main reason is that although this formula-
tion seems to be feasible for two-dimensional flows, the construction of velocity bases in
three-dimensional problems happens to be complicated. The use of formulations other
than the conforming velocity-pressure will not be treated either. Background for these
methods and for the techniques to be used in this chapter can be found in References
[BFol, [CO1], [CO2], [CSS], [GR], [Gu], [OC], [Pi], among other standard text books.

1.2 Statement of the problem and penalty methods
1.2.1 The continuous problem

Let {2 be an open bounded domain of R+t (N,y = 2 or 8) and I' = 80 its boundary,
assumed to be locally Lipschitz. The Navier-Stokes problem for an incompressible fluid
moving in §2 with, for simplicity, homogeneous boundary conditions, consists in finding
a velocity field u and a pressure p such that

plu-Vu—pAu+Vp=pf ind
Vou=0 inQ (1.1)
u=0 on I’

where { is a given body force, p is the density of the fluid and g is its dynamical
viscosity. In order to write the weak form of problem (1.1) we introduce the spaces

V=H2()", Q=1LYQ) (1.2)
and the multilinear forms
afo vim g A Yu : Vvdf,
By /an vdsl,

e(u,v,w) = p[_l[(lr V)v]- wdil,
l{v)=p<fv>

(1.3)

defined on V x V,Q x V,V x V x V and V respectively. The symbol < -,- > denotes the
duality paring between V and its topological dual V! (= HY(2)Nat). If the viscous
term in (1.1) is written as —V - (2u&(u)), where (u) is the symmetric part of Vu, the
bilinear form a to be considered is

afu,v) = EMAS[U) : g(v)dfd (1.4)

instead of that appearing in (1.3). Continuity of @, b and [ is obvious. Continuity of ¢
follows from Soboley's imbedding Theorem (if u and v € V then u and v € L*(Q)N«
for N,4 = 2,3) and from Hélder’s inequality (if u;, vy € L*(), then wyu € L(Q), u;
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and vy, being the components of u and v). See, e.g. References [GR], [Te] for details,
Since a, ¢ and [ are continuous, we can define their ‘norms’ by

a\ vy, vz
N. = sup
o = MR vlvallv
e(vi, V4, Va)
N.=su 1.5
¢ = S v Tvallv 3.0}
I(vy
Ny =su
Plvallv

where the supremum is taken over all the vy, va,va€ V = {0} and || - ||y denotes the
usual norm in V, We will use the symbol || +||g for the norm in @ and (-, -) for the inner
product in the space Q. When no ambiguity be possible, we shall omit the subscripts
in the norms,

Define the space

Z={qeQ|blg,v)=0 YveEV} (1.6)
Vor b given by (1.8), Z = R. In the quotient space Q /% the following norm is defined
lalle/z = mf lla + =g (1.7)

Having introduced all this notation, the weak form of problem (1.1) can be written
as follows: Find u € V and p € @ /2 such that

e(u,u,v) +a(u,v) = b(p,v)=1(v) VvEV

1.8
b(g,u) =10 Ygeq (18)

Besides the continuity of all the forms involved in (1.8), we will assume that the
bilinear form a is coercive and that b satisfies the BB condition, L.e., there exist positive
constants K, and K, such that

a(v,v) = Kallv|l Vv eV (1.9)
upfB > Killlgys vV~ {ohVaeQ (1.10)

Condition (1.9) follows from Poinearé-Friedrics inequality if  is given by (1.3) and from
Korn's inequality if it is given by (1.4). Condition (1.10) holds for V and ¢ given by
(1.2) |La).

For the trilinear form ¢ it will be assumed that

e(u,v,v)=0 VveV (1.11)

If u is the solution of problem (1.8), it is easy to see that condition (1.11) is satis-
fied. However, we will be interested in velocity fields that do not exactly satisfy the
incompressibility condition. In this case, instead of the form ¢ given in (1.3), its skew-
symmetrized form will be used:

¢o(u, v, w) = e(u, v, w)+ -;-p f"(v ‘u)v wdll
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It can be easily checked that ¢, (u,v,v) = 0 and that ¢,(u,v,w) = ¢(u, v, w) if uis
the solution of prablem (1.8). Continuity of ¢, ¢an be proved as for c. Thus, ¢, can be
used instead of e in (1.8) and eondition (1.11) will hold. In any case subscript o will
be omitted.
Finally, we will assume that
-N-:N!

R e .
X H& < (1 12)

Under all these conditions, existence and uniqueness of solution of (1.8) can be proved
[GR].

In what follows, the spaces V and @ will be those given by (1.2) or finite dimen-
sional subspaces Vj, and @), arising from the finite element discretization of (2 (internal
approximation). Conditions (1.9), (1.11) and (1.12) will be automatically satisfied if
V and Q are replaced by V), and Q. However, (1.10) has to be explicitly required for
each pair of finite element spaces V), Q).

The condition x < 1 is certainly restrictive. It ensures uniqueness of weak solu-
tions. However, such unicity is not likely to hold for high Reynolds numbers and in fact
examples are known for which it is not true [Te]. In these cases, a more careful analysis
has to be done, Fortunately, solutions of the Navier-§tokes happen to be isolated in
most of the cases. For a detailed analysis of the approximation of this type of problems,
the reader is referred to [BR1-3]. See also [GR.

Concerning the no-slip boundary condition in problem (1.1), the extension to the
non-homogeneous condition u = g on T' is straightforward and only requires some tech-
nicalities [GR] However, the situation is somehow more involved when the traction
is preseribed on a part of the boundary. An analysis of the Galerkin finite clement
approximation in this ease can be found in [Ve2].

1.2.2 Penalty methods for the Stokes problem

In this chapter, we will deal with a class of penalty methods that will be briefly de-
geribed here, In order to introduce the problem, it is enough to consider the Stokes
aquations, i.e., Bqns. (1.1) without the convective term plu-V)u or its weak form (1.8)
with ¢ = 0, In this case, Eqns. (1.1) are the optimality conditions for the minimizalion
problem of finding u & V such that ¥V :u = 0 and

Lo(u) = ig'fﬂu(v) over {veV |V-v =0} (1.13)
Lofv) s = a(v,¥) = 1(v) (114

Introducing the Lagrangian multiplier p to account for the constraint ¥V -u = () we are
led to the following saddle point problem: Find u € V and p € {2/ Z such that

Lylwp) = inf sup £,(1,9) (1.15)
Lp(v,q):= %a(v.v) ~1(v)—b(q,v) (1.16)

Now we can consider standard techniques from optimization theory. The first
is the penalty method, consisting in adding to the functional Lo defined by (1.14) a
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positive definite bilinear form evaluated on the constraint and multiplied by a large
number. If, for example, we consider the L? inner produet as the bilinear form and
pick a small number ¢ > 0, we are led to the penalized problem: Find u® € V such that

Los(u) = inf Lol(v) (1.17)

1
Lot = (v, v) = 1(¥) 4 5:(V ¥, ) (118)

€

Finally, we could also perturb the functional £, given by (1.16) in order to obtain the
regularized problem: Find u® € V and p* € Qg such that

Lpa(u®,p) = inf p Ly (v,q) (1.19)
Lpelv,0) £ = 5alv,v) = I(v) = Hg,¥) - 5e(a0) (1.20)

where we have introduced the space
Qo={g€Q| /‘qdﬂ=0} (1.21)
1

that is isomorphic te @ /Z for b given in (1.3). The reason for this choice of the pressure
space will be elear immediately.
The Buler-Lagrange equations for the variational problem (1.17) are

a(u V) + (VT V) = Uv) VeV (1.22)
whereas for problem (1.19) the optimality conditions are

a(u®,v) - b(p*,v)=1I(v) VveV (1.23)
o(p*, q) + b(g,u") = 0 Vg€ Q (1.24)

If we take g = const. in (1.24) we see that

E/p‘dﬂ-}-/n-u' dr =0,
(1] r

where n is the unit outward normal to T'. Since u* = 0 on T, it follows that [, p* d} =
0, i.e., Qp is the right space where p* is to be sought. For non-homogeneous boundary
conditions u = g on T', the given function g must satisfy the compatibility condition
Jem g dF = 0 and hence [, p° df? = 0 still holds true. Pressures that are solution of
(1.1) or (1.8) are determined up to an additive constant that can be fixed seeking p
either in Qg or in Q/Z. From now onwards, the former choice will be employed since
penalized solutions automatically belong to Q.
It is clear that Eqn. (1.24) implies

¢+ V- -u"=0  in the space Q (1.25)
Since for u® € V = HI(Q)Vs it is V - uf € @ = L*(0), Eqn. (1.26) can be understood

in the classical sense. Inserting the pressure pf obtained from (1.25) in terms of u® into
Eqn. (1.23) we recover problem (1.22), Therefore, we can state the following important



1.2 Statement of the problem and penalty methods 1.7

fact: for the continuous case, the penalized and the perturbed varialional problems are
equivalent, The crucial point is to observe that the divergence of the velocity field
belongs to the pressure space. This will not be true for the discrete problem and the
equivalence just mentioned will cease to be valid.

The reason why we have introduced first the Stokes problem is to highlight the
connexion between classical optimization techniques and the penalty methods we will
consider. The Navicr-Stokes equations are not the Euler-Lagrange equations of a func-
tional to be minimized but nevertheless we ean still congider the analogues of (1.22)
and (1.23)~(1.24) with ¢ # 0. The former problem will be the weak form of the partial
differential equation

p(u® - V)u® — pAu’ - %V(V -uf) = pf (1.26)

that is obtained by replacing the pressure p in (1.1) by the expression found from the
pseudo-constitutive relation

Pt = —-i—V cut (1.27)

If the linear Elasticity problem is considered, 1/¢ has the physical meaning of being
the Lamé parameter of a slightly compressible material. For a discussion about the
physical meaning of several penalty methods, see Reference [HD].

Since in (1.26) the differential equation has been penalized, we will call this ap-
proach sirong penalization. On the other hand, it is observed from (1.24) that the
weak form of the incompressibility constraint has been replaced by a penalized equa-
tion. This method will be referred to as weak penalization. It must be stressed that
both approaches are equivalent for the continuous case and that for the Stokes prob.
lern the strong penalization corresponds to the minimization of the classical penalized
functional (1.18) and the weak penalization comes from seeking the saddle point of the
perturbed Lagrangian (1.20).

Whichever of the two approaches just described is used, the key for proving the
convergence of u® and of p* to the solution u and p of problem (1.8) as ¢ — 0 is the
BB condition (1.10) (see, e.g. [Be], [BFo], [C8S], [GR], [OKS]), that in turn happens
to be the key condition, together with the coercivity of a (condition (1.9)), for proving
existence and uniqueness of solution for this problem (1.8).

1.2.3 Finite element discretization

The discrele problem

Let {2°} be a regular finite element partition of the domain {1, with index e rang-
ing from 1 to the number of elements Ng. For simplicity, we shall assume that 2 is a
polyhedral domain. The diameter of {02¢} will be denoted by A, ns usual.

Let now Vj, C V and @ C @ be conforming finite element spaces associated to
the partition {0°}. Define also

o= {qn € Qn | blgn,vi) =0 Vv € Vii} (1.28)
Qo = {an € Qn | ] qn d§2 = 0} (1.29)
a
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Let us consider first the Stokes problem. The discrote version of (1.8) with ¢ =0
is: Find wy, € Vj, and py, € Qn/Z) such that

a(uy, vp) — blpr,vn) = l(vi) Yvi €Vi

b{gn, wy) = 0 Van € Qn (1.30)

The weak penalty method applied to (1.30) will read: Find uj, € V, and pj, € Qo such
that

a(uf,vy) = b(ph,va) =llva) Vv €V

"-(anqh) + bl:(f]., ui) =10 Vg € Qn

Convergence in norm of uf, to w, and of pj, to pj as ¢ — 0 is a well known result [C8S),
|GR], [OKS].

The first question to be answered is whether the space Qg is isomorphic to &y /2n
ot not. Clearly, this requires that dim Z), = 1, which is not always the case and depends
on the choice of the spaces Vj, and @y, In Reference [JP] it is proved that this condition
is also sufficient to assert that Qon = @n/Zh-

(1.31)

Some finite element spaces

There are several popular elements for which it is known that dim Z), > 1. Loosely
speaking, this means that there are pressures whose discrete gradient is zero, appart
from the constants. The most well known element that exhibits this pathology is the
Qy/ Py pair, constructed using a bilinear eontinuous velocity interpolation (in 2D) and
piecewise constant pressures. For this element it is known that when (1 is a square
(in 2D) diseretized with an even number of uniform elements along each direction,
dim Zj, = 2, the space Z), consisting of constants and the so called ‘checkboard mode’,
There is a vast literature on this controversial element, apparently first used by Hughes
& Allik [HA] (ef. [BFo]). See, for example, References [BN2|, [CK1], [JP], [OKS],
[§G1-2], among many others. Another problem encountered when this element is used
is the satisfaction of the BB condition. It is known that the discrete analogue of (1.10),
namely,

b(qn, ¥h)

[[vallv

is satisfied but with Ky = Q(h), h being the diameter of the uniform mesh [CK1], [OJ 1],
[JP]. It is believed that this element yields stable velocity approximations on general
distorted meshes, but this fact still resists analysis. Moreover, this element can be
stabilized sither by using macroelements composed of this element [TR], by redefining
the pressure space [KOS], [OKS| or by using iterative stabilization techniques [FB|. The
reader is referred to the book of Brezzi & Fortin [BFo| (Section VI1.5.4) for a clarifying
discussion.

Another popular element is the @2/@y pair (continuous biquadratic velocities,
discontinuous piecewise bilinear pressures, in 2D). Again, it is found that dim 2, = 2
and that the constant Ky in (1.32) Is proportional to k [CK1], [OJ1].

Perhaps the quadrilateral two-dimensional element that enjoys maost popularity
at the present time is the @4/ Py pair (continuous biquadratic velocities, digeontinuous
piecewise linear pressures), first proposed in Reference |NPR] and known to yield very
good results for incompressible flow problems [Fo2], [FF]. This element satisfies the
BB condition (i.e., (1.32) with K} independent of k) and dim Z) = 1, showing that
no spurious pressure modes are possible. See, e.g. [GR] for a rigorous analysis of its

sup > Killanlloysze  va € Vi — {0}, Vau € Qu (1.32)
Y
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stability. A related element is the @5 /Py, where now a serendipid interpolation for the
velocity is used. Unfortunately, this element happens to be unstable, with dimZ, =3
and Kj, = O(h) [011], [0J2]. A div-stable element is obtained if the pressure is taken
as piecewise conatant (@5 /Po element) [GR]. Box 1.1 summarizes the properties of the
elements discussed so far (recall that dim Z;, refers to the case of a square discretized
using a uniform mesh). See Chapter 2 for a schematic of the elements.

Box 1.1 Stability of some quadrilateral elements

Element  dim Zp Ky

1/ P 2 O(h)
Q5[ Po 1 o(1)
Qz /P 3 O(h)
Q;qu 1 O(l)
Qa/ Py 1 o(1)
Q2/th 2 O(h)

Concerning the rate of convergence when the BB condition is satisfied, it can be
expressed in the normof V ¥ @, e,

(u = w2 = pn)lvxeg = [0 —unlly + llp — pullg (1.33)

where (u,p) is the solution of the continuous problem and (uy,pa) the golution of
(1.30). From Brezzi’s result [Br], an estimate for (1.33) reduces to an estimate for the
interpolation error, since

i - = . _ : = 1.3
|l(a = up, p Ph)""“q‘c(vﬂ‘;’h”u Vh“l-"‘i'thgr’;h”i" qh”q) (1.34)

Once this is found, an estimate for the velocity in the L* norm is ensily obtained
through the elagsical Aubin-Nitsche duality argument [Br], [BFo|, [Ci], [OC]. The ele-
ments Q5 / Po and Q3/ Py yield a suboptimal rate of convergence for the velocity in the
L? norm, that is O(h?). This is due to the poor pressure approzimation, which controls
the error in the V % @ norm. On the other hand, the Qa/P; yields optimal rates of
convergence, namely, [[u— upllo = O(h*) and ||p = pallo = O(h?).

We postpone until Chapter 2 a more detailed discussion on available finite element
interpolations and convergence properties.

Strong penalization and RIP methods

When dealing with the weakly penalized problem (1.31) it is clear that the velocity
and pressure spaces have to be chosen independently and they have to satisfy the BB
condition. Let us consider now the discrete version of problem (1.22): Find uj € Vi
such that

a(uf, va) + %(V cuf, Vevp)=1l(vy) Vv €V, (1.36)
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Implicitly, relation (1.27) has been assumed. Since only velocities appear in (1.35),
the pressure space is not explicitly defined in this approach. In fact, it is determined
by (1.27). Symbolically, we can write @) = divV},, meaning that pressures are the
divergence of vector fields belonging to the velocity space Vi The resulting V), — @y,
pair will be in general unstable,

The way to (partially) overcome this problem was first devised in the pioneering
works of Zienkiewicz et al. [ZTT)] in the context of plate and shell bending theory for
the Reissner-Mindlin formulation and Fried [Fr] in incompressible Elasticity, In its ac-
tual form, it consists in integrating the volumetric term (V- uj, V “vj,) using a low order
quadrature rule, The method was first called selective underintegration (or reduced un-
derintegration, if this rule is used to compute all the terms) and was lately popularized
by Oden [Od] under the acronym RIP (Reduced Integration Penalty) method.

To see the connexion between (1.35) and (1.31), let €, § = 1,.., Ny be the
quadrature points placed within element ¢, ¢ = 1,..., N, to calculate (V -uf, V- vy)
and let w¢ > 0 be the corresponding weights. Denote by (-,-). the approximate L*
inner product associated to this rule, i.e,

N Ng

(frof2)e =2 3 wifu(£5) f2(€5) (1.36)
g=1 j=1
Instead of (1.35) we will consider:
a; va) + %(v ol Vowi)e =10m) vk € Vi (1.37)

Now, let @y, be the pressure space definad by discontinuous piecewise polynomials Ny~
unisolvent (for example, in 2D, constants if Ny = 1, linear if Ny = 3, bilinear if
N = 4 and so on) and consider also the problem
a(uf, va) — (P Vo ve)e = l(vin)  YvaEVi (1.38)
e(phyan)e + (gn, V- uf). =0 Van € Qn (1.39)

From Eqn. (1.39) we have thal

Noi Nyp
0= (epf + Vo ufyoan)e = 3 0 wf [eph(€5) + V- i (€5)] an(5)
g=1 jml

for all g € Qy,, from where it follows that

PHE) = =2V - ui(€5) (1.40)

for j = 1,...,Npp, € = 1,..., Ne. Inserting this expression in Egn. (1.38) we obtain
(1.87). Therefore, we have proved that problems (1.37) and (1.38)-(1.39) are equiv-
alent. As a trivial consequence, the following result follows from the comparison of
(1.31) and (1.38)=(1.39): If the numerical quadrature rule is such that

(gniah)s = (gnya)  and (g0, V-va)e = (a0, V Vi) (1.41)

for all qn, qj, € Qp and v, € Vi, then the weak penalty method (1.31) and the RIP
method (1.37) are equivalent.
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This equivalence theorem was first established by Malkus & Hughes [MH], al-
though the proof presented here is closer to the one given by Oden [Od]. Sece also
[ESG] and [Fo3] for an interesting discussion.

The definition of the pressure space @y, is obvious once the numerical quadrature
ritle has been chosen. Of eourse the real problem is to check whether condition (1.41) is
satisfied or not. For the Q,/F, element, the equivalence happens to be exact for general
distorted meshes [BFol, [JP], since it is easy to see that if a one-point quadrature rule
is used to evaluate the volumetric term, condition (1.41) holds true. In Section 1.3 we
will digcuss what happens for quadratic gquadrilateral elements,

Matriz formulation

The penalty methods discussed so far can he applied to the Navier-Stokes equa-
tions as well. Corresponding to problems (1.31) and (1.37) we will have, respectively,

Method 1 (weak penalization): Find uj, € Vj, and pj € ¢Jo such that

e(uj, uj, va) + auy, vi) = b(py, va) = lve)  Vva €V,

1.43
(o) £ =0 Yaeqn O
Method 2 (strong penalization): Find uj, € Vj, such that
1
c(h;‘n uj, vy )+ a(uy, vy) ;d(uj‘,,w,) = I(v),) Vv, eV (1.44)
where the notation
d{un, vn) = (V-u,, V- Vi) (1.45)

has been introduced. Define now the following integers associated to the finite element
mesh;

Nip : total number of free nodes,

Now = Ngp % N,g i total number of velocity unknowns,

Ny = Ny ¥ Ny : total number of pressure unknowns.

Each term in Eqns. (1.43) and (1.44) will yield a matrix or a vector once the finite
element basis (shape functions) has been chosen. Let U and P be the vectors whose
compenents are the velocity and pressure nodal unknowns, respectively, and denote by
U* and P* their ‘penalized’ counterparts. The matrices that will appear in the final
algebraic system of equations and the term from where they come are given in Box 1.2,
The vector F, accounts for possible non-homegeneous velocity boundary conditions.

Having introduced all these arrays, the matrix version of problems (1.43) and
(1.44) will be

Method 1 (weak penalization): Solve the nonlinear algebraic system

K. (U U + K U* — GP* = F,

1.46
GTU* + eM,P*' =F, )

Method 2 (strong penalization): Solve the nonlinear algebraic system

K, (U9 U 4 K U 4 %K..U‘ - F, (1.47)
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Although expressions (1.46) will be kept in what follows, their implementation
uses the fact that the pressure interpolation is discontinuous. This allows to eliminate
the pressure degrees of freedom, thus making the method much more eflicient from
the computational standpoint, For discontinuous pressurcs, the second equation in
(1.46) holds for each element. If we denote by superscript e the element arrays, before
imposing the boundary conditions we will have that

g Tyl 4 EM’ff)p(')' =0 (1.48)
and hence 1
plo) = H;Mg']_‘gﬂijUEG)" (1.49)

Lét A denote the standard finite element assembly operator. From (1.48) and (1.49)
we have that:

] -
K, (U) + Ka+ —Al (6OM) 'G“”')] U =F, (1.50)

Once U4 s found by solving Eqn. (1.50), the pressure nodal values can be
computed for each element from the expression (1.49). It should be remarked that the
matrix of system (1.50) has to be factored only once for Newtonian Stokesian flows
and that the inversion of Mf,'} iz trivial (it iz a (Nsa 4 1) X (Nuq + 1) matrix if linear
pressures are used), Due to this simplification when the pressure is discontinuous, the
weak penalty method is rarely applied when the pressure space consists of continuous
functions.

Box 1.2 Matrices and vectors for the algebraic system

K. (U) e(u, ) Nuu ¥ Nou
K a(-,) Nuu ¥ Nou
K, d(+, ) Nyu %X Ny
G 'b(':‘) Nyu X Nnu
M, ('! ) Ny % Npy
Fy I() Nw

Fy, Bound. cond. Ny

Remark 1.1
From the preceeding discussion and comparing expressions (1.47) and (1.50), it is
clear that the equality

ANt (G(*JMS:”"‘G("FT) = K, (1.51)

will hold if the quadrature rule (). verifies conditions (1.41). Checking this
matrix relation for the particular case of the @/ Po element was the first step to-
wards the understanding of the equivalence between strong and weak penalizations
[Hul]. 0



1.2 Statement of the problem and penalty methods 1.13

Some bibliographical notes on the BRE condition

The BB condition introduced earlier plays a fundamental role in the theory of
mixed and penalty methods. Here we want to mention briefly the most important
works that sketeh its evolution towards the actual knowledge. The first fundamental
paper to be referred is due to Babuika [Bal], where a general variational problem is
considered. He introduced two general conditions on the bilinear form that defines the
problem that may be viewed as a generalization of the classical Lax-Milgram Lemma.
The particular case of saddle point problems was eonsidered by Bregzi [Br|, who pre-
sented the condition under the form that has been used here, that is, condition (1.10).
He proved a general existence and uniqueness theorem and the error estimate (1.34). It
was early recognized that the main difficulty that arises when considering the discrete
finite element problem is that, although the stability condition holds for the continuous
problem, it is not antomatically inherited by the diserete version. The stability of the
continuous Stokes equations had already been proved by Ladyzhenskaya (La]. This
is why the BB condition is sometimes called LBB (Ladyzhenskaya-Babuika-Brezzl)
condition.

Later, this stability condition has been applied to a wide variety of mixed prob-
lems. Babuika et al. [BOP] proved convergence of several mixed methods using mesh
dependent norms for different methods thal were known to work well. However, most
of the effort was placed on finding methods for effectively checking the stability condi-
tion. With regards to the incompressibility constraint, the first method that enjoyed
widespread use is due to Fortin [Fol], who showed that in some cases the BB condition
follows if a continuous operator can be built from the space V' to Vi. This method
has been used, for example, to prove the stability of the so called mini-element [ABF].
Another important method was designed by Crouzieux & Raviart [CR], who also in-
troduced a widely used stabilization technique based on the introduction of bubble
funetions, Bercovier & Pironneau [BP| first proved the stability of the Taylor-Hood
elements [TH]. Later, their analysis was simplifyed by Verfiirth [Vel]. Recently, Brezzi
& Falk have proved the stability of higher-order Taylor-Hood elements [BFa]. The sta-
bility of some low-order elements was also proved by Boland & Nicolaides [BN3], using
the method they introduced in [BN1]. Let us also mention a promising technique due
to Stenberg [St1], [St2] (see also [St3] for a self-contained presentation) that together
with Fortin’s method seems to be the simplest tool for proving div-stability of finite
clerments.

A review of mixed methods using the velocity-pressure and the tension-velocity
approaches can be found in References [BB] and [Ar], respectively.

Finally, let us mention another technique introduced by Zienkiewicz et al. [2QT]
that is not sufficient to assert div-stability but that turns out to be of practical interest
is most of the cases. [t is based on a degrees-of-freedom counting, requiring solvability
of the discrete problem (not stability!) for any ‘patch’ of elements. The iden underlying
this method is the patch test introduced by Irons (see, ¢.g. [IL], [Ral, [TSZ]).

An engineering-oriented approach to the use of mixed finite element interpolations
can be found in the books of Hughes [Hu2] and Zienkiewics & Taylor [2T].
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1.3 An example of strong penalization: The biquadratic
element for two—dimensional incompressible flows

The first tentative title for this section was An ezample of failure: the ... This already
gives an idea of the conclusions that may be drawn from the results to be presented
here,

At first glance, the use of a certain quadrature rule for the volumetric term (1.45)
to emulate a pure mixed velocity-pressure interpolation seems to be quite attractive,
Nevertheless, it turns out that problems arise when trying to do this. The purpose
of this section is to convince the render that the slightly higher computational effort
associated to the weak penalization (1.43) method when it is compared to the strong
penalization (1.44) is certainly worth affording.

Here, we will restrict ourselves to the Lagrangian biquadratic interpolation for
the velocity. Several reduced integration rules for the velumetric term will be treated,
trying to reproduce the Q3/Fo, Q2/Q1 and @3/ Py elements. In order to illustrate the
exposition, the well known eavity flow test will be used to exemplify the application of
the ideas of the text.

Since the strong penalization will not be used any more in this work, a simple
although complete numerical algorithm will be presented for the Navier-Stokes equa-
tions, including the pressure calculation and the treatment of problems with a high eell
Reynolds number using a Petrov-Galerkin technique.

1.3.1 Gauss—Legendre quadrature for the volumetric term

First we shall consider a one-point quadrature rule. Clearly, the pressure space @ in
this case will consist of discontinuous piecewise constant functions, The element to be
reproduced will be the @4/ Py pair, which is div-stable. Let us introduce tha notation

E"F('ﬂn"h) = ('I?Hv : "’h)n i € Qh: vipE Vi (1.52)

Since the divergence of biquadratic functions contains a complete second degree poly-
nomial, the second condition in (1.41) will not be satisfied and the strong and weak
penalizations will not be exactly equivalent. There iz a consistency error due to the
numerical quadrature rule that will be given by the power « in the estimate

lb(qfu‘rh) i b-(qluvh_)l < Ghﬂll‘i’h”ql[vh"\ﬁ ih € Qny Vi € Vi (1.53)

Clearly, @ > 0 is needed if the mixed interpolation is to be approximated as A — 0.
For the particular element under consideration, the one-point rule integrates exactly
bilinear functions, Therefore, a = 1.

In Reference [Fo3], it is proved that condition (1.53) is sufficient to assert that the
bilinear form b.(,-) will satisfy the BB condition for h sufficiently small if b(, -) daes.
However, it can be proved that b,(:, ) is stable for any h using the following stronger
result (cf. [BFo], Prop. IL2.19): If there exists an homeomorphism 11y @ Vi, —» V),
such that

b(gn, vi) = blgn,Tlnvn), g € @i, VA E V) (1.54)
then b.(-, ") satisfies the BB condition iff b(:,-) does.
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In [BTo), 11, is constructed explicitly for uniform meshes, thus proving that the re-
sulting scheme will be stable in this case. The integration error (1.53) will nevertheless
TeIR,

Consider now the Gauss-Legendre 2 X 2 integration rule for the volumetrie term,
The associated pressure space will consist of piecewise bilinear pressures. Since this rule
can integrate exactly bicubic polynomials, conditions (1.41) will be verified for uniform
meshes (although a small quadrature error will remain if they are distorted) and the
Q2/Qy puir will be exactly reproduced. However, it has already been mentioned that
this element suffers from having a small stability constant Kj, which tends to zero as
h = 0 and also from the fact that spurious pressure modes may appear.

The 3% 3 quadrature rule is inadequate, since it leads to the @,/ element, known
to be completely unstable and to yield meaningless answers (locking phenomenon),

We have tested the Q3/ Py and Q;/Q; elements for the driven cavity flow problem.
Results are shown in Figure 1.1 (Stokes problem). In all the cases, we have taken p =1
and a uniform mesh of 21 % 21 nodal points (10 x 10 biquadratic elements) to discretize
the domain [0,1] % [0,1]. Body forces are zero. The penalty parameter has been taken
¢ = 10~%. Homogeneous Dirichlet conditions have been prescribed everywhere on the
boundary except in the upper edge, where two types of boundary conditions have been
tested:

A - Leaky lid cavity :u=(1,0) for y=1, 0<z<1
B — Ramp condition:u=(1,0) for y=1, 0<z <1

It is known that the singularity on the boundary conditions of problem B is more
difficult to reproduce by numerical schemes than the one of problem A.

Figures 1.1.(1) and 1.1.(2) show the velocity vectors obtained for problem A using
the one-point and 2 x 2 rules, respectively. Results are good in both cases; although
the former seems to yield overdiffusive answers. This is known to happen for the pure
Q23 / Py interpolation and it is even more accentunted now due to the integration error
(1.68). For problem B, the one-point rule still gives a stable approximation (Figure
1.1.(3)), but oseillations appear when the 2 x 2 rule is employed (Figure 1.1.(4)). From
these facts it may be concluded that neither the one-point nor the 2 x 2 rules are espe-
cially robust and accurate. Accuracy is the problem associated to the former, whereas
the latter shows a lack of stability.

1.3.2 About the (im)possibility of emulating the @,/P; element

In this section we shall prove that the Q2/P, cannot be reproduced using the strong
penalty method with a reduced integration rule for the volumetrie term. First, a threa
point quadrature rule will be presented, showing also that it is optimal. Using this
rule, it will be proved that the consistency error (1.53) is bounded below by a positive
constant independent of h and that tends to zero when the three quadrature points
collapse in a single one. Therefore, for ¢ — 0 and h — 0 the numerical solution will not
converge to the exact incompressible solution and the ervor will rely on the position of
the integration points.

Some numerical experiments for the driven cavity flow have been conducted to
show the disastrous behavior of the algorithm for different positions of the quadrature
points.
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Figure 1.1 Results for the driven cavity flow problem. Stokes flow. (1): one-
point rule, prablem A; (2): 2 % 2 rule, problem A; (3): one-point
tule, problem B; (4): 2 % 2 rule, problem B

A three point quadrature rule

Let {2 := [~1,1] x [~1,1] be the parent domain where the numerical intagration
is to be carried out. As usual, every subdomain 0° of the finite element partition will
be mapped to g using the standard isoparametric mapping. We denote by P, the set
of polynomials of degree m and by @, the set of tensor product polynomials of degree
m in each Cartesian direction z and y.

Proposition 1.1 The numerical quadrature rule

a
[ Hewydedy= 53 1@ (1.55)
with

[l’iu?h) . (Olr)l'

(w3, y2) = (=7 cos(m/6), =rsin(r/6)), (1.58)

(2g,y3) = (r cos(n /6), —rsin(w/6)),
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is exact for any [ € Q,(Sl) and for all v € [0,1). Forr = /273, it iz also exact for
any [ € Pa(§). Moreover, it is optimal, in the sense that polynomials of the form
flz,¥) = p(z,y) + azy® + by, with p € P4(flp) and @ and b constants, cannot be
exactly integrated using three points.

Proof: Let f(z,y) = ple,y) + azy® + baly, with p € Pi(§20). Denote by (2,1), 1 =
1,2,3 the coordinates of the quadrature points and by w; their weights. Imposing that

[ sy = o)

1wl

the following relations are found:

wy g +wy =4 (a)

zywy + 2wy 4 2wy = 0 (5)

tiws + yawa + Yawa = 0 (e)
Tt + zayaws b 2ayawy = 0 (d)

m‘fui -+ :Egu.lg + zawg = 4/3 (2)
Ylwy +yiws + ydws =4/3  (f)
e1yiwr + sayiws + zayiwy =0 (9)
m§y1w1 + Rliﬂn"-ﬁ'z + 3?;#3”& =0 (M

Let us first show that it is impossible to fulfil all these conditions with three different
points,

Assume w; # 0,1 = 1,2,3. If 2; # 0 for some j, requiring non-trivial solvability
from conditions (b), (d) and (g) it is found that

wiwawa(yz — 1 )ws — 1 )(¥s —y2) =0

Assume, without loss of generality, that ya = ys # w1, If y; # 0 for some j, conditions
(¢), (d) and (A) imply

u,wgw;,(a:g = Clq}(ﬂ-'a - ?&‘1)(33 1% :I:g) = {)

Suppose that 2y = z3 # 23 (23 = 23 would mean that points 2 and 3 collapse). Since
w; # 0, from conditions (d), (g) and (k) it follows that

wizayiyi(ya — 1 )(za—2) =0

If yy = yz or ¥y = =3 two points would collapse. Assume that #; = 23 = 0, 23 # 0.
From Bqns. (g) and (h) it is found that yy = y3 = 0, and from (¢) y; = 0. Hence,
pointa 1 and 2 have inevitably collapsed.

Once it is known that two points must coincide, it ia easy to see that system
(a) = (h) does not have any solution, For example, take wy = 0. From (d) and (g) it
follows that y; = y» and from (d) and (k) 23 = 23. With a single point only bilinear
polynomials can be exactly integrated.

The Proposition follows by checking that conditions (a) — (d) hold for wy = wy =

wy = 4/3 and (2, y;) given by (1.56). If » = /2/3, also (¢) and (f) hold. =
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Remark 1.2
The quadeature rule defined by (1.55)~(1.56) seems to have been used before (cf,
[Ki]), although the author was not aware of this fact at the moment of undertaking
this work. (m]

Inconsistency of ba(+, ")

If the volumetric term is integrated using a three-point quadrature rule, the pres-
sure space will consist of piecewise linear polynomials. For r = \/2/3, the first eondition
(1.41) will be fulfilled for uniform meshes. However, the bilinear form b.(:,+) cannot
approximate the bilinear form b(-, ) for a fixed r = 0. This is what the following result
states.

Proposition 1.2 Assume that the quadrature rule of Proposition 1.1 is used for the
volumetric term. Then, there is a constant C(r) independent of h, with C(r) — 0 as
r— 0, such that

iV llanllallvally

where the supremum is taken over all the g, € @), — {0} and vj, € Vi - {o}.

Proof: Since the functions in @) are discontinuous, we can take gy constant on an
clement 27 and zero everywhere else, Take also vy = Nga, where Ny(z,y) is the shape
function associated to the central node of the element and a # 0 is a constant vector,
Without loss of generality, we shall assume 2° to be affine with the parent domain {lo,
where natural coordinates £, 7 are taken. We will have that

e =ah [ v oyt =ab [ (omyar = 0

ard

cos 3,

1 ° :
ba(diy Vi) = C1 g zmeas(Q) |3 VNo(&i,m)l|a
1z=1
where the constant G, takes into account the angles of the edges in 2%, [a] is the Eu-

clidian norm of the vector transformed of a to the parent domain and f is the angle
hetween & and E?=1 V No(&i,mi). Since

VNo(€,m) = (—26(1 - %), =2n(1 = £)),

it is found that

2 3
| S VNa(ée,mi)| = 3"

i=1
Considering that

la8lle = l4f) meas()t,  [IvRllv = C: Ja| meas(2)F,
with € depending on /4 and the V—norm of Ny in {2y, we will have that

]b(qmvh] 'f'-(*?ln'\"hﬂ > u _lgg___(_‘?glv:b]l = 'y
s llaxllelivillv

stip
Th ¥R ”qh"Q'lW'”V
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for a certain constant C.

It is clear from this result that the higher » is (with 0 < r < 1), the more inaccurate
will be approximation to the incompressibility eondition. To verily this numerically,
the driven cavity flow using the introduced method has been solved. Results are shown
in Figure 1.2, In Figures 1.2,(1) and 1.2.(2), r = /2/3 has been used. The first case
corresponds to the leaky lid boundary conditions and the second to the ramp condi-
tion. Although no oscillations are apparent in any of the two cases, it is obvious that
the incompressibility constraint has been excessively relaxed. The central vortex has
moved down with respect to the reference results of Figure 1.1, To check the effect of
the value of r, the problem with the ramp condition has been run again with r = 0.5
and » = 0.9 (Figures 1.2.(3) and 1.2.(4), respectively). As expected, the zero divergence
condition is totally violated in the latter case, where results are meaningless. Looking
at Figures 1.2.(3), 1.2.(2) and 1.2.(4) we see how increasing value of » (0.5,

0.9, respectively) this constraint is more aned more relaxed,
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Figure 1.2 Results for the driven cavily flow problem. Slokes flow. Three-

point guadrature rule for the volumetric term. (1): r =

leaky lid condition; (2): r = /2/3, ramp condition; (2): r = 0.5,

Vﬁﬁi

ramp condition; (2): » = 0.9, ramp condition.
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1.3.3 Pressure calculation

Once the velocity has been calculated by solving problem (1.47), relation (1.40) gives
the values of the pressure at the reduced integration points. There are two questions to
be considerad. First, the pressures will be discontinuous across interelement boundaries
and thus a smoothing facility has to be introduced, mainly for plotting purposes. The
second aspect is that some of the elements that can be emulated through underintegra-
tion of the volumetric term exhibit spurious pressure modes (cf. Box 1.1), Sometimes,
the smoothing technique utilized may be enough to remove these modes, but this in
general will not be true, especially near the boundaries [HLB|. On the other hand, the
penalty approach automatically precludes the appearence of these spurious pressures.
Nevertheless, pressure convergence cannot be ensured [JP], [OKS] and the pressure
space has to be redefined in order to obtain this convergence (under stricter regularity
assumptions than usual for the exact solution [JP]).

Here, both problems will be treated and applied to the Q1/@Q1 and Q3/Fp el-
ements. Also, the possibility of solving a Poisson equation for the pressure will be
digenssed. As far as we are aware, this method has only been applied to the 1/
element by Sohn & Heinrich [SH]. Since it is impossible for this element to approximate
the second derivatives for the velocity field that are required for this method, they had
to calenlate them via the interpolation of the nodal first derivatives and using a least
squares technique. This problem is cireumnvented if quadratic elements are used.

For & detailed and up-to-date discussion of the Peisson problem for the pressure
the reader is referred to the paper of Gresho & Sani (GS], where both theoretical and
practical questions are treated. Of special interest is the discussion on the boundary
conditions to be imposed to the pressure.

Pressure filter and Least-squares smoothing (LSS)

Consider first the @3/Q; element and assume that the velocity field uy is known
in the parent domain Qg, where the numerical integration has been performed. Eqn.
(1.40) will give the value of the pressure at the quadrature points, As explained earlier,
spurious modes may be present for the non-penalized problem and pollute the penalized
solution. In order to remove them, what we do is to project the space of piecewise
bilinear pressures onto the space of piecewise lincar pressures, since it is known that
no spurious modes appear for the Q4/P, clement. We have successfully tested the
following method.,

Let pf, i =1,2,3,4, be the pressure values in the parent domain corresponding to
element e computed using (1.40). Let also y = V3/2 and

(fin’?l)= (_7'1 -7 (E‘J:W): 'E'rr_'T)n
(€a,ma) = (=7.7)s (£4,m4) = (7.7)

be the coordinates of the quadrature rule points. From pf we construct the following
piecewise linear pressure:

pi(€,n) = a0+ arf + agn (1.57)
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with
1
WY 2:’?' (mean value)
=
_1l(m-n pﬁ-w&) A
"y 2 + Ty (£ —derivative)
Ll pi-r o
- bu 2( 24 + 2y (n—derivative)

Now we have a discontinuous piecewise linear pressure given by (1.57), for which no
spurious modes are expected, In order to obtain a continuous pressure field p,(z,y), we
use a standard Least-squares method [Hu2), [£T], described in more detail in Chapter
2. The pressure p,(z,y) is interpolated using the biquadratic element, If N)(z,y)
denotes the shape function of the ith node of the finite eloment mesh, the vector of
smoothed pressure nodal unknowns, say P,, will be found by solving the algebraic
system

MP, = R,, (1.58)

where thq symmetric and posilive-definite matrix M has components My; =
fo NONGN and

By = AL fn NU)(z,p) pi (e, p)d0

=AM fﬂ N, ) g6, m) 7€, )l dn,

J(&,n) being the Jacobian determinant of the isoparametric mapping and pf (£, n) being
given by (1.57).

For the Q3/ Py element, this smoothing is also applied, although now the pressure
is constant and given directly by (1.40).

Pressure Potsson equation

Taking the divergence of the momentum equation in (1.1) yields
Ap=V [pf +pAu—plu-Viju] in 0 (1.59)

i.e., a Poisson equation for the pressure. If we assumne the velocity field to be solenoidal
and sufficiently smooth, we would have that V - (gAu) = p&(V - u) = 0. However, we
will keep the term pAu in (1.59) for the moment.

In Reference [GS), it is concluded that the correct boundary condition for (1.58)
i# the imposition of the conservation of the normal component of the momentum. Mul-
tiplying the first equation in (1.1) by the unit outward normal n and evaluating on the
boundary (understanding this process as a limit) we are led to

%E =mn-|pf + pAu - p(u-V)u] on 95 (1.60)

The solution of the Neumann problem (1.58)=(1.60) is unique up to an additive constant
that ean be fixed by specifying the value of the pressure at a certain point.
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Let Q = HY(f) and Qp = H*(2)/IR. The weak form of problem (1.59)~(1.60) is:
Find p € €)g such that

Vq-Vpdﬂ:f q [Q-E._n-.?-",.,] dF+qu-J“m 452 Vqr:‘(:) (1.61)
i an L9n f

wherea

F(a) i= pf 4 pAu - p(u-V)u

is the veetor whose divergence appears in the right-hand-side of (1.59). Since (1.60)
establishes that dp/dn = n - F,,, the boundary term in (1.61) vanishes.

Construct now conforming finite element spaces Qu_p. € Qp and Q) C Q using the
biquadratic element, The discrete counterpart of problem (1.61) is to find p), € Qon
such that

(Van, Von) = (Van, Fulun))  Yau € QG (1.62)

Let us discuss now the approximation properties that can be expected from the
solution of problem (1.62). It is well established (see, e.g. [Ci]) that the error ||p ~
pallo is of order O(A*) for a given function F,,(uy). However, the real problem is the
approximation of Flaiy) to Tm(u), with u, € V). If we assume that the inverse
estimate [Ci]

I¥hllape € € B [valls-2.00

holds for any v, € Vi, we can roughly expect that
1) = Fon(wn)llo ~ A% |Ju = o

since Fpu(up) involves second derivatives of uy. Therefora, the error in the pressure
associated to problem (1.62) will be driven by the approximation of F, (w,) to Fp(u).

For the Q3/Q; element, the best we can hope for is the interpolation error [ju -
upllo = O(K®), if no instabilities are present, Therefora, || Fn(n) = Finl(un)llo = O(h).
However, for the Q3/ Py clement the error will be [ju — uy||o = O(A?), due to the poor
pressure approximation. In this case, || Fn(u) = Fu(ug)|lo = O(1), i.e., no convergence
can be expected of F,,(up) to Fu(u).

Numerical experiments show that this quasi-heuristic considerations are pes-
simistic, at least for the Stokes problem.

Remarks 1.3
(1) If we would have taken 7, (u) = pf — p(u- V)u, without the viscous term, segond
derivatives should be caleunlated not in 2 but on #41, since the boundary term in

(1.61) would he
f g pn-Audl
oan

The situation now is even worse than before, since roughly speaking approxi-
mations on the boundary have a gap 1/2 with respect to approximations in the
interior of the domain (ef. Remark 1.4.(3)). In fact, in Reference [SH] it is con-
cluded that the method we have considered yields better numerical results than
this one,

(2) Although we have considered the velocity wy, known, the way the Poisson equa-
tion for the pressure is usually used is to guess a velocity field and solve (1.62).
The pressure so caleulated is used to recompute the velocity. This procedure is
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repeated until convergence is achieved. This is a common way to uncouple the
yelocity and pressure caleulations. o

Numerical performance

We have computed the pressure for the driven cavity flow with leaky lid boundary
conditions using the two methods just described. Figures 1.3.(1) and 1.3.(2) show the
results obtained using the pressure filtering and the least-squares smoothing for the
one-point and the 2 % 2 integration rules, respectively. As it was already observed
for the velocity field, results are overdiffusive for the firat option. Figures 1.3.(3) and
1.3.(4) correspond to the same cases using the pressure Poisson equation. Results are
‘simoother’ than before and qualitatively similar, It must be pointed out that for the
one-point rule pressure convergence cannot be guaranteed and for the 2 X 2 rule it is
reduced to O(h). Nevertheless, results seem to be fairly good.

— |

IINIRIS

_“‘“‘"‘-u—'_'

Figure 1.3 Pressures for the driven cavity flow problem (biquadratic ele-
ment). Stokes flow. (1): one-point rule, least-squares smoothing;
(2): 2% 2 rule, least-squates smoothing; (3): one-poiut rule, pres-
sure Poisson equation; (4): 2 ¥ 2 rule, pressure Polsson equation.
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1.3.4 Numerical procedures for the Navier-Stokes equations

To elose this incursion into the use of the strong penalty method, we shall briefly de-
seribe the numerical techniques we have employed when dealing with the Navier-Stokes
aquations (1.1). The matrix notation introduced at the end of Section 1.2.3 will be kept.

Linearization lechnique

In order to solve the nonlinear algebraic system (1.47), the simplest linearization
method has been employed:

Given U9, for i = 1,2, ... solve for Ul);

Kdtulq“) il %K‘,U'(i) - F“ - K. (Ud.{f--l)) Ul(i—l} (1‘3\;)

This method has the important advantadge that the matrix of the algebraic sys-

tem to be solved at each iteration, viz. ¥+ (1/¢)K,, is symmetric and positive-definite.

Thus, it has to be factored only once and the computational effort of each iteration is

reduced to a forward and a backward substitution. In our computations, we have used

the frontal algorithm for symmetric matrices due to Irons [Ir] and described in [HO].
Convergence has been checked using the criterion

[ — yi-)| < 7o LU (1.64)
where TOL is a given tolerance and |- | denotes the Euclidian norm of a vector.

Continuation method

The main drawback of algorithm (1.63) is that it enly converges (and linearly)
if the initial guess U9 is close enough to the final solution. We take U®) = 0 and
thus the effective initial guess is the Stokesian solution U“1), Convergence will only be
possible for moderate values of the Reynolds number Re. It turns out that in practice
the algorithm only converges for very small values of Re. In arder to ‘push’ the scheme
to higher values, we have employed a very simple continuation method, based on incre-
menting Re up to the final value in several steps. The density p has been used as the
inerementing factor.

A detailed analysis of different iterative techniques and continuation methods for
the strong penalty approach can be found in the papers by Carey & Krishnan [CK3],
[CKd], where several numerical results are presented.

Petrov-Galerkin weighting

When the convective terms of a transport-diffusion equation are important, the
standard Calerkin method fails and numerical oscillations occur, We shall not undeés-
pake here a detailed deseription of available numerical remedies, for which we refer to
[Co2], The method we shall use is the Streamline Diffusion (SD) method as deseribed
in the quoted reference for the scalar convection-diffusion equation.

The extension of the SD method to the Navier-Stokes equations is by no means
unique, in the sense that several schemes have been proposed in the recent literature,
We will come back to this point later in Chapter 2.
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Although the iterative method described earlier does not allow for solving highly
convective flows, it may be possible that the mesh diameter be large and therefore the
cell Reynolds number
[uf|he

2p
be also large. As usual, superscript e denotes characteristic values for an element, From
the discussion in Reference [Co2], for values (Re)® > 2 numerical oscillations may be
expected when quadratic elements are used.

The §D method that has been implemented is based on the perturbation of the
test function vy, € V3, to

(fte)" i=p (1.65)

v+ T(uh * V)'\"j" (1.66)

the second term only affecting the element interiors, The parameter 7 in (1.66) is the 20
called intrinsic time, which involves upwind functions that are calculated as explained
in [Co2|, replacing the Péclet number y by the cell Reynolds number given by (1.65).
Problem (1.44) will be modified as follows: Find u), € V3, such that

1
e(u, uf, va)+a(uy, va) + Zd(ui, vi)
Ny (1.67)
+ 2 Sn(“:nvh) = I(Vh) VV]. e W

e=1

where &, is the nonlinear functional
Se(up, vi) 2= (r(uf, - V)vi, p(un - V)ug = pduy — pf)g.

(7 Vv =19 ) (1.8)

Observe that the dependence of 7 on uy, who is now the unknown of the problem, will
he eomplicated,

Denote by §(U) -V the matrix version of the functional 32Nt 5, (up, vi,) once the
finite element discretization has been performed. In order to preserve the advantatges
of scheme (1,63) when the 8D method is used, it has been modificd as follows:

Given U, for i = 1,2, ... solve for U);

K U 4 %I{.,U‘“} =F, - K, (U*f"-”) U=l _ g (U""‘“) (1.69)

We have found numerically that the convergenee rate of the initial scheme is not
deteriorated because of the 8D term, but rather improved.

Final algorithin

Having in mind all the techniques discussed so far, the final algorithm will read as
indicated in Box 1.3. We have used the following notation: §p is the density increment
of each continuation step, I is the discrete Laplacian matrix, P, are the nodal values of
the pressure computed using the Poisson equation (1.62) and R, is the right-hand-side
arising from the discretization of this equation. Terms between parenthesis and italic
characters denote logical variables.
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Box 1.3 Algorithm for the Navier-Stokes equations

s Compute K, using full integration
¢ Compute K, using reduced integration
s Factorise and store A := Kz + (1/6)K,
s Set p, 1= 0 and U4?) := 0
¢ WHILE p. < p DO;
si;=10
& p o petOp
« WHILE (nol converged) DO:
si—i41
s Compute R-1) .— F, - K, (U‘(:'—lj) yeli-1) g (Utﬁ—lj)
s Solve AU) = RO-1)
o If [U) — 0i=N)| < TOL|UD)| then (converged)
END while (not converged)
s New initial guess; e(0) o i)
END while p, < p
s Compute the pressure:
o IF (LSS) then
s Solve MP, = RR,
s ELSE if (Poisson) then
s Solve LP, = R,
END
END

Numerical experiments

Some very simple numerical experiments have been conducted for the driven cav-
ity flow with leaky lid boundary conditions. The pressure has heen computed solving
the Poisson equation (1.62). The Reynolds number based on the lenglh of the square
(= 1) and the prescribed velocity in the upper edge (= (1,0)) is equal to the density p
for £ = 1. In all the cases, TOL = 0.001 has been chosen. The penalty parameter is
e=107%

First we solve the Navier-Stokes problem for Re = 200 and using the mesh of
21 % 21 nodal points employed before (using biquadratic elements). Ten continuation
steps and two iterations per step have been required for convergence. In this case, no
oscillations appear when using the standard Galerkin formulation. Figures 1.4.(1) and
1.4.(2) show the velocity vectors using the one-point and the 2 x 2 quadrature rules.
The first case, as it has been already observed in former examples, yields overdiffusive
and inaccurate results. In Figures 1.4.(3) and 1.4.(4) the pressure contours have been
plotted. Observe that results are bad for the one-point rule and seem to be correct
for the 2 % 2 rule. Recall that for the former case, no pressure convergence can be
guaranteed, whereas for the latter the best one can hope for is an O(h) approximation.
These results seem to confirm the discussion of Section 1.3.3,

Next, a Re = 250 problem has been run on a new uniform mesh of 11 x 11 nodal
points (5 % 5 biquadratic elements). Only the 2 x 2 point rule has been used. Figures
1.6.(1) and 1.5.(8) show the velocity vectors and the pressure contours obtained using
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Figure 1.4 Navier-Stokes results using the 21 x 21 mesh, fe = 200. The
pressure has been computed solving a Polsson equation. (1): Ve-
locities using the one-point rule; (2): Velocities nsing the 2 x 2
point tule; (3): Pressure contours using the one-point rule; (4):
Pressure contours using the 2 % 2 point rule.

the Galerkin formulation. In this case, the cell Reynolds number exceeds two for some
¢lements in the upper right corner, whera oscillations can be observed. These are re-
moved if the 8D method is used (Figures 1.5.(2) and 1.5.(4)). The upwind functions
have heen determined according to the methodology proposed in Section 1.4.2.

1.4 Weak penalization: analysis of an iterative penalty
method

Because of the problems encountered when the strong penalty method is used, we shall
move now to the weak penalization approach (hereafter referred to just as penalty
method). It is not our purpose to investigate its behavior, which will be appreciated
from the numerical examples in this and the following chapters, but rather to present
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Figure 1.5 Navier-Stokes results using the 11 x 11 mesh, e = 250, The
pressure has been computed solving a Poisson squation and the
2 % 2 quadrature rule has been employed. (1): Velocities using the
Galerkin formulation; (2): Velocities using the SD method; (3):
Pressure contours using the Galerkin formulation; (4): Pressure
contours using the 5D method.

and analyse an iterative version that will be used throughout this work. The method
described by Eqns. (1.43) will be called classical penalty methed.

The main drawback of the penalty method is the ill-conditioning of the stiffness
matrix when the penalty parameter is very small. For Newtonian flows, a fairly wide
range of values of this parameter are known to yield good results (that is, the incom-
pressibility equation is sufficiently well approximated) and to be easily handled if direct
solvers are employed. Experience shows that the range e = 10°%u~" to ¢ = 107%u" is
recommended [HLB|. Two questions arise. The first is what happens for non-Newtonian
flows. In this case, the viscosity may vary several orders of magnitude in the fluid do-
main, especially if the physical properties of the material are considered Lo be thermally
sensitive. The above rule for choosing the penalty parameter has to be applied using
the smallest value of the viscosity (in order to aveid ill-conditioning), which is unknown
before the calculation. Besides that, the incompressibility constraint will be excessively
relaxed in the high viscosity zones. Another question to be considered is whether it-
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erative solvers can be safely used or not. Usually, their convergence is very sensitive
to the condition number of the stiffness matrix, which grows as the penally parameter
decrenses.

The ohjective of this section is Lo present an iterative penalty finite element
method whose basic motivation is alleviating the problems mentioned above. The
incompressibility equation is penalized in each iteration but the residual of the pravi-
ous iterate is added as a forcing term. The interesting issue is what happens when the
iterative penalization is coupled with the iterative procedure due to the nonlinearity of
the problem. As in Reference [Col], we analyse here what happens when the Picard
and the Newton-Raphson algorithms are employed.

We will use the notation of the continuous problem. All the results also apply for
its discrete finite elemnent approximation.

1.4.1 Iterative penalization for the Stokes problem

The problem we consider in this section is (1.8) with ¢ = 0, i.e,, to find u € V and
p € QQy such that
a(u,v)=b(p,v)=Illv) V¥YveV
big,u) =0 Yge @
The iterative penalty method that will be analysed is particularly simple to in-
troduce for this linear problem,

(1.70)

Motivation and statement of the algorithm

If the penalty method is applied to solve (1.70), one has to find u**) € V and
p‘(” € () such that

a(u M, v) = b(p'M,v)=1l(v) VveV

1.71
e(p" ™M, q) + b(g,u My = 0 Vg eQ (L)

Onee u*) and p*(1) are found, define fu and §p such that u = 1) 4 fu and p =
pt(l) + ép. Then, du and §p will be tha solution of

a(fu,v) - b{dp,v) =10 VveV
bg,6u) = «(rMiq)  VeeQ

Now, this problem can also be solved using the penalty method. If du®, ép® is the
penalized solution and we define u*(?) = uf(1) 4 fu?, p*®) = p1) 4 §p*, we will have

that
a(u®) v) — b(p'®, v) = I(v) VWwev

e(p ™ q) + b(g,u®) = e(pVq)  VgeEQ

The argument used to arrive at problem (1.72) may be applied iteratively. This leads
to the following algorithm:

Given p®) € Qo, for i = 1,2,... find (u®), p)) € V x Qg such that
a(u® v) = b(p®, ) = I(v) YWwev
(D, q) + blg, u D) = (p 1) VgEQ

(1.72)

(1.78)
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Existence and unigueness of solution follows considering the problem in the space
V % Q and applying Lax-Milgram’s Lemma. This algorithm will be analysed below and
extended to the Navier-Stokes equations. Before that, some other existing methods
will be discussed.

Seme remarks on related methods

Algorithm (1.73) may be viewed as a variant of the Augmented Lagrangian method
(see, e.g. References [Gl], [Te]) provided that Uzawa’s algorithm is used to update the
pressure. This was implicitly done in early works whose basic motivation was also
the computational problems encountered when small penalties are used (for example,
the method was applied to linear incompressible Elasticity in Reference [Sa] and the
diserete nlgebraic systemn was considered in Reference [Fe]. See also Reference [2VT]).
An important difference between our approach and the Augmented Lagrangian method
is that, as will be seen below, we will not require the bilinear form a(-, -} to be sym-
metric (although it eertainly is, for the problem we consider) and thus an associated
minimization prablem is not needed for deriving (1.73).

The residual aut-of-balance argument used to arrive at algorithm (1.73) is com-
pletely general and has physical meaning for nonlinear cases, either if the nonlinearity
comes from the momentum equations (Navier-Stokes problem) or from the constitutive
law of the mateérial, The step from problem (1.72) to problem (1.73) may he applied
to nonlinear problems as well, although in these cases Su and §p will be the solution
of a nonlinear problem that in turn has to be linearized, Our leading idea is trying
to converge in this process to the true incompressible solution. See the Appendix of
Reference [CCO].

There are possibly many ways for ‘re-discovering’ algorithm (1.73). Another one is
Lo introduce a false transient for the pressure (not for the momentum equation) assum-
ing the fluid to be slightly compressible and then to discretize the temparal derivative
uging the backward Euler scheme, Except for this discretization, this is nothing but the
artificial compressibility method introduced by Chorin [Ch]. The penalty parameter ¢
in this case would be the inverse of c?At, where ¢ is the speed of sound in the fluid
and At the time step (see Reference |IID] for further discussion). This approach makes
sense for algorithm (1.73) and for the algorithm considered in Section 1.4.4. However,
it censes to be valid when the second equation in (1.73) is coupled with a lincarized
form of the Navier-Stokes equations, whereas the residual argument used above can be
eusily extended to these cases.

Convergence of the algorithm

Before studying the convergence of the iterates of (1.73), let us state two simple
resulis:

Lemma 1.1 If g € Qo then ||q]lg/z = ||2]|-
Proof: Tt follows directly from the definition of || - [|g/z and the fact that, in our case,
Z=1R:
7= inf |lg+¢|
lella/z = inf |

- rgénlgt{nquz + leli? + 2(q, )}



1.4 Analysis of an iterative penalty method 1.31

ir 2 ell®
inf (lall* + el 15

llall- =]

This lemma will allow us to omit the subseript @/Z when using condition (1.10).
We will also need the following a priori estimates:

Lernma 1.2 Let u and p be the solution of the Stokes problem (1.70). Then

Ny

llull = 3= (1.74)
oIl = % (1 + g—:) (1.75)

Proof: Taking v = w in (1.70) we get
Kaojull* < a(u,u) = i) < Nifjull

and (1.74) follows. On the other hand, condition (1.10) implies that there exists v €
V' = {0} such that
Kalpllivll < b(p.v)
= a(u,v)—I(v)
< (Ni+ Nyllal) vl
and using (1.74) we obtain (1.75). O
We now proceed to the main result of this subsection.

Theorem 1.1 Let (u,p) € V % Qo be the solution of the Stokes problem (1.70) and
(u®, p0) € V % Qo the solution of (1.73). Define

N2
1= ¢g—"=
Kak?

If € = 1 then -
lim [|p P‘(')" =0, lim|u- u‘w“ =0
=t O3 i—s

Moreover, convergence is linear with &:

o - 2O < & o - 2| (1.76)
o — ] < 22ty — -1 (1.77)
A

Proof: Substracting the equations of (1.70) and (1.73) one finds:

alu—u v)—b(p-p,v)=0 VwEV

l . 1.78
E(P‘(‘Hl) - Fd{|}1Q) + b(g,u - ut(l')) =0 Vgeq@ ( )
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On the other hand, we have that:
05 (p- @)
- (Pc(ta-'l') = Pc{ijip_ pq(l')J +(p— pu(i—‘l'.}’P - p:{u'))

and then _
(p®) — p=1), p — p ) < (p— 1), p - p*9) (1.79)
This inequality will be used several times. Taking v = u - wi and g = p — pl(f} in
(1.78) and using (1.79) we get:
I{n”u _ ud[ijlli < ﬂ(u = unﬁ), - ut(i})
= b(p— p®,u—u)
= *!(P‘{'I] i)y Pr(.)J
< e(p—p ), p—p'Y)
< ellp—p 0 llp =2 (1.80)

Using the BB condition, there exists v € V — {0} such that
Killp - o [Ivll < b(p— p"7,v)

= a(u—u',v)
< Nafju = @ v]

and hence

i) Na i
I = 20| < Zu — ey (1.81)

Combining (1.80) and (1.81) relations (1.76) and (1.77) are found. Applying inductively
this inequalities, wa get

Ip =27 < @[lp = 24|
= w < #p -7

The theorem follows from the fact that @< 1. 0
If we take p*(°) = 0 and apply Lemma 1.2, we see that

llz = p"9| € C\F

= u|| < O (:42)

where the constants € and Cq are

G']_ H Nl (1 "|' —&)

=E_: H_u
Cg:=£—l(1+%r-‘:)
a [

The rates of convergence (1.82) will be checked numerically in Section 1.5.
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The result stated by Theorem 1.1 ean also be proved for the fully discrele system
and in mateix form, only requiring simple linear algebra concepts. This has been done
in Reference [CCO], where it is also explained why the penalty parameter must be
taken prapertional to ',

1.4.2 A Picard-based iterative algorithm for the Navier-Stokes equations

The Stokes problem is linear and to iterate is a price to be paid if one wants to satisfy
(weakly) the constraint Vu = 0 up to a certain tolerance with a given penalty param-
eter ¢, However, an iterative algorithm is needed for the Navier-Stokes equations and
if the iteration loop could be coupled with the iterative penalization, we would have
satisfied the incompressibility constraint at a low computational cost. The purpose of
this section is to investigate whether this is possible or not when the Picard scheme
is used to deal with the nonlinear term, Theorem 1.2 below gives sufficient conditions
under which the final algorithm is convergent.

The problem to be considered now is (1.8) with ¢ given by (1.3) (or its skew-
symmaetric form):

Pind (u,p) € V x Qq such that
e(u,m,v) +a(u,v) - b(p,v)=1I{v) VveV

1.83
blg,u) =0 Vege@ (L6
The Picard or successive substitution algorithm for this problem is:
Given ul® € V, fori = 1,2, ... find (u®), p)) € V x Qp such that
c(u(i-—n’ I.l(i}"i") -1}- u(lj(“)‘v) - b(P{“].T) = l('\f) VV E V (1 Bq)

b(g, u(i)) =0 Vge@

We note that sometimes the name Picard algorithm is reserved for the case when

all arguments of the nonlinear term are evaluated in the previous iteration (see Eqn.

(1.62)). Convergence of algorithm (1.84) for any initinl guess u(®) assuming that con-

dition (1.12) holds is a well known result (see, e.g. [CK4] for the case of strong penalty
methods), The scheme we propose and analyse is the following:

Given (u(®), ) € V x Qq, fori = 1,2, .. find (u'®),p") € V X Qo such that
e(uil=, w'®), v) 4 a(uwl, v) = b(p®), v) = I(v) WevV

D, 0) + g, w®) = (@ V,g)  VgeQ

Once again, existence and uniqueness of solution for (1.85) follows considering

the problem in the space V x @ and applying Lax-Milgram’s Lemma, since coercivity

of the associated bilinear form is & consequence of (1.9) and (1.11), Before proving

convergence in norm of the iterates of (1.85) to the solution of (1.83) we state the
following a priori estimates to be used later:

(1.85)

Lemma 1.3 Let (u,p) and (u*), p"Y) be the solutions of (1.83) and (1.85), respec-
tively. Then

l'l
£ 1,36

) < %1 ¥ \/} (e = #2001+ liel) (L:87)
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Proof: Estimate (1.86) is obtained exactly as (1.74) noting (1.11). To prove (1.87),
take v = u) and ¢ = p*@) in (1.85), We get:

f(u'“)) = a(uq(i)huﬂ{i)) + d.(pa(i) _ pl(i—'l)‘Pt(i))
= a.(u'(‘),u'(‘)) + %"p:(i) _Pu(i—l)ut + %(”p-m"m _ “p:{c--x)“n)

> ﬂ(“c(i],u:(i)} - %llp-(t'-l)“i

and hence ; _ .
2K [ G[* < 23 [|us| + ¢ [p*C=2)?

ﬂ e(i)(2 efi=1)12
= %, 'I'Ifu““ H + ‘“P |

and (1.87) follows easily applying the triangle inequality to [p*E=1) = p o 1. |
We next establish convergence of algorithm (1.85).

Theorem 1.2 Let (u,p) € V x Qg and (u@),p®)) € V' x Qg be the solutions of (1.83)

and (1.85) respectively. Assume that

K. K?
K. K}
€< TNE

and for any a = 2 define the following constants:

E!—. i & - f(ﬂ) . _ '(u) ) B _‘!.-“J}]:E]—l
M= m*\/:r.,("‘m““ I+ =2+ el ) | 2= /5

G :i(N,.MJraNn)
93
%yl 2\}
B =3 PE(I'I*E)
_ L
P EK’.;C"'
¥ 1= Bx + 9

with x defined in (1.12). Suppose that % < 1 and that the initial guess for the velocity
satigfies |[u*(®)|| < M. Then, the following holds:

[w® <M, i=1,2.. (1.88)
lim |p—-p @ =0, lim[lu=u@|=0 (1.89)
=i =200

Moreover, convergence is linear with §, that is, there exist constants C and €' such
that, for i=1,2,... i _
= it { c:l a i
llp = p ‘ | < x‘ (1.90)

Ju=ul)) < o'y

Proof: Only (1.90) has to be proved, since (1.89) follows from the fact that ¥ < 1. We
proceed by induction, By hypothesis, (1.88) holds for i = 0, Assume that it is true up
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toi-1, withi > 1 fixed. Substracting the equations of (1.85) from (1.83) and using the
fact that for a bilinear form g we have g(uy,v1) — g(uz, va) = glug = uz, v1) + g(uz, v =
vg), we get:

e(u— uli=1), u,v) + c(u‘{"'l}, u-— u'(‘lu,v)
tau—u® ) sp-p9 V=0  WweV
e(p ) - p ) 4 b(gu-u) =0 VgeQ

Taking v = u — v and g = p - p*¥) we obtain
a(u - ul) - u‘m) = f(p‘(‘) — =) p““)] - e(u— w1y, u- u'm)
and using the coereivity of a, (1.12) and Lemma 1.3:

Koflu = u O < Nellulllu - wCDfju = w4 ellp — 2 lp — O
< Kaxllu = oD lju— u@) 4+ elp — 2 Dlp - 5O (1.90)

The BB condition implies that there exists v € V — {0} such that

Kyllp = O Iv]| € b(p = 2D, v)
= u(u - I;i(i}‘v) 4 u‘:(u = m'l(l‘—'.l')‘I l.l.\") + c(“t(i—i}.u = u.(;)"v)

< (Mol — wCD 4 NI — a4 Nolju - w O] ) fv]
Using again Lemma 1.3 and (1.88) for i — 1
IO < el = w0+ B w0 4 2w (192
Inequalities (1.91) and (1.92) can be written as
PP < =g 4 E.J_ pli-1) pli) (1.93)
pli) <% Ky U(' 1) 4 (NeM f{,,) a0 (1.94)
where we have defined
gl = lu—u®@), PP i=|p- P9

for j =ior -1, Using (1.94) in (1.93) we gel:

v’ < 4,09 + 4, (1.95)
where
N.M N,
- (l I) (1=1}) i
= 7 "‘K F ( K +1q,)

Ag = f—-]-'-—P“ Dy K" U"'”

Ka
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Sinee ,
Ay £ A= xUU-l} + H_P(i—-l)cﬂ
K,

wao see from (1.95) that
UE? < AU + 4, (1.96)

A2 contains the term ;
(i-1),_+_ p(i-1)
2yl GR.EF Ca
and, since K, = N, we got
E .t Ny,
< — pli=1), .2 pr(i-1)
Az s {“P X K
£ opt-ny Lo pl-n
S PTG

Hence A] = 2a4; and from (1.96) we obtain:

0O < 2Ao+ 5 (43 +447) !

<[1+3(+2)]

= fAds

ot

Substitution of this inequality in (1.94) and writing the expression of 4g leads to

) < ﬁx(j{i-l) % ﬁf.}_:,a“ pli=1)

PO < Loy g1 4 gy v 4 o004 PO
= K K,

< BXCaU0) + feg-CaCuPEY
£
< BxC Ut 4 pepl-!
From this and assuming that (1.90) holds up to i — 1 one easily gets that (1.90) is also
true for the given i with the constants appearing in (1.90) € = Cellu = u*®|| + ||p -
PO, ¢ = |lu =@ 4 C7Y|p ~ p“9||. It only remains to show that (1.88) holds

for this iteration. Applying Lemma 1.3 and the fact that Pi-1) < ¢, 00 4 PO) we
obtain:

N
@) < 4+ o/ 5 [Calln = w4 llp = 5] + ]
i a

N € [(Ne Na ) () ]
= Bt [(GRem 4 ag2) u= w4 o= 5O 4 ol
=M

and the induction is complete. (]
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1t is interesting to compare the result stated by this theorem with what one ob-
tains for the Picard algorithm (1.84). First of all, in this case convergence is achieved
regardless of the initial guess ul®, whereas for (1.85) we have seen that ul® has to
have & norin bounded by the constant M. For practical purposes, this does not present
any trouble, since one usually starts taking u® = 0,

For (1.84) it is known that (1.90) holds with x instead of ¥. However, from the
definition of C,, 8 and & we see that if & is taken of order 7%, with ¢ < Y, then & = 0
and g — 1 as ¢ — 0, that is, § — x. So, for € small the convergence of algorithm (1.85)
is the same as that of (1.84). One can obtain « such that ¥ be minimized (under the
restriction & = 2). For example, taking the norms and the coercivity constants of the
farms involved in the problem equal to unity, one obtains that the optimal condition
for achieving convergence is x < 0.7511 for ¢ = 107" and x < 0.9744 for ¢ = 1074,
The fact that, in any case, § = x is the cost of converging te the true incompressible
golution using a penalized scheme,

1.4.3 A Newton-Raphson-based iterative algorithm for the Navier-Stokes
equations

The objeetive of this section is to analyse the algorithm obtained when the Newton-
Raphson scheme is coupled with the iterative penalization in the sense used previously
for the Picard schema. Once again, we will see that the usual convergence requirements
of the Newton-Raphson method have to be slightly restricted. In this case, there is an-
other important issue to be considered. It is well known that convergence is quadratic
for Newton-Raphson's iterates. The guestion is whether this rate of convergence will
be inherited by the seheme we propose. The answer is that this is true up to a certain
iteration. From there onwards, the convergence rate will only be linear. However, the
numerical experiments we have performed, some of which are presented in Section 1.5,
indieate that the situation is not so bad as it might seem. For small penally parame-
ters, usually much larger than those used in classical penalty methods, convergence is
achieved before its rate turns from quadratic to linear.
The Newton-Raphsen algorithm applied to problem (1.83) reads as follows:

Given u® € V, fori = 1,2,... find (u®), pt¥)) € V x Qq such that

c(“uul}: “(i}‘v} + "-"(um: ult=1), v)+ ﬂ(“ml V)= b(p',v)
= c(ulV, ulV v) 4 I(v) YveEV (1.97)
by, u) = 0 VoeQ
That this algorithm is convergent if the initial guess is sufficiently close to the
exact solution and that convergence is quadratic is a well known result, In [GR], this

is proved when the solution of (1.84) belongs to a nonsingular branch. The modified
algorithm we will consider is the following:

Given (u®), p ) € V % Qq, fori = 1,2,... find (uld) pt)) € V % Qg such that
f:(utti_l), u'“), v) + c(ue{'i)'un(i—lj.v) + ﬂ(“t(ﬂﬂr) _ b(p‘u}lv)
. c(uu(i—i)’uu(i—l)‘v) +1(v) VveV (1.98)
e(p ™, q) + b(g, u ) = (Y, q) Ve @
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Our analysis will be based on the assumption that (1.12) holds.

Theorem 1.3 Let (u,p) € V x Qo and ['u‘("},p‘("}) € V % Q¢ be the solutions of (1.83)
and (1.98) respectively. Let a = 2 be given and define the following constants:

2N,
K ()
K, N,
Cu 1= g (14 3x) +ag
1 1/, 2\%
oo e i
p 2 t 2 ( * a)
L
gi=¢ .
Assume that the following conditions are satisfied:
(H1) u— w®)]| < ﬂiﬁg with o<1, v>1
Ll
H2 il a
(#2) B 5
(H3) flp—-p || < L {75 P llp— 7@ < 222

piy? C Chy
Under these conditions, we have that, for ¢ = 1,2, ...

1 o C.o

71 ~ul)| ¢ ===, ') <557
(1) Jo- w0 < =2, o= < g5

K
(72) Ko = Nw®)| > 521 - x)
(7'3) Jim [lp=p"| =0, Jim |lu— ') =0
Moreover, if for a certain [

7=1 ar-1
HA4 T8 S
(H#4) By
then convergence is quadratic up to this I:

1 o y Co o2

(T'4) ||“—“'(”||{EET- lp = 2 < E = 1€ig7T

Proof: We proceed by induction. For ¢ = 0, (7'1) is precisely (H1) and (#3) if the
second option in this hypothesis is taken. In fact, for i = 1,2, ... we will see that any of
the two possibilities in (H3) are sufficient for proving (7'1). On the other hand, (7'2)
for i = 0 follows from (H1) and (1.86):

— Nol[u ®|| = Ko = Nelju ~ u = No[u]

> I{ - &—“—n&l Kﬂx

2N,
- Exu(l = X)

(1.99)
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since 8 = 1. Now, let i be fixed and assume (7'1) and (7'2) hold up to i — 1. In order
to prove existence and uniqueness of solution for (1.98), let us write this problem as
follows: Find (u'("),p“(")) € V x Qp such that

Biy(w,p v ) = Liy(v,q) Y(v,g)eV x@Q

where
Hi_l(u'p; v‘q) § - I"-‘!(m"r(‘-l]l u, \\“) + l.'-'(ll, u’-'{‘—'”’v) + ﬂ-(u:"r)
— b(p,v)+ (p, g) + blg, n)
Lica(v,q) = U(v) + c(u'(“‘), u'(“'l),v) - g(p‘(“"-}, q)

If we prove that B;_; is coercive in V' ¥ @, existence and uniqueness will follow from
Lax-Milgram's Lemma. We see that

Bioi(v, 4%, q) = e(v,u D v) + a(v,v) + (g,0)
= (Ko = NJu @D {|v]* + elll®
> min{ K, — No|lw G|, e ([Ivll® + ||a]*)
and the fact that K, — No||u®V)| > 0 is a consequence of (7'2) used inductively,

Applying the same arguments as in Theorem 1.2 to arrive at (1.91) and (1.92) we
now obtain:

Kafiu = u@|? < Nefju— 0 ) ju — u @
+ Vol = 0O D 4 effp = p Do~ p | (1.100)
Kyllp — 9| < Nef|ul|lju = w®|| + Neflu = u=1)2
+ Nollu G2 [l = w | Nyffun — u | (1.101)

If we call

UG = la=u®@|, PO i=|p-pW@|, j=iori-1
Ay =K, - Nﬂ[|u£“'1}||

As 1= NG 4 epl-1 ( £ + 22 = o= )
i1y Ve rrii-12
i ¢ pli=1) 1€ yp(i=1)
Ay =P % U
we find from the previous inequalities that

AU 2 4,00 4 A, (1.102)

From (T'2) it is A; > 0. Note now that, from (7'1) and (1.88);

Ny d(i=1) . Na _ No ﬂ'_'__i
e . e e o Ry Moy oy
_% & K(l—X)
5 Xt E T T

< Uy
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and 3o we have

Ay < Ag = NUUD? | epli-Dg
A% contains the term

(i-1)2, p(i-1)  Na
2N, U <P cxm

Since K, <= N, we have that

Ay Ne rii-1y? L 1
24145 < 2K e PY llﬁv“ W< 43

and hence, from (1.102) and using that A; < Ap and (7°2):

idg 1 i
et ST 2
O < e+ 37 (A + 441 43)
14, 1 2\ %
o st A RCE )
{2A1+2A1(+u) ;
_ gl
=p7
2 (i-1)? (i-1)
| aph pi-tg

= cput-n* 4 gL, P~V
Ne
On the other hand, for the pressures we obtain from (1.101) that:

PO ¢ Beue? sy (R0 4 gl + ) U0

N"U{"‘J + e

? UE-0* 4 CEAUSN? 4 fCa TP

Noting that
N, Ns. 2N, _Ai

A0 m et
TP o (R Rl
we finally obtain that (1.100) and (1.101) imply:
v < oput-? 4 ggos pU-1) (1.103)
PO < g put=N* 4 g Pty (1.104)
Now, using (H2) and (7'1) for i — 1 one gets:
1 e 9=1 Cl'Cav

() e
¥ {(‘?’51'3“15““?"Jr 7 | CB 7
_ 1 o?
N7
2 4=l Cuo
(¥) AR e Nl el
: ':Gc“ﬁﬂ’ﬂ“ I B
_Caga
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Since ¢ < 1, the induction for (7'1) is closad, Observe that either of the two possibilities
in (H3) suffices for proving this part of the thesis. (7'2) is obtained from (7'1) using
the same steps as in (1.99). In order to prove (7'3), from (1.103) and (1.104) we see
that the required condition is:

o) = cpul) eg <1

From (7'1) and (H2) it follows that 0¢) < o < 1, so convergence of the algorithm is
ensured. Inequalities (1.103) and (1.104) show that the rate of convergence will be at
least linear.

Now, suppose that (H4) holds. For 1 € ¢ < I we obtain from (1.103) and (1.104)
and assuming (7'4) to be true up to i — 1, that:

1 u, i=1
g% 1 =1 ai-1C 1T ot

U(‘}‘:cﬁczﬁz + ; a o
1 arzi
= EET |
PO < 0O Ty + -,7_1 i iv
_Gao
CB
This proves (T'4) and completes the proof of the theorem, 0

This theorem states that if the initial guess is close enough to the final solution
and ¢ is sufficiently small, algorithm (1.98) will converge. The situation is similar for
the standard Newton-Raphson scheme (1.97). The enly difference in the requirement
for the initial velocity guess is that (1) has to held but with B = 1. Nevertheless, the
same remarks as in Theorem 1.2 apply and in our case a can be taken such that # — 1
when ¢ — 0, Another observation is that in (#3) we can choose either having a ‘geed’
initial pressure guess or limiting the value of .

1.4.4 Uncoupling of the iterative penalization

In Sections 1.4.2 and 1.4.3 we have seen that if the iterative penalization is coupled with
the iterative schemme used to deal with the convective term of the Navier-Stokes equa-
tions, the conditions under which this scheme converges have to be restricted. There is
also the possibility of uncoupling the ileration due to the nonlinearity of the equations
and the imposition on the incompressibility constraint. The purpose of this section is
the analysis of the [ollowing algorithm:

Given p*(®) € @y, for i = 1,2, ... find (), p*()) € V x Qq such that
e(u™ wl) vy a{u‘{i),v) - b(p“('->,‘v) =1(v) VveV
e(p D, q) + b(g, u ) = (N g)  VgEQ

For a given 1, existence and uniqueness of solution is & consequence of assumption
(1.12) [GR). For each iteration of this algorithm a nonlinear problem has to be solved.

(1.105)
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We will assume that the solution found in this process is exact. In this ease, we obtain
a result similar to the one encountered for the Stokes problem in Section 1.4.1:

Theorem 1.4 Let (u,p) € V x Qo and (u'®, p*0)) € V x Qq be the solutions of (1.83)
and (1.105), respectively. Define the following constants:

¥ i % + \/%(Hp = || + [lll)

Gy = K,(1-x%)
e, Ku N, &
Gi=gxt M+ g,
&
F 4 Cleg
Ifé < 1 then:
o) s M, i=12,. (1.106)
lim |jp - p" =0, lim |Jlu-u®||=0 (1.107)
1ot 20 T

Moreover, convergence is linear with @

e = 2] < €llp — p | (1:468)
lla = @] < €3 €lp - 4 '

Proof: First observe that (1.87) holds for the solution |[u*®)]| of (1.105). This can be
proved exactly as in Lemma 1.3. Thus, (1.106) is verified for i = 1. Let i > 1 be given
and assume this is true up to this iteration. If the ideas used to arrive at (1.91) and
(1.92) in Theorem 1.2 are now applied, one finds:

Kallu— v @2 < Neflulflu— o2 4 ellp - g Jlp = pP (1.109)
Killp = 21| < Nellullljo = w O + Nellulflu - uO)
+ Nl ~ w) (1.110)

Combining inequalities (1.109) and (1.110), using the estimates (1.86) for u and (1.106)
for u'(") and considering the definition of the constants in the statement of the theorem,

we arrive at: ; :
llp - p"@| < ellp - ¢
la = w®) < 205l ~ 2

from where (1.108) follows. Since & < 1 we have that ||p - )| < |lp = p2?| and
we obtain from (1.87) that (1.108) holds for ¢ + 1, This closes the induction, Finally,
(1.108) implies (1.107) for € < 1. 0
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1.5 Numerical examples

The three examples presented in this section concern the numerical behavior of the
iterative penalty method analysed heretofore. The implementation of the scheme is
treated in detail in Chapter 2, where the calculation of the pressure, the streamfunction
and the vorticity w := ¥V X u is described in detail. Only results using the @3/ F; will be
shown. Similar answers are obtained using other elements that satisfy the BB condition
(see Chapter 2).

Convergence has been checked only in velocities, using the norm of the residual
over the norm of the last iterate as the parameter to decide whether this convergence
has been achieved or not (¢f. Eqn. (1.64)). In the figures presented thereafter, this
parameter in % is what is called residual. Since we are mainly interested in the satis-
faction of the incompressibility constraint, also the L* norm of the discrete divergence
of the velocity has been computed.

All the ealculations have been eartied out on a CONVEX-C120 computer using
double arithmetic precision.

Example 1.1 Two-dimensional driven cavity flow

In this example, the Stokes problem with g = 1 in the unit square [0, 1] % [0, 1] has
been solved. The boundary conditions have been taken as u = (1,0)fory = 1,0 < 2 <
1 (z, y being the Cartesian coordinates) and u = (0,0) on the rest of the boundary
(leaky-lid conditions). External body forces have been taken zero. The domain has
been discretized using a uniform maesh of 25 x 26 nodal points (12 x 12 elements). The
velocity vectors, streamlines, pressure conbours and vorticity contours for this problem
have been plotted in Figure 1.6, Figure 1.7 shows the convergence history for the values
of the penalty parameter € = 1077, 10~%, 10~* and 10~?, Observe that the difference
in the slope of the curves agrees with the theoretical prediction (1.82).

Once the finite element discretization has been performed, the term V - u leads
to BU, where B = G7 is the discrete divergence matrix (cf. Box 1.2). In order to
study the convergence of the iterates to the incompressible solution, the norm of Bu
has been computed. Figure 1.8 shows the results obtained for different values of the
penalty parameter, The curves correspond to 1, 2 and § iterations in the algorithm
(1.73). Once again, their relative ﬁlﬂ{]?E agrees with what (1.82) predicts. Observe that
|BUY|| will be bounded by ¢G||p“? — p**=1)||, where G is the norm of the Gramm
matrix M, given in Box 1.2 whose components are the scalar products of the basis
functions for the pressure (see (1.73)).

Example 1.2 Three-dimensional driven cavity flow

The numerical simulation of three dimensional flows is a challenge, even for simple
prohlems, mainly because of the large amount of computer memory required. One may
afford long CPU times in research environments, but the real problem is to make the
problem fit in the limits of the available computer memory,

Tterative solvers for algebraic linear systems have the important feature of being
much less memory demanding than direct methods. On the other hand, they are very
gensitive to the condition number of the system matrix. The number of iterations to
he performed to achieve convergence is highly inereased when this condition number
ErOWs,

In this example we present some preliminary results obtained for the Stokes flow
in a 3D cavity using the iterative penalty method and solving the algebraic system
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Figure 1.6 Numerical solution of the two-dimensional eavity flow problem.
(1): Velocity vectors; (2): Streamfunciion contours; (3): Pressure
contours; (1): Vorticity contours,

using the conjugate gradient algorithm (see Reference [RTF] for similar experiments).
The domain is the unit cube [0,1]* discretized using a uniform mesh of 21 x 21 x 21
nodal points (10 % 10 X 10 @/ P; elements), The boundary conditions are u = (0,1,0)
forz=1,0<2<1, 0<y=<1andu=0on the rest of the boundary. The viscosity
has been taken g = 1 and body forces are zero, Pressure contours are shown in Figure
1.9.

The total memory required for this problem has been 81.27 Mb (Mega-bytes), a
congiderable figure if we consider that it has been run on a computer with 128 Mb
of central memory. Most of this memory (78.91 Mb) has been needed to allocate the
element arrays (shape functions, derivatives, element matrices, etc.). The memory
required for the conjugate gradient solver has been only 149 Kb (Kilo-bytes).

1t is clear that the smaller ¢ be, the larger will be the condition number of the
stiffness matrix and therefore less congugate gradient (CG) iterations will be needed,
but more iterative penalization (IP) iterations will be required to reach a prescribed
convergence tolerance, Here, the tolerance for the CG algorithm has been taken as
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Figure 1.7 Convergence history for the two-dimensional cavity flow example
using different penalty parameters.

10~% and the convergence tolerance ag 10~% %. The results obtained are the following:

Penalty CQ iterations LP iterations CPU (seconds)
10°% 418 6 8778
1074 2013 3 25924
107¢ 6303 2 36594

The OPU times are only referred to the solver algorithm, From these results it is
apparent that it is worth using a ‘large’ penalty parameter, since the final CPU time is
smaller, thanks to the small number of CG iterations, This compensates the fact that
more iterations have to be performed to satisfy the incompressibility constraint up to
the prescribed tolerance.

The number of GG and IP iterations and the CPU time have been plotted in
Figure 1,10, as well as the convergence history for the values of ¢ considered.

Example 1.3 Flow over a backward-facing step

The purpose of this example is to present some numerical results concerning the
algorithms studied in Sections 1.4.2 and 1.4.3 for the incompressible Navier-Stokes
equations. We have chosen this well known benchmark problem because a large num-
ber of numerical results are available. The computational domain we have taken is the
rectangle [0, 22] % [0, 1.5] with a step of length 3 and height 0.5 placed in the lower left
corner. A detail of the mesh used in the calculation is shown in Figure 1.11.(1). This
mesh is composed of 408 biquadratic elements (for the velocity interpolation) and 1721
nodal points.
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Figure 1.8 Norm of the discreie divergence for the 2D cavity flow example
for different number of iterntions.

On the left boundary @ = 0 a parabolic velocity profile with maximum value (1,0)
has been preseribed, The viscosity has been taken as p = 0.005 and the density p = 1.
Thus, the Reynolds number based on the inflow profile and the step height is Re = 100.
The outflow boundary ¢ = 22, 0 < y < 1.5 has been left free. We have employed the
expression (1.4) for the viscous term. In this case, the associated natural boundary
condition is zero traction. On the rest of the boundary, the no-slip condition u = 0 has
been imposed. External body forces are zero.

The computed pressure contours and a detail of the streamlines are plotted in
Figures 1.11.(2) to 1.11.(4). These resulls have been obtained using a penalty param-
oter ¢ = 1071 and with a tolerance of 10-"%, The iterative scheme employed has been
(1.08). Now we discuss the performance of the algorithms (1.85) and (1.98) for this
problem when the classical penalty method and the iterative penalization proposed in
this chapter are used. In the former case, the right-hand-side in the second equation of
both (1.85) and (1.98) is zero.

Consider first algorithm (1.85). Figure 1.12,(1) shows the convergence history
in the discrete L? norm when both the classical and the iterative penalty methods
are used. No difference can be observed in the plot eéven though the parameter that
defines convergence in the former case is y¥ whereas in the latter it is ¥ > x (sec
(1.90)). The values of the relative norm of the residual in iteration number 18 are
0.87215 x 10~? for the classical penalty method and 0.87108 x 107* for the iterative
penalization. However, the important issue is the evolution of [|[BU“Y|| shown in Fig-
ure 1.12.(2). For the classical penalty methad this norm remains constant (and, as
expected, of order €). On the other hand, the velocity solution of algorithm (1.85)
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Figure 1.9 Pressure contours for the 3D cavity flow problem.

converges linearly to a (weakly) solencidal field. The same experiments have been per-
formed using the Newton-Raphson-based algorithm (1.98), If the initial guess is taken
as u®) = 0, p*(®) = 0 the scheme does not converge, In order to obtain a good initial
guess, at least two iterations of algorithm (1.85) have to be performed, both for the
classical and the iterative penalty methods. For ¢ = 1074, the convergence history of
the two methods shown in Figure 1.12.(3) is the game. The relative norm of the residual
reaches the value 0.9986 x 10~* at iteration number 7 for the classical penalty method
and 0.9781 x 10~% if (1.98) is used. The evolution of the norm of the discrete divergence
(Figure 1.12.(4)) is certainly very different for the two methods. Whereas the penalty
method yields a constant value, the iterative penalization converges quadratically to a
zero divergence velocity field.

Similar results are obtained when the penalty parameter is ¢ = 10!, Figures
1.13.(1) and 1.13.(2) show the convergence history and the evolution of ||EU‘(i)l| for
the Picard-based algorithm (1.85). It is interesting to observe that for this large penalty
number the residual norm using (1.85) is only slightly larger than using the classical
penalty method. For the Newton-Raphson-based method, results are shown in Figures
1.13.(3) and 1.13.(4) and are especially interesting. The convergence rate for the iter-
ates of (1.98) (see Figure 1.13.(3)) is quadratic up to iteration number 6 (except for the
two first iterations, in which scheme (1.85) has been used). From there on, this rate
turns to be linear. This possibility was already predicted in Theorem 1.3. The classical
penalty method has a global quadratic convergence rate, but ||[BUY)|| keeps constant
in the iterative process (Figure 1.13.(4)) at an unacceptable value,
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Figure 1,10 Hesults for the 3D cavity flow problem.

1.6 Summary and conclusions

The interest of this chapter has been focussed on the use of penalty methods to
deal with the incompressibility constraint of the Navier-Stokes equations, with special
reference to their computational behavior, We have started considering the strong
penalty method and the related selective underintegration (RIP method), since this
approach seems simpler than the weak penalization. A priori, there are no reasons to
reject it, Nevertheless, the main conclusion of Section 1.3 is that the wenk penalty
method is Lo be preferred.

The new results and methods that have been introduced in this direction are:

s Stability of some 2D elements. Numerical experiments have demonstrated that
the Q2/Q1 element suffers from having a small stability constant. The Q3/F
element is robust, although very inaccurate (overdiffusive). Furthermore, it can-
not be exactly reproduced using a RIP method. The integration error may be
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Figure 1.11 Numerical solution of the backward-facing step problem. (1):
Detail of the mesh; (2): Pressure contours; (3): Detail of pressure
contours; {4): Detail of streamlines.

responsible in part for this wrong behavior. It has also been proved theoretically
and confirmed threugh numerical experiments that the Q;/ P element cannot be
emmulated using the strong penalty method.

o Pressure calculation. A filtering technigue has been proposed to compute the pres-
sure for the §;/0Q; element that has proved to be effective. Also, the possibility
of solving a Poisson equation for the pressure after the velocity is known has been
studied.

s Petrov-Galerkin weighting. Based on the results of [Co2], a Streamline Diffusion
method has been introduced for the Navier-Stokes equations when the strong
penalization is used.

It is important to point out that the numerical experiments presented in Section
1.3 are only those thal have been considered representalive, but many other tests have
also been conducted that, for brevity, have not been included here.

However, the most important results are those concerning the iterative (weak)
penalty method proposed and analysed in Section 1.4. We believe that this method
has very interesting features. The penalty method for the incompressible Navier-Stokes
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Figure 1.12 Comparison of the classical and iterative penalty methods for the
backward-facing step problem with ¢ = 10~%, (1): Convergence
history for the Picard algorithm; (2): Norm of the constraint for
the Picard algorithm; (3): Convergence history for the Newton-
Raphson algorithm; (4): Norm of the consiraint for the Newlon-
Raphson algorithm,

equations in its classical form is attractive. It reduces the number of nodal unknowns
and yields good resnlts., This is a very important attribute if three-dimensional prob-
lems have to be solved on medium-size computers. However, small penalty paramoters
lead to ill-conditioned stiffness matrices, Usually, this ill-conditioning is not a trouble
if direct solvers are used, But, still thinking in the numerieal simulation of 3-D flows,
iterative solvers are almost imperative when a real problem has to be faced, These
solvers are very sensitive to the condition number of the stiffness matrix and this seri-
ously limits the feasibility of the classical penalty method. The iterative penalization
presented here tries to circumvent, at least in part, this inconvenience. It allows the
use of much larger penalty parameters, thus yielding matrices whose condition num-
bers are much smaller. Whether this will be enough for using iterative solvers or not
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Figure 1.13 Comparison of the elassical and iterative penalty methods for the
backward-facing step problem with ¢ = 107!, (1): Convergence
history for the Picard algorithm; (2): Norm of the constraint for
the Picard algorithm; (3): Convergence history for the Newton-
Raphson algorithm; (4): Norm of the constraint for the Newlon-
Raphsen algorithm,

is something that experience has to provide, Results for the 3D cavity flow example
presented in Section 1.5 (for the Stokes problem) using the conjugate gradient method
are certainly encouraging.

The iterative penalization presented here may be obtained from different ap-
proaches conceptually different. For the Stokes problem, it reduces to the Augmented
Lagrangian method combined with the Uzawa algorithn to uncouple the pressure. It
can also be interpreted as the introduction of an artificial compressibility and a false
transient only for the pressure whenever the tempaoral derivative is discretized using the
backward Fuler scheme. However, we prefer the residual argument describad in Sec-
tion 1.4.1 sinee it is still valid when the iterative equation for the pressure is coupled
with a linearized form of the momentum equations in the Navier-Stokes problem. The



1.62 1 Penalty finite element methods for the stationary Navier-Stokes equations

convergence analysis of the iterative penalty method coupled with this linearization of
the convective term has shown that:

e Picard-based algorithm. The analysis of the algorithm (Theorem 1.2) reveals that
the rate of convergence is smaller than for the classical penalty method.

s Newton-Raphson based algorithm. The attraction ball of the exnct solution hap-
pens to be smaller than for the classical penalization, Quadratic convergence can
only be ensured up to a certain iteration (Theoram 1.3).

However, numerical experiments indicate that these effects are only apparent when
the penalty parameter is “very large’, eompared with the standards of the classical ap-
proach. Anyway, if needed, there is also the possibility of uncoupling the iterative
penalization (Theorem 1.4) and obtain a rate of convergence that only depends on the
penalty parameter.

In practice, it is common to use penalties of order 10784~ to 107" ~!. We have
already said that these values can be easily handled using direct solvers. However, there
are gome practical cases in which the viscosity varies several orders of magnitude in the
flutd domain, as in guasi-Newtonian fluids with thermal dependent physical proporties,
In these cases, the above rule has to be applied using the smallest value of the viscosity,
thus relaxing in excess the incompressibility constraint in the high viscosity zones. We
will start up again with this argument in Chapter 3.
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CHAFPTER 2

TRANSIENT NAVIER-STOKES EQUATIONS:
FULLY DISCRETE ALGORITHM
AND COMPUTATIONAL ASPECTS

2.1 Introduction

The purpose of this chapter is to present an algorithm for the numerical simulation
of the transient Navier-Stokes equations using the ideas of Chapter 1, as well as the
technique presented in Reference [Col to deal with convection dominated flows. The
emphasis will be mainly computational, giving in Section 2.6 a fully discrete and lin-
earized numerical scheme adapted to the implementation on a computer.

The basic tools of the numerical model are now briefly desceribed. The temporal
derivatives are discretized using the generalized trapezoidal rule as described in [Co
for the convection-diffusion equation. The incompressibility constraint is treated by
using div-stable velocity-pressure interpolations. The pressure is eliminated through
penalization, Several choices are discussed, in particular the iterative penalty method
introduced and analyzed in Chapter 1 (using weak penalization) and a particular version
of the artificial compressibility method. Since the stabilization of the pressure is left to
the finite alement interpolation, only the convection of the velocity has to be stabilized
when high Reynolds number flows are considered. This is done by means of a Streamline
Diffusion (§D) operator added to the Galerkin variational form and properly linearized,

While the mathematical analysis of the finite element method for the convection-
diffusion equation and the stationary Navier-Stokes equations using the Galerkin ap-
proach is fairly complete, there are still a lot of open questions for the full Navier-Stokes
equations. The most extensive analysis of the transient problem we are aware of is
that of Heywood & Rannacher [HR1-4]. Error estimates are given for the Galerkin
finite element approximation of the Navier-Stokes equations with homogeneous Dirich-
let boundary conditions. The time diseretization using the Crank-Nicolson scheme is
analysed in the last paper of this series [HR4]. Although we are interested in more
general situations, the results obtained by these authors will be often referred fo in
this chapter. Our approach differs from the one they analyse in the use of penalty
methods, the SD operator, the boundary conditions and the way the trapezoidal rule
is implemented.

Based on the results of the previous chapter, the penalization of the incompress-
ihility constraint is viewed as an ilerative procedure to achieve this restriction rather
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than a perturbation of the initial problem. Because of this, it is not considered until
Section 2.5, where the way the nonlinear system of equations is solved is treated.

Once the description of the numerical algorithm is complete, Section 2.7 presents
the methods used to compute nodal pressure values ns well as nodal values of the
vorticity and the physieal properties when they are variable. This will be used in the
next chapter, where the numerieal simulation of thermally coupled flows and nonlinear
materialz is studied, In these cases, the density depends on the temperature and the
viscosity depends on the invariants of the strain rate tensor and perhaps also on the
temperature. For the particular case of two-dimensional flows, an algorithm to compute
the streamfunction is presented.

The numerical examples presented in the previous chapler were mainly intended
to verify the theory. However, such theorefical grounds are not available for the gen-
eral problem considered here and the numerical experimentation is of fundamental
importance. The most common benchmark tests for the numerical simulation of in-
compressible flow problems are presented in Section 2.8, namely, the driven cavity flow
at (relatively) high Reynolds numbers, the flow over a backward facing step and the flow
past a cylinder, The meshes used in the caleulations are somehow coarse, if compared
with the results presented in the literature, since one of our purposes is to assess the
performance of the SD operator when the Galerkin approach yields oscillatory results.
Nevertheless, they have to be fine enough to capture the physical details of the flow.
In complicated flow situations (the most common in reality) this is the main challenge
that computational fluid dynamics has at present.

The literature on finite element methods for incompressible viscous fluids is vast.
We again refer to the well-known text books [CO], [C55] and the more recent texts [Gul,
[Pi] for a general presentation of the problem. A mathematically oriented exposition can
be found in the books of Temam [Te] and Girault & Raviart [GR1]. For a comprehensive
engineering treatment of the problem the reader is referred to the book of Zienkiewiez
& Taylor (vol. 2) [ZT].

2.2 The continuous problem

In this chapier we will attempt the numerical solution of the following initial and
boundary value problem:

olBen + (- V)u) = 207 - #(u) + Vp = ot WX, (21)
Vou=0 nox(0,T) (22

u=1 en [p % (0,7)  (2.3)

n-o=t on Dy x (0,7)  (2.4)

u(x, 0) = uo(x) nx{0}  (26)

Besides the notation introduced in Chapter 1, the meaning of the different symbaols
appearing in (2.1)~(2.5) is the following. The time interval where the problem is to be
solved is (0,7'), with 7' = 0. The temporal derivative of the velocity has been denoted
by &u, t being the time variable. The overbars in & and t denote prescribed values
(boundary conditions). The former is the velocity given on a part I'p of I' := 90
(Dirichlet-type prescription) and the latter is a given surface force vector on I‘N c’l
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(Neumann-type prescription), satisfying I' = b ULy, with 'p N Ty = 0. The unit
outward normal to I' has been indicated by n. The (Eulerian) stress tensor for a
generalized Newtonian fluid is

o= -pl+2ue, &(u):= % [(Fu) + (Vu)T] (2.6)

where 1 is the unit tensor. In this chapter, the dynamical viscosity p and the density
g will be considerad constant (antcmja.n h@hnviur}.

There are two main reasons for writing the viscous term as 2pV - . The first
is that the boundary econdition (2.4) on I'y enters naturally the variational form of
problem (2.1)-(2.5). The second is that in Chaptlers 3 and 4 we will consider cases
with variable viseosity, and the expression 2V : [ug(u)]| will be needed (otherwise, the
gradient of i has to be calculated). Moreover, for obtaining the simplifyed form pAu
ased in (1.1) the condition ¥V -u = 0 has Lo be employed. This condition will not hold
exactly when using penalty methods and it seems preferable not to use it in deriving
Lhe equations,

Equation (2.5) is the initial condition. A generic point in {2 has been denoted by
x. The given vector function ug(x) is assumed to be divergence free and to satisfy the
Dirichlet boundary conditions,

A mixed type of boundary preseriptions ean also be considered. For that, let
I'ae © T and leb g, g2 (in 3D) be the local basis for the tangent space to Ty, In
practice, it is often useful to consider the following conditions:

N =y, n-a-g =L, ne.o-gr = Iy, on 'y (2.7)

where @, is a given scalar and §; and £y are the components of the foree tangent to I'y
in the local basis g1, g2. In the numerical simulation of turbulent flows, it is common to
consider fi,, = 0 (impermeable wall condition) and to express £; and £; in terms of the
velocity tangent to I'pyr, trying to emulate the frictional effects of turbulent boundary
layers, In Chapter 4, a special type of friction law will be intreduced, For the moment,
and to simplify the exposition, boundary conditions of type (2.7) will not be considered.,
For the stationary problem and using the Galerkin approach, they have been studied
by Verfiirth [Ve].

In order to write the weak form of problem (2.1)-(2.5) we need to introduce some
functional spaces. The test function spaces for the velocity and the pressure, V; and
2y, will be

Vi={ve B Q) | vlr, = 0}

Q= L'(9)
The spaces of trial solutions will consist of time dependent functions. At least when
Iy = 0, it ean be shown [Te] that the minimum regularity in time that has to be
required 1s square-integrability, Thus, let us introduce

V, = {ve L}, B ()" | vip, =1, te(0,T7)} (2.9)
Q. = {q € I}(0.7: 2}(0)) | fnqm= 0, te(0,7), if Ty =0} (2.10)

(2.8)

as spaces of trial solutions for the velocity and the pressure. For the latter case, it has
to be remarked that when Ty # 0 the pressure is not underdetermined by a constant,
since the boundary condition (2.4) involves the pressure itself, not its derivatives:

neg=—pu+2un g=1 (2.11)
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The data £, @1, £ and v is assumed to satisfly the following conditions:

fe L}0,T; L¥{()N+)
i e L3(0,1 H'A(r)Ne)

2.12
t e L0, T; HV3(1)Ne4) 219)
ug € {v e L)V | V. v =0}
Finally, as for the stationary problem we define:
a(u,v) = 2#/ e(u) : &(v)da,
n
b(g,v) = / gV - vdQ,
? (2.13)

1
efu,v,w)= p/[(qu)v]-wd§1+ ﬂjpf(v-u)v-wdﬂ,
0 n

:(v)zp/r-wm+ t - vdl,
1] Ty

all these functions taking values in L?(0,7'). The choice of the convective term ¢ has
been already discussed in Chapter 1.

The weak form of problem (2.1)-(2.5) reads now as follows: Find u € V, and
p € @, such that

p(Biu,v) + e(u,u,v) + a(u,v) — b(p,v) = I(v) Vv € Vi
b(g,u) =0 Vg € Q; (2.14)
(u(x,0),v) = (ua(x),v) WveW

For the case 'y = 0, it is proved in [Te] that all the terms in (2.14) make sense.
Mareover, the regularity of the solution is higher than a prieri required. If Nyy = 2 &
unique solution to problem (2.14) exists. One of the most important open questions in
the mathematical analysis of the Navier-Stokes problem is the existence and uniqueness
for N,¢ = 3. Existence is a well known result (weak solutions), bul uniqueness can only
be proved in spaces of functions more regular than (2.9)—[2.10) (clMsiCul solutions), in
which case only local existence can be proved, i.e., for sufficiently small T (see, e.g.,
[CF], [La], [Li], [Te]).

The coercivity condition (1.9) and the BE condition (1.10) are also needed for
the transient equations, both for the ¢entinuous and the diserete problems. Condition
(1.12) is not assumed.
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2.3 Discretization in time

Consider a nonlinear system of ordinary differential equations of the form
& = F(z,1) (2.15)
where 2 = (1) is a vector function. Let us define, for § € [0,1],

2) = 02" 4 (1 - 0)e™Y, =0+ (11—t
P2, t) = Fa™, ")

where t" := nAt, 2" is an approximation to z({") and At is the time step size of
a uniform partition of [0,7]. The generalized trapegoidal rule used in [Co for the
linear convection-diffusion equation can be extended in two different ways to nonlinear
problems. These two forms are:

311(3" ™) = 0 () 4 (1 - O)F" M (1) (2.16)
L - ") = P 15) (217)

The first choiee has a clear geometrical interpretation: the time derivative in the
interval (£"~1,¢") has been approximated by a combination of the derivatives at t"~!
and ". The interpretation of the second method is not so clear. If 2(t) were linear,
then zj = o(t;) and (2.17) would mean that the time derivative has been calculated
at a point within the interval (%7 "),

Here we will diseuss the implementation of both approaches for the Navier-8tokes
problem. In the literature, the most common approach is (2.17) [Gu], [HR4], although
(2.16) is also used [CSS].

Consider first (2.16). When it is applied to the strong form of the Navier-Stokes
equations (2.1)-(2.2) one has to find u”(x) and p"(x), aproximations to u(x, ") and
p(x, 1), such that

pl(u™ )/ AL+ 0(u™ - V)u+(1 = O)(u - T)u]
~2u07 - &(u")=2u(1 - )V -6(u"")
OV 4 (1 - 0)Vp* " = 0pf™ + (1 0)pf"!
Vou"=0

(2.18)

for n = 1,2, ..., with u%(x) = ug(x). The initial pressure p°(x) will be the solution of
the boundary value problem

Ap® =V - [pf" - p(u” . V)u’] in {1
i

%P— =n-[pf? - p(u® - V)u® — pdia + 2uV -g(v’)]  enTp (2.19)
T
pl = :E,u.n-s(u"}-u— t-n on 'y

In [HRU1] it is proved for the case I'y = § that a unique solution (modulo constants)
exists for this problem.

The velocity u™ and the pressure p" solution of problem (2.18) have to satisly the
boundary eonditions (2.3) and (2.4).
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The weak form of problem (2.18) will be:

pﬁ(l;u _ u“",v) + er_.(un‘ u",'v) 4- (1 - G)c[u"':‘ , uﬂ—l‘ ‘,)
Foa(u" v) + (1 = Dja(u,v) (2:20
—0b(p",v) = (1= 0)b(p" !, v) = 01*(v) + (1 - )" (v)
b(g,u") =0

for all v € V; and g € Q. Observe that [ is « linear function and hence ["(v) is the
valie of I(v) evaluated with £* and ™.

It is easy to see that (2.20) is also obtained from the time discretization of the
continuous variational form (2.14). Symbolically, we have the following commutative
diagram:

Time diseretdsation

Eqns. (2.1) - (2.5) » Eqn. (2.18)

l Wenk form l Wenk form

Time disoratrizntion

Eqn. (2.14) » Eqn. (2.20)

This remark might seem obyious in this case, However, the definition of the SD
operator will depend on the order of the space and time discretizations.

Let us consider now (2.17) applied to the time diseretization of the weak form of
the eontinuous problem (2.14). Instead of (2.20) we will find:

(u" = u"t, v) 4 e(uf, uh, v) + aluf, v) - b(pg, v) = B(v)
b(g,ug) = 0

1
Pa (2.21)

where uj i= u” (1 = G)u™, piti= dp" + (1 -_ﬂJp““ and I7(v) is calculated with
£y = 0" + (1 = 6‘)1'“'1 ani E},‘ = Jt" 4 (1 - ﬂ)t"'l. Since ¢, a, b and [ are linear
in each argurment, the only difference between (2.20) and (2.21) will be the convective
term. For (2.21) we will have that

e(ug,uf,v) = e(0u” + (1 - Ou" ", fu" 4 (1 - O)u" ' v)
= ﬂz“(“"p“"."‘) + 8(1 — @)e(u", u"",v]
01 = 0)elu™  w,v) 4 (1 - 0)2e(u™Y, w2, v)

fi=] T
W

If we denote by ¢jf(n,u,v) := fefu™, u™,v) + (1 = 0)e(u u™! v) the convective

tarm in (2.2ﬁ}, it is easy to show that

ti=1 i 1

e(ug,ug,v) —eg(u,u,v) =00 - 1)e(u” —u"" ", u" —u""",v)

and therefore the difference between (2.20) and (2.21) will be a term of arder O(At*)
(in the l('.ﬂ!)"“"ﬂ*‘—nl:u.‘m). Since this is the best consistency error we can hope for (using
fl = 1/2, i.e,, the Crank-Nicolson scheme), the aceuracy will not be affected if (2.20) or

(2.21) are used.
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Without any further information about the difference between (2.20) and (2.21)
concerning their convergence properties (nonlinear stability), the decision for choosing
one scheme or another will be hased on computational eriteria. First observe that

" =™l = 5“3 - %unnl
and thus (2.21) may be rewritten as
1 1 <
T V) 0, ) 4 6, V) = U ) = B o)
b(g,uf) =0

This expression involves only the unknown uj. The computational effort of (2.20) 18
higher than that of (2.22), since there are more right-hand-side terms to ealculate por
time step. These additional terms are

=(1 = 0w v) = (1= 0)au, )+ (1= (", v)

In spite of this higher computational effort, we have chosen (2.20) and not (2.22) for the
numerical implementation. There are several reasons for this. The first is the definition
of the 5D operator to be introduced later, It is conceptually simpler if the unknown
is the velocity u" and not an intermediate value uj between u™ ! and u". Also, the
penalty methods we will discuss will be based on the fact that the pressure p", and not
Py, has to be ealculated. The most important reason, however, is the following, Both
(2.20) and (2.22) are nonlinear problems and have to be solved iteratively, In Chapters
3 and 4 we will attempt the solution of thermally coupled flows of (possibly) nonlinear
materials and perhaps with a free surface. Both for the constitutive laws and for the
tracking of the [ree surfaces the velocity u™ is needed. Since the iterative procedure
due to this new nonlincarity will be coupled to that of the Navier-Stokes equations, the
use of (2.22) would require the calculation of u® from uj and w™! for each iteration.
We would have to deal with u"™!, uj and u" and this means either more computer
memory (il u" is stored) or more calenlations (if u” is computed when needed). For
all these reasons, scheme (2.20) will be used in what follows.

To conclude this seetion, let us discuss the choice of the parameter 8, The only
interesting cases are # = 0 (forward Euler), # = 1/2 (Crank-Nicolson) and 8 = 1
(backward Euler), The first value yields a conditionally stable scheme and the other
two values an unconditionally stable algorithm [Te]. However, due to the implicit nature
of the pressure, the case # = 0 is unconditionally unstable using the u—p formulation. If
the incompressibility consiraint is penalized, € being the penalty parameter, the critical
time step A, will behave as ¢ when ¢ — 0 (ineompressible limit). To see this, one can
argue as follows. Once the pressure is eliminated from the penalized incompressibility
condition and it is substituted in the momentum equations, the effective viscosity that
will multiply some second derivatives of the velocity will be u 4 1/¢ (see Eqn, (1.22)).
Since Al will be proportional to the inverse of this viscosity (see [Cal), At, ~ ¢ for
£§— 0,

The Crank-Nicolson algorithm will be useful when the accuracy in time be fun-
damental, since a second order approximation can be expected [HRA4). Howaver, if the
transient evolution is not very lmportant, # = 1 should be preferred, since the result-
ing scheme is computationally cheaper (several terms in (2.20) vanish). Also, either
il @ = 1ord=1/21s lo be employed, the former value is recommended for the first
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few time steps (usually one or two). This was also valid for the transient convection-
diffusion equation discussed in [Co], The explanation we gave there was the difficulty
in reproducing the rapidly oscillating harmonies associated to the series expansion of
the solution of parabolic equations, Now there are bweo more reasons, The first is that
it @ # 1, the use of (2.20) necessitates the initial pressure p® for n = 1 and hence
problem (2.19) has to be golved. The other reason is the singularity for ¢ — 0 that will
be discussed later,

2.4 Space discretization and Streamline Diflusion
operator

The particular version of the 5D method we will consider will be based on the idea of
stabilizing the conveetive term of the Navier-Stokes equations, with the same motivation
as in Reference [Co| (Chapter 1) for the convection-diffusion problem. The role of
stabilizing the pressure is assigned to the finite element interpolation, that is, the
velocity-pressure spaces will have to be div-stable, It is important to emphasize this
fact because this is the main difference between the formulation presented here and
the least-squares techniques, to which much attention 1z currently being paid in the
literature,

2.4.1 Galerkin approach and finite element spaces

The semidiserete problem

The finite element approximation we will consider is conforming, both for the
Galerkin approach and adding the SD operator [Hul], that is, the discrete spaces of
test functions and of trial solutions will be linear subspaces of the corresponding spaces
for the continuous problem. We will denote them by Vy,;, € V; and V), , C V, for the
velocity and Q;._; C Qi and Qp, C 2, for the pressure. They will be constructed from
a finite element partition {27}, ¢ = 1, ..., Noy, of the spatial domnin £2.

The Galerkin semidiscrete problam consists in seaking uy, € Vi and py € Q.
siich that

p(Oean, vi) o+ e(ug, uy, v‘;..) + alun, vi) = bpn, vi) = Uvy) Vv € Vi
blgn, up) = 0 Van € Qi (2:28)
(wa(x,0),v)) = (uo(x),vh) Vvj € Vi,

This problam is nothing but the space-discretized version of the continuous variational
equations (2.14),

Finule element spaces

As in Chapter 1, we will use penalty methods. It is therefore desirable ta employ
a discontinuous pressure interpolation, since this allows to eliminate the pressure nodal
unknowns at the element level as already explained. Moreover, the velocity-pressure
pairs will have to satisfy the Babugka-Brezzi stability condition (div-stability).
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Some of the elements we have implomented in the computer code with which
the problems of this and the following two chapters have been solved are colleeted in
Box 2.1. There, N, is the number of nodes of sach element with velocity unknowns
(standard €'° interpolation) and Ny, the number of pressure nodes within each element
(€1 interpolation). Concerning the schematic for the 2D case, nodes with velocity
unknowns have been represented by a circle and nodes with pressure unknowns by a
triangle.

Box 2.1 Some finite elements with discontinuous pressure

Element N~ N,ﬂ, (2D/3D) Description Schematic (2D)
21/ F 4/8 - 1/1 Continuous bi- or teldinear valosity.
Plecawine connianl prensive, I:i
Q 2 /Pp 3/90 “ 1f1 sGerendipid uulc-ulllt_-,! interpolstion.
Pigcawine constant prensuss, D

Q:/ P 9/27 — 3/4  -Couniinuous bi- or irl-quadraiie velosity.

Piscewins linenr praspure,
sz Pn 5,/ 10 1/ 1 Clontinuous quadratic valooity,
Plocowine canilant Jrroanure. L’ S'

f
P:?-fPI T/16 = 3/4 - Continuous quadeatie velocity f\
¥ ]

¥
enrjghad with bubble funstiopns, o

Plecawise linesr pressure,

Let us comment now some properties of the elements in Box 2.1 concerning their
convergence for stationary flows. It will be diseussed thereafter what happens for the
transient Novier-Stokes equations.

» Element Qy/ Py

This iz the bilinear (in 2D) or trilinear (in 3D) velocity-constant pressure element
already discussed in Chapter 1. It does not satisfly the BB condition, although there
are ways to stabilize it, as it has already been explained in the previous chapter, There
is o simple way to see that it may work without any particular stabilization procedure.
For simplicity, consider the two-dimensional cage. Figure 2.1 shows how a quadratic
triangular element enriched with a node placed at the barycenter of the triangle can be
aplit into three bilinear elements. If we congider a pressure unknown for each quadri-
lateral, we see that the velocity and pressure spaces will be isomorphic to those of the
Pl /Py element discussed thereafter. The velocity-pressure interpolation for this ele-
ment satisfles the BB condition. Therefore, the macroelement depicted in Figure 2.1
composed of @y /Py elements will also be div-stable.

Clearly, the main problem with this approach is the distorsion of the triangular
patch of three quadrilaterals. This patch has to be regular enough (i.e., the angles
sufficiently close to 7 /3) to ensure that the isoparametric mapping to the parent domain
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Figure 2.1 A div-stable macroelement composed of @, /P elements.

(usually [~1,1] x [~1,1]) is invertible. See Reference [Ci] for the regularity conditions
that a finite element partition has to satisfy.

The macroelement of Figure 2.1 is homeomorphic te the macroelement of Le Tallec
& Ruas [TR].

In the three-dimensional case, the P /P, element has to be split into four @/ Py
subelements. Apparently, this connexion between the P /Py and the Q1/ Py elements
has never been exploited.

Concerning the convergence properties of the @,/ Fy pair, the best we can expect
is an error estimate of the form

lu = upllx < Ch2F, llp = pullo < Ch (2.24)

for k = 0,1 in stationary problems, since this is the interpolation error. In Refer-
ence [TR] it is proved that this is true for the Stokes problem using the macroelement
introduced in this paper. In (2.24) and below, u, p denotes the solution of the contin-
uous problem and uy,, py, the solution of the problem discretized in space. Also, it is
understood that the L? estimate for the pressure holds modulo constants if T'y=0.

s BElement Q; | Py

This and the following elements are div-stable (see, .., Reference [GR3| for the
proofs). The veloeity interpolation uses the serendipid shape functions [Hu2), [ZT] and
there is a single pressure unknown for each element. Its convergence will be driven by
the pressure interpolation, Again, only an estimate of the form (2.24) can be expected.

Although several researchers actually favor the use of this element (ef. [Hu2])
because of its ‘robustness’, we have found from numerical experiments that it usually
yields overdiffusive results, similar to those of the Q2/ Py pair emulated via reduced
integration of the volumeiric term (RIP method) presented in Chapter 1. The slightly
higher computational effort needed for the @3/ P, element is certainly worth affording.

s Element Q4 /P

For this element, both the velocity and the pressure converge at an optimal rate,
ie,,
lu=wylls < CH*, flp—pullo < CH? (2.25)

for k = 0,1 (see [GR3]).
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For the engineering applications, it is not enly important to know that the asymp-
totic estimates (2.25) are optimal, but also to know how accurate the element is for
a given mesh diameter h (loosely speaking, this means how large the constants in
(2.25) are). This knowledge is only acquired by numerical experiments. We have found
the @3/ F pair an excellent choice for viscous incompressible flow calenlations, in ac-
cordance with the results reported in the literature. This element combines several
interesting features: it is quadratic in velocities, it is a quadrilateral and pressures
are discontinuous. Experience shows that quadratic elements in velocities are an equili-
brated compromise between aceuracy and complexity (and hence, cost) [Gu]. Moreover,
one can hardly expect more regularity for the continuous solution u and p than the one
needed for obtaining (2.25), that is u € H¥()Ned, p € H*() for t € (0,7). On the
other hand, quadrilateral elements are known to be more aceurate, for a fixed A, than
triangular ones, especially for structured meshes, Finally, elements with discontinuous
préssures are superior to continuous pressure elements in capturing the details of the
flow, especially in recirculation zones and boundary layers, A vast amount of numerical
experiments support these facts.

Concerning the implementation of piecewise linear pressures, two options are pos-
sible. If 8 = (8;,43,83) (in 3D) are the coordinates of the parent domain of the el-
ements, the first choice is to place N,y + 1 = 4 nodes within the elements, with co-
ordinates 8;, 7 = 1,2,3,4, and construct shape functions Ni(s), i = 1,2,3,4, such
that N;(s;) = &; (the Kronecker symbol) for i,7 = 1,2,3,4, Then, if the pressure is
interpolated as p(s) = E?ﬂ Ni(s)p;, the coefficients p;, 1 = 1,2,3,4, have the mean-
ing of being the nodal values of the pressure. A simpler option is to interpolate p as
p(8) = po+ 3191 + sapa + saps. Now, pp is the value of the pressure for 8y = 53 = 33 = 0
and py,ps and py are its first derivatives. In our computations, we have found no
difference in the numerical results using both approaches.

The Q1/P, element for the 3D case is represented in Figure 2.2. The pressure
nodes are located at the vertices of a tetrahedron placed in the interior of the brick
with the velocity nodes.

Figure 2.2 Three-dimensional Q4 /P; element..

s Element Py/ Py

This element suffers from the same problems that the Q7 /F element, perhaps
to a lesser extend. Although the velocity is quadratic, the fact that the pressure is
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piecewise constant controls the error of the approximation. Only the estimate (2.24)
can be obtained.

o Element P} | Py

‘This element is sometimes referred to as the Crouzieux-Raviart pair [CRJ. The
triangular quadratic element in velocities is enriched with bubble functions. For the 2D
case, a single node is added at the barycenter of the element, whereas for the 3D case
nodes have to be added also on the faces of the tetrahedron. The pressure is piccewise
linear and discontinuous. The same remarks as for the @/ Py element regarding the
implementation of the pressure interpolation apply. The 3D ' /Py element is shown
in Figure 2.3,

Figure 2.3 Three-dimensional P! /Py element,

This element also converges at an optimal rate, i.e., estimates (2.25) hold true.

Although we prefer the Q;/ Py element for simple geometries, triangular elements
have the important attribute that automatic mesh generation and thus adaptivity are
casier to implement using triangles, since they are well suited for designing unstruetured
meshes, Therefore, the Fi'"/Fﬁ pair should be considered as a good alternative to the
@3/ Py element in complicated geometries or when adaptive procedures have to be used
to obtain an error below a prescribed threshold in the computation.

For two-dimensional problems, there is a heuristic index that gives an idea of the
accuracy of the element and of how can it roproduce the incompressibility constraint.
It is the so ealled constraint ratio, that is the number of velocily unknowns over the
number of pressure unknowns in the asymptotic limit A — 0 [Hu2|, For the £'/P
element it is 2, thus reproducing what happens in the continuous problem. In this
sense, 2 is the optimal value. For the Qy/P it is 8/3, showing that this clement is
somehow underconstraint.

Fhﬂy discrete problem

When the generalized trapezoidal rule is applied to problem (2.23) one is led to
the following algorithm:
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Forn =1,2,.., N, given up~'(x) and p)}~"(x) find u}(x) and p}(x) such that

1 — n— -
PRk - Uy Lovi) 4 Oe(up, uft, vi) 4 (1 - @)e(ul Ll vy,)

+0a(up, vi) + (1 = Qa(u] ™", vy) (2.26)
~0b(pit, vh) = (L= 0)b(py ™", va) = 017 (vy) 4 (1 = )"} (vy)
b(gn,up) =0

where N 1s the number of time steps of size At in which the interval [0, 7] has been
divided. Clearly, we could also have started from (2.20) and discretize this problem
in space using the Galerkin method. The following diagram shows how the different
problems are related:

s dlnerel,
Ban. (2.14) — " Fgn. (2,23)

J Time dikerot Tlie ducrot.

Qphc: digeral.
Eqn. (2.20) + Egn. (2.26)

This is & commutative dingram.

Convergence resulls

Our purpose now is ta quote some of the results obtained by Heywood & Ran-
nacher [HR1-4] for the semidiscrete problem (2.23) and for the fully discrete problem
(2.26) in the case I'y = @, i.e., when the velacity is prescribed on the whole boundary
I' (see also [BR] for a similar analysis). For (2.26), # = 1/2 is considered. In fact, in the
above quoted references the brapezoidal rule is implemented using the discrete version
of (2.22). For the reasons explained earlier, we believe that these results will also hold
for (2.26).

Consider first the semidiserete problem (2.23) and assume that the finite element
spaces satisfy the following interpolation properties:

Iw - G)(Olls < CH™, (6= Fu)(Offo < CH™ (227)
where G, and gy are the finite element interpolants for the velocity and the pressure,
respoctively, m € {2,3,4,56} and € is a constant independent of . Then, for the solution
un(x,t), pu(x,t) of problem (2.23) the following error bounds can be proved [HR2]:

1w =wi)(B)llo = Er()B™,  [I(p = pa)(t)lo < Ea(t)h™ (2.28)

where the error constants Ey(f) and F4(1) become singular when ¢ — 0%, If uy(x) =
o(x,0) on I" and ¥V . ug = 0, it can be shown that

6(t) |l + ||ea(t)]lys < Kt"™2 as i — 0* (2.29)

where K is a constant independent of t. A similar ‘smoothing estimate’ is found for
parabolic equations [LR]. Since the function #(t) involves |[u||,,, it will behave as
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(1=m/2 for t — 0+, A similar bound can be proved for F3(t). Roughly speaking, F(1)
and Fa(t) will behave as follows:

By(t) ~ ™3 By(t) ~ MR g o (2.30)

For the particular case m = 3, the function E;(t) ean be bounded abova by a con-
stant independent of ¢ if the data f, wy(x) and 1i(x, 1) satisly the following compatibility
condition:

There exists py € Ht(ﬂ.)/Iﬁ‘. such that
Apo = V- [f — (ug - V)ug) in {1 (2.31)
Vpa = p[f = (ug - V)ug — &d] + pAug on I’

This an overdetermined Neumann problem, with boundary conditions on Vpy and not
only on &pg/dn. If (2.31) holds true, then ||u(t)||s < co and ||u(t)||; < co for all
t € (0,7) and therefore By(t) < E Vt ¢ (0,7'), with F < co independent of .

The main eonclusion of these results for someons interested in computational
aspects is that for £ small it is not possible in general to achieve the accuracy that the
finite element interpolation might provide. For m = 3, i.e., when elements quadratic in
veloeities are used, both By(t) — oo and Ey(1) — oo as t — 0. The best one can hope
far is one degree of convergence loss, i.e., m = 2. In this case, £(t) remains bounded
for t — 0%, but still £5(t) — oo, These facts give another convineing argument for
choosing a dissipative time stepping algorithm for the first few time steps. Using the
generalized trapezoidal rule, # = 1 is a wise option.

Estimntes (2.28) are [ocal, i.e., they hold for sufficiently small 2, Similarly to what
happens for the continuous problem, [(t) and FEy(t) grow exponentially in time if
N,a = 3. Nevertheless, if the solution of the continuous problem is stable, one can hope
that upper bounds for Fy(t) and Fa(t) exist as t — oo, Results concerning these facts
are proved in [HR2] and [HR3].

Let us go now to the fully discrete problem (2.26). In Reference [HR4] the following
estimates are derived for the Crank-Nicolson scheme:

l[uh = un(t®)llo < FA(E")AL, (|} = pa(t”)]lo < Fa(t")At (2.32)
In general situations, the functions Fy(L) and Fy(t) behave as follows:
At)~t, FRO)~t  ast—0" (2.33)

But an upper bound for Fi(t) and Fy(t) is obtained if |83 u(t)||o < oo, and this holds
if the eompatibility condition (2.31) does,

If the continuous solution u is exponentially stable [Jos|, |Ge|, then (2.32) are also
valid s global estimates in lime, that is, the functions Fi(t) and Fy(¢) are bounded
above as ¢ —» oo, But this is only true if the time step size is such that

Al < CRY? (2.34)

for @ = 1/2. Restriction (2.34) is not needed if the Crank-Nicolson scheme is combined
with the implicit Euler method in the way explained in Reference [HHR4], In any case,
this analysis shows that the exponential stability of the continuous problem implies
exponential stability of its discrete counterpart. A comforting result, actually.
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2.4.2 Streamline Diffusion operator

The Galerkin apronch disenssed so far has a hidden difficulty not apparent in the error
estimates (2.24), (2.25) and (2.28): the stabilily constants are proportional to the
Reynolds number of the problem, Re. Therefore, for Re™! < h, these estimates are
misleading, they are not as optimal as they appear at first glance.

As for the convection-diffusion equation, the suboptimal rate of convergence of
the Galerkin approach is not only reflected by a more or less small loss of nceuracy,
but it is found in practice that important numerical oscillations oceur. The parameter
that now plays the role of the Péclet number is the cell {or element) Reynolds number,
already introduced in Chapler 1:

(Re)® := p'LE:Lh—"‘ (2.35)

2u

Linear elements are expected to yield oscillatory results for (Re)® > 1 and quadratic
elements for (Re)® > 2,

The use of upwind techniques is absolutely necessary for convection-diffusion prob-
lems. However, this is often questioned for the Navier-Stokes equations and in fact these
methods (as a funily) are blamed to be inaceurate in some well known text books [C88),
[Gu]. We firmly believe that they are also necessary in this case. The problem is that
high Reynolds numbers are associated to complex flow features, such as small recir-
culation zones, boundary layers, flow detachment, periodic oscillating flow patterns,
instabilities and, finally, turbulence. There is no way to capture all these flow details
but using small element sizes and therefore small cell Reynolds numbers.

Semidiserete prubb:m

Let us start considering problem (2.23). In order to stabilize the convective term
e(uy,uy, vy,), the same procedure as for the convection-diffusion aquation will be ap-
plied. The test funetion v, will be perturbed by adding a term only affecting the
element interiors. This term will be proportional to the convection operator applied to
the test function.

The variational problem to be solved is the following: Find uy(x,2) € Vj,, and
pu(x,t) € Qu, such that

p(ﬁ;ll;“ V},) + ‘:(uhr uy, v ok ﬂ'(uhlvh) = i"(?"in Vh)

N.q
+ ;S'(uhrph;vh) = ‘(Vh) V‘rh = V}I..l (236)
b(gn, up) =0 Van € Qe
(un(x,0), va) = (up(x),vi) Vv € Vi
whera §%(up, pi;vy) is the nonlinear functional
S*(up, priva) = f Clwi, vp) - [N (up, pi) — pf] d2 (2.37)
fi=

The perturbation ¢ of the test function is defined as

Clun, va) = 7% (up - V)vy, (2.38)
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where 7¢ is the intrinsic time to be specified later. In (2.37), the Navier-Stokes operator

N is
N(ug,pn) = pluy + (uy - V)up] = pduy + Vo (2.39)

Remarks 2.1

(1) We have employed the simplified version pAuy, instend of 2uV - g(uy) for the
viscous term. Observe that second derivatives of the shape functions will be
needed for ealeulating this term. The main problem with this simplification will be
found in the case of nonconstant viscosities, Implicitly, in (2.37) it is assumed that
the viscosity is constant for each element. In practice, this situation will be rarely
found: fluids with variable viscosity usually flow at a very low Reynolds numbers,
in which ¢ase adding the 8D operator to the Galerkin equations is unnecessary.

(2) The functional 8% (up, paiva), defined on Vi, % @45 % Vi, is linear in the last two
arguments, but highly nonlinear in the first. Besides the quadratic dependence on
uy, of M(uy,p) and the linear dependence of the term (uy, - V)vs, the intrinsic
time 7¢ will be a function of |uy| and the cell Reynolds number (Re)® given by
(2.35).

(3) The gertu_rba.t,ion {(wy,, v),) will be in practice calculated not with a variable veloc-
ity uy(x,t), but with a characteristic value for each element, u(t), nsually taken
as the mean veloeity in the element. 0

The definition of the §$D method (2.36) has the Important drawback that it is
not clear how to discretize it in time. Once the spatial discretization has been done, a
systemn of nonlinear ordinary differential equations of the form

@ - Fl(u;,t) + Fo(z,d@,t) =0

is found, with Fy(z,#,t) coming from the 5D term and Fi(z,t) from the Galerkin
Lermms.

Fully discrete problem

The conceptual problem found above is due to the fact that we are mixing a vari-
ational method for the spatial discretization and a finite difference method to discretize
in time. In order to have a problem where only the space has Lo be diseretized, we may
assume given the time discretization (problem (2.20)) and then to discretize in space.
Following this approach, a 8D term will have to be added to the Galerkin equations
(2.26), and not to (2.23). The residual method we will end up with is the following:

For 1= 1,2, N, given w) ) (x) and p™" (x) find uj(x) and p(x) such that

i Fie=

1 - o
P (= v O V)0~ D™
f0a(uj, vi) + (1 - ﬂ)ﬂ(uﬂ_", vi) = 0b(ph,vu) — (1 - G}b(p}:_i \Yh)
Nﬂ' (2'40)
+ z 8™ (v, s vi) = 0 (vi) + (1 = )" (va)

sl

liv’l)

g, ) = 0
where 8™ (uy,, py; v),) is defined as

S" (up, phi Vi) = j;_. ((up, vi) - (NG (un, pu) — pfy] dS2 (2.41)
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Here, ¢ is again given by (2.38) (but evaluated with u}}) and

1 - n a4 -
Ny'(vp,pn) 1= PE(.EE — ™ Y)  pl(up - V)up + p(1 = 8)(uy; ol

(2.42)
— pbAu] = p(1 = 0)Aul + 8V + (1 - 0)Vpy !

Remarks 2.2

(1) Observe that the perturbation { given by (2.38) has to be caleulated using the
velocity ull, since what is pretended using (2.40) is to balance the convective term
pO(ujt - V)up) with the viscous term 2p0V -g(uf) (written in weak form),

(2) Clearly, (2.40) is a residual method, i.e., the continuous functions in the space
variable u"(x) and p"(x) solution of problem (2.20) satisfy (2.40) for all n.

(3) The following diagram represents the relation between Lhe semidiscrete and the
fully discrete problems using the Galerkin approach and adding tha SD operator.
Problem (2.40) is not obtained from (2.36) using the generalized trapezoidal rule
for the time diseretization in its standard form. (]

S0 apornlor

Eqn. (2.23) » Eqn. (2.36)

Tline diaoret,

8D aperator

Eqgn. (2.26) + Eqn, (2.40)

Tha §D method we will consider in all what follows is (2.40). It only remains to
apply the ideas of Reference [Co] (Chapter 1) to compute the intrinsic time 7°.

Definition of the intrinsic time

The parameter 7° will be caleulated for each elenent using the results in [Col, col-
lected in Section 1.6 of this reference. The only remarkable aspect is that for quadractic
elements o single upwind function will be used (see Box 1.1 of Reference [Co]). More-
over, both for linear and quadratic elements, the upwind functions will be approximated
by their asymptotic expressions, From the numerical results of Reference [Col it wus
concluded that this procedure results in a certain loss of aceuracy, but the numerical
implementation is much easier and cheaper. In particular, the caleulations to be carried
out are exactly the same for linear and for quadratic elements.

The steps to be followsd to compute 77 for eloment e, e = 1, ..., No, are:

« Compuie u® as the mean velocity over the element.

e Compute ug = J-'u®, where J is the Jacobian matrix of the isoparametric map-
ping to the parent domain evaluated at the center of gravity of the element (as-
sumed to be the point with velocity u”).

s Compute the characteristic length as (formula (1.118) in Reference [Col):

W = hy !
g

The values hy = 2 and hy = 0.7 are recommended for the standard parent domains

(2T of quadrilaterals and triangles, respectively.
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e Caleulate the cell Reynolds number (Re)® given by (2.35) using the values just
abtained,
e Set the upwind function equal to

€
a® = gymin ((—R'S‘L]—rl)

where ag = 1 for linear elements and ap = 1/2 for quadratics.

s Finally, compute
€ he
= — (2.43)

[u”

Ll )

Some remarks aboul least-squares techniques

The SD method described abave is close to the original SUPG technique of Brooks
& Hughes [BH] and used by many authors. Reference [ADP] is sometimes cansidered
as the first to make a systematic use of this formulation,

Already before the first paper of Hughes et al. [HFB] about the Galerkin/least-
squares method, Johnson & Saranen proposed in Reference [JS] a velocity-pressure
formulation for the Navier-Stokes equations introdueing a perturbation of the test fun-
tions of the form

7{(un - V)vh+ Vi (2.44)

i.e., including the gradient of the pressure test function (see also [Joh]). Although the
method was not analyzed in the quoted reference, the analysis of Hughes ot al. for
the Stokes problem revealed that this was the key for circumventing the BB condition.
The least-squares techniques followed as a natural consequence of these results (see the
references of Chapter 1), both for the Stokes problem and the Navier-Stokes equations.
Several partial results concerning the convergence of this method are already available
[HS], [TLu].

A very interesting fact is that sometimes the introduction of Vg in (2.44) 2
equivalent to a mized velocily-pressure formulation using div-stable interpolations. In
particular, Bank & Welfert [BW]| proved that this is indeed the case for the Stokes
problem if the minielement of Arnold et al, [ABF] is used for the Galerkin approach
and the linear simplicial element is used for the least-squares formulation, Of course
the finite elament interpeolation is simpler in the latter case, but the construction and
assembly of the element matrices is more complicated. It is not known which method
is finally more efficient. Probably, this will depend on the problem. The use of mixed
interpolations to stabilize the pressure has the important advantage that discontinuous
pressure spaces are easily accomodated and therefore penalty methods fit nicely in this
approach.

Let us finally mention othér approaches to least-squares methods such as methods
based on other variables [HG], [J5] or the interpretation of the least-squares procedure
using certain time stepping algorithms [Sa], [Zi]. For another upwind technique different
from the §D method and fully analyzed, see [GR2].
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2.5 Linearized equations and penalty methods

3.5.1 Linearization of the convective term and the Streamline Diffusion
oporator

The algorithm we will use for the computations is (2.40). It only remains to describe
how is it linearized in order to implement it in & computer code.

There are two sources of nonlinearity: the convective term and the 5D operator.
The first has a quadratic dependence on the velocity uj, We will congider the two
iterative methods analyzed in Chapter 1 in the context of iterative penalization, namely,
the Picard and the Newton-Raphson algorithms, Both methods may he written in the
same unified expression, Assume that the veloeity at time step n and iteration i - 1

(i = 1) is known. This velocity will be denoted by u::'(‘_l). Then, the convective term
evaluated ai n}:'(') will be approximated by:

o, D, vp) = e, 0, vy) + e, )

; 2.45
e, 6D ) (2:48)

For 3 = 0 this is the Picard approximation and for f = 1 the Newton-Raphson method.
If §u:= u;:'('} - u;:'b_n, the linearization error in the first case is O(||6ull;) and in the
second case it is O(||dul[}).

The convective term in the Navier-Stokes operator A given by (2.42) will be
linearized in a similar way:

(a9t s pa(up ) v)up 4 p0p(u D )Y

. : 2.46
- pap(ur ) gy o

Concerning the perturbation of the test funchion (2.38) that defines the 5D
method, the velocity with which it is ealeulated should only affect the acenracy of
the numerical method, not the convergenee of the iterative procedure. In other words,
this souree of nonlinearity appears only because the aceuracy will be improved evaluat-
ing ¢ with u}}, one of the unknowns of the problem. In order to simplify the ecaleulations

per iteration, ¢ has been calculated using the velocity of the previous iteration, “;:-('—31‘

This leads Lo the following linearized expression of the 5D operator:
S™E (wy, pr, Vi) “‘A ¢y va) [N;:J'éq(“*‘”f’") = ‘”f‘;l] ek (341
where

. 1 y 71 Hgt
Nd;:g‘)(uh: Vh) I PE‘-“R‘(‘] - u;:_l.‘] = pe(uh( Y. V)ll: i)
i i i = ¥ i—1 Ty =
+ pop(uy® - V) < pop(uy | vy (2.48)
¥ p(t— o)t - 2)upt — poauy?
(1 = OyAwrt 4 gvpr @ 4 (1 - 0)Upp

i the linearized expression for the Navier-Stokes operator at time step number n and
iteration number i
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Remarks 2.3 ‘

(1) The fact that ¢ is evaluated with u:'{"l) could hinder to achieve quadratic con-
vergence of the Newton-Raphson scheme. Numerical experiments indicate that
this happens sometimes, but in general the difference in the test functions from
one iteration to another keeps the quadratic rate of convergence.

(2) The values at time step n — 1 are considered converged. This is why no iteration
superseript has been introduced for them,

(8) In practice, the initial guess for each time step has been taken as the converged
unknown from the previous step, that is,

a0 = yp= (2.49)

(4) In Chapter 1 it has already been said that the Picard scheme converges for
the steady-state problem whenever condition (1.12) holds and that the Newton-
Raphson algorithm is convergent if the initial guess is close enough to the final
solution, For transient problems condition (1.12) does not make sense: the solu-
tion is unique for both the continuous and the discrete problems in 2D, For 3D
problems, a unique solution also exists for the discrete problem (it is not known
whether this is true or not in the continuum). This can be proved using a discrate
Gronwall inequality as in References [GR1], [J5] (the stability of this diserete so-
lution is another matter). The only requirement is that the time step size At
be sufficiently small, This provides a natural way for obtaining stable station-
ary solutions of the Navier-Stokes equations, whenever they exist: to advance in
time until the steady-state is reached. This avoids the need for using continuation
techniques for the stationary equations. The situation in completely different in
salid mechanics, where the differential equations of motion involve second time
derivatives. 0

2.5.2 Penalty methods

Simnilarly to what was done {or the stationary equations, the incompressibility constraint
in problem (2.40) will be penalized. In view of the results of Chapter 1, the iterative
penalization is considered as a way to satisfy this condition. Once again, the iterations
due to the nonlinearity of the problem and the penalization will be dealt with in a
single iterative loop.

From the algorithmic standpeint, it is possible to place three different penalty
methods within the same coding structure. For that, consider that the incompressibility
condition in (2.40) is replaced by the penalized equation

el an) + bans ) = ez an) (2:50)

for all g, € Qu,. The superscript ¢ has been added to indicate that the solution comes
from a penalized problem. According to the pressure p; to be introduced in (2.50) we
obtain the following penalty mathods:

o pj, = 0: Classical penalty methad

This approach should be viewed as a perturbation of the initial problem. The
incompressibility constraint will be satisfied up to an error of order € that will not
improve as the itérative procedure goes on.
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¥ =1
* PL=Ph

From (2.50) we will have that

. Artificial compressibility

oy = gt ) + b(an, iy ™) = 0 (2.61)

This is the discrete version of the continuous equation

1
E-z'ﬂm A+ V-u=0, in 0 x (UiT)

provided that the backward Euler scheme is used to discretize in time and ¢ is taken as
e =1/c*At

the constant ¢ being the speed of sound of a slightly compressible fluid. Thus, setting
p;, = p) ! & particular version of the artificial eampressibility method of Cheorin [Ch ia
obtained, Clearly, if the steady-stateis reached, 8p/8t — 0 ast — co and Ph—Ph L.

1,

a4 n — oo for the diserete problam. Therefore, b(qn, u), m) — 0 as n =+ co. But when
we are far from the steady-state or it simply does not exist, an error of order ¢ will
again remain for the incompressibility constraint.

. P = p}:"(i'l): [terative penalizalion

This method is the extension of the one analyzed in the previous chapler for the
stationary equations to the transient problem. For each time step n, the incompress-
ibility condition is expected to be iteratively approximated. Although the convergence
analysis of this method has not been attempted, numerical experiments show that
the norm of the diserete divergence of the velocity field in fact decreases similarly to
what was observed for the stationary problem. Some of these numerical results will be
presented in Section 2.8,

2.5.3 Fully discrete and linearized algorithm

The final problem will be (2.40) with the approximations (2.45), (2.46) and (2.47) for
the Linearization of the nonlinear terms and (2.50) for the penalty method to be used.
In the equations below, we assume that the iterative penalization is employed, that is,
the pressure p; is set equal to p;:"”_”. It is understood that the other possibilities
described earlier can be also considered.

The perturbation of the test funtion for the SD term is computed using the char-
acteristic element veloeity u, computed as the mean value of the velacity u]:"('_” over
oloment e. The calculation of the intrinsie time 7% has already been described in detail.

Concerning the way convergence is checked, we have used the following criterion:

e — D < 2O LR Ol (252)
where TOL is a given tolerance and || - || e denotes the diserete L9 norm. A selected

choice for ¢ controls the convergence, although the norms for ¢ = 1, ¢ = 2 and ¢ = 00
(i.e., maximum norm) are always computed. There is also a check to decide whether
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the steady-state has been reached or not. Since the difference between nj and w !

will be of order At, the stationarity criterion that has been chosen is
l[ufp =t Hlze < TOL At [Juh]ze (2.53)

All the terms that are known for a given iteration within a time step have been
written in the right-hand-side of the equations. These equations are

s Momentum equation:

(D, ) 4 0ALe(ul D D vy 4 eatpe(uf @t )
+ EAm(uL"‘m, vi) — 0At(pr " v)

Nﬂl ) i
3 [ e 9yl [ 4 poaduy D 0y

éml

+ﬂ‘95fﬁ(ll:'tm -V)ll::"“_” - ,uﬂAtAu;:““) e H,{MVP;:"-{"}]

= lp(vn) + p(uf ™" va) | (2.64)
(1= O)Ate(up "t up=t vi) + AtAe(up D, W vy

— (1 = @) Ata(u] " vn) + (1 = 0)Ath(p) i)
Nui

+ ZI [r(u® - V)il [pup™" = p(1 = 0)At(up™" - )up
a=1 2h

+ pﬂﬂtﬂ(n:'d“"l) : V)u;:"(i_u + p(1 = @)AtAuT - (1 - D)ALTE, !
FOAH™ o (1 = )]

s Penalized incompressibility equation:

e, ) + blan, i P) = (Y ) (2.5)

2.6 Matrix formulation

The different problems considered so far will be written now in matrix form, This will
allow us to present the basic flow chart of the algorithm implemented in a computer
¢ode that collects the numerical techniques that have been discussed in this chapter.
Let us introduce the veetor
8 i= 7o u’ (2.56)

defined for each element e with characteristic veloeity u® and intrinsic time 7, com-
puted as deseribed earlier. If s is calculated using the velocity obtained for the i-th
iteration of the n-th time step, we will indicate it by g™,

Once the finite element interpolation has been chosen, every element of the spaces
of test fiunctions and of trial solutions will be represented by a vector containing the
nodal values of this element, This vector will be denoted by the boldface capital
letter corresponding to the lower ease function. For example, V' will be the vector of
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nodal values of a generic velocity test funetion and U the vector of nodal values of the
unknown veloeity. Superscripts will be used to indicate the time step and the iteration
counter.

The definitions of the matrices that will be needed are collected in Box 2.2, The
L? inner product in the pressure space has been denoted by (-, )@ and in the velocity

space by (-, -)v.

Box 2.2 Matrix form of the discrete equations
Nlul
V.M, U pln vy + 3, [ [(s- V)il (pua)a®
e=1 -y
’!nl
VI K, .(Uy) - Us e(wy,1, uh 2, Vi) + E./I; [(8: V)va] - [p(wpa - V)up 2] df2
@l :
Nl
VIKL(0) Vs el i) + 3 [ (5 V)l oo - V)] 0
e=1
Nl'l
VT Ky, U alun, va) + ) ]; [(8 V)va] - (~pduy)ds2
=1 5
N
vi.Gg, P b(ph,vi) — Ef [(8 - ¥)vy) - Vpdfd
awl i
o Nai
VJ L] Fﬂ-lj I(v&) + E f [(ﬂ- . V)Vh] + (pf)dsl
e=1 -
QT'MP'P (Ph!qﬁ)ﬁi

Having introduced all these matrices and vectors, some of the prablems considered
heretofore can be written as follows:

e Problem (2.23), semidiscrete Galerhin:
Find U = U(t) and P = P(t) such that, for t € (0,7),

d
vio - U + Keo(U) - U+ Ko - U —Go P =Ty

o U0 257)
M, - U(0) = Us

M

where Uy comes from the right-hand-side in the initial condition of problem (2.23).

Neither in (2.57) not in what follows Dirichlet boundary conditions have heen
introduced. They will lead to a force term in the discrete continuity equation. Subseript
naught in Eqns. (2,57) indicates that the matrices are enleulated with s = 0,
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e Problem (2.26), fully discrete Galerkin:

Forn =1,2,..,N, given U™ and P"}, find U™ and P", approximations to U(t")

and P(t"), such that

M, U™ 4 ALK o(U") U™ 4 041K g - U™ — 6ALG, - P"
= BALFD, + (1 = 0)ALF) S 4 My - |0,
- (1 = )ALK,o(U™ ). U™ — (1 - 0)AtKyp - U™ (2.58)
+ (1 = 0)AtG, - P
Gl-ur=o0

s Problem (2.40), fully discrete SD method:

Forn=1,2,... N, given U and P*}, find U™ and P", approximations to o)

and P(i"), such that

Moo - U 4 OAIK o (U") - U + 0ALK 0 U" - AIG . - P7
= OALF] o 4 (1 - )AL + My - U™
— (1 = ALK (U 1) - U™ — (1 = D) ALK 0 - U™ (2.59)
+ (1= 0)ALG,. - P!
Gl -U"=0

e Problem (2.5{)-(2.55), fully discrete and linearized SI) method:
Forn = 1,2,..., N, given U™ and P!, find U" and P", approximations to U(t")
and P(t"), as the converged solutions of the following iterative algorithm.
M, et U™ 4 QALK uims (U1 gl
§ ORI o, (U1 el
+ BALK y yuier - UM — GALG oy - P
= OALFT uims + (1= DTy + My i U™

— (1 = ALK, juima (UT) - U

T OALBKS i (Urei=1)y . grti=1)

— (1 = ALK g ynier - U™ (1 = 0)ALG i P

M P ) 4 Gf D = v Pl

(2.60)

We are now in a position to present the basic flow chart of the algorithm to be
implemented on the computer, This has been schematically represented in Box 2.3,
where the following integers have been introduced: n., is the number of time steps in
which the Fuler scheme (€ = 1) is to be used and i, is the number of iterations to he
earried out using the Pieard scheme (B = 0). For At small enough, i,; may be set to
zero, since the solution of the previous time step will be a good initial guess for the
solution of the current step and the Newton-Raphson method (4 = 1) will converge.

For steady flow calculations, the convergence tolerance within each time step may
be larger than the tolerance to check if the steady-state has been reached, in order to
perform only one iteration per time step.
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In Box 2.3 we have taken into account the fact that the pressure is discontinuous
between elements. This allows to eliminate the pressure in the momentum equation as
explained in Chapter 1. Expressions (1.48)-(1.50) have been used for the prablem now
considered to form the element matrices of the final algebraic system.

—

Box 2.3 Algorithm for the transient Navier-Stokes equations

s Set tha initial condition UY and P? =0

an:=10
s« WHILE n < N and (non-stationary) DO:
san+—mnitl

o IF n < ng, then § =1
BLSE select 0,8 = 1/2
ei=10
e Sot Urel®) = U1 and preld) = pr-l
e« WHILE (not converged) DO:
#i— 11
slFi<iythenf=0
ELSE g =1
o IF (classical penalization) then P = 0
ELSE if (artificial compressibility) then P* = po~=l
ELSE if (iterative penalization) then P* = Preti=1)
s For each element, compute s™'~! and
AL =M, oAk, (Uledne-1)

+ OALFK ) (U= gAkS)

1 I —1 T
FoA=GL MO G

B ;= AR, + (1= AT + MY

T L W,

(1= o)Ak, (udn=tyylen-

gt =

+ ﬂﬂ.tﬁK{')" (U(e}.u.q(i—l))U{n},n.eﬂ—l)

c.‘.mi-l-l.

~ (1= 0)aK) . ulen

¥ sk

:' lu[o).n—l

bd—

+ (1= 0)ALal),_ Pt poarald) pl
« Assemble A() and B() and solve AU™() = B
& Compute Prli) = P= = }M;‘G%‘U"F("J
o IF [[Umeld) — gmali=D)| g < TOL| U™ 1g then (converged)
END while grmt converged)
s T — Ur\,i{
o P o Pl
o IF [U" — U™ Y| < TOL At ||U"||z9 then (stationary)
END while n < N and (non-stationary)
END
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2.7 Computing secondary variables

Once the veloeity and pressure are caleulated, one may be interested in other physical
unknowns of the problem. Moreover, for visualizing the flow it is interesting to abtain
a continuous pressure field and, for two dimensional flows, the streamfunction, Here
we will deseribe some numerical procedures to obtain nodal values of the pressure,
the vorticity and the physical properties of the fluid whenever they be variable. An
algorithm to compute the streamfunction will also be described.

2.7.1 Least-squares smoothing

In the numerical procedure described in the preceeding sections, the prossure nodal
values are loeated within éach element. Also, when the physical properties of the fluid
are variable (Chapters 3 and 4) they have to be stored at the integration points in
order Lo perform the numerical quadrature. All these scalar fields will be discontinuous
across interelement boundaries. For plotting purposes, it is interesting to obtain a
continuous function that approximates a discontinuous one, Here, the least-squares
technique employed in our caleulations will be briefly described.

Let ¢, be a computed function, discontinuous across elements. A continuous
function ¢, is then caleulated by minimizing:

6o = Gallks = f (o — ) dS2 (2.61)
it

The function ¢, is interpolated like the components of the velacity field. If Ny, is the
total number of nodal points of the mesh, N) denotes the shape function associated to
node ¢ and ¢Eﬂ is the nodal value of ¢, at this point, the minimization of the functional
(2.61) leads to the system:

M® = R (2.62)

where the components of the matrix M® and the veetors & and R are:

M = f NONGEQ, i,7 =1, .. Ny (2.63)
i1

B;= ¢, j=1,.,Np (2.64)

Ri= f NOgdR, i=1,.., Ny (2.65)
i1

This smoothing technique is standard [Hu2], [£T]. In order to avoid the solution
of the system (2.62), it is usual to approximate the matrix M® by a diagonal matrix
M. This matrix can be obtained either by the row-sum lumping technique or by using
a nodal quadrature rule to evaluate the integrals in (2.63) and (2.65). In this case, the
quadrature points are placed on the nodes of the element and the shape functions are
assumed to be such that _

N(x;) = &; (2.66)

when evaluated at the j-th node of the finite element mesh, with coordinates x;. An
estimate of how well ¢, approximates ¢, can be easily obtained using standard results
from interpolation theory and numerical quadrature theory [SF].
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2.7.2 Nodal gquadrature rules

Wa present in Box 2.4 some nodal quadrature rules for the most common finite elements
used in practice. Some of these rules are well known (rules 1-3, 6-11, 17 in Box 2.4).
Our interest in obtaining the others is not their accuracy but the fact that they allow to
approximate the matrix M® in Eqn. (2.62) by a diagonal matrix, as explained above.

In Box 2.4, R, indicates the rule number and Ny, the number of nodes of the
element. This is followed by a schematic description of the element that has to be
precised. For both 2D and 3D elements, the bubble function is associated with a node
placed at the center of the element. It is understood that the original shape functions
(without the addition of the new nede) have to be modified in order to have zero
value at the center. Otherwise, the nodal unknown at this point would not have the
meaning of being the value of the interpolated function and the matrix M* would not
be diagonal, since condition (2.66) would not hold. For the element considered in rule
number 15, bubble functions are also added in the center of the faces of the element.
Elements corresponding o rules number 1, 2, 5 and 6 are triangular, tetrahedral for
rules number 9, 10, 13, 14 and 15, quadrilateral for rules number 3, 4, 7 and 8 and
hexunhedral for rules number 11, 12, 16 and 17.

The quadrature rule is defined by the weights of the nodes. All the nodes placed
at the corners of the element have the same weight, as well as the nodes placed in the
middle of the edges and in the center of the faces (in 3D elements). The values given
have been normalized in such o way that their sum is 1. In the final entry of Box 2.4,
the accuracy of the quadrature rule is given by the polynomial that can be exactly
integrated. The set of polynomials of degree n is denoted by P, wherens Q. denotes
the set of tensor-product polynomials of degree n in each Cartesian direction z,y, 2.

All the rules except rule number § are the best that can be obtained with the
given number of quadrature points. In fact, for the 2D quadratic (simplicial) element,
a second order quadrature rule is obtained if the weights are taken as 0 for the corner
nodes and % for the mid-side nodes. However, this rule yields a matrix M‘, approxima-
tion of M®, with some zero diagonal values (those corresponding to the corner nodes).
The weights given for rule number 5 have been obtained splitting the triangle into
four subtriangles and applying rule number 1. It is interesting to remark that if the
Richardson extrapolation is applied to rules number 1 and 5, the mentioned second
arder rule is recovered,

In general, these quadrature rules cannot be used for the numerical integration
of the matrices of the discrete Navier-Stokes equations, since their accuracy is not
enough to preserve the order of convergence of the finite element discretization. Open
quadrature rules have to be employed in these cases, i.e., with the nodes placed in
the interior of the elements. The product Gauss-Legendre rule is the common option
for quadrilateral and hexahedral elements. Qpen quadrature rules for friangles can be
found in Reference [LG] and for tetrahedra in Reference [GeH],

3.7.3 Pressure, vorticity and physical properties smoothing

The least-squares technique combined with the nodal quadrature rules to compute the
integrals will be applied now to approximate several discontinuous fields by continuous
functions. The number of integration points used for the calculation of the element
matrices of the Navier-Stokes squations will be denoted by N, A point in the parent
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domain {15 will be indicated by €.

Box 2.4 Nodal quadrature rules for linear and quadratie elements

Two-dimensional elements

R, N,, Description Weights Polynomial
Corneri Eidgen Conter
1 3 Linanr 1{3 .P)
2 4 Linaor + bulblble 1 / 12 3/4 Py
3 4 Bilinanre 1;4 Q]
G| ] Hilineay 4 bubbla 1/ 12 2/3 Py
5 B Cuadratic 1/12 1/4 Pl
6 ¥ Quad, + bukble  1/20 2/16 9/20 Py
7 8 Serondipid -1/12 1/3 P
8 9 Biquadratis lf:m ].fg 4-!9 (s

Three-dimensional elemenis

R, Nas Description Weights Polynomial
Corners Edges Facen Center
9 4 Linanr 1/4 -P1
10 b Linaar « bubble 1/20 1 / ] Py
1 8 Trilinenr 1/8 Q1
12 9 Trilinear + bubble 1/24 2/3 Py
13 10 Quadraiie ~1/120 1/5 P
14 11 Quad,  bubhle 1”60 lflﬁ 3/15 R‘!
Quad. 4+ hubble P3 oand terma
15 15 -+ fnue bubbles L?xa‘tﬂ 4;105 27/280 552/105 wdys, a’ =, ays’
16 '20 Serandipid -1 fﬂ IXB Px
17 27 Triquadeatic 1/216  1/54 2/21 8/ Qs

Gince all the matrices and vectors are obtained from the assembly of their elemant
contributions, we will only concentrate on these elemental expressions.

The Gramm matrix appearing in BEqn. (2.62) can be approximated in all the cases
by the diagonal matrix resulting from the nodal quadrature rule. The right-hand-side
term in this equation, R, can be computed either using this nodal rule or the same
numerical integration employed for the Navier-Stokes equations. For the smoothing of
the pressure and the vorticity, both options are equally easy to implement. Howaver,
when the physical properties of the fluid are considered, we will see that the second
procedure is much easier than the former.
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Let J(£) be the Jacobian determinant of the isoparametric mapping and wy, k=
1, ..., Npa, the weights given in Box 2.4 multiplied by meas({2). The components of the
element contributions to the matrix M¢ and the approximated matrix M! are:

M= [ Nednian = A NN ()N E)]d

N"I.I'.'
= M = 3 I OEIN N CI(E)

k=1 (2.67)
o

=5 w7 (E) [Bind i
k=1

- [w;IJ(“)(E;)I] i (ne sum)

Let {J,E.“'"" ) be the pressure shape function associated to the j-th node of element
e and p{®?) the corresponding pressure nodal value, The components of the force term
R for the pressure smoothing approximated by the nodal quadrature rule will be

'N-'H'
BY) = /; D pda= | N (E N,E“*”p("”) dfl

Jml

=1

Nyy
- f‘ Ne9(E) (Z N,Ef-ﬂ(enpi'ﬂ) [72(6) 1%
" (2.68)

fel

(LT Map
- E:‘wr:{J ) (&) bin (E Né‘*ﬂ(gk)p('.ﬂ)
=1

Nyp
= wi|J)(E;)] (E N;E"”(fi)ﬂ("ﬂ)

i=1
It is observed from (2:68) that all the shape functions (those associated to the continu-
ous approximation and the discontinuous pressure interpolation) and their derivatives
have to be evaluated at the nodes of the elements.

The smoothing of the vorticity wy, := Vxuy, can be performed in a similar way. For
two dimensional flows, this vector has only one non-zero component, wy = Oy ug — oy,
the subseripts referring to the Cartesian coordinates now denoted @y, ¢ = 1,2,3. For
simplicity, assume that N,g = 2. The components for the right-hand-side terin R are
now

g0 / N wyda= [ N (8yuy — Byuy)dS2
ne ‘

Nﬂﬂ
= f N(m‘)‘z (alNic.:")Ué'd) - HBN(e.ﬂul{ﬂd)) dil
i=1
(2.69)

Nna 1
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Sl Y (NG 0 g u()
j=1
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Clonsider now a variable physical property @(x). Examples of this situation will be
found in the next two chapters. In order to compute the matrices for the Naviar-Stokes
equations (or for the temperature equation, as it will be seen in the following chapter)
the values of @ have to be stored for each element and for each quadrature point within
the element. Let us denote them by (,p_(;}, j =1, .., Ny If pis interpolated within the
element and this interpolation is used to compute the values at the nodes, the resulting
function will be discontinuous and the smoothing is again needed. Observe that the
interpolation functions are not the standard shape functions of the element. Therefore,
it is easier to compute the integrals in Eqn. (2.65) in this case using the same numerical
integration as fer the Navier-Siokes equations. Otherwise, a new set of interpolation
functions should be defined. The right-hand-side term of the smoothing equations will
be

B = [ N6 o dn= [ NEA@HNOI Ol
Nyj . ﬂ (2.70)
=3 wilTOEIN e
=1

where w}, are the weights for the quadrature rule of N, points, with coordinates in the
parent domain §;.

2.7.4 An algorithm for the calculation of the streamfunction

For incompressible bidimensional flows, the streamfunction provides a simple way for
plotting streamlines (its contours) and also gives a measure of the quantity of fuid
that crosses a segment of a curve per unit of time, ie., the flux of the velocity field
multiplied by the density. Here we will present an algorithm for the caleulation of the
nodal values of this function (see Reference [J a| for a different methad).

For exnctly divergence free velocities (V -uy, = 0) there exists a streamfunction ¥y
such that uy, = V ¥ ¥ := (823, =d14y). Consider a segment of curve defined by the
initial point A and the end point B, Let t be the tangent to this curve and n normal
to it, {n, t} having the same orientation as the canonical basis. We will have that

n = (n,nz) = (L2, 1)

and hence & I
/ 1y - nds = f (‘927»!’!” "al";"h) : (tg, =ty ]d"
A AEI
- L U - tds = vu(B) = ¥n(4)
that is,

a
n(B) = a(4) + L iy + i (2.71)
If AR is a straight segment of length |AB| and we define

AB = (B1— Ay, 83— A3)
ABY = (By — As, Ay - By)
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we will have that n = A'BlfIAEL Assuming that the variation of uy, - n along AH is
linear, Eqn. (2.71) reduces to

() = Un(A) + 5 (e m)(A) + (wn - 0)(B)] |45

1 N (2.72)

= n(A) + 5 [an(4) + wi(B)] - 4B
Equation (2.72) provides a method to caleulate the streamfunction values at the nodes
of the finite element mesh., Recall that the two approximations inherent to (2.72) are
that AJ has been considered a straight segment and the variation of uy -0 linear along
it,

The velocity w, that will be obtained from the finite element solution of the
Navier-Stokes equations is not pointwise divergence free. All we can expect is that
Jqe ¥ - upd2 = 0 for all the elements. In fact, this equation will not hold exactly, since
the continuity condition has been penalized. Nevertheless, our method will be based
on this equality.

The idea is the following. Once ¢, is known for a certain node of an element, the
value of this function can be computed for the next node using (2.72). In thiz way,
we can go through all the nodes of the element placed on its boundary, What is not
possible is to compute ¢, for the interior nodes of the elements, whenever they exist.
What we do in these cases is to interpolate ¢y, for this node using the values caleulated
for the others and the shape functions corresponding to the interpolation without the
interior node, For example, for the seven-noded quadratic triangle enriched with a
bubble function, ¥, for the central node is computed from the quadratic interpolation
based on the six-noded triangle.

Once we come back following this process to the first node of the element where
the streamfunction was known, the new value may be slightly different from the original
one. What we do is to compute iy, several times for each node (as many as the algorithm
presented thereafter yields) and take the final result as the average of the caleulated
values,

The final algorithm is presented in Box 2.5, where the following variables and
arrays have been introdueed:

(i) : Value of 1y, for node i.
NT(i): Number of times that o has been calculated for the node 1.
N..,: Number of points where ¥, is known.

ap
N,_g,:) : Number of points of element ¢ where ¢y, is known,

IE;) ¢ First node of element e where ¥, is known.
w; : Weights coming from the interpolation of 9y, for the interior nodes.

Since the streamfunction is determined up to a constant, its value for the first
node of the mesh has been set equal to zero, Thus, the algorithm starts with one
known value of 1y,

The fact that node number N, of the element be interior or not has been indicated
by the statement (N, interior). No distinction has been made between the global and
the local numbering of a node. In Box 2.5, 4, stands for the node where ¢, is to be
caleulated and i, for the ‘previous’ node, where the streamfunction is already known.
Finally, recall that Ny, is the total number of nodes of the finite element mesh,

This algorithm has proved to work very well for the problems we have considered,
even though the velocity is not exactly weakly solenoidal.
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Box 2.5 Algorithm for the calculation of the strenmfunction

sSete=0, NT(1)=1, (1) =0, Ny =1
s WHILE N, < N‘P DO:
e ¢ mod(e+ 1, Nu)
o IF & = 0 then e = Ny
o Compute NS
o IF 0 < NS < N, then
s Datermine I3
e FORi=1,N,, DO:
* fp = fg;) + i
s IF i, = Npo and (N, interior) then 1, « iy, +1
s IF i,0 = Nyo then ine + mod(ine, Naa)
8 IF i, > 1 then i, =t — 1
BELSE if (Nyo interior) then iy = Npo — 1
ELSE II:I;w' = N‘:‘m
s Compute
¢(inu} = "lb[.tml) + ‘xb(ipr)
+ 0.5 [“l(ino) + “I(ipr}] [Y(in,) = }r(iw)]
+ 0.5 [ua(ine) + walipe)] [X (iur) = X(ina)]
o IF N7(ino) = 0 then Nep — Nop + 1
L NT(irm) = NT(f,m) +1
END
o IF (N, interior) then
o P(Nno) = S50 @i (d)
« Nep = Nep + 1
8 NT(ing) = NT(ine) +1
END
END
END
e FOR ¢ = 1, Ny, DO:
o B(3) = Y()/NTG)
END
END
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2.8 Numerical examples

In this section, some elassical benchmark problems for incompressible viscous flows will
be golved. The first is the driven cavity flow, for which detailed numerical results can
be found, e.g., in References [GGS|, [GC2], [GuH], [Ki], [KM], [Sh], [SK], [So|, among
many others. The second problem is the flow over a backward facing step. Numerical
experiments for this problem are reported in References [ADS), [Ga], [GC2|, [HRS),
(Ki], [KM], [So]. Both for this problem and for the first one the stationary solution is
sought. The next example is the flow past a cylinder, for wich the steady-state solution
is not stable and a periodic flow pattern develops behind the cylinder if a uniform initial
condition is slightly perturbed. Numerical experiments for this problem can be found
in References [EJ], [GC2, [TGL], [TLi], [TMS].

All the above quoted references have been selected because of the details they give
about how the numerical simulation has been carried out, but many other works dealing
with numerical models for the Navier-Stokes equations present similar experiments.

Our calculations have been performed on a CONVEX-C120 computer using doubls
arithmetic precigion,

Example 2.1 Flow inside a wall-driven cavity

The Stokes solution for this problem has been considerad in detail in the previous
chapter. The essential feature of this benchmark test case when the Navier-Stokes
equations are solved is the prediction of various vortices ingide the cavity. The notation
we will use for them iz shown in. Figure 2.4.

U=(1,0)
—_—
(0,1} (.n

VORTEX 3

U= (0,0) U=(0,0)

VORTEX 1

Q VORTEX 2 O

vl (0,0 - (1,0
U=(0,0)

x

Figure 2.4 Geometry, boundary conditions and nemenclature of eavity flow

Numerical results will be presentad for values of the Reynolds number Ke = 1000,
4000 and 8000, computed using the length of the cavity and the velocity prescribed
on the top edge. In References [GGS), [GC2), [Ki] and [So| results are presented for
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other values of Re, so our results are complementary to theirs. In particular, the case
Re = 10000 is solved in these references, This value can be considered as a limit for
steady ealeulations, since Shen has shown through detailed numerical experiments that
above this bound the stationary solution ceases to be stable and a Hopf bifurcation
oceurs [Sh].

The computational domain has been discretized using a mesh composed of 676
Qu/ Py elements and 2809 nodal points for all the Reynolds numbers. This mesh has
been designed to capture the details of the flow in the corners and boundary layers
(see Figure 2.5). The smallest cloment size i8 Ay = 0.01 (twice the distance between
nodes),

y ERAR

i i ——
- - S —
3..1,- L] i B o o 1 — i — =]

Figure 2.5 Finile element mesh for the cavity flow problem (676 Qa/Fy ele-
ments, 2809 nodal points).

This mesh is similar to the one used by Gresho et al. [GC2], which consists of
50 % 50 @1/ Py elements and 51 x 51 = 2601 nodal points. They also used an upwind
technique [GC1]. For Re = 4000, the Galerkin method yields oscillatory results and it
is only pessible to use this method on much finer meshes, as those used by Kim [Ki
(1024 Qa/ P elements, 4225 nodal points), Sohn [So] (1600 Qy/ Py elements, 6561 nodal
points, Ay, = 0.00326) or Ghia et al. [GGS] (uniform mesh of 257 x 257 = 66049 nodal
points, with & = 0,0039). In this last reference, a finite-difference multigrid method
based on the streamfunction-vorticity formulation is used.

In all our computations we have taken ¢ = 10~* (penalty parameter). The iterative
penalty method has been employed, Coneerning the parameters of the 5D method,
ho = 2 has been chosen (element length for the parent domain) and ap = 0.5 (upwind
factor).

For Re = 1000, the Galerkin solution yields very good answers, without any
oscillations, Results are shown in Figures 2.6 to 2.9,
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Figure 2.6 Numerical solution of the cavity flow problem at Re = 1000
(Galerkin method), streamlines. (1): General pattern; (2): Detail
of the top left corner; (3): Detail of bottom left corner; (4): Detail
of bottom right corner.

ince the computation has started with zero velocities everywhere, the first effec-
tive initial guess is the Stokes solution. If the Newton-Raphson method is then used,
the algorithm does not converge. The strategy we have followed is to use the Picard
method (8 = 0) for the first three iterations and then mave ta the Newton-Raphson
scheme ( = 1). For a convergence tolerance in the relative L? norm of 0.1 %, ie.,
TOL = 1073 in (2.62), eight iterations have been required, The final value of the norm
of the discrete divergence of the velocity has been approximately 10711, starting from
an inital value of order 10~%

The streamlines are shown in Figure 2.6, For this value of the Reynolds number,
vortex 3 in Figure 2.4 does not appear. The extreme values of the streamfunction
in vortices 1 and 2 will be compared with the results presented in References [GGS],
[GC2], [So| and [Ki]. Recall that our results have been obtained using the Galerkin
formulation. Results of Reference [So] have heen obtained using the FIDAP code,
which allows to use a version of the streamline upwind (STU) technique employed also
in [GC2] and described in [GC1], but now applied to quadratic elements (in particular,
to the Q3/ P, pair). This consists basically in adding an anisotropic viscosity following
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Figure 2.7 Numerieal solution of the cavity flow problem at Re = 1000, ve-
locities. (1): Detail of the top left corner; (2): Detail of bottom
left corner; (3): Detail of bottom right corner; (4): Contours of

the velocity norm.

the streamlines, something very similar to what the Tnylor-Galerkin method yields,
Therefore, the final scheme is not a consistent weighted residual method, in the sense
that the exact solition does not satisfy exactly the discrete variational equations.

The extreme values of the streamfunction to be compared are the following:

[GGS) 1L75% 107 2.31% 107
[GC2] 176 % 107% 200 x 107"
[Ki] 1.66x 107  2.20x 107"
(So], without $TU  1.63x 107% 217 x 107
[So], with S8TU 110 107 9.40% 107"
Present study 161x107* 199x 1074

It is observed that the STU technique used by Sohn yields overdiffusive results
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Figure 2.8 Numerical solution of the cavity flow problem at Re = 1000, Pres-
sure contoirs, '
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Figure 2.9 Numerical solution of the cavity flow problem at fe = 1000. Vor-
ticity contours,

and that the extreme values of , are higher using linear elements (Q1/Fo in [GC2], a
difference scheme in [GGS)) than the Qy/ Py pair (results of Kim, Sohn and ours). It is
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also observed that the extreme values found in the present work are slightly smaller than
those in [Ki] and [So|. It is very important to keep this fact in mind because the same
behavior will be observed for higher Reynolds numbers using the 5D method described
in this chapter. Sinece, apart from the iterative penalty method, our formulation is very
close to that employed in [Ki] and [So], we believe that these differences are due to the
fact that the mesh employed here is much coarser than theirs, Moreover, Kim has also
compared the results for a coarser mesh (26 ¥ 25 nodal points) concluding that this
yields smaller absolute values for the peaks of the streamfunction.

Details of the velocity veetors in the corners of the cavity are shown in Figures
2.7.(1)~(3). The contours of the Buclidian norm of these vectors have been plotted
in Figure 2.7.(4). Observe that no oscillations appear. Figures 2.8 and 2.9 show the
pressure and vorticity contours, respectively. In general trends, these results are very
gimilar to those presented in the above quoted references.

WA s BRI MiH= 1)

Figure 2.10 Numerical solution of the cavity flow problem at Re = 4000
(Galerkin method), streamlines. (1): General pattern; (2): De-
tail of the top left corner; (3): Detail of bottom left corner; {4):
Detail of bottom right corner.

Consider now the case Re = 4000. The iterative strategy lollowed consists in using
the Picard scheme for the first three iterations and the Newton-Raphson algorithm from
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Figure 2.11 Numerical solution of the cavily flow problem at Re = 4000,
velocities. (1): Detail of the top left corner; (2): Detail of bottom
left corner; (3): Detail of bottom right corner; (4): Contours of
the velocity norm.

there on. Now, twelve iterations have been needed to converge up to a convergence
tolerance of 0.1%, but again the Stokes solution has been found to be a good enough
initial guess for the iterative process.

Numerical results are shown in Figures 2,10 to 2.12, corresponding to the same
plots as for the Re = 1000 case. Once again, the Galerkin formulation has been
employed.

From PFigure 2.10.(2) it is observed that now the top left vortex has appeared,
with an extreme value of 0.9 x 1072 for the stremmfunction. The other two vortices
have an increased strength with respect to the results for Re = 1000.

The velocity vectors are shown in Figure 2.11. From the contours of their norm
plotted in Figure 2.11.(4) it is seen that small numerical oscillations begin to appear
in zones with a high velocity and a relatively large element size, that is, with a large
cell Reynolds number. These oscillations appear near the bottom right corner. Never-
theless, they do not affect the quality of the solution in the rest of the domain and, in
particular, the vortices are well reproduced. The eftect of the small velocity oscillations
on the pressure is very weak, as it may be observed from Figure 2.12.
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Figure 2.12 Numerical solution of the cavity flow prablem al Re = 4000,
Pressure confoura,

The situation is completely different for Re = 8000, Concerning the iterative pro-
cedure, we have failed to obtain a converged solution by solving directly the stationary
Navier-Stokes equations. The alternative to use continuation techniques as in [So] is
to advance in time., We have chosen the solution obtained for Ee = 4000 as the initial
condition. Tn order to decrease the computational effort, the following strategies have
been used:

e 0 =1, i.c., the Buler scheme has been used. The steady-state is reached [aster
than using 0 = 1/2 (Crank-Nicolson) and the computational effort is smaller.

s Artificial compressibility method. Only for the steady state a good approximation
to the incompressibility constraint is needed. For € = 107%, the final value of the
norm of the discrete velocity divergence has been found to be of order 10719,

s High convergence tolerance, In order to perform only one iteration per time step,
we have taken TOL = 0.1 (10%) in (2.52).

o Small tolerance to check the steady-state, T7OL = 107" (0.1%) has been taken in
(2.53).

e The time step size has heen chosen as At = 0.1 For higher values, the solution
oscillates from one time step to another.

Using all these numerical parameters, the steady-state has been found using the
S method for £ = 5.1, i.¢., after 51 time steps. The steady-state has not been found
using the Galerkin method, The solution obtained at every time step is oscillatory.

Numerical results using the SD method are shown in Figures 2.13 to 2.15. In
general, the flow features encountered for Re = 4000 are now accentuated, although
nothing new appears. For Re = 10000 it is known that new secondary vortices develop
in the left and right bottom corners.

L&t us compare now the extreme values for the streamfunction at Re = 5000 that
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Figure 2.13 Numerical solution of the cavity flow problem at Re = 8000 (SD
method), streamlines. (1): General pattern; (2): Detail of the
top left corner; (3): Detail of bottom left corner; (4): Detail of
bottom right corner.

we have obtained (plots niot shown) with those given in the previous references, The

results are the following:

Referonce Vortex | Vortex 3

[aas) 3.08% 107" 1.46x 107
[Ge2) 387x 107 123x10™
[Ki] 279%107*  1.30x107*
[So], without STU ~ 2.80x 107°  1.28x 1077
[So|, with §TU 1L71x 107 1e4x 107
Present study 249% 107  121%107?

The conclusions that may be drawn from these values is that the 5D method we
have employed is much less overdiffusive than the STU technique used by Sohn, but
peaks are still smaller than in [Ki] and [So| using the Galerkin formulation. Reeall
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Figure 2.14 Numerical solution of the cavity flow problem at Re = 8000,
velacities. (1): Detail of the top left corner; (2): Detail of bottom
left corner; (3): Detail of bottom right corner; (4): Contours of
the velocily novm.

that this also happened for Re = 1000 when the Galerkin method was used in our
computation. The fact that our mesh is coarser than the one used in [Ki] and [Sa] may
be respensible in part for these results. Anyway, if the 5D method contributes to damp
peaks out, it is clear that this effect is not very important and the numerical answers
are very accurate.

We consider now the convergence of the §D method. When the Picard scheme
i« used, the rate of convergence is only linear and the way the 8D has been linearized
does not affeet it. The situation is different when the Newton-Raphson algorithm is
employed. The linearization of the 5D operator described earlier is only linear, and
therefore the rate of convergence of the scheme may be driven by this linearization,
regardless of the fact that the convective terms of the equations have been linearized
up to second order.

Let us see what happens when the P /Py elément is used. The mesh used is
shown in Figure 2.16, It is an unstructured mesh composed of 338 P} /P elements
and 1063 nodal points. The iterative penalization has been used, with ¢ = 104,
For the SD method we have taken g = 0.5 (upwind factor) and ho = 0.7 (element



2.8 Numerical examples 2.43

g

::-ﬁ:‘ -EEETC r : -:-::
T i .
i’iE;;EEE“ gkaas
-

nnnnnn

i

Figure 2.15 Numerical solution of the cavily flow problem at Re = 8000.
Pressure contours.
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Figure 2.16 Finite element mesh for the cavity flow problem (338 Br Py
elements, 1063 nodal points).

length in the parent domain). For Re = 1000, the velocity does not oscillate using the
Galerkin method. Results are shown in Figure 2.17, both using the Galerkin and the
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Figure 2.17 Numerical solution of the cavity flow problem at Re = 1000 using
the P} /Py element. (1): Streamlines, Galerkin formulation; (2):
Pressure contours, Galerkin formulation; (3): Streamlines, 5D
method; (/&): Pressure contours, SD method.

5D formulations.

The convergence history has been plotted in Figure 2.18.(a). The Picard method
has been used for the first two iterations, after which the Newton-Raphson scheme
has been employed. Tt is observed that the Galerkin mathod yiclds a quadratic rate
of convergence. However, this rate turns from quadratic to linear at iteration number
eight if the SD method is used. The evolution of the norm of the discrete divergence
is quite peculiar (the same notation as in Chapter 1 has been adopted). From Figure
2.18.(b) it is seen that this norm increases during the first three iterations and then
decreases with a rate similar to that of the convergence history. Of course this does
not contradict the results of Chapter 1, since what we obtained there waa only an error
bound for the difference between the penalized solution and the solenoidal one. In
Figure 2.18.(b), ||BU|| has been normalized by dividing it by N:],’ .f

The same numerical experiments have been carried out using the Qa/Fy pair for
Re = 1000 and a uniform mesh composed of 12 x 12 elements (625 nodal points), with
¢ = 10~%, Results are again very similar using the Galerkin and the SD methods (not
shown). The convergence history and the evolution of the discrete norm of the velocity
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Figure 2.18 Comparison of the convergence of the Galerkin and the SD meth-
ods for Re = 1000 using the P}/Py element, ¢ = 10°% (1):
Convergence history; (2): Norm of the constraint,
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Figure 2.19 Comparison of the convergence of the Galerkin and the SD meth-
ods for Re = 1000 using the Qa/P; element, ¢ = 1074 (1)
Convergence history; (2): Norm of the eonstraint.

divergence have been plotted in Figure 2.19. The same general trends as for the P /Py
element are observed, although now convergence is faster and the residual using the
41 method is smaller than using the Galerkin approach during the first six iterations.

From the all the results obtained for this example, it may be concluded that the
S method fulfils the requirement for which it has been designed: it produces numerical
answers without oscillations at high ecll Reynolds numbers, Nevertheless, there is B
price for it. First, care must be taken in the computation of the intrinsic time in order
to avoid overdiffusive results, which anyway will be somehow overdamped. Second, the
5D operator introduces a high nonlinearity in the problem that may deteriorate the
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convergence rate of the Newton-Raphson algorithm.

Example 2.2 Flow over a backward-facing step

The laminar backward-facing step flow is now considered. The problem descrip-
tion it shown in Figure 2.20. Aspect ratio of the backward-facing step (H) to the
overall sectional width is 1:2 and the total length in the horizontal direction is 40H. A
fully developed velocity parabolic veloeity profile is prescribed at the inlet boundary.
Experimental data can be found in Reference [ADS]. A detail of the mesh used in the
calculation is shown in Figure 2.21. This mesh is composed of 495 Qg/.ﬁ elements and
2077 nodal points,

|

JBL
]

Figure 2.20 Geometry, boundary conditions and nomenclature of backward-
{scing step problem.

According to Arnali et al. [ADS], the Reynolds number will be based on the
average value of the inlet velocity profile and the cross-sectional width of the whole
domain. For Re < 500 there exists only one recirculation zone behind the step., For
higher values of Re, another recirculation zone appears at the top wall of the channel.
Experimental results indicate that a third recirculation zone appears at the bottom
wall for values of Re higher than approximately 1000.

The main feature of this test for the stationary Navier-Stokes equations is the pre-
diction of the vortices as well as the position of the separation and reattachment points
(coordinates z,, =3 and 23 in Figure 2.20). For low values of Re, approximately up to
500, a fairly good agreement exists among the numerical and experimental results that
can be found in the literature [ADS], [KM], [Ki], (So]. For Re > 600, three-dimensional
effacts in the experiments are the argued reason for the diserepancies between compu-
tational predictions and experimental results [ADS].

Our numerical results agree very well for Re < 600 with those that can be found
in the above mentioned references. For brevity, they have not been included here. We
will concentrate only on high values of the Reynolds number. In particular, results will
be shown for Re = 800 and Re = 1000.
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Figure 2.21 Detail of the finite element mesh for the backward-facing step
problem (495 Q3/ Py elements, 2077 nodal points).

ot

Figute 2.22 General pattern of the streamlines for the backward-facing step
~ problem at e = 800,

The SD method has been used in the calculations, with ag = 0.5 and ko = 2.
The penalty parameter has been taken as € = 10-%, using the iterative penalization,
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Figure 2.23 Vorticity contours for the backward-facing step problem al Re =
800. -

Figure 2.24 Pressure contours for the backward-facing step problem at Ke =
800,

yielding a final value of order 101 for the norm of the discrete velocity divergence. Yor
Re = 100, the computation has started with zero velocities everywhere. The numerical
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Figure 2.25 Details of the velocity and the streamlines in the recirculation
gsones for the backward-facing step problem at Re = 800. (1):
Streamlines behind the step; (2): Streamlines in the recirculation
zone at the top wall; (3): Velocity vectors behind the siep; {4):
Veloeily veetors in the recirculation gone al the top wall.

results obtained for this case have been used ag the initial guess for Re = 200, and the
proeedure has been repeated until Jze = 1000. This type of continuation technique has
been adopted only because the whole range of Reynolds numbers were to be solved.
For Ite = 1000 we have also tried to reach the stationary solution via the evolution in
time, starting from the Stokes flow solution, The convergence towards the steady-state
has been found to be extremely slow, and only after a time £ = 207 the steady-state
has been reached. We have used At = 0.1 and the backward Buler scheme (8 = 1),
with & single iteration per time step (TOL = 0.1 in (2.53)) and a tolerance of 0,1% to
chack if the steady-state has been reached. This slow evolution towards the stationary
solution is due to the pressure waves that are reflected at the outflow boundary, for
which the numerieal boundary condition chosen is zero traction. Concerning the steady
caleulations, two Picard iterations and three or four Newton-Raphson iterations have
been %ﬁtfarmad for each Reynolds number increment to reach a convergence tolerance
of 0.1%.

Consider first the case Re = 800. Figure 2.22 shows the general streamline pattern
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(the y—direction has been senled by a factor of 5 in all the plots), Vortieity and pressure
contoirs are shown in Figures 2.23 and 2.24, respectively. From the last picture, it is
ohserved that the zero traction outflow condition, which must be viewed as an artificial
botndary condition to simulate a long channel, does not produce pressure reflexion.
The pressure gradient is parallel to the 2—direction.

A detail of the streamlines and the velocity vectors in the recirculation zones is
shown is Figure 2.26. The vortex behind the step is much stronger than the one in the
top wall of the channel. The extreme values of the streamfunction are —3.88 x 10-*
for the first vortex and 6.67 X 1071 for the second. The values of the coordinates
2;, ¢ = 1,2,3 in Figure 2,20 are the following:

Coordinate  Experimental — Computed

zy 14.3 10.3
oy 10.6 10.8
©a 19.8 17.2

The given computed values have been obtained from the plots and therefore should
be eonsidered only as an approximation. The experimental values correspond to those
given in [ADS]. As it has heen already said, diserepancies should be expected due to
the three-dimensionality of the experimental flow at this Reynolds number.

box

Figure 2.26 General paitern of the streamlines for the backward-lacing step
problem at Ke = 1000,

Results for Ke = 1000 are shown in Figures 2.26 to 2.29. The essential features
of the flow are the same as for Ke = 800, although now accentuated. In Figure 2.28
it is observed that higher pressure gradients develop at the reattachment point behind
the cylinder, The detail of the vortices depicted in Figure 2.29 indicate that they are
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Figure 2.27 Vorticily contours for the backward-facing siep problem al He =
1000, '

Figure 2.28 Pressure contouts for the backward-facing step problem at fe =
1000.

stronger now that for e = 800, It is also observed that a third vortex begins to appear
at the top wall (Figure 2.29.(2)).
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Figure 2.29 Details of the velocity and the streamlines in the recirculation
gones for the backward-facing step problem al Re = 1000, (1):
Streamlines behind the step; (2): Streamlines in the recirculation
gone at the top wall; (3): Velocily vectors behind the step; (4):
Veloeity vectors in the recirculation sone at the top wall.

The approximate values of the coordinates z;, ¢ = 1,2,3 are found to be @y =
12.8, 23 = 13.0 and 24 = 22.1. Although the recirculation zones are now longer that for
the Jie = 800 case, they are still shorter than the experimental values for this Reynolds
numbar,

Example 2.3 Vortex shedding behind a eylinder

This last example involves the flow past a cylinder, another widely solved bench-
mark problem. A circular cylinder is immersed in a viscous fluid. The Reynolds number
is based on the eylinder diameter and the prescribed uniform inflow velocity. The ge-
ometry and boundary conditions are shown in Figure 2.30.

Vor Re approximately less than 40, two symmetrical eddies develop behind the
eylinder, These eddies become unstable at higher Reynolds numbers and periodie
vortex shedding occurs, leading to the so called von Karman vortex street. The case
Re = 100 to be solved here is usually considered as the standard test.

Consider first the stationary (unstable) solution. To show the behavior of the
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Figure 2.30 Geometry, boundary conditions and initial perturbation for the
flow past a cylinder.
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Figure 2.31 Finite element mesh for the flow past a cylinder using the P/ Py
element (1014 elements, 3112 nodal points).

Pyt | Py pair, we have solved this problem using this element. The finite element mesh
shown in Figure 2.31 consists of 1014 elements and 3112 nodal points. The steady
calculation has started with zero velocities everywhere. First, two Picard iterations
have been performed, after which four more Newton-Raphson iterations have been
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Figure 2,32 Stationary (unstable) solution using the PF Py element. (1)
Streamlines; (2): Detail of the symmetrical eddies ai the down-
atream side of the eylinder; (3): Pressure contours; (4): Vorticity
contours.

needed to reach a convergence tolerance of 0.1%. The iterative penalty method has
been employed, with a penalty parameter ¢ = 107%, The upwind factor to calculate
the intrinsic time has been chosen as ag = 0.5 (quadratic elements) and the length of
the parent domain hg = 0.7. Results are shown in Figure 2.32.

If the stationary solution is slightly perturbed, the two symmatric eddies disappear
and vortex shedding oceurs. The numerical simulation of this phenomenon has been
earried out using the Qz/P; element and the finite element mesh depicted in Figure
2.33 (500 elements, 2100 nodal points). First, the stationary solution has been oblained
(results not shown), with a strategy similar to the preyious case. This solution has been
perturbed by introducing n small rotating flow field around the cylinder, as shown in
Figure 2.30, and taking this as the initial condition for the transient computation.

In order to obtain a fully developed vortex shedding, 90 time steps have been
performed with At = 1 (time step size) and # = 0.5 (Crank-Nicolson scheme), although
# = 1 has been chosen for the first time step. The convergence tolerance within each
time step has been taken as 1%, A single Picard iteration has been needed using
the classical penalty method with € = 1073, The parameters of the 5D method are
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Figure 2.33 Finite element mesh for the flow past a cylinder using the @1/ Py
element (500 clements, 2100 nodal points).

ap = 0.5 and hg = 2. The solution thus obtained is only a crude approximation, but
the computational effort has been relatively low (56 CPU seconds per time step) and
the periodic flow pattern obtained is fully developed.

The results obtained using this procedure have been taken as the initial condition
for a more aceurate caleulation, Now, At = 0.1 has been chosen, Two Newton-Raphson
iterations coupled with the iterative penalization have been performed for each time
step. The initial guess for the first one has been the solution of the previous step. The
relative L? —norm of the velocity residuals found has been approximately the 2% and
the normalized norm of the diserete veloeity divergence of order 107%, After the second
iteration, the relative norm of the velocity residuals decrenses to the 0.02% and the
norm of the discrete velocity divergence to a value of order 107, The total CPU time
required per time step has been 139 seconds.

Nimerieal results are shown in Figures 2.34 to 2.40. The period of the oscillations
has been found to be 5.7 time units. The values given in references [BH] and [GC2] are
6.0 and 5.6, respectively, In Reference [EJ], the period obtained with a very fine mesh
(3426 Q4/ P elements, 14000 nodal points) is 5.8 time units.

The streamline snapshots shown in Figure 2.31 correspond to the times { =
10, 11, 12 and 13, that is, approximately half a period (t = 0 corresponds to the
periodic solution computed as described earlier with a higher tolerance and a higher
{ime step size). Details of the streamlines and the velocity vectors at the downstrean
side of the cylinder are plotted in Figures 2,36 and 2,36, respectively. The pressure
and vorticity are shown in Figures 2.37-2.38 and 2,39-2.40. In general, all these results
agree very well with those that can be found in the literature. Perhaps the only point to
be remarked is that the smoothing of the pressure and the vorticity we have employed
does not yield very smooth contours, since hoth fields are highly variable in space due
to the transportation of the eddies downstream.
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Figure 2.34 Development of vortex shedding: Streamlines, (1): t = 10, (2):
=11 (3) t =12 (4): t =13

2.9 Summary and conclusions

The finite slement method to solve the Navier-Stokes equations proposed in this
work has been fully described in this chapter. Most of the ideas developed in the
previous chapter have been applied here, although now the purpose has been to present
a methodology rather than to introduce new developments. In particular, the following
items have been treated:

s Time diseretization. The trapezoidal rule applied to the transient Navier-Stokes
squations has been described in detail. Special emphasis has been given to justify,
both using theoretical and computational arguments, the choice of the parameter
0 of the trapezoidal rule.

e Streamline Diffusion method. As for the conveetion-diffusion equation studied in
Reference [Col, a SD term is added to the Galerkin formulation of the Navier-
Stokes equations. This term has been designed to avoid the numerical oscillations
of the Galerkin approach, but not to stabilize the prassure interpolation. ‘There-
fore, the velocity-pressure spaces to be used have to be div-stable. The calculation
of the intrinsic time is of fundamental importance, since overdiffusive answers are
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Figure 2.35 Development of vortex nﬁndding: Detail of streamlines. (1): t =
10, (2): ¢ =10, (3): £=12.; (4): 1 =13,

ohtained if this parameter is overestimated. The simplest method of these pro-
posed in Reference [Ca] for computing the upwind function has proved to be
effective. Whenever a converged solution has been obtained, no oscillations have
been found and the results compare very well with reference numerical solutions
selected from the available literature,

Linearization procedures. The way the final nonlinear system of equations is lin-
earized has been treated in detail. In order to avoid a high computational effort
due to the SD method, terms coming form the §D operator have been linearized
only up to first order. When the convective term is linearized up to second order,
the quadratic rate of convergence that one finds using the Galerkin approach is
in general deteriorated, although convergence is still much faster than using the
Picard scheme, i.e., first order linearization for the convective term. This is a price
to be paid for using the SD method.

Iterative penalization. The iterative penalty method analyzed in Chapter 1 has
been extended to the transient equations and used in conjunction with the 5D
method. We have found that this is certainly worth doing in all the cases. Al-
though it has not been our purpose here to check its behavior, for which the
numerical experiments of Chapter 1 were intended, in all the numerical examples
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Figure 2.36 Development of vortex shedding: Detail of velocity vectors. (1):
t=10; (2): t = 11,5 (8): t =12 (4): t = 13..

we have given the penalty parameter and the final value of the norm of the ve-
locity divergence. Results have always been very good, with an approximation of
the incompressibility constraint much better than what could be expected using
the classical penalty method.

Some specific contributions have also been introduced here. After describing the
smoothing technique employed in the calculation of the pressure and the vorticity, nodal
quadrature rules have been given for the most common finite elements used in practice,
not only those that have been employed here. Finally, an algorithmic procedure to
calculate the streamfuction has been presented using the genuine structure of finite
alement programming.
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Figure 2.38 Detail of pressure contours al ¢ = 15, time units,
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Figute 2.39 Vorticily conlours at ¢ = 15, time units.
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Figure 2,40 Detail of vorlicity contours al ¢ = 15. time units..
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CHAPTER 3

THERMALLY COUPLED FLOWS
AND NONLINEAR MATERIALS

3.1 Introduction

The numerical model developed in the previous chapters will be now applied to several
problems of physical and engineering interest. In particular, this chapter will be devoted
to the numerical simulation of thermally coupled flows and nonlinear materials and the
following to the mould filling simulation, The technological interest of these problems
will be discussed in detail in the numerical examples that will be presented.

Thermally coupled flows involve the numerieal solution of the energy balance
equation, together with the momentum and incompressibilily equations, and a eoun-
pling algorithm between these two problems. Besides the description of the numerical
solution procedure for each problem independently, a block iterative technique used to
couple themn will be discussed. This will be the only new ingredient of the numnerical
model and will be treated in some detail.

The coupling between the mechanical and the thermal behavior of a fluid may be
due basically to two physical effects. First, temperature variations may lead to density
gradients whose presence means that gravitational potential energy can be converted
into motion through the action of bouyant forces, These density gradients may be also
due to concentration differences in mixtures of one or more components, like salt water.
Both effects are coupled in some practical physical situations (see [He| and references
therein). Here, only density variations due to temperature will be considered. When
the fuid is assumed to have a uniform density except for the body force term, one is led
to the so called Boussinesq approximation (see, e.g., [LL]), a model of wide applicability
in practical problems. The Boussinesq problem will be the subject of Section 3.2.

Thermally coupled flows may also arise because of the variation of some physical
praperties of the fluid with temperature [I05], [ZMS$], such as the viscosity, the diffusion
or the specific heat. The temperature in turn changes with the velocity field due to
convection and the dissipation of mechanical work into heat (Joule effect). Usually, this
source term in the energy equation is negligible, although it has to be taken into account
when highly viscous lows are considered. In particular, this term is fundamental when
the flow of viscoplastic materials is studied.

Section 3.3 is concerned with the numerical simulation of generalized Newtonian
fluids. This is a particular case of non-Newtonian behavior in which the constitutive law
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takes the same expression as for Newtonian materials although the viscosity is allowed
to depend on the invariants of the strain rate tensor. The flow of many fluids can
be accurately represented by some well known constitntive laws (power-law, Carrean
model, ete.) derived from experimental results (see [Ta] for a comprehensive description
of this type of fluids). Another important family of constitutive laws of this kind is the
one represented by viscoplastic materials when the elastic effects are neglected (flow
approach). This rheological behavior is widely used in metal forming processes (see,
e.g., papers in [CO|, [TWZ]).

The general problem, including material nonlinearity and thermal coupling, is con-
sidered in Section 3.4. The basic algorithm of Box 2.3 is completed with the numerical
solution of the energy balance equation and the block iterative algorithm.

Some results concerning the analysis of the problems to be considered here will be
referred to during the exposition. These analyses are restricted to some simplified prob-
lems, but they help to get insight into the numerical problems that may be encounterad
when dealing with more complicated situations.

The last part of this chapter contains the numerical results obtained for three dif-
ferent model problems, representative of the type of applieations that may be treated
with the numerical tools described here. The first problem is the simulation of the ther-
moconvective instability of plane Poiseuille flow heated from below, using the Boussi-
nesq approximation. This model is also used to solve the natural convection of low-
Prandtl-number fluids, such as liquid metals. A periodic oscillating flow pattern is
encountered when the Grashof number exceeds a eritical value, The last example is the
4:1 plane extrusion of a power-law fluid with an exponential-iype thermal dependence.
Numerical results will help to understand the physics of this problem. Although the
simulation of all these flow problems has an inherent interest, emphasis will be placed
on the numerical behavior of the finite element model proposed here, trying to demon-
strate its potential applications.

3.2 The Boussinesq model
3.2.1 The continuous problem

The Boussinesq approximation is based on several thermodynamical assumptions and
an analysis of the relative importance of the thermal effects (see, e.g., [Jol, [LL]). The
main hypothesis, based on thermodynamical grounds, is that the density satisfies the
following equation of state:

= poll = B(¥ — do)] (3.1)

Here and below, the temperature will be denoted by # (not to be confused with the
parameter @ of the genealized trapezoidal rule). The parameter § in Eqn. (3.1) is the
volume expansion coefficient and subseript naught refers to a reference state.

Once (3.1) is assumed, a dimensional analysis reveals that the density may be
taken ns constant and equal to py for all the terms of the Navier-Stokes and temper-
ature equations except for the body force term of the former. Neglecting the rate of
dissipation of mechanical energy in the temperature equation and assuming the physi-
cal properties to be constant, the system of partial differential equations we are led to
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is the following:

polOen + (- V)u] = 2uV - £(u) + Vp = pog[l — A(¥ ~ da)] (3.2)
T-u=10 (3.3)
poep| Ot + (- V)] — kAD = 0 (3.4)

to be solved in an open bounded domain 0 of R¥ with some certain initial and
boundary conditions. In (3.2)-(3.4), g is the gravitational acceleration, ¢, is the specific
heal at constant pressure and k is the thermal conduction coefficient. The rest of the
notation has been introduced in the previous chapters. For simplicity, source terms in
(3.4) have been omitted, as well as body forces in the Navier-Stokes equations other
than gravitational,

Assume now that there is a length scale L and a temperature scale 819 inherent
to the problem. For example, L may be taken as the diameter of 1 and &7 as the
temperature difference between two walls of 8. Given a velocily scale U, the following
dimensionless numbers are defined:

polil7

Re = o, Reynolds number
Pe = POE’J;LU, Péclet number
273
Gr = 4 El';g ia Grashof number
FPri= E"I-u Prandt]l number
2ra
Ra := ﬂlglc,;‘# Rayleigh number
US
By 2= W Froude number
1]
These numbers are related by
Ra=Gr Pr, Fr=Re* Gr™', Re=PePr (3.5)

If the thermal diffusivity & = k/eype and the kinematie viscosity » = p/po
are introduced, Pr may be written as Pr = »/s, Therefore, the Prandtl number is
a measure for the similarity of the transport of heat and momentum. The Grashof
number is a measure of the relative importance of the bouyancy forces to the viscous
forces.

For the definition of the velocity scale U, two cases will be distinguished. First, il
the velocity u is preseribed to a nonzero value on a part of 96, a characteristic value of
the boundary condition may be chosen as U (e.g., the average or maxirnum prescribed
values), This is the so called forced convection problem. If time is nondimensionalized
using L/U as time seale, equations (3.2)<(3.4) may be written in dimensionless form
as follaws:

1 1
Y= 2V = — il
A+ (u-Vu Ethv g(u) + Vp Frlﬂg

Veou=10 (3.6)

L
L)Y — AP =0
dyd + (u - V)d Pe
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Here, body force terms of the form C'g, with €' a constant, have bheen introduced in Vp
and the resulting pressure nondimensionalized by pol/?. The vector g in the momentum
equation denotes the normalized gravity acceleration vector. No distinction has been
made between dimensional and dimensionless variables.

The second case of interest is found when u is prescribed to zero on 952, part of
which muny be left free. In this case, there are two possibilities for choosing the velocity
scale U. If we take U = pu/Lpo, then Re = 1. On the other hand, if U = /1 is chosen,
then Pe = 1 automatically. Using this last choice, the dimensionless form of equations
(3.2)-(3.4) may be written as

da+ (u-Vyju=2Pr V-g(u)+ Vp= —Pr Ra 05
Veu=10 (3.7)
G0+ (u:V)d-Ad=0

This case is known as natural convection.

Both for the forced convection and the natural convection cases, a stationary (or
motionless) solution may exist, whenever it does exist for the uneoupled Navier-Stokes
equations. If the temperature field is such that V4@ is parallel to g and normal to u, the
velaeity and pressure solutions are independent of the temperature. Otherwise, motion
is induced by the bouyaney forces, However, the stability of the stationary solution can
only be ensured for low values of the Reynolds and Rayleigh numbers [Jo]. As they are
increased, bifurcation phenomena oceur and stable solutions are no more stationary.

Let I' be the boundary of the domain €2, split into two sets of disjoint components
=T UT,, and T' = Ty UT,;. The type of boundary conditions that will be
considered is the same as in the previous chapter for the Navier-Stokes equations, that
is, (2.3) and (2.4). For the convection-diffusion equation, both Dirichlet and Neumann
type boundary conditions will be taken into account. Let n be the unit vector normal
to I', @t the velocity preseribed on Ty, T the prescribed traction on T, ¥ the given
temperature on I'y; and ¢ the prescribed heat flux on I';. The boundary conditions
to be considered are

u=1i on Tyy
n-o=t on T, 3.8)
9 =1 on Ty (8:

~kn-Vd = on Ty

where the expression of the stress tensor @ is given by (2.6).

The notation used heretofore to indicate the spaces of test functions and of trial
solutions will be slightly modified. Subscripts u, p and ¢ will be used to refer to velocity,
pressure and temperature, respectively,

If (0,7") denotes the time interval where the problem is to be solved and u(x,0) =
ug(x), ¥(x,0) = Jg(x) are the initinl conditions (x € ), the spaces of trial solutions
that will be needed are

Vu = {v e 1}0,T; H' ()N | vlp,, =1, te(0,T))
Vo= {q € L*(0,T; L}(12)) | /ﬂ gd =0, t€(0,T), if Ty =0}  (3.9)
Vi= ‘[7? € L:(OrTFHl(ﬂ)) ] qlr'n ™ ‘?r te {ﬂ, T}}
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The corresponding spaces of test funclions are
= {ve B (@)" | v|p,, =0}
W, = L*(f) (3.10)
We={n € #'(2) | nlr,, = 0}

The reason for choosing these spaces has already been explained in Chapter 2.
In order to write the weak form of problem (3.6) with the dimensionless form of
the boundary conditions (3.8), let us introduce the multilinear forms

a(t, v) = If e(u) : e(v)dS,

W)= | qv v,

e(u,v,w)= /;[ (u-V)v] wdf) + %A(V-u)v-wdﬂ,
dinv)= 57 [ k- vae,

(9,1) = 5= ]ﬂ Vi . Vndel,

J(u,d,9)= / gu - V2di,
fl

(3.11)

lv) = t-vdl,

T
B = /; i,
LI}

where u, v, w e V, or W, g € V, or W, and 4, 7 € V; or Wi, The weak formulation
of the problem is now given as follows: Find u € V,, p € V;, and @ € V; such that

(o, v) + e(u, v, v) + alu, v) = b(p,v) + d(?, v) = L,(v) (3.12)
b(g,u) =0 (3.13)

(@, ) + Flu, 9, m)+ e(¥,n) = L(n) (3.14)

(u6x,0),v) = (uolx),v)  (3.15)

(9(x,0).m) = (Pa(x), m) (3.16)

forallve Wy, g€ Wyand n€ W, and for t € (0,T).

Some partial results concerning the existence, uniqueness and regularity of solu-
tions for pmblem (3.12)-(3.16) are known. For the stationary problem and natural
convection, uniqueness of solution can only be pm‘und for sufficiently small values of
the Rayleigh number [Li], [Cu| (the changes to be introduced in the dimensionless
parameters of (3.11) to consider the natural conveéction problem (3.7) are obvious).

3.2.2 Discrelization in space and time
The numerical solution of problem (3.12)~(3.16) will be carried out using the same tech-

niques as in Chapter 2 for the transient Navier-Stokes equalions. The space discretiza-
tion will be performed using div-stable velocily-pressure finite element interpolations
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and the Streamline Diffusion (5D) method to stabilize high-Reynolds-number flows.
The finite element spaee for the temperature will consist of piecewise polynomials of
the same degree and with respect to the same finite element partition {£1°} as for the
velocity components, In doing so, the same convergence rate for the temperature as
for the velocity can be expected, at least for the Galerkin approach (ef. [Gu]). The 5D
method will also be used for the energy equation.

Omnee space has been discretized, the resulting initial-value problem will be solved
using the generalized trapezoidal rule.

As usual, subscript & will be used to denote the diserete finite element spaces and
the functions belonging to them.

Using the same notation and arguments that led us to problem (2.40), the fully
diserete version of problem (3.12)=(3.16) that will be used reads as follows:

Forn = 1,2,.., N, given ul"(x), pp~"(x) and 977" (x), find u}(x), pj}(x) and 9} (x)
such that
1 —_— T Tn— =
37(“;: - uj Yovp) o+ fe(ul, ult,vy) 4 (1 = 0)e(uj; ',u: L)
+ Oa(uf,vi) 4+ (1 = Oa(u}~t, vy)
— 0b(ph, vi) — (1= O)b(p}~" vi)

+ 0d(9h, va) + (1 — 0)d(I) ", v) (3.17)
+ %SS*E(W..PM%:VM
= :;LI'(WJ + (1= 0)i5 ™" (va)

blgn, up) =0 (3.18)

1 i fi= =
A (O = O ) + OF (s 95 ) + (1= O)S (™, 757 n)

+ 0e(O, 1) + (1 — 0)e(95~1 )
Nai (3.19)
+ ZSP'E(“A."?MT}A)

am]
= 00 () + (1 = )12 ()
for all vy, € Wy, i € Wy, and 1, € Wy,

The Streamline Diffusion term S5 (up, pr, 5; ve) for the momentum equations
is defined as

S™ (i, ph; Oni va) = A* Cu(ult v - IV (wha i)

1 (3.20)
+ 78 (895 + (1 = @)dp~*)] dn2
where
FgrT L g =] o, n e -1 1 n-—-1
N;(u’”ph) 31T Af-(“h “h ) + Pe(uh v)uh + P(l g)(“h V)uh (3:3]_)

1 1
~ =0AuR - ==(1 - 0)Au~ + 0V} + (1= 0)Vp;
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{ulup, va) i= 75(un - Vv, (3.22)
The intrinsic time 77 iz computed as in Chapter 2 (Eqn. (2.43)) using the cell
Reynolds number, now given by (Re)® = |[u|h®Re/2 (recall that u® and A® are assumed
to be dimensionless).
For the energy equation, the 5D term is

S (up, I mn) 1= /m Gl mn )6 (ap, 9,)d52 (3.23)
whare
1
€' (untn) = 2o (F5 - IRt + 0(up - V)R 4+ (1 = 0)(uy ™" - VYo
1 ! i (8:24)
- Eﬂﬁ'ﬂh - E{l - 0)Ad}
Coluan, ) = 75 (un - ) (3.25)

and the intrinsic time rf is computed us explained in Reference [Col for the convection-
diffusion equation using the cell Péclet number v = |u|h® Pe/2.

Remarks 3.1

(1) The ohservations pointed out in Remarks 2.1 and 2.2 also apply to the problem
now considered.

{(2) In Reference [Hel, it is coneluded that the consistent Streamline Diffusion method
does not work for a problem very similar to the present one using the @Q/FPq
alement. The misbehavior found was overcome dropping the bouyancy forces in
(3.20) and the discretized version of the velocity time derivative in (3.2'].) (the vis-
cous and pressure terms vanish for the @ /Fp element). As explained in Reference
[Co] this is equivalent to introduce an artificial diffusion along the streamlines. We
have not encountered these problems, The answer we give is that the Q/Fy ele-
ment is not div-stable. Pressure gradients in (3.21) do have an important role and
for the Q,/Fy element they do not approximate the gradients of the continuous
pressure field.

(3) An analysis of the Galerkin finite element solution of the natural convection prob-
lem can be found in Reference [BL|, where a slightly different formulation of the
physical problem is considered. The fluid-filled domain is linked through an in-
terface with heat conduction in the solid enclosing the fluid. Optimal rates of
convergence are proved when the velocity-pressure interpolation consists of non-
conforming Py /Py elements and V; 5, is built up using # elements with respect to
the same triangulation as for the velocity. 0

Before going any further, let us introduce the matrix version of problem (3.17)-
(3.19). The matrices defined in Box 2.2 for the Navier-Stokes equations will also be used
now (taking p = 1, = 1/Re, [ = L, f = 0 and replacing the vector g by 5, := 7ju’, u’
being the characteristic velocity for element ¢). The new matrices that will be needed
to account for the thermal coupling are defined in Box 3.1, where 8; := 7fu®, © denotes
the vector of nodal values of a generie function in V; and © the vector of nodal values of
an element in W;. The vector of nodal values of an element in the velocity test function
space W, has been represented by V. The L? inner product in the temperature space
has been indicated by (-, :);. In order to aveid the introduction of more subseripts
in the matrices, tha convection and diffusion matrices for the temperature have been
denoted by H, instead of the traditional notation K, already used for the matrices of
the Navier-Stokes equations.
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Box 3.1 Matrix form of the discrete equations
Matrix version Terms from where it comes
N,
o 1
vT.c, 8 o) + 3 [ (s )il tpa
. Ny
0" M@ (Bt Y, [ (50 VImldade
=1
4 N"’
ér ' Hn.n(U) - @ f(umﬂ'mm-) o Z j;_" [(“t : V)"?h] (“h ' v)'ﬂhdn
el
s A 1
6 B0 eltnm)+ ) [V (- a0 an
éT ¢ Fj: I:(’]h)

Having introduced these matrices and vectors, problem (3.17)=(3.19) may be writ-
ten as follows:

Forn=1,2,.., N, given U1, P*~! and @""!, find U™, P" and O", approximations
to U(t™), P(#") and ©(1"), such that
MU.!:: = UH + aAth.g(U“) : U“ 'l' aﬁanJ_.a * U“
~ 0ALG,y - P" + 6AIC,, - O"
= OAIFY 0 + (1= 0)ALF SR + M R (3.26)
— (1= B)ALK, . (U1 U = (1= 0)AtK g,y - U™
+ (1= 0)ALG,s - P — (1 = 0)ALC,y - 01

cl.u"=0 (3.27)
M, - O BALH o3 (U™) - ©" + 0ALH, 5 - O"
= OALF? (1 — O)ALF ™  My,n - @) (3.28)

— (1= )AH 2 (U™ ) @™ — (1 - 0)AtH,,» - 0"

3.2.3 Block iterative algorithm

Now we will consider an iterative solution procedure for problem (3.26)-(3.28). In
particular, the block iterative technique used to uncouple the calculation of the tem-
perature and the velocity and pressure will be discussed in detail.

Equations (3.26)-(3.28) may be written together in a unified matrix expression,
Let us denote by R, and R, the right-hand-side terms in Eqns. (3.26) and (3.28),
respectively, and define the following matrices:
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A”(U") = My,am + ﬂﬁtﬁa,a:{(un) + gﬁth.l:}

Aqz = —aﬁtﬁ,g

Agg 1= OALC (3.29)
Ay 1= Gg.

Agy(U") 1= Myn + 0ALH, 0 (U™) + 0A1H g 4

Having introduced this notation, Fqns. (3.26)-(3.28) are rewritten as:

A”(U“} Au A gn R“
( Axn 0 0 ) (P") = ( 0 ) (3.30)
0 0 AH(U") e" R,

In fact, Ays and Aja also depend on U™ through the SD term, although such de-
pendence has not been explicitly indicated. Assume for a moment that the Galerkin
formulation is used and therefore A;; and Ays are constant. Suppose that the convec-
tive terms in the Navier-Stokes and the energy equations are linearized as follows:

,‘ 1 i— L] .‘ W= l-_ |‘_
e v # () B i) = A )

POl o ) s FOap 8 ) + Bef (et 00 ) = AT (a0 )
(3.31)
where superscript i denotes the iteration counter. For f, = B = 1, (3.31) is the
Newton-Raphson linearization and for 8, = f = 0 the Picard scheme. The resulting
matrix version of the linearized equations will have the following aspect:

An(U™1) + BAL (UMY) Ag A un Ry
Agn 0 0 Pprd | =1 0 (3.32)
BAs(07) 0 Awury) o) \r;

W I 3 AL (U i-1 Uni !
G = Rr + .[u .I' il : R
" u wu( s ) i (3.33)

R} =R, + /A5 (0™1). U™
and Af;, Aj; are the matrices coming respectively from the terms c(l::‘i,u;'{_L,V;,)
and f(ug", t?ﬂ"_t,m.). Let us define now

B o (An(UMY) 4 BAL (UMY Ay

Bu= (%), Bu=(aapEm) o)

By 1= Ag(U™1)

o (), (5)

Yi= 6 Fyi=R

(3.34)

The linear system (3.32) may be written as

(g;: g:) (%) = (gp) (3.35)
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A block iterative algorithin may be employed to solve (3.35). The main advantatge
of this method is that smaller linear systems will have to be solved, although iterations
will be required. For the particular case of (3.35), two options are equally easy to
implement [SB|:

o Black Jucobi method (or block total-step methad):

B X =F, - Bj;Y!

: . 3.36
By Y = F, — By X9 (3.36)
e Block Gauss-Seidel method (or block single-step method):
BjuX! = F, - By
11 : ] 12 ; (3‘37)
BpY! =F, - By X’
Gl By Y =F,— By X7}
22Y’ =F,— By (3.38)

BuX! =F,-B;Y/!

Remarks 3.2

(1) It is understood that a convergence criterion has to be chosen to stop the iterative
algorithms (3.36)-(3.38).

(2) Physically, the distinction between (3.37) and (3.38) relies on which equation
(mechanical or thermal) is solved first. Depending on the physics of the problem,
one option may be more efficient than the other, although the improvement will
be in no more than one iteration. In what follows, we will assume that the Navier-
Stokes equations are solved first, being clear that the following discussion carries
out verbatim if the order of block iterations is swapped. 0

The convergence of any of the algorithms (3.36)-(3.38) depends on the spectral
radius of the square matrices contained in the off-diagonal matrices By and By [SB].
Matrix By, may be set to zero by selecting B = 0 (Picard method for the energy equa-
tion). However, from (3.34) and (3.29) it is seen that B, contains the coupling matrix
C,n. For a given time step size and a mesh diameter A, this matrix is proportional to
1/ Fr (see Box 3.1) or, equivalently, to Gnﬂfﬂea (ef. Eqns. (3.5)). Therefore, algorithms
(3.36)-(3.38) will only converge for sufficiently small values of the Grashof number.
Although this fact might seam an important drawback for using a block iterative algo-
rithm, this is not the case: when Gr (or Ra) are very high, even the linearization of the
initial problem (3.30) leads to diverging schemes. Relaxation procedures are needed for
these extreme cases to computbe converged solutions,

The computational efficiency of a block iterative scheme is not elear for the linear
problem (3.35). However, this linear system arises from the linearization of (3.30), i.e,,
from (3.32). The natural idea is to deal with the iterations due to the problem non-
linearity and the block iterations in a single iterative loop. This leads to the following
scheme:

(A”(U:;.E—I) + BuAl, (UmE-1) Au) (‘Un.i) 3 (R{, - An@"-‘"l) (3.39)

Aay 0 pri ) ]

Aaa(U“"_l)@"'i = R: i ﬁ! ;ﬂ@n.i—l)un.k (340)
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where for k = i — 1 this is a Jucobi-type method and for k = { & Gauss-Seidel-type
algorithm. Using the expression for R} given by (3.33), from Eqn. (3.40) we have that
Aas(un.l‘—‘l) @™ E!AEI(QH"'—I) U™ ﬁ;A;I(@“"‘_I) U™l R, (3_41)

For fi; = 0 (Picard linearization for the energy equation) or k = i = 1 (block Jacobi
algorithm), this last expression reduces to
Agg(U""_') ,en.u‘ = R,
Assume that §; = | and k = 1, Since
Agg(U™1) . @™ 4 Asl(&,n.iﬂ) U - AL (O™ yna-1

is precisely the linearized expression of Aga(U™) @™ and U™ is already known from
(3.39), Eqn. (3.41) reduces to

Agy(Um) .M = R,
Summarizing, Eqn. (3.40) may be replaced by

Ags(U™) - @™ = R, (3.42)
where

a) k = i— 1if the convective term in the energy equation is linearizod up to first order
(Pica_rd met'lmd) or the black Jacobi method is nsed to couple the mechanical and
thermal problems,

b) k = i otherwise, that is, second order linearization is used for the convective term
in the energy equation and the block Gauss-Seidel method is employed as block
iterative scheme,

Let us go back now to the original matrix notation for (3.39) and (3.40). There
are two sources of nonlinearity reflected in these equations, the first eoming from the
nonlinear character of the physical problem and the second due to the block iterative
method. As in Chapter 2, we will add two more sources: the 5D method and the
iterative penalization. Altogether, there are four reasons to iterate (nonlinear terms,
block iterative coupling, SD method and iterative penalization) and they will be dealt
with in a single iterative loop.

The final algorithm is the following {compare with (2.60)):
Forn=1,2,..,N,given U"=1, Pr=1 and @1, find U", P" and @™, approximations to
U(t"), P(t") and @(1™), as the converged solutions of the following iterative algorithm:

M, juimi - UM 4 QALK s (UPED) gnetd)
al.n. g&tﬁ“K; 'Iﬂ“-l-l (Ul‘hi(i—i}) & Uﬂql(‘-J
+ OALK w1 - U — 9ALG i - PO
= OALF? wica + (L= Q)AL 4y + M, i < U
= (1= QALK uima (U™) - U™
+ 0AB K e (Un.q(i—l}) L meli=1)
~ (1= ALK, wimi « U™ 4 (1= 0)ALG yir - P

- ﬂ.tc'::.i—| . (6@“-‘("*1) 4 (L e B)an—])

(3.43)
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M, P 4 gl o) = e prei=?) (3.44)
M, o @7 4 QALH o (UMW) - @) 4 OALH,, i - ©™C)
= OALF} + (1= O)AF}™" + M, ns - 0™
e~ (I = ﬂ)mﬂmr.hw"-‘) A C
aF = L . yn—1
(1= 0)AtH, s - ©

(3.45)

where k = i — 1 or k = i, according io the options a) and b) indicated above,

It is assumed in (3.44) that the iterative penally method is used.

Remarks 3.3

(1)

(2)

(3)

The linearization of the 8D term, the iterative penalization and the block Jacobi or
block Gauss-Seidel methods can only yield & linear convergence rate, with a more
or less steep slope in a plot iterations va logarithm of the residual. Sooner or later,
convergence will be driven by the slowest of these rates aa the iterative procedure
goes on, even though A, = 1 he selected to linearize the Navier-Stokes equations.
We have found from numerical experiments that the Newton-Raphson method is
only useful when the Reynolds and the Rayleigh numbers are small. Otherwise, it
only contributes to increase the computational eost, without reducing the number
of iterations needed Lo reach a prescribed convergence tolerance,

If instead of using @™ in (3.44) and U™k) in (3.45) (k = i— L or k = i) they
are replaced by the temperature and velocity nodal values of the previous time
step, ®" ! and U™!, one is led to the so called ‘staggered algorithms’, in which
the coupling between the Navier-Stokes and the energy equations is accomplished
by means of the time stepping. The algorithm in time in this case is block explicit,
regardless of the value of the parameter 8. Therefore, a critical time step exists
above which the algorithm becomes unstable. See, e.g., References [PF], [WTS],
[7i] for related methods.

Referring again to the stability in time, if a fully converged solution is obtained
for (3.43)-(3.45) then stability should be ensured provided that @ = 1/2. Obvi-
ously, the block iterative method will not give exactly the same solution as the
full nonlinear system. An error will remain that may affect the stability of the
algorithm in time., Numerical exporiments indicate that this in fact happens. We
have found that § = 1/2 (Crank-Nicolson) is very sensitive to the convergence tol-
erance adopted for each tims step, The higher it is, the sooner instabilities begin
to appear, leading to the numerical blow-up after a few time steps. In this sense,
the backward Euler scheme (# = 1) has been found to be much more robust. We
have never found instability problems using this method. 0
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3.3 Creeping flow of nonlinear materials
3.3.1 Generalized Newtonian fluids

The constitutive equation for a Newtonian fluid relates the stress tensor o with the
strain rate tensor g through a linear equation, viz.,

o= —pl + 2ue(u) (3.46)

For a number of important materials, it is not possible to describe their rheological
behavior with Eqn. (3.46) and using a constant value for the dynamical viscosity p.

A very simple extension of the Newtonian constitutive law is to consider a variable
viscosity g in Bqn, (8,46) (this is still a particular case of the Reiner-Rivlin constitutive
model). This allows to model several non-Newtonian flow phenomena observed in
practice,

According to Tanner [Ta], the non-Newtonian fluid behavior in shear may be
classified into three different types: time independent fluids, time dependent fluids and
viscoelastic materials. The constitutive law for the first two types can be written as
(3.46), with s variable. Elastic effects have to be taken into account for viscoelastic
materials.

Here, only time independent non-Newtonian fluids will be considered. Sometimes
they are just called non-Newtonian viscous fluids or generalized Newtonian fluids. Time
dependent materials could also be easily accormnodated within the following formulation.
For these materials, the viscosity increases in time (rheopectic fluids) or decreases
(thixotropic fluids) for a constant shear rate. For simplicity, we shall assume that j is
time independent.,

Generalized Newtonian fluids may be classified in turn into Bingham, pseuda-
plastic and dilatant materials. Bingham materials only flow after the stress exceeds a
certain threshold (yield stress). For pseudo-plastic fluids the viscosity falls progressively
ag the shear rate increnses., Only for very high rates of shear, it ceases to decrease and
remains constant. Dilatant materials exhibit the opposite response.

Pseudo-plastic and dilatant fluids have very important technological applications.
High polymers, polymer solutions and many suspensions exhibit a pseudo-plastic behay-
ior. Dilatant fluids are much less common in industrial applications, Some concentrated
solutions of solids are an example of this type of materials,

One of the most extensively used constitulive laws for generalized Newtonian
fluids is the so called power law. For a simple shear flow, its expression is

p=Kol4™™?, n>0, Ko>0 (3.47)

where Ko is the material consistency and n the rate sensitivity, Both Kp and n are
physical parameters to be determined from experimental data. In Eqn. (3.47), § is the
shear rate. For 0 < n < 1, this equation represents a pseudo-plastic fluid (presenting
the shear thinning effect near the walls) and for n > 1 a dilatant material (showing
shear thickening near the walls). Observe that when || = 0 Eqn. (3.47) is meaningless.
Another constitutive law that has a wider range of applicability is the Carreau model,
whose expression for a simple shear flow is

p= o 14 (A4)7 0 (3.48)
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where g > 0 and A = 0 are physical parameters and now 0 < n < 1.
In general, jo can be considered as a function of the principle invariants of the
strain rate tensor g, defined as

hLe) :="Tr(e) =V u,
Iy(e) := 4 1€, (3.49)

2
I;(g) := det(e)

For incompressible fluids, V. u = 0 and thus I;(g) = 0. In most situations of
physical interest, g is independent of Iy(g).

Let us see how Eqns. (3.47) and (3.48) can be generalized, For a simple plane
shear flow with u = (u;(23),0) (in Cartesian coordinates #; and 2;) we have that

o Ouy ealifd 1/2
(1] = | g5l = 122 :6[/2 = [aTy(e)
and therefore the generalized expressions for (3.47) and (3.48) are

1= Ko [Al(e)| "7 (Power law) (3.50)
1= fip [1 4 4)."‘13(5)](“_1)"2 (Carreau) (3.51)

Another very important type of constitutive law is the one representing viscoplas-
tic materials. This rheological behavior is particularly well suited to model the flow of
metals in metal forming processes. When plastic deformations are much more impor-
tant than elastic deformations, elastic effects may be simply neglected, This is the so
ealled flow approach,

Here we will briefly describe a particular type of viscoplastic model, namely,
Parzyna's model (see, e.g., References [Onf, [OH], [Z2G], [Z2J0], [ZOH] for more in-
formation). The basic assumption is that the viscoplastic strain rate is related to the
stress through the following equation:

g =7 < HF) = 301_@_ (3.52)

l?iJ!

where ' is the yield function for the material, @ the plastic potential, ¢ a certain
function that defines the model and < « > is the Macauley bracket, defined by < f >= f
if f>0and < f >=0if f < 0. The constant v in Eqn. (3.52) has the physical meaning
of being the fluidity parameter.

Assume now associate plasticity (F = Q) and take for F' the von Mises yield

surface,
F=Q=+/3L{e)-a, (3.53)

where o, is the uniaxial yield stress of the material and I3(e’) is the second principle
invariant of the tensor &' := o + pl. For the function ¢, the following power law is
adopted:

o F)= F™ (3.54)
After some calculations, from (3.53) it is found that
8 Vi,

- 2 3.66
36’&5 2,/ I3(e’) ij ( )
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Using Eqns. (3.53)-(3.55) in (3.52) we obtain that
m ﬁ
Bij=9< ('\/ 31;(:?") ~ ﬂ'y) = ma‘{‘f (3.53)
2

This equation (3.56) representa a generalized Newtonian material, the viscosity p baing
one half of the inverse of the coefficient multiplying o/,

Assume that \/313(e') — o > 0 and define

£i= (gwm)lﬁ = (%Ig(c))uz (3.57)

We will have that

1 4
&l S -2-(2;4]25 te = 3%,

1 m
= Z= Vo) = 1 (Vih(@) - o)

= y(3pué = o)™

T |
Ig(d’) - 'ﬁ'ﬂ'

and hence @ )U

I (e ;
= T (3.58)
This expression will only be valid for high values of £&. Observe that for o, = 0 it
reduces to the power-law model given by (3.50) and with a certain identification of the
physical parameters.

In Section 3.5.3 we will present a numerical simnulation of a fluid whose viscosity
abeys the power-law (3.50) and in next chapter the problem of lamination of a metal
flat plate using the constitutive equation (3.58).

Besides the nonlinear dependence of the viscosity on the invariant I;(s) expressed
by Eqns. (3.50), (3.51) and (3.58), it may also depend on the temperature and the
pressure. The physical parameters in these equations depend on the temperature [2J0],
[ZOH]. But even for Newtonian fluids, the viscosity depends on the temperature and
the pressure. Using reaction-rate concepts [Tal, the viscosity may be expressed in terms
of the (absolute) temperature ¢ as

J = i ex]p (EE) (3.59)

where £ is the activation energy, K the gas constant (8.314 J K"lmql“") and i is the
viscosity for £ = 0. For small temperature changes n.rnund a reference value oy, Eqn.
(3.59) may be replaced by

= jig exp [~a(d ~ 9}

where now iy i the viscosity for @ = ¥,
Concerning the dependence of 4 on a pressure variation p, an expression of the
form

}= pho eXp ('j.;;') (3.60)
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is often adopted, This equation can be derived from thermodynamical bases using
the free volume concept [Ta]. In general, the physical parameter B is very large and
pressure variations do not affect much the value of the viscosity.

In what follows, we will assume that an expression of y in terms of I;(¢) and 9 is
given. Since fy(g) is really a function of the velocity field u, we will write, symbolically,

= (i, ) (3:61)

The enly way to solve fluid flow problems invelving nonlinear viscosilies is nu-
merically. For Newtonian flows, analytical solutions in some simple cases allow to
understand which could be the flow behavior in more general situations. However, for
non-Newtonian flows even for simple problems numerical techniques are needed. For
the numerical simulation of some simple flow cases of non-Newtonian fluids, see, e.g.,

References [BLL], [BP], [CC], [DK], [DR], [SY], [TTK], among many others.

3.3.2 Stationary problem and finite element discrelization

The rheological behavior described above is usually valid for highly viscous materials,
Therefore, inertial terms in the Navier-Stokes equations will have a very little influence,
i.e., the Reynolds number will be very small. In order to simplily the exposition, the
convective term in the momentum equations will be dropped, that is, only creeping
flows will be considerod. Moreover, since the transient evelution will not introduce
anything new, the stationary problem will be treated,

Under the assumptions just stated, the problem to be solved is to find a velacity
field u, a pressure p and a temperature ¥ such that

=2V - [pg(u)] +Vp=pf inQl
Vou=0 in 2 (3.62)
pepu s Vi — kA = @ in

In the energy equation, @ is the source term. Only the source coming from the
mechanical dissipation into heat will be taken into acconnt:

Q=eo:g=—pl:e(u)+ 2pe(n):e(u)
= 2pg(n) : g(u) (3.63)
where the fact that I: g(u) = V- u = 0 has been used.
The same boundary conditions as in Section 3.2 will be considered (Eqns. (3.8)).
Sometimes, the Neumann-type prescription for the temperature has to be generalized
to a Robbins boundary condition to include the surface heat convection, although this

is immalterial for what follows,
The spaces of trial solutions needed for the stationary problem are:

Vi = {ve H{(@)N | v|p,, =0}

Vo={q€ L’(ﬂnf qdt =0 if Dy, =0} (3.64)
1

Ve={n € d'(2) | nlr, =7}
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The spaces of test functions are again given by (3.10). Introducing the forms
a(pu,v) = 2f pe(u) : &(v)dil,
i

b(g,v) = f gV - vdil,

i
fu('r.l') - f pf - vd(l -I—f t.vdl,

n rl|'|‘|

e(i?,n) = f k4 - Und(l,

il
f(a,9, 1) = / peyiu - V94,

4]

Li(p,uim) = 2/ﬂm(u):x(u)ndn+j pndl’,

ni

(3.65)

the wenk form of problem (3.62) with the boundary conditions (3.8) is: Find u € V,,,
p € Vp and o € V; such that

ﬂ(.”i u,v) = b(p,v) = lu(v) Vv e W,
bg,u) =0 Vg e W, (3.66)
f(ulﬂ! ’7} o= ﬂ(t'}, ??) = ‘I-(""v u 77} Vi € W,y

We now consider the finite element diseretization of problem (3.66). For simplicity,
the Galerkin approach will be used, although the SD formulation might be needed to
stabilize the convective term in the energy equation.

The discrete version of problem (3.66) leads to the following algebraic system:

K(p) U-G.-P=T, (3.67)
cl.u=0 (3.68)
H(u): © = Fy(p,u) (3.69)

The notation used for the matrices and the vectors is the same as before, although
subscripts have been omitted, Matrix H(u) for the lemperature equation (3.69) ac-
counts for both the diffusive and conveclive terms. We have explicitly indicated the
dependence of the matrices and vectors in the above equations on the viscosity and the
velocity.

Let us discuss now the construction of the finite element spaces Vi 5, Vppn and Vi
Consider first the case in which the viscosity p does not depend on the temperature 9.
Under this assumption, Eqns. (3.67) and (3.68) are uncoupled with Eqn. (3.69), that
can be solved once U is known. If the viscosity u is constant (Newtonian fluid), we know
that the discrete velocity space V,, and pressure space V), must satisfy the discrete
Babuika-Brezzi (BB) stability condition. When the viscosity depends on the invariants
of the strain-rate tensor £(u), the question is whether this condition will be sufficient
for assessing stability and convergence of the finite element scheme. In Reference [BN],
it is proved that for the case in which the viscosity obeys the power law or the Carrean
model, stable and convergent velocity-pressure pairs for the Stokes problem with p
constant are also stable for the nonlinear case. Concerning the convergence of the
method, let i be the diameter of {2°} and suppose that the rate of convergence for
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the veloeity is of order A™ for Newtonian flows. Assume now that p satisfies the power
law with rate of sensitivity n, with 0 < n < 1. Then, the rate of convergence for the
velocity will be of order A™". For the Carreau model, the same rate of convergence as
for the constant viscosity case can be obtained. See Reference [HN] for detnils.

Based on these results, finite element interpolations for the velocity and the pres-
sure that are known to satizsfy the discrete Babuika-Brezzi condition have been em-
ployed also for this problem. As in Section 3.2, the temperature will be interpolated
like the velocity components,

3.3.3 Iterative techniques

Iterative penalty method

Let us consider first the case in which g s constant. The iterative penalty method
applied to problem (3.67)-(3.69) is:

Given P'O) fori= 1,2, ... find U9 and P*U) such that

K(p) -0 - @ .pW=F,

GT Ut 4 oM, - PO = oM, PG (3.70)
This is the discrete version of problem (3.73). It should be remarked that the initial
gless P9 must be such that the associated pressure (interpolated from these nodal
values) have zero mean value.
The analysis of Section 1.4.1 revealed that the convergence of (3.70) relies on the

value of the parameter
— . i3
e

K.K?
where N, is the norm of a{u; ), K, its coercivity constant and K the constant in

the Babuika-Brazzi condition. Since now both N, and K, will be proportional to pu,
we will have that

i

£ =euC (3.71)

for a certain constant C. In fact, using the same arguments as in Section 1.4.1 one
obtains (see Reference |CCO) for details):

_oryEle) j .‘E _ pd(0)
U= U0 < (@uC) P - P40 —

P = PO < (epC)||P = PO

where ¢ is a constant and || - || denotes the discrete L? norm.

It is important to observe that convergence is governed by the parameter € which
is proportional to the viscosity p. This explains why ¢ must be taken proportional to
p=', since what provides an idea of how well the incompressibility constraint will be
approximated is €, and not ¢ itself. Of course, this comment can also be applied to
the classical penalty method (observe that the first pass in (3.70) is nothing but the
standard penalty method), and must be kept in mind when one deals with non-constant
viscosities,
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In practical problems, we have encountered tweo cases in which the the standard
penalty method cannot be applied and the iterative penalization is mandatory. The first
is the one discussed now, concerning non-Newtonian flows with variable viscosity. In
the numerieal examples presented below, it will be seen that the viscosity varies several
orders of magnitude in the fluid domain, Recall that the practical rule for choosing the
penalty parameter for the classical penalty method is to take it in the range 10-%4~!
to 10"u~1. If a reference viscosity pg is chosen a priori for determining a suitable
value of ¢, it is not known whether this penalty parameter will yield a sufliciently
accurate satisfaction of the incompressibility constraint or to ill-conditioning of the
final stiffness matrix. We will insist on this point later. Let us just mention that this
ill-conditioning for non-Newtonian flows precludes the use of iterative solvers for the
resulting algebraic system, in which case the hehavior of the standard penalty method
is certainly disappointing [CWJ]. For an application of the Augmented Lagrangian
method to non-Newtonian fluids, see Reference [HTB].

Porhaps another case in which the importance of the variable viscosity is more
clear is when the pseudo-concentration method is used to follow free surfaces. This will
be the subject of Chapter 4.

lterative algorithm for thermally coupled non-Newtonian flows

In order to solve the coupled nonlinear system of equations (3.67)-(3.69) we will
use a block iterative algorithm, as in Section 3.2, Once again, the nonlinearity of the
prablem and the iterative penalization will be dealt with within the same iterative loop.

Let p*) denote the viscosity function when the temperature is known at it-
eration k and the velocity at iteration [, Let TOL be a given convergence toler-
ance. As in the previous chapter, we check convergence using the criterion ||U¢(t'} =
U‘("_l)” < TOL”U‘(‘)“. The iterative scheme used is the following:

Box 3.2 Algorithm for thermally coupled non-Newtonian flows

o Initialise p(®%) PO) @)

si:;=0
s WHILE (not converged) DO:
8 fi=11
s Solve:
K (F_(i—l,i—l}) . U:{i} -G .P:(t’) = F“
GT .Ut 4 M, - PO = eM, Peli-1)
# Update:
P{"l'{) = p(ﬂﬂ(i-l), u"'("))
s Salve;
I’I(u'{")) . @'('—) — F,(H(‘l_lf"}‘ u*“})
e Update:

F(i.i) = P{.‘gr{i}‘“e(i))
s Check convergence:
If || UG) — geG-1)|| < TOL|[ULD|| then (converged)
END while
END
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Remarks 3.4

(1) Observe that the thermal problem is solved once the mechanical variables U and
P are known for a certain iteration. There is also the possibility of swapping the
order of block iterations, However, for the problems we have considered so far we
have found the described aption (slightly) more efficient.

(2) The iterative penalization in the above algorithm is coupled with the iterative loop
used Lo deal with the nonlinearity of the problem. It will be seen in the numerical
experiinents presented below that this does not deteriorate the convergence rate
of the scheme.

(3) If the viscosity does not depend on the temperature, the algorithm presented is a
Picard (or successive substitution) type scheme. This is the most common option
in practice [CWI|, [HTB], [LLH], [ZJO], [Z0H], In fact, convergenca problems have
been observed when a Newton-Raphson scheme has been employed in the type of
problems we consider (see Reference [CS55] for further discussion and references
therein), The Picard method has been found to be faster than the Newton-
Raphson algorithm. Anyway, convergence is slow for small values of the rate
sensitivity n when the Power-law model is adopted for the viscosity, In Reference
[TNB|, it is proposed to redefine p(®) ag

P(h!‘} — #{k'i} .l. w(l — n) (P{kﬂj — #UI.I-—I))

The value w = 0.4 was found to be a good chojce,

(4) ¥From the results of the previous section, it is clear that the algorithm of Box
3.2 can be thought of as a Gauss-Seidel iterative scheme with a Newton-Raphson
linearization of the energy equation, since the velocity used in this equation is the
actual iterate, both for the convective term and the source term. O

3.4 General problem—Iterative procedure
3.4.1 Motivation

In Sections 3.2 and 3.3 we have deseribad the numerical techniques used for two partic-
ular problems of practical interest. Both problems can be placed in the general setting
to be considered now, defined by the following system of partial differential equations:

plou+ (u-Viu| =2V . [pue(u)) + Vp=pf inf}, te(0,7)
Veou=0 in {2, t€(0,7) (3.73)
pepldd + (0 V)]~ V- (kV3)=Q  in®, te(0,7T)

where the physical properties and the forcing terms may be variable, Particular cases
of interest are:

s pand ¢, depend on the temperature. This in fact is observed experimentally [I0S),
[ZMS]. However, the Eulerian derivatives of p and ¢, have to be small encugh to
ensure that the simplifications that lead from the general conservation equations
of continuum mechanics (momentum, mass and energy) to (3.73) are still valid.

e 4t is a function of ¥ and the invariants of g(u), This is the problem considered in
Section 3.3,
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* kis a funetion of ¥. No assumption on the magnitude of the spatial and temporal
derivatives of the diffusion is now required. This situation is found when the
Fourier law of heat conduction, g = —kV4, q being the flux of heat, has to be
generalized to q = =Vg(¥9), where g is a nonlinear function of the temperature.
The effeetive conduction coefficient is now g'(¥). Nonlinear diffusion problems are
often found in practice,

# { depends on the temperature, The Boussinesq approximation is an example of
this situation,

s () depends on the velocity and the temperature, This happens when the Jonle
effect is not neglected (Section 3.3). Internal heat sources may be also introduced,
due for example to chemical reactions or electromagnetic effects.

¢ In Chapter 4, p, p, ¢, and k will be considered variable in space due to the
presence of two different fluids in the domain 2.

Other nonlinearities in the problem may arise because of the boundary conditions.
For example, typical surface radiation models lead to the boundary condition

—kn -V = @+ ald" —97,)

for the temperature, a and r being physical parameters and 9, the ambient tempera-
ture outside the domain 2. Surface convection and surfuce conduction laws have similar
expressions.

3.4.2 Time discretization

The fact that the density p and the specific heat ¢, be variable introduce an additional
difficulty in the time discretization of Eqns. (3.73). To see this, let us neglect the
convective term in the momentum equation and let us write it as

pa + G(u,p) = pf (3.74)

where §(u, p) = =2V [ug(u)]4 Vp. Dividing Eqn. (3.74) by p and using the generalized
trapezoidal rule to discretize in time leads to

1-4¢
Pﬂ-]

= 0" + (1 - o)

L (u" = uﬂ—l) + %g(un‘}:u] # g(ﬂﬂ_l,p“_l)

At (3.75)

If p is constant, the terms in Q(u, p) will lead to constant matrices once the spatial
discretization has been performed, and one needs to compute them only once. However,
if G(u, p) is multiplied by 1/p, these matrices have to be computed for each time step.
[n order to avold this additional computational cost, let us multiply Bqn. (3.75) by p™:

£ (u" = “n—l) + 95(14",3:“) + (1 . 9) o g(un—lhpn—'l.)

At g (3.76)
- P'ﬂﬁfﬂ + ,ﬂ'n(l = g)fn—-i
Since the temporal derivative of p must be small, we can approximate
f 1 (3.77)

pﬂ—l
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Using the approximation (3.77), the varintion of p only affects the terms where it ap-
pears explicitly in Eqn. (3.74), that is, the approximation of the velocity time derivative
and the body force term.

Observe from Equ, (3.76) that the approximation given by (3.76) is unnecessary
when @ = 1. A similar situation is found when the specific heat varies in time,

The approximation just deseribed will be used in Chapter 4, where the temporal
variation of p and ¢, will be due to the advance of a fiuid in an air-filled domain.

3.4.3 Fully discrete and linearized problem

We proceed now to present the algorithm that combines all the ideas developed up
to now, The basic scheme for the numerical solution of the Navier-Stokes equations
was presented in Box 2.3, This scheme will be completed now with the inclusion of
the temperature equation and the block iterative method to couple the mechanical and
thermal prablemas.

The notation used before will be kept in what follows. In particular, the forms that
define the problem will he these given by (2.13) and (3.65), now with all the physical
properties within the integral symbol, since they may be variable. The dependence on
these physical properties of the matrices and vectors resulting after the finite element
diseretization has been performed will be explicitly indieated. The source term @ in
the energy equation will be considered in the force vector Fy.

The final transient and iterative algorithm using the generalized trapezoidal rule
to discretize in time, the SD formulation for the space discretization, the ilerative
penalty method and the block iterative coupling is the following:

Forn=1,2,..,N,given U! P*~1 and @"~', find U", P" and ©", approximations to
U(t"), P(t") and ©(t"), as the converged solutions of the following iterative algorithm:

M, mi- (2") UM - QALK i ( s uneti=1)y . grreetd)
+ ﬂmﬁuK:I_::_,._, (p" reli=1)y., gedi)
+ OALTK ) nia () - el — OALG i1 - prli)
= OALED s 4 (1= DA iy + M, ica(p7) - U™ (3.78)
— (1= )AL, it (o U™ U™
+ OABK i (" yrei=1)) . greli=1)

— (1= D)ALK i (1771) UM (L= O)ALG i D i

ﬂMPP“'d(i] o= Gg' ,UT‘;!(“ - CMPP“"G_” (E,TQ)
Mt.;:‘"(pnl C:) L an"(i) + BAtH“‘r‘i {ﬂ". (‘:; U"l*('.}) . B“"h:(-')
o 'ﬂAtHdl,:hiUﬂ'"] ’ eﬂ.d{l')
= EQZF::.:.,J + (1 - ﬂ)ﬁﬂ?::;}" + Ml_*:-d(ﬂn, c:) @™l (3‘30)
= (1 - H)A'tHﬂ.i:“i (p“. l:;: U“—l) X @n—l
- (1 - E)Aaﬂdll:‘l‘.(kh_l) A @n—l
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Observe that the approximation given by (3.77) has been employed for the terms

involving the density (and also for the specific heat).

s Sct the initial condition U?, @ and PO = 0
eri=10
e WHILE n < N and (non-stationary) DO:
87—l 1
8 IF <2 Tigy then 0 =1
BLSE select 0, 0 > 1/2
ei:=10

s WHILE (not converged) DO:
8 1=1+ 1

¢ Update:
@ - “(ﬂnﬂ(i—]],“ﬂ.i(i))
s Flctgnﬁ(i—l).“n.u(i))
» Solve the temperature equation (3.80)
s Update:
P p(.ﬂnﬂ(i))
Fﬁ - #(‘?n.u(ij'un,:(i})
F — Fy(0m9)
e ()
k- k(ﬁ“"(‘))
F! — Fn{ﬁ""mn uﬂ.i(!—))
s Check convergence:

and "@n.t{i) — @neli-1
then (conuverged)
END while (not converged)
L Un,:(i)
s PP P"’*‘("J
s @ o= ar\,e(i)
s Check if the steady-state has been reached:
F ||Un = un? Jlze < TOL At || U e
and [|@" = " !||ps <TOL At [|@"] e
then (stationary)
END while n £ N and (non-stationary)
END

Box 3.3 General algorithm for thermally coupled flows

o Set UR(0) = g1 pri(0) = pr-l gy @) = @n!

s Solve the Navier-Stokes equations (3.78)=(3.79)

IF [[Unt) ~ gnelt-n s <TOL|ON e
les < 70L|@™ |1

We shall assume that the physical properties p, ¢, and k and the body force term
in Eqn. (3.78) are functions of the temperature ¥ and that the viscosity and the forcing
term F, depend on the temperature and the velocity, the latter through the source term
€. The basic flow chart to solve Eqns. (3.78)~(3.79) is given in Box 3.3, where the same
nobation as in Box 2.3 has been employed. It is assumed that all the terms depending
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on the temperature and the velocity are updated as soon as possible. For the particular
case of the Boussinesq prablem, it has been shown in Section 3.2 that this is equivalent
to use the Gauss-Seidel block iterative method and the Newton-Raphson linearization
of the energy equation.

3.5 Some applications of the numerical method

We present thereafter the numerical simulation of three different problems involving
thermally ¢oupled flows. The Boussinesq approximation is the mathematical model
for the first two examples. The last problem is the 4:1 plane extrusion of a nonlinear
material, with the viscosity depending on the temperature.

The numerical caleulations have been earried out on a CONVEX-C320 computer
using double arithmetic precision.

3.5.1 Thermoconvective instability of plane Poiseuille flow

The problem definition is sketched in Figure 3.1. It consists of & two-dimensional
laminar flow in a horizontal channel suddently heated from below. A parabolic inlet
velocity profile is prescribed, whereas the outlet is left free, i.e., the associated natural
boundary condition is zero traction,

60, u,=u=0
: y

o ) L L L LA A L A LY,
l..I!r <] - u, ha =0
LS = s (x,y)=(5,08) 20
an - -0yl T

y e P R T T I T P
x=0 G=1, u,=u =0 ¥ =10
—
X

Figure 3.1 Geometry, initial and boundary conditions for the problem of ther-
moconvective instability of plane Poiseuille flow. Coordinates, ve-
locity and temperature are assumed Lo be dimensionless.

This problem is solved in Reference [EF] as a benchmark for open boundary flows
using a finite difference method and a fine grid.

This numerical test can be considered as a model for several relevant engineering
problems, such as the fabrication of microelectronic circuits using the chemical vapour
deposition process (cf. [EP), see references therein).
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Figure 3.2 Transient evolution of the streamlines for the plane Poiseuille flow
(PPF) heated from below at times: (1): ¢ = 0.2; (2): ¢ = 0.8; (3):
t=12;(1): t=14.

Referring to Bqns. (3.6), the dimensionless parameters of the problem have been
taken as Re = 10, F'r = 1/150 and Pe = 40/9 (the average inlet velocity, the height of
the channel and the temperature difference between the top and bottom walls have been
chosen as reference values for velocity, length and temperature, respectively). These
parameters are the same as in Reference [EP] except for the Péclet number, which
is slightly higher in that work (Pe = 20/3). In both cases, these values result in a
thermoconveetive instability of the basic Poiseuille flow. The linear stability analysis
of unstable steatified plane Poiseuille flow in a infinite horizontal charmel can be found
in Reference [GR). It is shown there that the form of the instability could vary from
travelling tranverse waves to longitudinal rolls, with axes parallel to the main flow
direction and thus leading to a three-dimensional flow pattern. Travelling transverse
waves are found for small values of the Rayleigh number. This is the situation for
the dimensionless parameters used here and therefore a two-dimensional calculation is
passible, Tt should be remarked, however, that three-dimensional effects are in general
very important for thermally coupled flows [Ke].

Let us describe now the numerical strategy followed to solve this problem. The
domain [0,10] % [0,1] has been diseretized using a uniform mesh of 3015 = 450 Qa/ P
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Figure 3.3 Transient evolution of the streamlines for the plane Poiseuille flow
(PPF) heated from below at times: (1): t = 1.6; (2): ¢ = 1.8; (3):
t=2.2; (4): t = 2.5.

elements, yielding 1891 nodal points. For this longitudinal length, it is concluded in
Reference [EP] that the numerical solution is not affected by the artificial boundary
conditions for 2 < = < 8.

We have tested both the iterative penalty method with a parameter ¢ = 10~% and
the clagsical penalization, now with ¢ = 10-7. We will show later that both approaches
yield a similar approximation for the incompressibility constraint and convergence his-
tory.

The SD formulation has been used for the space discretization, with and upwind
parameter ag = 0.5 (quadratic elements) and a natural length kg = 2 (corresponding
to quadrilateral elements). The use of this method is needed to stabilize the convective
terms of both the Navier-Stokes and the energy equations, since the cell Reynolds
number and the cell Péclet number are higher than two. It is found that the maximum
velocity norm is about 14.6 (cf. Figure 3.15) and therefore the maximum values of
these parameters are (Re)S.. = [U'|manh®Re/2 2 14.6 % 0.33 x 10/2 = 24.33 and
Frviaw = |'t!'|m“h"Pe/2 &= 4.6 % 0.33 ¥ 4-4‘1/2 = 10.81,
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Figure 3.4 Transient evolution of the temperature at the central point (z =
5, y = 0.5). The initial time corresponds to ¢ = 3.3 of the initial
caleulation shown in Figures 3.2 and 3.3 (PPF).

Figure 3.5 Streamlines for £ = 1.3, corresponding approximately to the max-
imum valne of the temperature at the central point (PPF).
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Figure 3.6 Streamlines for ¢t = 2.8, corresponding approximately to the min-
imum value of the temperature at the central point (PPF).
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Figura 3,7 Velocity vectors for t = 1.3, corresponding approximately to the
maximum value of the temperature at the central point (PPF).
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Figure 3.8 Velocity vectors for ¢ = 2.6, corresponding approxiinately to the
minimum value of the temperature at the central point (PPF).
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Figure 3.9 Temperature contours for £ = 1.3, corresponding approximately
lo the maximum value of the temperature at the central point
(PPF).
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Figure 3,10 Temperature contours for 1 = 2.6, corresponding npprﬁ:'imn-t:ly
{o the minimum value of the temperature at the central point
(PFF).

Figure 3.11 Pressure contours for ¢ = 1.3, corresponding approximately to
the maximum value of the temperature at the central point
(PPF).
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Figure 3.12 Pressure contours for ¢ = 2.6, corresponding approximately to
the minimum value of the temperature at the central point

(PPF).

Figure 3.13 Vorticity contours for t = 1.3, corresponding approximately to
the maximum value of the temperature ai the central point

(PPF).
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Figure 3.14 Vorticity contours for ¢ = 2.6, corresponding approximately
to the minimum value of the temperature at the central point

(PPF).

The Gauss-Seidel block iterative procedure with a Newton-Raphson linearization
of the energy equation has been used, solving first the Navier-Stokes equations and then
the temperature equation. The first problem has been linearized only up to first order
(Picard method). The convergence tolerance has been taken as 0.1 % in the relative
L? norm.

Of special interest is the choice of the parameter @ of the generalized trapezoidal
riile, As it has already been mentioned, we have found that the Crank-Nicolson method
is very sensitive to the convergence tolerance (see Remark 3.3.(3)). The time step size
has been taken as At = 0.01. For TOL = 10%, instability problems have been found at
time step number 5, whereas for T'OL = 1% they do not appear until time step number
37 and for TOL = 0.1% until time step number 121, Using the backward Euler method
(8 = 1) the time stepping algorithm has been found to be stable in all the cases. The
results presented here have been obtained using this method.

Numerical results are shown in Figures 3.2 to 3.18 (only one hall of the computa-
tional domain is shown). The acronym ‘PPF’ (standing for Plane Poiseuille Flow) has
been used to identify the problem to which figures correspond. The transient evolution
from the basic Poiseuille flow to the periodic flow pattern finally obtained has been
plotted in the eight snapshots of Figures 3.2 and 3.3 (times are given in the captions).
After a time ¢ = 3.3, the travelling waves are fully developed and a new run has been
enrried out, redefining ¢ = 0 for £ = 3.3. The period of the oscillations has been found
to be approximately 2.5 time units. This can be observed from the transient evolution
of the temperature at the central point (z = 5,y = 0.5) depicted in Figure 3.4, This
value is very sensitive to the Péclet numbur, since in Reference [EP] and for Pe = 20/ 3
this period was found to be approximately 1.5 time units.
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Figure 3,15 Numerical values for the velocity and streamfunclion at t = 1.3
(PPF). (1): Streamfunction; (2); @—velocily component con-
tours; (3): y—velocity component contours; (4): Norm of the
velacily contours.

The streamlines, velocity vectors, temperature contours, isobars and vorticity con-
tours for ¢ = 1.3 and t = 2.6 are plotted in Figures 3.6 to 3.14. The first time corre-
sponds to a maximum value for the temperature at the central point and the latter Lo a
minirmum. The periodicity of all these fields can be observed from the plots. Numerical
values are given for ¢t = 1.3 in Figures 3.15 and 3.16.

Finally, Figures 3.17 and 3.18 show the streamlines for £ = 1.3 and ¢ = 2.6 in the
whole computational domain, The bad influence of the artificial boundary conditions
can be ohserved, especially in what concerns the outlet wall. It is clear that the zero
traction preseription does not reproduce the effect of an infinitely long channel, The
proper evaluation of boundary conditions necessary for the numerical simulation of
flows in infinite domains is an area that still deserves a lot of research.

Once the numerical strategy and the physical results have been deseribed, let us
diseuss now the numerical behavior of the algorithm. The convergence history and the
avolution of the incompressibility constraint for the first two time steps, starting from
the Poiscuille flow, are shown in Figure 3.19. These results correspond to the iterative
penalty method with ¢ = 10°%. The same plots for time step number 532 (¢ = 5.32)



3.34 4 Thermally coupled flows and nonlinear materials

WAK= 144 Wifi= WAR= || MBI ®

SRS

" ab o

—— n
MAK® 10 MIH= b MAZ= 1B Wik = b

i W

— s =

1w

L1}
¥ nhed

Bhd
" [
Ty

Figure 3.16 Numerical values for the velocity vectors, temperature, pressure
and vorticity at ¢ = 1.3 (PPF). (1): Velocity vectors; (2); Tem-
perature; (3): Pressure; (4): Vorticity.

are shown in Figure 3.20, now for both the iterative penalty method with ¢ = 1074 and
the classical penalization with ¢ = 107, Tt is observed that the convergencée history
in hoth cases is almost the same, whereas the norm of the discrete velocity divergence
decreases in the first caso to 0.5 % 10-7 and in the second case it remains constant and
equal to 0.15 x 1077, The excellent behavior of the iterative penalty method is again
observed for this type of problems.

Between three and five iterations have been required to converge for each time
step. The CPU time per iteration has been 22.1 seconds. It is important to remark that
the solution of the Navier-Stokes equation requires the 78.98% of CPU, whereas the
temperature equation only the 16.24%. The increase of the computing time is not only
due to the formation of the element matrices and assembly, more costly for the Navier-
Siokes equations, but also to the solution of the final algebraic system of equations.
The time required for the temperature equation is the 29% of the time needed for the
Navier-Stokes equations. This gives an idea of the rapid increase of the computing
time with the number of equations of the system using a direct solver, that is what we
have employed. Having this in mind and observing that the iterations needed for each
time step are mainly due to the nonlinearity of the Navier-Stokes equations, the block
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Figure 3.17 Influence of the outflow boundary condition for ¢ = 1.3, corre-
sponding approximately to the maximum value of the tempera-

ture at the central point (PPF).

¥
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Figure 3.18 Influence of the outflow boundary condition for ¢ = 2.6, corre-
sponding approximately to the minimum value of the tempera-

ture al the central point (PPF).
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Figure 3.18 Convergence history and evolution of the norm of the incom-
pressibility constraint for the first and second iime steps (PPF).
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Figure 3.20 Convergence history and evolution of the norm of the incom-
pressibility constraint using the classical penalty method with
¢ = 10°7 and the iterative penalization with ¢ = 10°* for time
step No. 532 (PPF).

iterative algorithin used to uncouple the thermal and mechanieal problems seems to be
a very efficient procedure.
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3.5.2 Transient natural convection of low-Prandtl-number fluids

In this example, the transient convective motion of a fluid enclosed in a square cavity
driven by a temperature gradient will be numerically analysed. The left vertical wall
is suddently heated and mantained al & constant temperature, while the right vertical
wall is mantained at the initial temperature, Horizontal walls are assumed to be adia-
batic, i.e., the zero heat flux boundary condition is prescribed. Homogeneous Dirichlet
boundary conditions are prescribed everywhere on the boundary for the velocity.
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Figure 3.21 Geemetry, initial and boundary conditions for the problem of
transient natural convection of low-Prandtl-number fluids. Co-
ordinates, velocily and temperatuse are assumed to be dimen-
sianless,

The problem definition is represented in Figure J.21. All the variables of the
problem have been nondimensionalized using the length of the cavity and the tem-
perature difference between the two vertical walls as reference values for length and
temperature, respectively. The reference velocity has been taken as /L, as explained
in Section 3.2.1. Referring to Eqns. (3.7), the only dimensionless parameoters involved
in the problem are the Prandtl number Pr and the Rayleigh number Ra or, equiva-
lently, the Grashof number Gr. Numerical results will be presented for Pr = 0.006 and
the values Gr = 3 % 10% and Gr =5 X 108,

The value Pr = 0.005 is very small and not often encountered in common fluids.
For example, the Prandt] number is 0.71 for air, 7.03 for water and 0.0249 for mercury
(at 293 K). Small values of Pr are typical of liquid metals and semiconductors. The
problem to be studied now is relevant to the solidification of ingots and casting, crystal
growth from melts, materials processing, nuclear reactor safety and other applications
(cf. (MV]).
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Figure 3,22 Transieni evolution of the streamlines and the temperature con-
Lours for the problem of natural convection of low-Prandil-
number fluids (LPN), @ = 3 x 10°% (1): Streamlines, ¢ = 0.4;
(2): Temperature contours, ¢ = 0.4; (3): Streamlines, ¢ = 1.2;
(4): Temperature contours, t = 1.2,

Although the problem just deseribed is a very popular test for thermally coupled
flows when Pr is high, the interest for solving low-Prandtl-number flows is that this
problem is not yet well understood, It is found that the flow exhibits a periodic oscil-
lation when the Grashof number exceeds a eritical value, In particular, for Pr = 0.005
a steady-state solution is obtained for Gr = 3 % 10% but the solution bifurcates and
for Gr = 5 % 10° an oscillatory flow field is found, For further information about this
problem the reader is referred to the work of Mohamad & Viskanta [MP], from where
this problem has been taken. Qur purpose here is to demonstrate the efficiency of the
numerical method proposed in this work and also to get more insight in the physies of
the problem now considered. A much more detailed information about the recirculation
zones al the corners of the cavity and the dynamies of the vorticity than in the above
quoted reference will be given.

The numerical strategy employed is as follows. The finite element mesh used to
diseretize the unit square is the same as in Example 2.1 and shown in Figure 2.6, It
consists of 671 @2/ P, elements and 2809 nodal points. The SD formulation has been
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Figure 3.23 Numerical values of the streamfunction when the steady-state
has already been reached, Gr = 3 % 10% (LPN).

used for both the Navier-Stokes and the energy equation, with ag = 0.5 and hg = 2 as
upwind factors and length of the parent domain, respectively. The iterative penalization
with € = 10~% has been chosen, yielding a final value of order 107** for the norm of
the discrete velocity divergence in all the time steps. The Navier-Stokes equations
have been linearized up to first order, and the Gauss-Seidel block iterative method and
Newton-Raphson linearization of the temperature equation have heen adopted. The
convergence tolerance has been taken as 0.1% in the relative L* norm. Based on the
results and comments of the previous section, @ = 1 (backward Euler) has been taken
for the generalized trapezoldal rule to advance in time,

Let us first discuss the results for Gr = 3 x 10" and shown in Figures 3.22 to
3.28 (the abbreviation ‘LPN’, standing for Low-Prandt-Number, has been included to
identify the problem). It has already been said that in this case a stable steady-state
solution is found. The time step size has been taken as Af = 0.04, a high value,
congidering that it is of the same magnitude ag the mesh diameter and the backward
Euler scheme is only first order accurate. The steady-state solution is completely
developed at ¢ = 6, time for which results are presented.

Figure 3.22 shows the transient evolution from the motionless flow field to the
thermally induced solution. It is observed that the streamlines aro initially a little
squared (for ¢ = 0.4) and evolve to the almost circular shape shown in Figure 3.23 (for
t = 6). It is also observed how Lhe temperature contours accomodate from the initial
constant temperature gradient to the final configuration of Figure 2.25. A detail of
the vortices created at the corners of the cavity is shown in Figure 3,24, Two vortices
appear at the top right and bottom left corners with similar strength, and only one in
the other two corners. Let us remark that the maximum and minimum values for the
streamfunction are ezactly the same as those obtained in Reference [MV] using & much
finer mesh (81 x 81 = 6561 grid points) but a finite difference methad.
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Figure 3.24 Details of the steady-state streamlines at the four cormers of the
cavity (LPN), Gr = 3 x 10%, (1): Top left corner; (2): Top right
corner; (3): Bottom left corner; (4): Boltom right corner.

The velocity vectors, isobars and vorticiy contours are shown in Figures 3.26, 3.27
and 3.28, respectively. It is interesting lo observe that pressure gradients are almost
constant at the middle of the walls and that high vorticity gradients are generated
there. It is argued in Reference [MV] that the instability found for higher values of
Glr is originated at the top right vortex. We believe that the sources of instability are
these high gradients of vorticity just mentioned. They are due lo the fact that the
flow has to accomodate fram the cireular velocity field in the middle of the cavity to a
zero veloeity at the walls, without smooth transition, Figure 3.26 is illustrative of this
situation,

The case Gr = 5 % 10% iz considered next. Now the time step size hag been taken
as At = 0,004, The computation has starled with the steady-state solution found
before, redefining £ = 0 for ¢ = 6. The transient evolution of the z —velocity component
at the points of coordinates (0.995,0.5) and (0.976,0.5) is depicted in Figure 2.29, It
is observed that an oscillatory flow pattern has been developed. The amplitude of
the oscillations grows slowly as time goes on. Details of the streamlines, temperature
contours, isohars and vorticity contours are shown for ¢ = 3.2 in Figures 3.30 to 3.34.
From the former it is seen that now two more secondary vortices appear at the top left
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Figure 3.25 Steady-state temperature contours, Gr = 3 X 10% (LPN).
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Figure 3.26 Steady-state velocity vectors, Gy =3 10% (LPN).
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Figure 3.27 Steady-state pressure contours, Gr = 3 x 10% (LPN),
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Figure 3.28 Steady-state vorlicity contours, &r = 3 x 10° (I.-PN).I
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Figure 3.29 Transient evolution of the z—velocity component at peints

(0.995, 0.5) and (0,978,0.5), Gr = 5 % 10% (LPN),
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Figure 3.30 Details of the streamlines at the four corners of the cavity for
=32, Gr=5x 109 (LPN). (1): Top left comer; (2): Top right
corner; (3): Bottom left corner; (4): Bottom right corner.

and bottom right corners. The center of the elongated vortex at the other two corners
oscillates around the position found for Gr = 3 x 10° (compare with Pigure 3.24).

Finally, let us mention that the CPU time needed per iteration has been 45.483
‘seconds, of which the 83.41% are required by the Navier-Stokes solver and the 16.13%
for the solution of the temperature equation. The solution of the linear algebraic
system for this problem needs the 26.37% of what is needed for the Navier-Stokes
equations, Between two and three iterations have been needed per time step for the
case Gr = 3 % 10° with At = 0.04 and only one in most of the time steps for the case
G'r = 5 x 109 with At = 0.004. This again indicates that using a block iterative method
for thermally coupled problems is a good option.
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Figure 3.32 Temperature contours for ¢ = 3.2, Gr = § % 10° (LPN),
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3.5.3 The 4:1 plane extrussion of a power-law fluid

In this section we present some numerical results obtained for the well-known 4:1 plane
extrusion problem. This is a very popular test for non-Newtonian flows, since all the
flow features that characterize these fluids are present in this problem. It is also used as
[n tes]; to check error estimators and adaptive remeshing techniques (see, e.g., Reference
DT)).

The geometry and the boundary conditions are depicted in Figure 3.35. The
variation of the viscosity and the components of the velocity will be given for sections
AA, BB and CC indicated in this Figure.
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Figure 3.356 Geometry and boundary conditions for the 4:1 plane extrusion
of a power-law fluid.

Here, Eqns. (3.62) modelling the erceping flow of nenlinear materials will be
solved numerically, The finite element mesh employed for the space discretization is
composed of 525 Q2/P1 elements (biquadratic interpolation for the velocity, piecewise
linear pressure), with a total of 2201 nodal peints. There are 15 elements in the
y—direction from the coordinates y = 3 toy = 4 and only 12 from y = 0 to y = 3.
The concentration of elements in the former zone is needed if one wants to reproduce
accurately the shear thinning effect of fluids whose viscosity obeys the power law that
we shall consider now, given by

p= Ko[al(e)]"* exp (%) (3.81)
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Figure 3.36 Streamlines for 3 = 0 (a) (thermally independent viscosity) and
for A = 2 x 10° (b) (thermally coupled flow). Observe the dif-
ferent curvature near the inflow vertical wall and the different
gradient of the streamfunction in the exit channel (EPL).
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£y

Figure 3.37 Temperature contours for # = 0 (a) (thermally independent vis-
cosity) and for A = 2 x 107 (b) (thermally coupled flow) (EPL).

In this expression, Ko,n and J are physical constants (Ko is the material consis-
tency and n the rate sensitivity) and ¢ is the temperature. The power law given by
Eqn. (3.50) has been combined with an exponential thermal dependence as dictated



3.50 3 Thermally coupled flows and nonlinear materials

- EREED
- - PFF PP
i Jmn

ey ¥ L

Figute 3.38 Details of the flow for @ = 0 (EPL). (1): Accomodation of the
parabolic velocity profile, corresponding to a Newtonian fluid, to
the non-Newtonian velocily profile near the botiom left corner,
Observe that velocity vectors have and positive y—compaonent;
(2): Velocity vectors in the exit channel. The ghear thinning
effect is apparent; (3): Temperature contours near the corner of
the step; (4): Streamlines near the corner of the step.

by Eqn. (3.60), with a suitable identification of the physical parameters.

The values of the physical constants we have used are (all in SI units): p = 1200
(density), ¢, = 10 (specific heat), k = 2 (thermal conduction coefficient), Ko = 10°
(material consisiency) and n = 0.2 (rate sensitivity). For this value of n the effect of
the non-constant viscosity is very pronounced. The values of the thermal properties
are non-physical, but they have been used to accentuate the temperature effect on the
viscosity. Numerical experiments have also been conducted with larger values of n, in
which case convergence is easier to achieve. Since the expression of the viscosity (3.81)
tends to infinity when Iy(g) tends to sero, we have introduced a cut-off value g, = 10"
for p. The values of the viscosity for the converged solutions are always below this
limit, except in isolated points.

The physical results for this problem are presented if Figures 3.36 to 3.43 (coordi-
nates are given in decimeters. The problem has been identified with the acronym ‘EPL’,
standing for plane Extrussion of a Power-Law fluid). Figure 3.36 shows the streamlines
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Fignre 3.38 Details of the flow for A = 2 = 10? (EPL). (1): Accomodation of
the parabolic velocity profile, corresponding to a Nowtonian fluid,
to the non-Newtonian velocity profile near the bottom left corner;
(2): Velocity veetors in the exit channel, The shear thinning
effect is more pronounced than for @ = 0; (3): Temperature
contours near the corner of the step; (4): Streamlines neaxr the
corner of the step.

for # = 0 (thermally uncoupled flow) and for A = 2 x 10%, where the effect of the
temperature on the viscosity (and thus on the velocity) is apparent. The temperature
contours are plotted in Figure 3,37, From Eqn. (3.63) it is clear that the temperature
will rise where the internal mechanieal work is higher, that is, in the zones with high
strain rate. This happens near the carner (z,¥) = (16,3).

A detail of the flow features for both § = 0 and 4 = 2 x 10* is shown in Figures
3.38 and 3.39, respectively. It is observed that the effect of the termporature on the
viscosity for the latter case resulls in an even more pronounced shear thinning,

Figures 3.40, 3.41 and 3.42 show the variation of the z—velocity component and
the viscosity along the sections A4, BB and C'Cindicated in Figure 3.35. The approx-
imation of the viscosity in the AA section is not very good for 0 < y < 3. As it has
been already said, the discretization there is poor. However, the variation of the o~
and y=-velocity components (Figures 3.40 and 3.43) is smooth, since the shear thinning
effect is not important in this section.
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Figure 3.40 a—velocity and viscosity profiles along seclion A4 for = 0 and
A= 2x%10 (EPL).
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Figure 3.41 w—velocity and viscosily profiles along section BE for § =10 and
A =2x 10* (EPL).

Let us discuss now the performance of the iterative penalization. For values of
between 0 and 2 x 10* the convergenee history of the numerical simulation is similar.
However, for larger values of A lack of convergence can oceur. We have failed to obtain
converged solutions for # = & % 10, both for the standard penalty method and for the
iterative version. As proposed in Reference [Z0H], under-relaxation techniques may be
required when the dependence of the viscosity on the temperature is very pronounced.
The convergence of the algorithm will be discussed in the case in which g = 2 x 107,
that is, when the viscosity depends on the temperature (thermally coupled How).

Figure 3.44 shows the evolution of the discrete L* norm of the velocity residuals
over the norm of the actual velocity (in %). As usual, this has been taken as the
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Figure 3.43 y—velocity profiles along sections AA and OC for § = 0 and
[ =2 % 10° (EPL).

parameter to decide whether convergence has been achieved or not. Both the curves
corresponding to the classical and the iterative penalty methods have been plotied.
Here, the penalty parameter that has been used is ¢ = 107'% In the first iteration,
the viscosity is set to its cut-off value, Thus, the effective initial guess for the second
iteration is the Newtonian solution with this viscosity. A real non-Newtonian behavior
will be first encountered in this second iteration and from there onwards itérations are
required to reach the prescribed convergence tolerance. However, we see that one more
iteration is needed if the iterative penalization is employed. The explanation we give
is that in this method the second pass of the algorithm uses the Newtonian pressures
obtained in the first one, and thus the complete non-Newtonian approximation is not
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Figure 3.44 Convergence history and evolution of the incompressibilily eon-
straint for € = 10~ and A = 2 x 10* (EPL).

i’ '
W !
ia
T
;u"
-
=i =
i
T
Convergencs hlilnry L
e Elubid sl Bvelution of 11D LI
i fraygifvs wredGlpraianl
T - T s f1agsilva
0T 4 & & W 1 oW je w38 L U B I LI N L
Kinibar of larmlans Numbay of flerallong

Figure 3.45 Convergence history and evolution of the incompressibilily con-
straint for ¢ = 10~? and g = 2 x 10" (EPL).

obtained until the third iteration, In any case, it is interesting to observe that the final
convergence rate and the number of iterations needed to achieve convergence have not
been deteriorated because of the iterative penalization.

The important issue is to determine how well the incompressibility constraint has
been approximated. The evolution of [BU|| (B = GT, with the notation used earlier)
as the iterative procedurc goes on has been plotted in the second box of Figure 3.44
(we have normalised this norm by dividing it by Ng 2]- Observe that this value keeps
constant for the classical penalty method and that it decreases uniformly up to a value
of arder 10713 in 15 iterations if the iterative penalization is used. One might think that

the value of order 1078 obtained with the classical penalty method is a good enough
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Figure 3.46 Convergence history for ¢ = 107" for thermally coupled flow
(8 = 2 x 10*) and uncoupled flow (4 = 0) (EPL).

approximation. However, this may be somehow misleading, since the smallest value of
the final viscosity, say py, is of order 10%, and thus € = 107%u;" whereas the largest
viscosity value, say py, is of order 10° and then ¢ = 107%u;". Thus, the parameter
¢ introduced earlier is of order 107% in the low viscosity zones and of order 107* in
the high viscosity zones. Recalling that the approximation of the incompressibility
constraint is driven by & we may expect a much better satisfaction of this constraint
in the low viscosity regions than in the zones where the viscosity is high. If smaller
penalty parameters are employed, the solution is affected by the ill-conditioning of the
stiffness matrix, even for the direct solver we use, For ¢ = 107 this ill-conditioning is
so important that the algorithm fails to converge.

The same experiments discussed above have been performed using a penalty pa-
rameter € = 10~ and the resulta are presented in Figure 3.45 (convergence history and
evolution of the L? norm of the disercte divergence). The conclusions are similar to
the previous case, Observe now that oncillations are found for the first eight iterations
and then the iterates converge uniformly, The reason for this behavior is the high value
of ¢, that is of the same order as u; ', the inverse of the maximum viscosity, and 100
times higher than po!, the inverse of the cut-off value. To see that this behavior of
the iterative procedure is not due to the block iterative algorithm (see Box 3.2), the
convergence history for # = 0 (uncoupled flow) and g = 2 X 10* (coupled flow) has been
plotted in Figure 3.46. In both cases oscillations appear for the first eight iterations,
although the final convergence rate of the uncoupled flow is slightly higher than for the
coupled flow for the last iterations,
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Concerning the computational cost of the simulation, the CPU required per iter-
ation has been 24.41 seconds for A = 2 % 10 and 18.58 seconds for 3 = 0. For the first
casa, the solution of the temperature equation needs the 20.46% of CPU time and the
salution of the momentum equations (Stokes problem) the 74.856%. Most of the com-
puting time now is needed to solve the linear algebraic system (about a 75%), both for
the Stokes and the energy equation. Updating the physical properties and performing
the smoothing technique explained in Chapter 2 in order to obtain nodal values of the
viscosity and the pressure is inexpensive: these operations only need the 1.6% of CPU
tirme,

3.6 Summary and conclusions

The basie numerieal method described in Chapter 2 has been applied here to solve ther-
mally coupled Hows and flows of non-Newtonian fluids. The first 1ssue to be considerad
is the algorithm used to couple the energy equation with the Navier-Stokes equations.
This has been done by means of a block iterative coupling. Although its use seems to
be quite ‘natural’, an effort has been made to analyse how can it be interpreted and
to place it in the general framework of iterative algorithms. In particular, it has been
proved for Newtonian fluids that the solution of the energy equation using the actual
iterate of the velocity field can be thought of as a Newton-Raphson linearization of the
convective term in this equation coupled with a Gauss-Seidel block iterative technique.
In more general situations, numerical experiments have indicated that this coupling
between the thermal and mechanical problems is very efficient from the computational
standpaoint.

The extension of the numerical methods used for the Navier-Stokes equations to
the problems considered here has proved to be effective. In particular, the Streamline
Diffusion method has proved to work very well when div-stable velocity-pressure finite
element interpolations are used. Numerical results have demonstrated that a consistent
Petrov-Galerkin weighting yields very accurate solutions, without any oscillations.

Cloncerning the time stepping algorithm, the Crank-Nicolson method has been
found to be very sensitive to the convergence tolerance adopted within each time step.
Using the block iterative technique, the coupling between the thermal and mechanical
problems is only accomplished up to a certain tolerance and thus a certain stability
limit will exist for the time step size. Using the backward Euler scheme no stability
problems have been encountered in the numerical tests.

Perhaps the behavior of iterative penalization is the most salient result. It was
derived and analysed for a much simpler problem than the one considered here (station-
ary Navier-Stokes equations with constant viscosity and under conditions that ensure
uniqueness of solution) but happens to perform very well for thermally coupled flows
and, what is more important, for non-Newtonian fluids. In this last case, the classi-
cal penalization is inappropiate due to the high variation of the viscosity in the fluid
domain, and therefore either the incompressibility constraint is poorly approximated
or the final stiffness matrix is ill-conditioned. The iterative penalty method allows to
cireumvent both problems using relatively high values of the penalty parameter,
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CHAPTER 4

MOULD FILLING SIMULATION

4.1 Introduction

This chapter will be devoled to present a specific application of the numerical tools
developed previously: the numerical simulation of mould filling processes. Mould filling
is an integral part of the casting process, an ancient metal forming technique. It
starts with the pouring of a molten metal into a mould until it is filled and it is
concluded when the solid nature of the metal is restored. The complete numerical
simulation of these processes involves modelling of mould filling, prediction of thermal
stresses in 4 solidifying material and micro-macro modelling in order to predict material
micro-structure. Besides the inherent difficulty to model all these physical phenomena,
another problem arises because of the identification of material properties, for which
delicate experiments are needed. Mould filling as the first stage of the casting process
will he the subject of this chapter.

The main difficulty for simulating the flow of a molten metal in a mould is the
modelling of free surfaces, Most of the numerical approaches to this problem have been
limited to simple geometries, due to the high computational cost of this simulation
and that numerical models have been mainly based on finite difference techniques.
Because of the available computer potential, it has become possible to deal with more
complicated geometries for which finite element models are especially well suited. The
representation of feeders, gating systems, risers and the overall mould geometry does
not offer any difficulty using finite elements. Proper evaluation of the position of the
melt during the transient analysis is the most important problem.

The model that we shall use here to track the free surface of the fluid is based upon
the pseudo-eoncentration technigue, which employs a fixed mesh. The moving fluid may
fill the elements partially or fully. The version of this method we shall use is due to
Thompson [Thi], [Th2], [TS], although it has alse been used under the names volume
of fluid method (VOF) [HN] or saturation method [SW]. The basic idea is to introduce
a sealar function which is advected according to the velocity flow field abtained from
the solution of the Navier-Stokes equations. This function is defined on the whole
computational domain. A certain isovalue contour is used to define the front of the
‘roal’ fluid. The unfilled region is assumed to be occupied by a fietious material whose
physical properties are such that its motion does not affect the dynamical behavior of
the fluid under consideration. To fix ideas, we shall consider that this fictious material
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is air.

There are other popular methods to track free surfaces. One of them is the up-
dated Lagrangian approach, in which the mesh moves with the fluid [Zi]. The main
disadvantatge of this method is that the mesh becomes distorted during the analysis and
eventually remeshing is needed. Only when small distortions occur the method is sue-
cessful [LDD], [2J0}, [Z0H]. A second approach is the Arbitrary Lagrangian-Eulerian
method (see, e.g., References (Hu), [SFD]). In this method, a velocity is assigned to the
mesh which is independent of the fluid velocity except at the boundary, and is chosen
in order to minimize the mesh distortion and/or the convective terms. This requires
some « prieri knowledge of the fluld flow.

The pseudo-concentration technique has been used by several authors to follow
free surfaces of creeping fows and viscoplastic flows in the context of metal forming
processes, such as extrusion, forging or rolling. See, .., References [Al], [AID], |[DP],
[TS]. For applications of this method to mould filling, se¢ References [DGB], [HS],
[Luc.

This chapter is organized as follows. The basic pseudo-concentration technique is
described in Section 4.2, whereas Section 4.3 is concerned with some problems encoun-
tered when this method is employed. These problems are either practical, arising from
the eomputer implementation of the method, or conceptual. The coupling between
the Navier-Stokes and energy equations with the free surface tracking is considered in
Section 4.4. Practical numerical examples are presented in Section 4.5. The numerical
simulation of two mould filling problems is first discussed. The final example is the
classical lamination of a metal flat plate, now analysing the transient mechanical and
thermal evolution since the metal contacts the roll until it leaves it.

4.2 The pseudo-concentration method
4.2.1 Bazic formulation

The basie idea of the pseudo-concentration technique is to define 4 sealar function, say
i(x), over the computational domain {2 in such a manner that its value at a certain
point x € Q indicates the presence or absence of fluid. This function may be considered
as a fictious fluid property. For instance, we may assign the value 1 to regions where
the fluid has already entered and the value 0 to air-filled regions. The position of the
fluid front will be defined by the isovalue contour 3(x) = 1, where ¥, € [0,1]i5 a
critical value defined a priori, We usually take ¢, = 0.5. This value is immaterial il
i is a true step function, but is needed in the finite element discretization and for the
smoothing to be described later.

The conservation of the pseudo-concentration in any control volume V; € Q2 which
is moving with the velocity field u leads to

d
s V't}:dﬂ—()

If we further assume that 4 is smooth and u is divergence-free, this implies that

B+ (u-Vig=0 inQ te(0,7T) (4.1)
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where, as usual, (0,7') denotes the time interval where the problem is to be solved.
Equation (4.1) is hyperbolic and therefore houndary conditions for b have to be spec-
ified at the inflow boundary, that is,

P(x,1) = ¥(x, 1), x € Ly, 1€(0,7) (4.2)

where
Ting = {x €002 |u-n<0}

and ¥ is a given function. Finally, an initial condition of the form

P(x,0) = to(x), x€0 (4.3)

has to be appended to (4.1)-(4.2), ¢o(x) being chosen in order to define the inilial
position of the fluid front.

Solving problem (4.1)=(4.3) the position of the fluid will be identified by the values
h(x,1) > 1), and the position of the air by ¥i(x,1) < ..

4.2.2 Numerical solution of the pseudo-concentration problem

The numerical technigues introduced in the previous chapters will be applied to the
numerical solution of problem (4.1)-(4.3). Time derivatives will be discretized using
the generalized trapezoidal rule and the Streamline Diffusion (SD) formulation will be
employed for the space discretization,

The time discretization of Eqn. (4.1) leads to the following problem: Given
PO(x) = yPy(x), for n = 1,2, ..., N find ¢"(x), approximation to ¢(x,t"), such that

P" 4 DAL - V)" = = (1= 0)AHu"t V)t (4.4)

After choosing a suitable finite element partition {Q2°}, & = 1, ..., Ny, of the domiain {1,
the SD method applied to Eqn. (4.4) leads Lo the variational equations

Na
[ owde s ont [ oV )0+ > 57 (on, i )
a=1
5 f halr=1de - (1 - 0)At f dr(a - Yyl
n i

where the test funetions ¢, and the trial solutions ¢ belong to H(£2), the former sat-
isfying homogeneous boundary conditions on Uy, ¢ and the latter the essential boundary
conditions (4.2). The SD term in Eqn. (4.5) is given by

Sy (un ¥ni dn) : = A p(uh - V) gulh - 9
+ OAL ), - V) 4 (1= O) A~ - V)~ dD

(4.6)

The intrinsic time 7§ is computed as explained in Reference [Co| using a Péclet
number 4 = oo (see Box 1.1 in the quoted reference) to compute the upwind function,
Let us denote by My the ‘mass’ (or Gramm) matrix for the psendo-concentration
interpolation and by J the matrix arising from the convective term in Eqn. (4.5)
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(considering both the Galerkin and the SD contributions). The matrix version of Eqn.
(4.5) will read as follows:

My - @™ 4 BALT(U") - 8" = My - 9" — (1- 9)Aty(U™1) @™ (4.7)

the capital letter ¥ denoting the veetor of nodal unknowns of the pseudo-concentration
function. The dependence of matrix J on the velocity has been explicitly indicated.

Remarks 4.1

(1) The parameter @ of the generalized trapezoidal rule may be set different to that
employed for the Navier-Stokes or the energy equations, In fact, when ) iz a step
function or with a high gradient at the fluid front, the backward Euler schome
(8 = 1) is inappropiate due to its high dissipation, even though it may be used
for the Navier-Stokes and energy equations. In this case, the Crank-Nicolson
gcheme (8 = 1/2) should be employed. However, this problem does not appear if
the pseudo-concentration is a smooth function, since the position of the eritieal
contour ¥, will be advected properly, because the error of the backward BEuler
scheme is basically an amplitude error and not a phase error.

(2) In our calculations we have chosen for the pseudo-concentration f the same finite
element interpolation as for the components of the velocity field and the temper-
ature, (|

4.3 Some numerical techniques

4.3.1 General conaiderations

The use of the pseudo-concentration method deseribed above provides a basic technigue
to track free-surfaces of viscous incompressible flows, although seversl problems appear
when it is implemented in a computer code,

The first problem encountered is merely for post-processing the results, If the no-
slip boundary condition is prescribed for the velocity field, the pseudo-concentration
values for points of the finite eloment discrefization located at the boundary of the
computational domain will never be advected and therefore the final value obtained
for them will be given by the initial condition yio(x). Assume that this initial value is
zero. If fluid enters and occupies the neighboring nodal points, located at a distance
h from the boundary, the psendo-concentration value for them will be 1. When the
discrete function ¥y, is interpolated, the eritical contour v, will be placed between the
boundary and the contiguous points. In particular, for ¢, = 0.5 the predicted position
of the front will be at a distance h/2 from the boundary.

A possible way to artificially overcome this problem is to modify the pseudo-
concentration values of the boundary nodal points. We have implemented the following
method, Let 4, be the mean value of the function ¥ for an element 02 adjacent to the
boundary. The condition i, = 4, will indicate thal most of the nodes of the element
have already been filled. In this situation, the value of the pseudo-concentration for a
node located at the boundary, ¢y, is modified as follows:

Py — i + p(thm — ¥n) (4.8)
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where 0 < p < 1. The constant p may be adjusted in order to control when the
boundary nodes have to be considered part of the fluid or part of the air. As time
advances, the application of (4.8) will yield a value 1 for oy, if this procedure enters the
ealculation, although it may also be used as a post-processing facility.

There are two more problems to be considered for the implementation of the
pseudo-coneentration technique. One of them is the choice of the function 1. If we take
a step function, as indieated before, numerical problems may be encountered when it is
transported. It is explained in Reference [Co] why small oscillations in the vicinity of
sharp gradients still remain using the 5D formulation. These oscillations may propagate
and yield to distorted front shapes, especially near corners. Since the basic idea of the
method does not depend on the choice of the function 4, it is preferable to use a smooth
function instead of one whith abrupt changes. The smoothing technique we employ will
be discussed below. Nevertheless, we have found that if the peaks encountered when
dealing with a step function are just eliminated for each time step, an accurate tracking
of the front is obtained using the 8D method.

The last problem to be considered is the evacuation of air bubbles. Since we
deal with incompressible flows, air cannot shrink and air bubbles near the corners will
remain if a method to evacuate them i4 not devised. In practice, moulds are made
of porous materials, usually sand in casting applications. Therefore, air can leave the
mould without resistence. Numerically, a possible way to evacuate air is to introduce
holes on the boundary and to block them when the fluid touches the wall. This method
will also be explained in the following,

4.3.2 Smoothing of the pseudo-concentration surface

Even if the initial condition (%) is a smooth function, if the pseudo-concentration
is mantained unmodified over several time steps it may begin to lose its smoothness
and numerical problems may he encountered. Since the only important factor is the
location of the eritical contour that defines the front, it is possible to smooth ¢ while
maintaining the position of this critical contour. Following Thompson [Thl], this can
be performed redefining the pseudo-concentration for each node of the finite element
mash according to the following expression:

b= e+ sgn(he — ) @ d (4.9)

where 1, stands for the calculated value of 3, & is & given constant, d is the distance
from the node under consideration to the front and sgn(-) is the signum of the value
enclosed in the brackets.

Equation (4.9) indicates that the smoothed pseudo-concentration is obtained
adding or substracting to the critical value a quantity proportional to the distance
to the front, according to which material occupies the point (the fluid analysed or air).
The constant o is the slope of the new pseudo-concentration surface in the direction
normal to the front.

The crucial point is how to caleulate the distance d from a point under consid-
eration to the front. We have tested several possibilities that will be briefly deseribed
now.
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Nodal-based distance

To ealeulate the distance d, we may first identify the points surrounding the
front. This can be easily done by checking if their psendo-concentration value is close
to g, L.e., |f = 4| is less than a given tolerance that depends on the diameter of the
elements and the constant o. Once these points surrounding the front are identified,
the required distance from a point of interest to the front is evaluated as the minimum
of the distances to these points. We have found that this method yields a somehow
ondulated (and therefore inappropiate) representation of the front, especially for coarse
mashes, Maoreover, the talerance Lo be used depends strongly on the element dimensions
and the slope of the pseudo-concentration surface,

Integration-points-based distance

Instead of using the nodal points surrounding the front to ealculate d for a given
point, we may also employ the integration points. Apart from this, the idea is the same
as before and the problems encountered are also the same, perhaps to a lesser extend.

Interpolation of a straight line

Once we know the values of the pseudo-concentration for all the nodal points, it
is possible to calculate the position of the points of the front located atb the sides of
the elements. This can be done by checking if the sign of ¢ — 4, changes when passing
from a certain node of an element to the adjacent one. When this happens, the position
where the value ), is attained can be computed nsing a linear interpolation between the
values of 1 al the two nodes identified and the coordinates of these two nodes. In the
most common case in which only one front crossea the element, two front points which
are part of the element sides will be found. Between these two points, the position of
a specified number of additional front points may be calculated by interpolating the
front within each element by a straight line. If more than a single front crosses the
elemnent, an even number of front points lying on the element sides will be found, The
way to connect pairs of them is easily established by moving along the boundary and
checking the sign of ¢ — .

When the process just deseribed is finished, the front will be represented by a
set of points lying on straight segments within each element. The distance d from a
considered point to the front is then computed as the mimimum of the distances to all
these front points.

The aceuracy of this method depends on the smoothness of the front (not on the
peendo-concentration), as well as on the number of front points to be interpolated within
each element. Clearly, if the front presents a sharp corner within a certain element,
the approximation by a straight segment will be indeed poor. Moreover, advancing in
time the approximation error will sum up and the final representation of the front may
be completely wrong. In these cases the smoothing of the pseudo-concentration is not
recommended. We have solved some problems of this kind just using a step function
for ¢ and without smoothing. However, when the front is smooth, this method has
proved to be guite effective. In general, we have found that four or five additional front
points interpolated within each element are needed when quadratic elements are used.

For the particular case of finite clements with interior nodes; such as the @3/ P
or the Pf'/ﬁ pairs, this smoothing technique has an additional problem that we have
observed while running some test cases, Let us consider the situation illustrated in
Figure 4.1 for the two-dimensional 3/ P, element,

The nodas of the element have been denoted by N1, N2,..., N9, the front points
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Time step nst

Time slep n

Figure 4.1 Formiation of spurious air-bubbles for interior nodes. The dashed
line denotes the critical contour ..

located on the sides of the element by E1, E2 and the additional {ront points by
Al, A2, In the situation of the picture on the left of Figure 4.1, application of Eqgn.
(4.9) computing the distance 4 as explained above will lead to

Y5 = . — o min{dist(N9, A1), dist(N 9, A2)}
< Y- d,

where d, is the ‘real” distance from node N9 to the front. Inequality (4.10) indicates that
we are underestimating the value of ¢ at node N9, The error will be much smaller for
nodes N4 and N8. After solving the transport equation for the pseudo-concentration
it may happen that nodes N4 and N8 are already part of the fluid whereas node N9
remains in the unfilled region (see the picture on the right of Figure 4.1). Since the
fluid front will be again approximated by a straight segment, node N9 may be situated
at the wrong side of this. Applying again (4.9) we will obtain

(4.10)

Ypt! = ¢ — o min{dist(N 9, A1'), dist(N9, A2')} < v,

It is even poasible that ¢;‘+1 < ff. In any case, there exists the possibility that as

the fluid front advances a spurious bubble around node N9 be left behind. We have
observed this misbehavior in practice.

The way to circumvent this problem is quite simple. Once the values of the
smoothed pseudo-concentration for the nodes lying on the element sides have been
ealeulated using Eqn. (4.9), the value for the interior node is computed from interpo-
lation. The serendipid interpolation (@5 ) is used for the biquadratic element (§3) and
the quadratic simplicial interpolation (Py) for the enriched simplex P;’ .
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4.3.3 Air release—Introduction of holes

It has already been sald that in practical problems air can leave the mould through its
porous walls, Numerical models must incorporate a facility to evacuate air in order to
prevent the appearence of air bubbles, especially near the corners.

The basic idea of the method to be described now is to place some holes in the
walls of the mould and to block them when the fluid reaches these walls. Thus, air will
be allowed to leave the mould but the fluid analysed will not.

To motivate the basic inconvenience of this method, let us deseribe how boundary
conditions are implemented in the computer code developed in this work. If a boundary
node has a Neumann type preseription, its velocity is one of the unknowns of the
problem. But if a Dirichlet condition is prescribed there, the velocity vector is known.
The columns and rows corresponding to the node under consideration of the assembled
matrix of the final algebraic system are not needed. The product of the columns by
the velocity components of the node are moved to the right-hand-side. The matrix of
the resulting reduced system, say A, will be smaller than if these columns and rows
are not eliminated, Since we work with dynamie memory allocation, the dimension
of matrix A has to be known before starting the analysis, after reading the data of
the problem. Hence, the change of a node from a Neuwmann boundary condition to a
Dirichlet boundary condition during the analysis is not so simple as it might seem at
first glance.

In order to avoid the need for changing the size of the problem, we leave the nodes
located at the holes always free, When the fluid reaches them, the velocity (or perhaps
only the component normal to the wall) is prescribed teo zero not exactly, but through
penalization.

To describe this method, let us consider a generie linear system of the form

Ax=h (1.11)

where x is a vector of n unknowns. Suppose that the i—th component of x is to he
prescribed to a value &, i.e., 2; = @, From Eqn. (4.11) we will have that

1
Ty = b = L LIPE ("1.12)
J=1 g4
Assume that the component ay; of matrix A is not zero and replace

aji «— ai(l+ A)

bi « Fag(1+ A) (4.13)

From Bqn. (4.12) we will have that
=g o " 4.14
T i+ ) ’ﬂ% G Y (4.14)

from whera it follows that #; — & as A — oo,
In practice, we have observed that values of A of order 10% yield a good enough
approximation to the prescription to be imposed (observe that A is dimensionless).
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The way to block the holes is now clear. For a certain time step, the value of the
pseudo-concentration at the point of interest is computed. If this value 9 is lower than
-, A = 0 is taken for the system analogous to (4.11) arising from the fully diserete
and linearized Navier-Stokes equations and the redefinition (4.13) is not performed.
Otherwise, a high value of A is selected, taking # = 0 in (4.13).

Consider now the transport equation for the pseudo-concentration. If for a certain
time step the velocity at a node lying on the hole is left free, it may point into the
mould due to suction effects. In this situation, the hole must be considered as a part
of the inflow boundary I'y and therefore the function 3 must be preseribed there.
Otherwise, it may happen that values of 4 higher than 3, be transported into the
meould, thus introducing spurious fluid. The situation is similar ta what happens for
the one-dimensional hyperbolic equation

QP + ubgih = 0, D<a<l

If u > 0 and the value of 4 at & = 0 is not preseribed, the solution is simply y(2,1) =
Yo(z — ut), where yg(z) is the initial condition extended by periodicity to the whole
real line 1.

There is another way to see that if 1 is not prescribed at the nodes for which the
velocity points inte the mould then spurious material will be introduced. Let Vi be any
control volume surrounding this node. Multiplying Eqn. (4.1) by ¢, integrating over
V; and using the fact that u is divergence-free yiclds

d [ 1f 2
- d{} = —— 1 u )i edl
G =g [ ey

If 4 is not preseribed where n-u < 0, the integral of ? over V; may increase as time
goes on, and this happens for any control volume Vi, that is, a spurious fuid-filled
region may appear around the hole.

Having these considerations in mind, it is elear that the pseudo-concentration must
be prescribed at the temporary free wall nodes where n-u < 0. For a certain time step,
the value of the preseription will be the value obtained in the previous one. The way
to implement this is the same as for the velocities in the Navier-Stokes equations. Let
=" the value of the pseudo-concentration at the node under consideration for time
step n— 1. Considering that the system to be solved to find ¢ for time step n is (4.11),
the redefinition (4.13) will be employed, with & = '"'. Again, we have found that
good results are obtained taking A of order 10,

The checks to be performed for temporary free boundary nodes are summarized
in Box 4.1. It is understood that all the variables (pseudo-concentration and velocity)
refar to a certain node and that Dirichlet boundary conditions are preseribed according
to the penalty technique described here.
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Box 4,1 Checks for temporary free wall nodes

o IF ¢! < o), then
#IF n-u< 0 then
Preseribe yf* to ¢~
ELSE
Loava iy free
END
# Leave u [ree (Neumann type condition)
ELSE
e Prescribe u =0
s Leave iy {ree
END

4.4 The Navier-Stokes equations with a moving free
surface

4.4.1 Statement of the problem

In Section 3.4 we have considered the general problem for an incompressible fluid in
laminar regime and taking into account thermal effects, Now we will include the exis-
tence of a free surface within the domain 02, which will be tracked using the technigques
described in this chapter,

The mechanical and thermal equations deseribing the problem are (3.73), viz.

Ao+ (a-Viul -2V [pe(u)]+ Vp=pf inQ, 1€ (0,7)
Vou=0 in,te(0,7) (4.15)
pegl8pd + (u - V)] = V. (V) = Q in 2, te(0,7)

It has been already explained in Section 3.4 the interest of considering the physical
properties and the forcing terms as variable, The boundary conditions for the velocity
and the temperature to be considered here are

u=1i on Iy, te(0,7T)
n-e=1t on Tpy, t€(0,7)
Un=i, n-e-g=hH, ne-g=1£ only,te(0T) (4.16)
d=49 on Ty, te(0,T)
—=kn - Vi = ¢ on Ty, t€(0,T)

where the notation is the same as in Chapters 2 and 3. In particular, the boundary
A5 has been considered split into three sets of disjoint components I'y,, I'hy and Uy,
the latter being the part of the boundary where mixed conditions are prescribed: the
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normal velocity and the tangent stresses. Vectors g and gg (for the three-dimensional
case) span the space tangent to Iy,
The initial conditions for Eqns. (4.15) are

u(x,0) = uy(x) %n Y] (4.17)
Hx,0)=d(x) In 0

The definition of the position of the fluid front will be given by the physical
properties. Let m be any of these, i.e., density (p), viscosity (u), specific heat (e,) or
conduction coeflicient (k). We will have that

- W)'a‘uid(xu 2) ifxe 4.18
rixit) {vrm-,- ifx €0\ 0 (6:18)
where
= {xe 0| P(xt) = 9} (4.19)
and the paeudo-cnnce;:tmtion function ¥ is the solution of the following problem:
dp +(n:- V) =0 in 2, t€(0,7)
p=19 on Ty, t € (0,T) (4.20)

P(x,0) = sp(x) in {1

This is the formulation of the pseudo-concentration method. In Egn, (4.18),
the property  for the fluid-filled region is allowed to depend on the unknowns of the
problem, whereas it has been considered constant for the air, i.e., for the fictious fluid.
Ohserve that since the physical properties will be diseontinuos across the fluid front, the
differential equations (4.15) will not exactly deseribe the conservation of momentum,
mass and energy, since the jump of these properties has heen simply ignored.

A particular case of the mixed boundary condition on I'yy, will be employed here,
namely, the von Karman law for the shear siress, also used in References [DGB] and
[LUC] (see Reference [FCT] for another friction law for Bingham fluids). Introducing
the tangent stress vector

t, = ligy -+ laga

and the tangent veloeity
we = (u-g)gs + (v g)ge

the expression of this law is

t, = —pﬁl—u., (4.21)

(u?)?

where the dimensionless friction coefficient ut depends on the rugosity of the wall and
the position of the point considered through the relation

ut = Alog(y*) + B

A and B being physical parameters, As in Reference [DGB| we will take A = 2.5,
B = 5.5 (smooth walls) and y* = 100, yielding u* = 17.01.

Friction laws of this type are normally applied to turbulent flow problems, trying
to emulate the frictional effect of boundary layers. As in the above quoted references,
we shall use (4.21) to obtain tangencial tractions at the walls of the mould.
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4.4.2 Numerical treatment

It has already been explained in detail in Chapter 3 how to solve problem (4.15)-(4.17)
and in Section 4.2.2 the numerieal solution of problem (4.20). It only remains to link
both problems through the updating of the physical properties given by Eqn, (4.18) for
the continuous problem, First, let us discuss how to compute the matrices involving any
of these properties, For example, consider the malrix Kg arising from Lhe viscous terms
of the Navier-Stokes equations (see Box 4.2). Neglecting the contribution of the 5D
term, this matrix comes from 2 [ pe(u): e(v)dd. Using numerical integration within
each element of the finite element partition with Ny, integration points of positions in
the parent domain &, and weights wy, k = 1, ..., Ny, we will have that

N
[ petun) cetviyan = Y- [ pa(ug) se(vian

=}

Ny Nyy

30wt () eluf (64)] : elvA (€11 (6 )]

e=l hml

where J is the Jacobian determinant of the isoparametric mapping. It is therefore
clear that the viscosity must be computed and stored for each integration point of each
elemnent. The same holds true for the rest of physical properties. Let us denote by n
any of them and by #f its value at the k—th integration point of the ¢—th element. To
determine how to caleulate it we first must know the value of the pseudo-concentration
at this point, ¥°(£,), which is easily caleulated from the standard interpolation from
the nodal values of ¢ for the element. Then,

= {0 EEEY o

The property = for the fluid analysed may depend on the velocity and the Lemper-
ature. For the ‘air’, it may be any constant provided that the motion of the resulting
fictious fluid do not affect the motion of the ‘real’ fluid. There is always the possibility
of using the real air properties.

The final transient and iterative algorithm is given in Box 4.2, Only the basic
steps of the scheme presented in Box 3.2 for the general problem of thermally coupled
flows and nonlinear materials are indicated, The basgie caleulations needed to track the
free surface are included.

Remarks 4.2

(1) In Box 4.2 it is assumed that the Navier-Stokes equations are solved first and
then the solution of the energy equation is performed. As mentioned in Chapter
3, there is no difficulty in swapping the order of block iterations.

(2) The pseudo-concentration may be ealeulated at the begining of the time step or
at the end (staggered with respect to the other problems). This last choice is
considered in Box 4.2. Both options are equally valid, but ene must keep in mind
that if the former is chosen the front will be ‘delayed’ one time step with respect
to the velocity, pressure and temperature, whereas if the second possibility is
adopted the situation will be the inverse. It could also be possible to include the
ealeulation of the pseudo-concentration within the block iterative loop, We have
found that this leads to convergence problems, which are due to the fact that an
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integration point may belong to the fluid in a certain iteration and to the air in
the next one, thus having different physical properties from iteration to iteration.

(3) The parameter # of the generalized trapezoidal rule for the three different transient

problems to be solved (velocity-pressure, temperature and psendo-concentration)
may be different and chosen according to the accuracy in time required for each
problem,

(4) In Box 4.2, it is understood that the boundary conditions for the temporary free

wall nodes are always adjusted using the penalization method deseribed in Section
1.3.3.

(5) In the most common situation, the fluid front will eross an element. For some of

(7)

its integration points the properties of the Huid will be used and for the others
the properties of the air. Clearly, the accuracy of the integration rule will be
peor for these elements, although this should not affect much the global accuracy.
Alsa, there will be a jump in the fluxes of temperature and stresses that we have
not considered. Let us denote by T'y the part of the front crossing element e,
Clonsidering for example the temperature equation, this jump (arising [rom the
application of the divergence theorem) will ba

‘/P 7 [ pratany s (V9) pruid — kagem « (Vi) dl’
7

where 7 is the test function for the temperature. For the finite element dis-
crotization, the derivatives of ¥ within each element will be continuous, i.e.,
(V9) stuia = (V9)air, and therefore this integral will not vanish if the diffusions
are different. The continuity of heat fluxes for the continuous problem implies
that the bracketed term must be zero. The influence of the inclusion of the jump
in the finite element problem is an aspect that deserves greater attention.
The use of the friction law given by Eqn. (4.21) will introduce another nonlinearity
in the problem. Even if the Newton-Raphson linearization is employed for the
convective term of the Navier-Stokes equations, this term is linearized only up
to first order, since its influence is not very important, as we shall show in a
numerical example. Moreover, the value of the friction at time step n - 1 is
considered to be approximately the same as for time step n when the equations are
written for this time step (this is the same approximation used for the density; see
Section 3.4.2). This approximation is obviously unnecessary when the backward
Fuler scheme is used for the Navier-Stokes equations. Let us denote by Fypi. =
Frio(u) the contribution to the diserete forcing vector for Eqn. (3.78) arising
from the friction law (4.21) (omitting the dependence on the SD contributions).
The approximations just mentioned ean be expressed as

OF}c(u) + (1= )F L) = Fppio(a™)
where n and ¢ are the actual time step and iteration, respectively.
The iterative penalty method has proved te be a fundamental ingredient for the
guccess of the pseudo-concentration technique. In practical situations, especially
for highly viscous flows, the viscosity of the fietious material will be several orders
of magnitude smaller than that of the fluid analysed, Even il the exact value
for the air is not used, it must be between 3 and 5 orders of magnitude smaller.
Hence, choosing a prieri a penalty parameter for the classical penalty method will
yield unavoidably a poor approximation to the incompressibility constraint or to
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ill-conditioning. Thix is aggravated by the fact that contiguous elements may have
stiffness matrices of an order of magnitude completely different. We have observed
from several numerical experiments that if ¢ is taken as ¢ = 10"";4;&“-& (nsmming
the fluid viscosity to be constant) and jige = 103 g1yid, ill-conditioning is ob-
served for values of n ns small as 3 (we have used the check proposed in Reference
[ZT], Chapter 15, for ill-conditioning). 0l

Box 4.2 General algorithm including free-surface tracking
& Set the initial condition U?, P? = 0, 8" and @7

sni=10

s WHILE n < N and (nen-stalienary) DO:
en—mn+tl
sii=10
s WHILE (not converged) DO:

ei—12+41
# Solve the Navier-Stokes equations (3.78)-(3.79)
e Update the physical propertics and forcing terms
s Solve the temperature equation (3.80)
s Update the physical properties and for¢ing terms
e Check convergence
END while (not converged)
¢ Check the sign of n - u for the temporary free wall nodes
and adjust the boundary conditions for 1 (see Box 4.1)
e Solve the pseudo-concentration equation (4.7)
e Smooth the pseudo-concentration (see Eqn.(4.9))
s Update the physical properties according to (4.22)
e Check whether v = ¢, or ¢ < 1. for the temporary free wall nodes
and adjust the boundary conditions for u (see Box 4.1)
e Check if the steady-state has been reached
END while n = N and ( non=stationary)
END

4.5 Application to some practical problems

The numerical model to simulate the mould filling process presented in this chapter will
be applied now to three different problems. The first has been taken from Reference
[DGC] and consists in the filling of a cavity due to the gravity acceleration. In the
second problem the mould is filled by imposing an inflow velocity at the entrance of
the cavity. The last problem is not directly related to the mould filling simulation,
but demonstrates the possibility to apply the model described here to another metal

forming problem: the plane strain hot rolling of a metal slab.

As in the two previous chapters, the numerical caleulations have been carried out

on a CONVEX-C320 computer using double arithmetic precision.
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4.5.1 Mould filling by gravity

The problem definition for this first example is sketched in Figure 4.2, The mould is
filled by & fluid that enters through the left vertical channel due to the action of the
gravity acceleration. The data of the problem and the physical properties are those
used in Reference [DGC). In particular, the density and viscosity have been taken as
p1 = 100, p1 = 0.2 for the fluid analysed (in 8I units) and py = 0.1, yy = 0.02 for the
air (fictious material), Part of the top wall of the square cavity has been left free in
order to allow the air evacuation. No temporary holes have been used for this example.
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Figure 4.2 Geometry and boundary conditions for the problem of mould fill-
ing by gravity (MFG).

The boundary conditions for the Navier-Stokes equations are zere normal veloc-
ities and tangent stresses given by the wall friction law (4.21), with u* = 17.01. The
initial condition is zero velocity everywhere and the fluid front located at the entrance
of the left vertical channel. No thermal analysis will be performed for this example,

The computational domain has been discretized using a rather uniform mesh of
280 Q2/ Py elements (see Figure 4.3), yielding 1233 nodal points. The iterative penalty
method has been employed with a penalty parameter ¢ = 10°%, The algorithmie
constants of the 5D formulation have been taken as ag = 0.5 and hy = 2. The backward
Euler scheme has been used to advance in time for the Navier-Stokes equations and the
Crank-Nicolson method for the transport of the pseudo-concentration, the time step
size being At = 0.01 in both cases,
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Figure 4.3 Finite element mesh for the problem of mould filling by gravity
(280 @3/ Py elements, 1233 nodal points) (MFG).

i i

Figure 4.4 Positions of the fluid front using the Q3/P element (MFG), (1):
L=01; (2): =02 (3): t= 0.5 (4): L= 0.4,
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f-T Bl

Figure 4.5 Positions of the fluid front using the @4/ Py element (MFG). (1):
L= 0.5 (2): t = 0.6; (3): t = 0.7; (4): t = 0.8,

Figure 4.6 BEvolution of the streamlines using the Q3/Fy element (MFG). (1):
t=0.2;(2): L= 04;(3): L =06 (4): t = 0.8,
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Figure 4.7 Evolution of the pressure conlours using the @Q3/F; eclement

(MFG). (1) t = 0.2; (2): t = 0.4; (3): t = 0.6; (4): L = 0.8.

Within each time step the convergence tolerance has been taken as 0.1%, first
solving the transport of the pseudo-concentration and then iterating (using the Pi-
card method) until a converged solution of the Navier-Stokes equation is found. Two
iterations have been needed per time step. The final value of the norm of the incom-
pressibility constraint has been found to be of order 101! for all the time steps.

Once the pseudo-concentration is calculated, the smoothing technique described
in Section 4.3.2 has been employed, with a slope o = 1 (see Eqn. (4.9)) and using five
points within each element to compute the distace d.

Numerical results are shown in Figures 4.4 to 4.8. The evolution of the fluid front
is depicted in the first two of them, In general, our results agree very well with those
presented in Reference [DGC], although they are delayed since the initial position of
the front is different and we have solved first the transport of the pseudo-concentration
(cf. Remark 4.2,(2)). Looking at Figures 4.4.(1) and 4.4.(2) it is observed that the
influence of the friction is very little at the walls of the vertical channel, since the shape
of the front is almost straight there. To give a qualitative explanation to this fact,
let us consider a single particle in contact with the walls and neglecting the effect of

the contiguous particles, i.e., just considering the gravity acceleration. Denoting by
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Figure 4.8 Comparison of the resulls obtained uaing the Qj/Pj and the
Q1/ Py elements at time ¢ = 0.4 (MFG). (1): Position of the front
using the @,/F, element; (2): Position of the front using the
Q3/ Py element; (3): Pressure contours using the ©y/F; element;
(4): Pressure contours using the @3/ P element.

@ = #(1) its vertical position measured from the entrance of the channel, this function
will be the solution of the following non-linear equation
#= —n(:&)ﬂ + g (4.23)

where & = (ut)™? = 3.46 x 1072 and g is the gravity acceleration. Assuming Initial
conditions 2(0) = 0 and 2(0) = 0, the solution of Eqn. (4.23) is

i(t) = \/g benbl/Em 8 (4.24)
2(t) = ~log (cosh( /7@ 1)) (4.25)

Expanding the velocity given by (4.24) in Taylor series in the neighborhood of t = 0
(or & = 0) it is found that

2(t)=g [1. - %uyta + O(nﬁg“:‘)]
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from where it follows that for & small or ¢ small the influence of the friction is negligible
with respect to the gravity effect. Friction will only be important enee the vertieal
channel is completely filled, We have solvad numerically the falling of the fluid in a
very long channel (2 meters) and the position of the front agrees extremely well with
the results predicted by Eqn. (4.25).

Lel us return now to the discussion of the physical results. The evolution of the
streamlines is shown in Figure 4.6. From the second box it is observed that a vortex
is induced in the air due to the transmision of shear stresses from the fluid to the alr,
When the cavity is filled, this vortex disappears,

Pressure contours at different thmes are plotted in Figure 4.7. These contours
allow to check the influence of the air on the motion of the fluid that fills the mould.
Pressure gradients should be rapidly dissipated in the region occupied by the fictious
material and this in fact is observed to happen (s¢e the positions of the front in Figures
4.4 and 4.5 corresponding to the plots of Figure 4.7).

A comparison between the behavior of the /Py and the Qq/Fs elements is
shown in Figure 4.8. For the latter element, the mesh has been built up by splitting
ench element of the mesh used for the former into four bilinear quadrilaterals and the
SD parameters have been taken as ag = 1 and kg = 2. Apart from this, the numerical
strategy is the same in both cases. From the first and second boxes of Figure 4.8 it
is observed that the /P element shows a stiffer behavior than the Qo /P pair, for
which the fluid front is smoother. Pressure contours in both cases are similar (slightly
smaller absolute values are obtained using the @,/ Fy element). The possible stability
problems that eould be found using the bilinear-constant pair have not been observed
for this particular example.

The cost of the numerical simulation is significantly smaller using the Qy/F
than the @»/ P element. This is basically due o the formation and storage of the
elemnent matricea, The elemental stiffness matrix for the Qa/F element has 18 x 18 =
324 components, whereas four matrices for the @/ Fp element have 4 X 8 % 8 = 256
components. Also, the bandwidth of the assembled global matrix for the @, /F, pair
is smaller than for the @3/P. Using a profile storage, the maximum column height
(after renumbering the equations) for the problem now considered is 96 for the former
and 163 for the latter. The total memory required is 2.44 and 2.13 Mega-bytes, and
the CPU time per iteration 10.8 and 7.8 seconds, respectively. Finally, let us mention
that the tracking of the free surface has a very reduced computational cost compared
to the solution of the Navier-Stokes equations (the 16.36% of the total CPU time for
the Q5 / Py element).

4.5.2 Injection mould filling

In this second example the numerical simulation of the filling of the mould shown in
Figure 4.9 is considered. The geometry and experimental results for this problem have
been provided by RENAULT (Reference [RA]). The experiments have been carried out
using Gallium, a metal well suited to experimentation because it has a low fusion point
(30 C!) and therefore it is easy to use it in the laboratory and to recover it once the
experiments are finished. Moreover, its properties are close enough to those of the
alluminium and other metals used in casting applications,
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Figure 4.9 Geometry and boundary conditions for the problem of injection
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Figure 4.10 Finite element mesh for the problem of injection mould filling

(548 Qz/ Py elements, 2351 nodal points) (IMF).
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Figure 4.11 Positions of the fluid front (IMF). (1): t = 0.1; (2): t = 0.2; (3):
{ =0.3; I(Q): t = 0.4.
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Figure 4.12 Positions of the fluid front (IMF). (1): t = 0.50; (2): ¢ = 0.55;
(3): L = 0.60; (4): L = 0.65.



4.5 Application to some practical problems

4.23

e

P

r\j?_

3

=

4

Figure 4.13 Positions of the fluid front (IMF), (1): &= 0.7; (2): t = 0.8; (3):
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Figure 4,156 Some relevant physical results at ¢ = 0.4 (IMF). (1): Position of
the front; (2): Streamlines; (3): Pressure contours; (4): Temper-
ature contours,

The molten metal enters through the left gate shown In Figure 4.9 with a hori-
zontal velocity of 0.31 m/s. The vertical velocity is accomodated to the slope of the
top wall of the entering gate. The physical properties of the molten Gallium at 55"
C are (all in 81 units) p = 5.9 x 10* (density), p = 1.9 x 10~* (dynamical viscosity),
k = 30.4 (thermal conduction coefficient) and ¢, = 250 (specific heat at constant pres-
sure). Thus, the Reynolds number based on the velocity that enters the cavity (0.62)
and its longitudinal length (0.1) is Re = 1.93 x 10%, The flow is clearly turbulent for
such a high Reynolds number and it is impossible to simulate it with a laminar model
as ours, The physical properties of air are p = 1.2, p = 1.8 x 1075, ¢, = 1005 and
E = 0.0256. In order to reproduce the relative importance of all the physical effects,
we have used the real properties of the Gallium and the air except for the dynamical
viscosity, which has been taken 10" times higher for both the Gallium and the air.
Results are qualitatively similar for n = 3 and n = 2. We have failed to obtain a
converged golution for lower values of this exponent.

The boundary conditions for this problem are zero normal velocities at the walls
and zero tangent siresses, i.e., no friction with the walls is considered. The fluid is
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Figure 4.16 Some relevant physical results at £ = 0,6 (IMF). (1): Position of
the front; (2): Streamlines; (3): Pressure contours; (4): Temper-
atnre contours,

asawmed to be initially at the entrance of the left gate, A thermally uncoupled flow
maodel will be adopted. Therefore, it is possible to deal with relative temperatures,
The temperature of the Gallium has been assumed to be 407 C higher than thatl of the
air (i.e., 607 C for standard laboratory conditions). The walls of the mould have been
assumed Lo be adiabatic,

The finite element mesh designed for this problem is shown in Figure 4.10. It
consgists of 548 13/ F; elements and 2351 nodal points. The iterative penalty method
has been employed, using a penally parameter ¢ = 101, The algorithmic constants
of the 51D method have been taken as oy = 0.5 and hy = 2. The backward Fuler
schemea has been employed to advance in time for the three transient problems to
be solved (velocity-pressure, temperature and pseudo-concentration). The smoothing
technique deseribed in Section 4.3.2 has been used, with o = 1 and five additional
points within each element to compute the distance d (sec Eqn. (4.9)). Within each
time step, of size At = 0.01, the advection of the pseudo-concentration has been solved
first and then iterations have been carried out (between three and four) to obtain a
converged solution of the Navier-Stokes equations (with a tolerance 0.1%). Finally, the
temperature equation has been solved.
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Figure 4.17 Some relevant physical results at ¢ = 1,2 (IMF). (1): Position of
the front; (2): Streamlines; (3): Pressure contours; (4): Temper-
ature contours,

In order to allow the air evacuation, some holes have been introduced on the walls
of the mould. They are schematically shown in Figure 4.9 (three or four nodes of the
finite element diseretization correspond to each hole). The parameter A to block them
when the Gallium touches the wall (see Seetion 41.3.3) has been taken as A = 10%,

Numerical resulfs are shown in Figures 4.11 to 4.20. 'The position of the fuid
front at different times is depicted in Figures 4.11 to 4.14. It is observed how several
air bubbles appear in the Gallium. This fact is also observed in the experimental
results [RA]; with which the numerical simulation shows a good qualitative agreement.
The differences should be attributed to the different Reynolds number of the numerical
calculation, Air hubbles disappear as time goes on due to the artificial effect of the
smoothing technique. Observe from Figure 4.1 that the interpolation of the front
by a straight segment within each element will advance or delay artificially the front
depending on its curvature. Physically, air bubbles disappear because alr can escape
through the porous lateral walls of the sand mould.

Figures 4.15 to 4.18 show the position of the fluid front, the streamline pattern, the
pressure conlours and the temperature contours at different times. From the streamline
plots, it is observed how air enters or leaves the mould through the holes, as well as
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Figure 4.18 Some relevant physical results at ¢ = 1.6 (IMF). (1): Position of
the front; (2): Streamlines; (3): Pressure contours; (4): Temper-
ature conlours.

the ereation of vortices due to the transmision of shear stresses, All these results are
in accordance with what physical intuition predicts. From the pressure plots it is seern
that pressure gradients are rapidly dissipated in the air region. This indicates that
the motion of air does not influence much that of the Gallium. Isotemperature curves
show how heat is basically transported through convection. Conduction transport is
only apparent in regions occupied by Gallium that has first entered the cavity, Tt is
remarkable to note the high temperature gradients that the numerical method is able
to capture at the interface between hot Gallium and cold air.

Velocity vectors at times t = 0.6 and ¢ = 1.6 are plotted in Figures 4.19 and
4.20, respectively. From the former it iz observed how air enters the mould through
the holes placed at the top wall and leaves it through the holes of the bottom left
corner. The pseudo-concentration is prescribed at the temporary inflow using the
penaligation technique described in Section 4.3.3, Otherwise, spurious fluid would
enter the cavity, The effect of the blocking of the holes when Gallium contacts the
walls is clearly appreciated from Figure 4.20, It is also observed that a vortex remains
in the fluid-filled region.
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Figure 4.19 Velocity vectors at ¢ = 0.6 (IMF).
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Figure 4.20 Velocity vectors at ¢ = 1.6 (IMF).
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IFigure 4.21 Positions of the fluid front without the intreduciion of holes on
the walls (IMF). (1): ¢ = 0.5; (2): t= 1.0; (3): t = 1.5; (4): t =
2.0, ' '

Figure 4.22 Velocity vectors al ¢ = 1.0 without the introduction of holes on
the walls (IMF).
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Figure 4.23 Convergence history and evelution of the norm of the incom-
pressibility constraint for time step numbar 77 (IMF).

If air is not allowed to cscape, the flow features are much more complicated. If
only the top wall is left free, tho position of the fluid front at different times is depicted
in Figure 4,21, Tt could be argued that the ondulations of the fluid surface are due to a
misbehavior of the pseudo-concenteation technique. To show that this is not the case,
the velocity vectors for ¢ = 1.0 have been plotted in Figure 4.22, It is observed how
small recirculation zones are created in the air region, thus indueing the shape of the
fluid front.

Referring now to some computational aspects of the caleulation, the behavier of
the iterative penalty method has been found to be again very effective. The convergence
history and the evolution of the norm of the incompressibility constraint for time step
number 77 are shown in Figure 4.23. It is observed that this norm decrenses almost
three orders of magnitude in four iterations. This decrease is even more accentuated
for the first time steps (not shown). Starting from a value of order 10-7, a final value
of order 107! is obtained in four iterations.

Most of the computational cost of the simulation is due to the solution of the
Navier-Stokes equations. The CPU time per iteration has been 24.27 seconds (54.96%
for the formation of the element matrices, 44.96% for the solution of the linear system).
The pseudo-concentration and the temperature are solved only onee per time step, The
CPU time needed has been 5,03 (11.54% for the element matrices, 52.98% for the linear
system, 35.48% for the smoothing and updating of physical properties) and 3.05 seconds
(24.83% for the element matrices, 75.16% for the linear system), respectively.

4.5.3 Hot rolling of a rectangular slab

The plane stress hot rolling of a metal has been chosen for this last example. The
problem definition is sketched in Figure 4.24. All the data except for slight changes
in the geometry have been taken from Reference [ZOM), In particular, the constitutive
law (3.58) has been adopted for the metal, with ¥ = oo (pure plastic flow) and @,
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depending on the temperature through the following empirical law:

1 3 1/6‘5 z IfC-‘g . )
ay = ‘(?l‘ (a) + J(E) + 1J (4.26)

Z = Btexp (E—;) (4.27)

The parameter £ is defined by Eqn. (3.57) and the experimental constants C;, i =
1,2,3,4, and R are

with

¢y = 0.01901 mz,:’MN
Cy=T702x10% 5!

Cy =5.0
Cq=1.39 x 10° J/g mole
R =8.311 J/g mole K

The use of the pseuda-concentration technique will allow us to follow the metal
sinee it first contacts the roll until the steady-state is reached. Besides the inherent
interest of this numerical simulation, & ¢lassical problem concerning free surfaces will
be solved: the swelling problem (see, e.g., Reference [WC] and references therein).

The values of the physical properties we have used are the following:

Metal TFictious fluid

p Kg/em® 0.00275  0.001
k calfems K 0.4302 0.01
¢, cal/Kg K 239.01 1000.0

i N s/em? 1.0

For the viscosity law (3.58), a cut-off value g, = 10* has been chosen. The
viscosity values in the metal for the converged solution are always below this limit,
except where the strain rate is small, i.e., in regions where the flow approach used here
is not valid. This happens before the metal contacts the roll. Since we assume that
the initial position of the metal is the first contact with this roll (see Figure 4.24), this
simplification iz immaterial for the results,

In practice, there 1s no rigid contact between the metal and the roll. In order
to simulate the friction between them, we have just assigned a smaller viscosity (100
times smaller) to a boundary zone defined by very narrow elements (see Figure 4.25).
In Reference [ZOH], the friction was introduced by means of a law relating o, with
the pressure and using a somehow arbitrary friction coefficient. The introduction of
proper friction laws between roll and slab surfaces is an aspect that deserves further
inveatigation.

Not all the plastic work has been considered to be transformed into heat, but only
the 90%. Therefore, the source term for the energy equation given by expression (3.63)
hag been multiplied by 0.9,
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Figure 4.24 Geometry and boundary conditions for the problem of hot rolling
of a metal glab (HRM). '
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Figure 4.25 Finite element mesh for the problem of hot rolling a metal slab
(HRM) (340 Q2/ Py elements, 1449 nodal points).
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Figure 4.26.(a) Position of the metal front al ¢ = 0.5 (HRM).
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Figure 4.26.(b) Some viscosily contours at ¢ = 0.5 (HRM).
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Figure 4.26.(c) Temperature contours at ¢ = 0.5 (HRM).
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Figure 4.26,(d) Some pressure contours at ¢ = 0.5 (HRM'].
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Figure 4.27.(a) Position of the metal front at ¢ = 2.0 (HRM).

Figure 4,27.(b) Viscosity contouts at § = 2.0 (HRM).
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Figure 4.27.(c) Temperature contours at ¢ = 2.0 (HRM).
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Figure 4.27.(d) Some pressure contours al ¢ = 2.0 (HRM).
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Figure 4.28.(a) Position of the metal front at ¢t = 5.0 (HRM).
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Figure 4.28.(b) Viscosity contours al ¢ = 5.0 (HRM).



4,38

4 Mould filling simulation

A AR
b vy

FREERRFFRERCFRFEEFR

Figure 4.28,(¢) Temperature contours at ¢ = 5.0 (HRM).
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Figure 4.28,(d) Some pressure contours at ¢ = 5.0 (HRM).
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Figure 4.29 Velocity profiles (norms) for some vertical sections at ¢ = 5.0
(HRM). (1): Contact with the roll (z = 2.5); (2): ¢ = 3.126; (3):
@ = 3,750; (1) Center of the roll (& = 5.0),

The computational domain has been discretized using the mesh shown in Figure
4.25. It consists of 340 @3/ Py elements, with 1449 nodal points, A parameter ¢ = 1077
has been used for the iterative penalty method. Convective terms for the Navier-Stokes
equations have been neglected (creeping flow). Since convection is not very important
for the temperature equation either, the Galerkin approach has been used to solve it.
The transport of the pseudo-concentration has been solved using the SD formulation,
with ag = 0.5 and hg = 2. As for the previous examples, within each time step
this transport equation is solved first, Since now the flow is thermally coupled, the
block iterative scheme described in Chapter 3 has been employed to deal with the
mechanical and thermal problems. The time step size has been taken as At = 0.01,
using the backward Euler scheme to advance in time. Now, no smeothing of the pseudo-
concentration has heen performed, i.e., a true step funetion is transported. The metal
is defined by the value 1 and the ‘air’ for the value 0. The metal front is assumed to
be defined by ¥, = 0.5.

In all the previous examples, no comment has been made about the numerical
integration rule. We have always used the Gauss-Legendre 3 x 3 integration for the 2D
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04/ P slement. However, when the viscosity at the nodes of the mesh is computed using
the lenst-squares smoothing technique described in Chapler 2, oscillations appear in the
vicinity of sharp viscosity gradients, i.e., at the metal front in this ease. This prablem
was not encountered for the problem solved in Section 3.5.3 bacause the variation we
abtained for the vigcosity was smooth. In order to avoid this problem, for this particular
example we have used the nodal 3 % 3 rule (Lobatto), i.e., with the intsgration points
placed at ihe nodes of the elements. Therefore, no smoothing is needed to ebtain nodal
viscosity values.

Numerical results at different tirnes are shown in Figures 4.26 to 4.28. The position
of the metal front, some viscosity contours, temperature contours and pressure conlours
are plotted for each case. It is abserved that the viscosity is low where the temperature
is high, in accordance with the constitutive law given by Eqns. (3.58), (4.26) and (4.27).
High temperatures appear in the region where the strain rate is higher, arising from
the transformation of plastic work into heat. From Figure 4.19 it is observed how the
swelling effect is perfectly well reproduced using the pseudo-concentration technique.

The velocity profiles for different seclions » = conal. nre shown in Figure 4,29,
Recalling that the velocity of the roll is 28.73 cm /s, it is observed that the no-slip point
is placed approximately at » = 3.125. The relative velocity between the roll and the
metal depends on the friction coefficient to be used for the narrow elements in contact
with the roll.

We have also computed the roll force and the roll torque, assuming as in Reference
|ZOH) that the former acts midway along the angular arc of contact and that it is
directed towards the roll center. The values we have obtained are F' = 049556 N for
the force and T' = 0.1207 N em [or the torque.

Concerning the numerical behavior of the algorithm, between three and six iter-
ations have been needed to convergence for a tolerance of the 0.1% in the relative L?
norm. The iterative penalty method yields a value of order 10~* for the norm of the
incompressibility constraint, starting from a value of order 10"

The computational cost of the simulation has been of 14.16 CPU seconds per
iteration (solution of the Stokes problem, tempaeraturs squation and updating of the
physical properties, including the calculation of the viscosity), The 68.77% of the
total CPU time has been needed to solve the Stokes equations, the 19.64% for the
temperature equation and the 8.69% for the pseudo-concentration transport equation.

4.6 Summary and conclusions

In this chapter we have given a complete description of the psendo-concentration tech-
nique as a numerical method to track free surfaces of viscous incompressible flows.
Besides the application of the techniques developed in the previous chapters applied
now to the solution of its transport equation (Streamline Diffusion formulation, gener-
alized trapezoidal rule to advance in time), some specific issues have been introduced
here. The most important one is with no doubt the introduction of temporary holes
on the walls in order to allow the air release, an essential ingredient for the success of
this method. Two aspects have to be considered when one deals with temporary free
wall nodes, The first is that one must check whether the fluid has touched the wall or
not and, if so, to block the holes. The other 1s that the sign of the normal velocity has
to be computed. If the velocity points into the computational domain, the temporary
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free node is part of the inflow boundary and thus the pseudo-concentration must be
preseribed there., We have used a penalty technique to prescribe both the velocity and
the pseudo-concentration when necessary.

Alzo related to the free surface tracking, some problems arising from the smoothing
technique described here have been noticed. In particular, special reference has been
given to the calculation of the distance from a certain point to the fluid front.

Concerning the solution of the Navier-Stokes and temperature equations when a
free surface has to be simulated, a comprehensive deseription of the transient algorithm,
its implications and some approximations has been given., Once again, the numerical
methods developed previously have demonstrated their robustness for the problem con-
sidered in this chapter. The 8D formulation and the iterative penalty method have been
shown to be extremely effective.

The main interest of this chapter relies however on the numerical results that have
been presented. They show that the pseudo-conceniration technique is an effective
method to track free surfaces with complicated shapes. If the physical properties of the
fictious material are properly chosen, its motion does not affect that of the fluid that
one wishes to analyse. It is observed that pressure gradients are rapidly dissipated in
the region occupied by this fictious fluid. Moreover, an accurate thermal analysis can
be performed. This is an aspect of vital importance in casting applications, the subject
that has motivated the work presented in this chapter.
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