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SUMMARY

A exibility-based formulation of a new mass matrix for the dynamic analysis of spatial frames consisting of curved
elements with variable cross-sections is presented. The main characteristic of such formulations is the exact equilibrium
of forces at any interior point, with no additional hypotheses about the distribution of displacements, strains or stresses.
Accordingly, the derived element mass matrix takes into account the exact sti�ness and mass distribution throughout each
element.
In validation tests, results obtained with this method are compared with those obtained by other numerical or analytical

formulations, showing the accuracy of the proposed method. The comparison of experimental results for a multispan arch
bridge subjected to a dynamic load with those achieved by means of the proposed method are �nally included to illustrate
its e�ciency in the treatment of complex structures. ? 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Curved members with uniform or variable cross-sections (such as arches) were commonly used in ancient
buildings due to their optimum appropriateness to non-cohesive construction materials. Moreover, their struc-
tural and architectural qualities make them appropriate for use in some modern plain or reinforced concrete
structures.
The most commonly used procedures for the static and dynamic analysis of structural systems with curved

members are based on either the decomposition of members into polygons of straight elements with uniform
thickness, or the displacement formulations of the �nite element method with isoparametric curved elements.
While the �rst possibility is just a rough and expensive approach, the second is not free of certain inaccuracies,
since it is based on the use of an assumed interpolation of the displacements of the structure. It is known that,
because of that interpolation — which acts as an extra condition beyond equilibrium, compatibility and stress–
strain relationships — the internal forces are calculated in such a way that they do not satisfy equilibrium in
the element in a strict sense.
However, as shown by Baron1 curved linear members can also be treated by means of analytical general-

izations of the conventional matrix methods based directly on equilibrium. Because no additional hypotheses
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are needed in this case — to interpolate the �elds of stresses or displacements — only the three condi-
tions on equilibrium, compatibility and stress-strain relationships are superimposed, thus preserving their strict
satisfaction.
The practical use of these matrix formulations was limited in the past by the large number of operations

that they require. Nowadays, the signi�cant development of digital computers makes this point less critical,
while accuracy and versatility gain renewed interest. During recent years, some works on nonlinear analysis
of either concrete or steel structures, such as those presented by Mahasuverachai and Powell,2 Carol and
Murcia,3 Mar��,4 Blandford and Glass5 and Zeris and Mahin,6 have maintained interest in exibility-based for-
mulations. More recently, Spacone et al.7;8 have used formulations of this kind for non-linear analysis of R/C
frames.
Besides the exact satisfaction of equilibrium, the use of generalized matrix formulations o�ers additional

possibilities when extended to dynamic analysis. Element mass matrices are usually calculated either in a
simpli�ed way, as in the case of lumped mass matrices, or in a consistent way with an assumed hypothesis
on the displacement �eld. The latter is the case of the consistent mass matrices that are used in the �nite
element method. Generally, the use of consistent mass matrices leads to more exact results than the lumped
ones.9 Most of the presented formulations of consistent mass matrices are based on cubic interpolations of
the displacements along the element; this is the case of the procedures used by Wekezer,10;11 Eisenberger
and Reich12 and Blandford and Glass.5 The last authors used a FEM-based mass matrix in combination with
exibility-based formulation with an “exact” sti�ness matrix. Other recent developments propose the use of
hybrid-stress interpolations for Timoshenko beam elements, e.g. Reference 13. Gupta14 proposed an explicit
expression of a mass matrix for linearly tapered beam elements without shear deformation, which is obtained
by direct integration of the equation of motion with no assumption on the displacement �eld. Despite the
signi�cant e�ort devoted in the formulation of suitable mass-matrices, most of the available formulations
refer to linear members under rather restricted geometric conditions. However, the previous derivation of a
consistent mass matrix for general curved members with arbitrarily variable cross-section is not known to the
authors.
The derivation of a consistent mass-matrix for curved, variable cross-section members has been achieved

by the authors through the extension of a exibility-based Generalized Matrix Formulation (GMF) to the
dynamic analysis of this type of structure. The most relevant feature of the resulting formulation is that the
element mass matrix objectively and systematically takes into account the actual distribution of mass and
sti�ness within the element, with no hypothesis over the displacements �eld.
This paper presents the basic GMF environment adopted and the consequent derivation of modal vibration

analysis technique, including the above-mentioned consistent mass-matrix for curved and cross-section variable
members. After the presentation of two validation tests, the application of the proposed method to a multispan
arch bridge and the comparison between analytical and experimental results are described.

2. STIFFNESS MATRIX

2.1. Equation of equilibrium of the element
The basic formulation for linear elastic analysis is based on a previous proposal by Mar��.4 The axis of an

element can be represented in global co-ordinates by the equation �(s) = [X (s); Y (s); Z(s)], where s is the
arch parameter associated to the reference curve (Figure 1). The local co-ordinate system {x; y; z} is de�ned
at each section so that x-axis is tangent to the axis of the element and y- and z-axis are perpendicular to
each other and to x, and are contained in the plane of the cross-section (Figure 2). The axis of the element
may be any arbitrary curve perpendicular to the undeformed cross-sections.
Figure 3 shows an element of in�nitesimal length ds limited by two cross-sections A and A′. O and O′ are

the intersection points of the axis with these sections. It is assumed that distributed loads, force p and moment
m, are applied on this element. At both ends, forces and moments −R and −M act on point O and R + dR

? 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 731–747 (1998)



FLEXIBILITY-BASED LINEAR DYNAMIC ANALYSIS 733

Figure 1. Axis of an element and its curvilinear co-ordinates in the global reference system XYZ

Figure 2. De�nition of the local co-ordinates system

Figure 3. Forces on a cross-section of di�erential thickness

and M + dM on point O′, in equilibrium with the applied loads. The resulting equilibrium condition is

dR+ pds = 0
−R× ds+ dM +m ds = 0

(1)

For the present formulation, a cantilever clamped at end A is adopted as basic isostatic con�guration, where
the independent forces in node B are PB = [RB;MB]T = [RXB; RYB; RZB;MXB;MYB;MZB]T. This selection is
justi�ed by the greater conceptual clarity produced in the subsequent development, which allows a direct

? 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 731–747 (1998)



734 C. MOLINS, P. ROCA AND A. H. BARBAT

association of the particular solution with the clamping forces caused by the external loads distributed on the
element. According to that, the following matrix equation is obtained integrating equation (1):



RX
RY
RZ
MX

MY

MZ


=




1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 (Z − ZB) −(Y − YB) 1 0 0

−(Z − ZB) 0 (X − XB) 0 1 0
(Y − YB) −(X − XB) 0 0 0 1







RXB
RYB
RZB
MXB

MYB

MZB


+




R∗
X

R∗
Y

R∗
Z

M∗
X

M∗
Y

M∗
Z


 (2)

Equation (2) can be written in the following compact form:

�XY (s) = N(s; sB)PB + �∗XY (s) (3)

where N(s; sB) is an interpolation matrix which describes the exact equilibrium of forces between sections
B and s, �XY (s) is the vector of internal forces in the global co-ordinate system expressed as a function of
the curvilinear coordinate s. The particular solution �∗XY (s) describes the vector of forces produced by the
distributed loads on the basic isostatic con�guration, that is determined by

�∗XY (s) =
∫ B

s
N(s; �)

[
p
m

]
d� (4)

Equation (3) permits the exact derivation of the internal forces in any section of the beam, once the force
vector at one end and the particular solution are known.

2.2. Compatibility equation
The Navier–Bresse kinematic equations for a spatial curved beam,15 can be expressed as

!(s) = !(s0) +
∫ s

s0

(�) d� (5)

�(s) = �(s0) + !(s0)× (�(s)− �(s0)) +
∫ s

s0

(
�(�) +
(�)× (�(s)− �(�))

)
d� (6)

where �(s) = [uX ; uY ; uZ ] and !(s) = [�X ; �Y ; �Z ] are the vectors of translations and rotations of the axis at
the curvilinear coordinate point s; �(�) = [�X ; �Y ; �Z ] and 
(�) = [�X ; �Y ; �Z ] are the vectors of strains and
curvatures of the section at the curvilinear co-ordinate point �; and � = [X; Y; Z] is the reference vector of
points belonging to the element axis.
Applying the previous conditions (5) and (6) to ends A and B of the member, the following equation is

obtained

�B =NT(sA; sB)�A +
∫ B

A
NT(s; sB)�XY (s) ds (7)

where �A = [uXA; uYA; uZA; �XA; �YA; �ZA]T and �B = [uXB; uYB; uZB; �XB; �YB; �ZB]T are the displacement vectors at
ends A and B. �XY (s) = [�X ; �Y ; �Z ; �X ; �Y ; �Z ]T is the generalized strain vector in global co-ordinates of the
section with curvilinear co-ordinate s.
The second term in equation (7) gives the movement of end B caused by the deformation of the element

d = �B −NT(sA; sB)�A =
∫ B

A
NT(s; sB)�XY (s) ds (8)

? 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 731–747 (1998)
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2.3. Constitutive model at the section level
As a �rst approach, the following hypotheses regarding the mechanical behaviour of the members are

introduced: (1) linear elastic response is assumed; (2) Bernoulli’s hypothesis is maintained, so that cross-
sections remain plane after deformation of the element, although, due to shear deformation, they do not
necessarily remain perpendicular to the axis; (3) tangential forces (shear and torsion) and normal forces
(axial and bending) are assumed to be completely uncoupled; thus, their possible interaction at the sec-
tional level is not taken into account; and, (4) Saint Venant torsion is assumed, where free warping of the
cross-sections is allowed, and the angle of twist is directly proportional to the torsional moment at each
section.
Based on the previous hypotheses, it is possible to outline a constitutive relationship between sectional

forces and sectional strains. In local co-ordinates, the more general form of this equation is

�s = Ks(�s − �os ) + �os (9)

where �s = [N; Vy; Vz;Mx;My;Mz]T is the vector of sectional forces, �s = [�x; �y; �z; �x; �y; �z]T, is the vector
of sectional strains (�x being the axial strain, ”y and ”z the tangential strains, �x the twist curvature and �y; �z
the exure curvatures), Ks is the sectional sti�ness matrix, which depends on the shape of the section and
on the elastic characteristics of the materials, �0s is the vector of forces due to initial stresses and �

0
s is the

vector of initial strains of the section.
The matrix Ks is obtained by combining the equilibrium condition between forces and stresses, the equations

of kinematic compatibility, and the constitutive equations of the materials. More details on the derivation of
Ks may be found in Molins et al.16

The lack of coupling between the normal and shear stresses is shown in the absence of cross terms between
the normal and shear constitutive relations in the sectional sti�ness matrix:

Ks =




∫∫
A E dA 0 0 0

∫∫
A Ez dA − ∫∫

A Ey dA
GAsy 0 −GAsyzc 0 0

GAsz GAszyc 0 0
GJ + G(Aszy

2
c + Asyz

2
c ) 0 0∫∫

A Ez
2 dA − ∫∫

A Eyz dA
sym:

∫∫
A Ey

2 dA


 (10)

where E is Young’s modulus of the material at point (y; z) of the cross-section, G is the shear modulus of
the material, J is the torsional inertia of the section, (yc; zc) are the local co-ordinates of the shear center,
and Asy ; Asz are the reduced areas of the section for shear forces in the local directions y and z.

2.4. Equation of the element
Rewriting equation (9) in global co-ordinates with a rotation matrix C (where �s = C�XY , �s = C�XY , and

CT = C−1), the following expression is obtained:

C�XY = Ks(C�XY + �os ) + C�
o
XY (11)

Solving equation (11), the following equation of the strain vector in global co-ordinates �XY is obtained

�XY = CTKs−1C(�XY − �oXY )− CT�os (12)

The substitution of the strain vector (12) in equation (8) gives

d = �B −NT(sA; sB)�A =
∫ B

A
NT(s; sB)(CTKs−1C(�XY − �oXY )− CT�os ) ds (13)

? 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 731–747 (1998)
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The equilibrium equation (3) allows the internal sectional forces at any point to be related to the forces
PA and PB at the ends of the element. Substituting equation (3) in equation (13) yields

d =
∫ B

A

(
NT(s; sB)CTKs−1CN(s; sB)PB +NT(s; sB)CTKs−1C�∗XY

−NT(s; sB)CTKs−1C�oXY −NT(s; sB)CT�os
)
ds (14)

This equation can be written in shorter form as

d = FPB + d∗ + do (15)

where F=
∫ B
A N

TCTK−1
s CN ds is the exibility matrix of a member. d

∗ =
∫ B
A N

TCTK−1
s C�

∗
XY ds is the vector

of displacements in B produced by the deformation of the element in its basic isostatic con�guration under

the e�ect of distributed loads, and do =
∫ B
A N

TCT
(
K−1
s C�

o
XY − �os

)
ds is the vector of displacements in B due

to the initial strains and stresses.
The sti�ness matrix of an element is obtained by formulating the explicit relationship between forces and

nodal displacements. For extremity B, this relationship is immediately obtained from equations (8) and (15)

PB =−F−1NT(sA; sB)�A + F−1 �B − F−1 (d∗ + do) (16)

while for extremity A, the same result is obtained by combining equation (16) with the equilibrium condition
(3) between the ends of the beam

PA = N(sA; sB)PB + P∗
A (17)

PA =N(sA; sB)
(
−F−1NT(sA; sB)�A + F−1 �B − F−1 (d∗ + do)

)
+ P∗

A (18)

Both relationships (16) and (18) can be combined in the matrix expression[
PA
PB

]
=
[
N(A;B)F−1NT(A;B) −N(A;B)F−1
−F−1NT(A;B) F−1

] [
�A
�B

]
−

[
N(A;B)F−1(d∗ + do)− P∗

A
F−1(d∗ + do)

]
(19)

where N(A;B) = N(sA; sB). Equation (19) can be written in a more compact form as

P = K�+ P∗o (20)

where P is the vector of end forces, K is the sti�ness matrix of the element, � is the vector of end displacements
and P∗0 is the vector of the reactions corresponding to perfect clamping at the ends of the element due to
initial strains and stresses.

3. MASS MATRIX

The equation of motion that governs the dynamic response of the structure can be formulated as

M ��(t) +D�̇(t) + K�(t) = F(t) (21)

where M is the mass matrix, D is the damping matrix, K is the sti�ness matrix, �(t) is the vector of
displacements and F(t) is the dynamic force.
The derivation of a consistent mass matrix using the present formulation is achieved through the de�nition of

a sectional mass matrix and a description of a displacement �eld in the element, as may be seen in Sections
3.1 and 3.2. A relevant feature of the resulting formulation is that the element mass matrix incorporates
information related to the geometry, sti�ness distribution and mass density within the element.
D’Alembert’s principle is applied to obtain the dynamic equilibrium equation of the element. This is achieved

by identifying the inertia forces acting on any point at a given instant, and then applying the static equilibrium
equations as shown in Section 3.3.

? 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 731–747 (1998)
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3.1. Sectional mass matrix
In order to obtain the inertial forces that act on a section, it is necessary to assume the additional hypothesis

that cross-sections are moved as rigid bodies in their plane. According to this hypothesis, the inertia forces in
local co-ordinates fI (s) = [fIx(s); fIy(s); fIz (s); fIxx(s); fIyy(s); fIzz (s)]

T, which correspond to any cross-section
of curvilinear co-ordinate s, can be calculated as a function of the accelerations as follows:

fI (s) =Ms(s) ��(s) (22)

where

Ms(s) =




∫∫
A � dA 0 0 0

∫∫
A �z dA − ∫∫

A �y dA∫∫
A � dA 0 − ∫∫

A �z dA 0 0∫∫
A � dA

∫∫
A �y dA 0 0∫∫

A(y
2+z2)� dA 0 0∫∫

A �z
2 dA − ∫∫

A �yz dA
sym:

∫∫
A �y

2 dA


 (23)

is the sectional mass matrix and the vector ��(s) = [ �ux(s); �uy(s); �uz(s); ��x(s); ��y(s); ��z(s)]T describes the accel-
eration of a point on the axis, identi�ed by its curvilinear co-ordinate s.

3.2. Expression for displacement �eld
The combination of equations (3) and (12) provides the following expression which relates the sectional

strains �XY (s) to the forces PB at the end B and the forces �∗XY (s):

�XY (s) = CT(s) K−1
s (s) C(s)

(
N(s; sB)PB + �∗XY (s)

)
(24)

If it is assumed that the beam does not carry distributed loads (�∗XY = 0 and d
∗= 0), equations (16) and (24)

may be combined into the following expression:

�XY (�) = CT(�)K−1
s (�)C(�)N(�; sB)

(
F−1�B − F−1NT(A;B)�A

)
(25)

The substitution of equation (25) in equation (7) yields

�(s) = G(s)
[
�A
�B

]
(26)

where

G(s) = [NT(sA; s)− Fs(s)F−1NT(A;B) Fs(s)F−1 ] (27)

is the matrix which relates the internal displacements of the element to the node displacements and

Fs(s) =
∫ s

sA
NT(�; s) CT(�)K−1

s (�)C(�)N(�; sB) d� (28)

Expression (26) allows the calculation of displacements of any point in the axis of the element with respect
to the nodal displacements. It is exact when the deformation of the element is caused only by the displacement
of its ends. Otherwise, the local inuence of distributed loads in the deformed shape is neglected, so that
equation (26) is to be regarded as an approximation.

? 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 731–747 (1998)
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3.3. Determination of mass matrix
By applying d’Alembert’s principle, it is possible to proceed in the same way as for the static case and

obtain the forces caused by loads distributed on the basic isostatic con�guration of the element. Hence, as in
equation (4),

�∗XY (s) =
∫ B

s
N(s; �) fIXY (�) d� (29)

where fIXY (�) is the vector of inertia loads in global co-ordinates in the section of curvilinear co-ordinate �.
Relating the inertia forces to the corresponding nodal accelerations, this vector can be written as

fIXY (�) = C
TMs ��(�) = CTMsG(�)

[ ��A
��B

]
(30)

The vector d∗ of the displacements in B corresponding only to the deformation of the beam itself, produced
by the forces �∗XY of equation (29), can be expressed as

d∗ =
∫ B

A
NT(s; sB) CTK−1

s C
∫ B

s
N(s; �) fIXY (�) d�ds (31)

In equation (19), relating the forces and the node displacements, P∗0 will now be the vector of the inertia
forces applied at the nodes, that is to say, the product of the mass matrix by the node accelerations. Substituting
equations (30) and (31) in equation (19), the following �nal expression for the matrix M is obtained:

M =
[
m11 m12
m21 m22

]

where

m22 = F−1
∫ B

A
NT(s; sB)CT(s)K−1

s (s)C(s)
(∫ B

s
N(s; �)CT(�)Ms(�)C(�)Fs(�)F−1 d�

)
ds (32)

m21=F−1
∫ B

A
NT(s; sB)CT(s)K−1

s (s)C(s)
(∫ B

s
N(s; �)CT(�)Ms(�)C(�)

(
NT(A; �)−Fs(�)F−1NT(A; B)

)
d�

)
ds

(33)

m12 = mT21 = −N(A; B)m22 +
∫ B

A
NT(sA ; s)C

T(s)Ms(s)C(s)Fs(s)F−1 ds (34)

m11 = −N(A; B)m21 +
∫ B

A
NT(sA; s)CT(s)Ms(s)C(s)

(
NT(sA; s)− Fs(s)F−1NT(A; B)

)
ds (35)

It can be shown that if the proposed method is specialized to a straight beam with uniform cross-section
and centred reference axis, the resulting symmetric mass matrix coincides with that proposed by Archer.17

? 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 731–747 (1998)
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This researcher developed a FEM consistent mass matrix using a cubic interpolation for the displacement �eld
which took into account shear deformation.
Integration along the axis of the element is carried out using a multiple Simpson’s rule with a variable

number of points. Consideration of 11 integration points is usually su�cient to obtain the sti�ness matrix of
any element with curved-3D axis and variable cross-section. However, the computation of the mass matrix
includes three integration levels and needs more accurate rules together with a set of additional integration
points.18

4. VALIDATION TESTS

4.1. Validation test 1: tapered cantilever
The �rst validation test consists of the modal analysis of a cantilever beam with straight axis and rectangular

cross-section of gradually decreasing depth. It has a length (L) of 10·0m and a constant width of 1·0m. The
depth varies linearly from a maximum of 1m at the clamped end to zero at the free end. The mechanical
properties considered for the material are as follows: deformation modulus (E) 106 kN=m2 and shear modulus
(G) 106 kN=m2. This structure is studied under the e�ect of its mass, considering a density of 10 kN=m3.
The dynamic analysis consisted of the evaluation of the frequencies for the �rst natural modes of vibration

of the cantilever. The frequency f1, corresponding to the �rst mode, was compared with the exact solution
provided by Timoshenko et al.,19 without considering the shear deformation:

f1 =
5·315b
2�L2

√
E
3�

(36)

where b is the half-depth of the clamped section. This example was studied using both the proposed method and
a conventional matrix calculation for frame structures with straight, uniform cross-section members. Models
consisting of 1 to 8 elements were used for the calculations for the proposed method, whereas for the
conventional calculation the total length was divided into 1, 2, 3, 4, 5, 6, 10, 40, 100 and 200 equidistant
elements. The mechanical characteristics assigned to these elements correspond to the mid-point section.
Table I shows the frequencies obtained for the �rst �ve modes of vibration using 8 elements for the proposed

method, and 10, 40, 100 and 200 uniform straight elements for the conventional matrix computation. Note
that the exact result for the frequency of the �rst mode without shear deformation is f1 = 2·442Hz (equation
(36)). Figures 4 and 5 show the frequency values for the �rst and second modes of vibration as a function
of the number of elements.

4.2. Validation test 2: circular helicoidal beam of Young and Scordelis20

The second validation test deals with the modal analysis of a circular helicoid clamped at its two ends,
which was previously studied analytically and experimentally by Young and Scordelis20 under static loads. The
horizontal projection of the helicoid encompasses 180o and has a constant slope of 30o (Figure 6). The radius
(R) is 0·254m. The cross-section is rectangular, with a depth of 0·0061976m and a width of 0·0262382m.

Table I. Results for the �rst 5 frequencies in test 1

Elements f1 f2 f3 f4 f5

Proposed 8 2·436 6·951 13·723 22·675 34·215
Conventional 200 2·436 6·950 13·658 22·504 33·398
Conventional 100 2·435 6·939 13·590 22·25 32·494
Conventional 40 2·430 6·8575 12·973 18·928 25·675
Conventional 10 2·311 4·831 8·299 15·714 27·013

? 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 731–747 (1998)



740 C. MOLINS, P. ROCA AND A. H. BARBAT

Figure 4. Test l: plot of the frequency for the �rst mode of vibration against the number of elements and the formulation employed

Figure 5. Test l: plot of the frequency for the second mode of vibration against the number of elements and the formulation employed

The material is characterized by the following mechanical properties: deformation modulus (E) 3185·5MPa
and shear modulus (G) 1117·0MPa. The density adopted for the material is 106 kg=m3.
The vibration analysis was performed using both the proposed consistent mass matrix and the lumped mass

matrix. The shapes of the �rst and the third modes of vibration are plotted in Figures 7 and 8.

? 1998 John Wiley & Sons, Ltd. Earthquake Engng. Struct. Dyn. 27, 731–747 (1998)
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Figure 6. Test 2: Plan and section of the helicoid studied by Young and Scordelis20

Figure 7. Test 2: Shape of the �rst mode of vibration (plan, elevation, pro�le and perspective)

Table II shows the frequencies calculated for the �rst three modes of vibration using models with 2, 3, 4,
and 6 elements, and their relative errors (in brackets). In all cases, the results obtained by using consistent
mass matrices are more accurate than those corresponding to lumped mass matrices. This is so even if a
model with only two elements is used in combination with the proposed mass matrix. This example points
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Figure 8. Test 2: Shape of the third mode of vibration (plan, elevation, pro�le and perspective)

Table II. Frequencies of the three �rst modes of vibration in test 2

Mass 2 3 4 6
matrix Elements Elements Elements Elements

f1 Lumped 0·634 (−20·5%) 0·786 (−1·5%) 0·800 (+0·3%) 0·797 (−0·1%)
0·798Hz Consistent 0·810 (+1·5%) 0·799 (+0·1%) 0·797 (−0·1%) 0·798 (+0·0%)
f2 Lumped 3·174 (+103·0%) 1·211 (−22·6%) 1·544 (−1·3%) 1·556 (−0·6%)

1·565Hz Consistent 1·862 (+19·0%) 1·568 (+0·2%) 1·578 (+0·8%) 1·567 (+0·1%)
f3 Lumped 4·301 (+141·0%) 2·257 (+26·8%) 1·562 (−12·2%) 1·755 (−1·4%)

1·780Hz Consistent 2·168 (+21·8%) 1·887 (+6·0%) 1·793 (+0·7%) 1·785 (+0·3%)

out that, for similar accuracy, the use of consistent mass matrices allows a signi�cant reduction in the number
of elements or degrees of freedom.

5. EXAMPLE: DYNAMIC ANALYSIS OF MASONRY BRIDGE

5.1. Description of the structure
The ability of the model to simulate the dynamic behaviour of complex structures is shown through its

application to the modal vibration analysis of an actual masonry multispan arch bridge. This construction was
previously subjected to a dynamic load test, so that experimental results are available and can be used in
order to appraise the accuracy of the numerical predictions. This case was also selected because of the very
good condition of the construction and the monolithic, almost solid-like elastic response shown.
The bridge of Periques was built during the 12th century near Barcelona, Spain. It has a total length of

51·6m and consists of four masonry arches spanning 8·2, 15·6 (main arch), 12·1 and 6·1m. (Figures 9 and
10). The arches are supported on three approximately square piers with sides of 34·25m. As is common in
medieval construction, the platform is very narrow, being only 3·1m wide.
The arch rings, consisting of one or two layers of sandstone voussoirs, have a depth of 0·4m in the end

arches, 0·70m in the main one, and 0·5m in the central one (Figure 10). The external walls of piers and
spandrels are also made of sandstone ashlars.
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Figure 9. Perspective of the structural model of the Periques bridge

Figure 10. Plan and elevation of the model of the bridge

The entire structure shows a very good state of preservation, with only a small section of the main arch
being replaced by brick fabric after damage caused during a Civil War in 1875.

5.2. Dynamic load test
In order to carry out the dynamic test, the structure was excited by the impact provided by making the

back axle of a truck, 120 kN loaded, descend from a 15 cm step placed on the crown of the main arch. The
same operation was repeated on the central arch. Nine accelerometers located at signi�cant points recorded
the vibrations of the structure in the three directions (vertical, longitudinal, and transverse to the axis of the
bridge).
The spectral analysis performed based on the time-history signal allowed identi�cation of the set of natural

frequencies and modes of vibration indicated in Table III. In spite of the purely vertical excitation introduced,
transverse and longitudinal motions were identi�ed in addition to the vertical vibration.
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Table III. Experimental and analytical frequencies of vibration of the bridge

Test Test Analytical Analytical
frequency predominant frequency predominant

Mode (Hz) movement (Hz) movement

1 4·9 Transverse 5·2 Transverse
2 6·0 Transverse 6·6 Transverse
3 9·1 Longitudinal/transverse 8·9 Longitudinal

3 bis 9·1 Transverse
4 11·0 Vertical/transverse 10·9 Vertical/transverse
5 12·7 Vertical 12·7 Vertical
6 13·25 Vertical 13·0 Vertical

Figure 11. Model of Periques bridge including pier elements (1-10), arch elements (11-38), spandrel elements (39-72) and rigid links
connecting them

5.3. Numerical model
The numerical simulation was carried out on the structural model shown in Figures 9–11. Each arch ring

was discretized in eight-curved elements, while the piers were discretized with a set of three vertical, variable
cross-section elements.
The modelling of such a structure by means of one-dimensional, albeit curved elements with variable

cross-section, required the inclusion of speci�c devices in order to adequately take into account the resisting
contribution of its main parts. First, rigid connections were introduced between the arch springs and piers so
as to treat the intermediate portion above the pier as an undeformable body.
Second, the sti�ening action of the spandrel walls was simulated by means of an equivalent system of

horizontal, variable cross-section elements placed on the rings and linked to them by a set of springs
(Figure 11). These springs were de�ned so that only the relative motion normal to the ring surface was
restrained.21

The model included 72 linear elements in piers, arches and spandrels, together with the necessary 29 springs
used to simulate the connection between them. The entire system included 444 degrees of freedom.
The mechanical properties of the materials were estimated from the previous experience of the authors

in the study of similar ancient constructions. For ashlar masonry a deformation modulus of 8000 MPa, a
shear modulus of 3000MPa, and a density of 2400 kg=m3 were considered; for brick masonry a deformation
modulus of 4000MPa, a shear modulus of 1500MPa, and a density of 1800 kg=m3 were considered; and for
the in�ll a deformation modulus of 50MPa, a shear modulus of 20MPa, and a density of 2400 kg=m3 were
considered.
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Figure 12. Plan and elevation of the fourth mode (10·9Hz)

Figure 13. Plan and elevation of the �fth mode (12·7Hz)
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Figure 14. Plan and elevation of the sixth mode (13·0Hz)

5.4. Results of modal analysis
The results of the numerical simulation for the �rst eight frequencies and modes of vibration are shown in

Table III. As can be observed, the general agreement between experimental and analytical results of frequency
values is very satisfactory.
The modes of vibration numbered 3 (longitudinal) and 3′ (transverse), numerically predicted with fre-

quencies very close to 9Hz, cannot be distinguished from each other according to the experimental results.
However, an experimental frequency of 9·1Hz was detected which included longitudinal and transverse motion.
The more signi�cant di�erence which exists between the experimental and numerical frequencies obtained

on the 1st and 2nd transverse modes is justi�ed by the strong dependence of these values on the geometry
and internal composition of the cutwaters of the bridge, as shown by complementary simulations.
The best agreement is observed, as would be expected, for frequencies related to predominantly vertical

modes (4th, 5th and 6th, Table 3). Although these three correspond to similar vertical waves, the 4th and
5th modes (Figures 12 and 13) include a signi�cant transverse displacement. The tendency of this structure
to mobilize a spatial response, even under a purely vertical excitation, shows the need to use a 3D spatial
model in order to carefully characterize its dynamic behaviour.

6. CONCLUSIONS

A generalized matrix formulation was presented and extended to the linear dynamic analysis of spatial struc-
tures consisting of one-dimensional curved elements with arbitrary and variable cross-section. This formu-
lation allows the accurate modelling of any structure formed by such elements with a reasonably small
number of degrees of freedom. Since the proposed extension did not require additional hypotheses ei-
ther on the kinematics of the structure or on the stress �eld, the accuracy of the results was conditioned
only by the techniques adopted for the numerical integration. However, a description of the acceleration
�eld was introduced in order to build a mass matrix referring to the nodal variables. The resulting mass
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matrix objectively takes into account the internal distribution of both sti�ness and mass, with no additional
assumptions needed.
The study of some examples showed that the proposed formulation approximates the dynamic behaviour

of spatial framed structures more accurately than conventional methods. Also, for the same accuracy, the
proposed method requires a smaller number of elements though it carries out more computations on each of
them. Due to this, the calculation time is directly controlled by the number of sections to be integrated and, to
a smaller degree, by the system of equations, since the required number of degrees of freedom is maintained
at a minimum even in complex examples.
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